Improved human action recognition approach based on two-stream convolutional neural network model

In order to improve the accuracy of human abnormal behavior recognition, a two-stream convolution neural network model was proposed. This model includes two main parts, VMHI and FRGB. Firstly, the motion history images are extracted and input into VGG-16 convolutional neural network for training. Th...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 37; no. 6; pp. 1327 - 1341
Main Authors Liu, Congcong, Ying, Jie, Yang, Haima, Hu, Xing, Liu, Jin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to improve the accuracy of human abnormal behavior recognition, a two-stream convolution neural network model was proposed. This model includes two main parts, VMHI and FRGB. Firstly, the motion history images are extracted and input into VGG-16 convolutional neural network for training. Then, the RGB image is input into Faster R-CNN algorithm for training using Kalman filter-assisted data annotation. Finally, the two stream VMHI and FRGB results are fused. The algorithm can recognize not only single person behavior, but also two person interaction behavior and improve the recognition accuracy of similar actions. Experimental results on KTH, Weizmann, UT-interaction, and TenthLab dataset showed that the proposed algorithm has higher accuracy than the other literature.
AbstractList In order to improve the accuracy of human abnormal behavior recognition, a two-stream convolution neural network model was proposed. This model includes two main parts, VMHI and FRGB. Firstly, the motion history images are extracted and input into VGG-16 convolutional neural network for training. Then, the RGB image is input into Faster R-CNN algorithm for training using Kalman filter-assisted data annotation. Finally, the two stream VMHI and FRGB results are fused. The algorithm can recognize not only single person behavior, but also two person interaction behavior and improve the recognition accuracy of similar actions. Experimental results on KTH, Weizmann, UT-interaction, and TenthLab dataset showed that the proposed algorithm has higher accuracy than the other literature.
Author Liu, Congcong
Liu, Jin
Ying, Jie
Hu, Xing
Yang, Haima
Author_xml – sequence: 1
  givenname: Congcong
  surname: Liu
  fullname: Liu, Congcong
  organization: School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology
– sequence: 2
  givenname: Jie
  surname: Ying
  fullname: Ying, Jie
  organization: School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology
– sequence: 3
  givenname: Haima
  surname: Yang
  fullname: Yang, Haima
  email: snowyhm@sina.com
  organization: School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology
– sequence: 4
  givenname: Xing
  surname: Hu
  fullname: Hu, Xing
  organization: School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology
– sequence: 5
  givenname: Jin
  surname: Liu
  fullname: Liu, Jin
  organization: School of Electronic and Electrical Engineering, Shanghai University of Engineering Science
BookMark eNp9kE1LAzEURYNUsK3-AVcDrqP5mDTJUoofBcGNrkMmk7RTZ5KazFT892ZaQXDR1csL5zwudwYmPngLwDVGtxghfpcQohxDRBBEWCwEFGdgiktKIKGYTcAUYS4g4UJegFlKW5R3Xsop0KtuF8Pe1sVm6LQvtOmb4ItoTVj75vDWu0xosykqnTKXf_qvAFMfre4KE_w-tMMI6rbwdoiHkYn4UXShtu0lOHe6Tfbqd87B--PD2_IZvrw-rZb3L9BQLHtYU-IQ01gbbAmvWV1WNXbMVZpyu7COSS05KS0uOXNywawTBjFRUkMFqquSzsHN8W5O-znY1KttGGJOlRSRmEvOqBgpcaRMDClF65Rpej3G76NuWoWRGgtVx0JVLlQdClUiq-SfuotNp-P3aYkepZRhv7bxL9UJ6wdk0Ixu
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3221530
crossref_primary_10_1080_08839514_2023_2225906
crossref_primary_10_1016_j_knosys_2024_111427
crossref_primary_10_32604_cmc_2023_028743
crossref_primary_10_26599_TST_2021_9010068
crossref_primary_10_3934_era_2022210
crossref_primary_10_1016_j_neunet_2023_10_016
crossref_primary_10_1109_ACCESS_2023_3282439
crossref_primary_10_1109_ACCESS_2021_3096527
crossref_primary_10_1007_s00371_021_02350_9
crossref_primary_10_1155_2022_6793365
crossref_primary_10_1016_j_patcog_2022_108621
crossref_primary_10_1007_s10489_021_02315_4
crossref_primary_10_1155_2022_6912315
crossref_primary_10_1007_s00138_022_01291_0
crossref_primary_10_1007_s11042_023_16793_w
crossref_primary_10_1007_s10845_024_02518_9
crossref_primary_10_1007_s42979_023_02452_2
crossref_primary_10_3390_s24237595
crossref_primary_10_1007_s00371_020_02012_2
crossref_primary_10_1007_s10639_025_13351_9
crossref_primary_10_1007_s13369_021_06182_6
crossref_primary_10_1007_s13735_024_00338_4
crossref_primary_10_3390_info14110616
crossref_primary_10_1007_s00521_022_07165_w
crossref_primary_10_1007_s00521_022_07665_9
crossref_primary_10_1007_s00371_021_02064_y
crossref_primary_10_1007_s00371_023_03073_9
crossref_primary_10_1007_s00371_023_03018_2
crossref_primary_10_1007_s13042_023_01851_4
crossref_primary_10_1016_j_image_2025_117263
crossref_primary_10_1109_ACCESS_2022_3144035
crossref_primary_10_1109_ACCESS_2024_3509674
crossref_primary_10_1007_s10044_023_01134_2
crossref_primary_10_1007_s00371_023_02827_9
crossref_primary_10_32628_CSEIT228392
crossref_primary_10_1109_ACCESS_2024_3432597
Cites_doi 10.1016/j.eswa.2015.12.012
10.1016/j.engappai.2017.10.001
10.1186/s13634-018-0574-4
10.1109/TPAMI.2012.59
10.1007/s12652-019-01239-9
10.1109/TMM.2017.2749159
10.1109/TCSVT.2017.2665359
10.1016/j.cogsys.2019.12.004
10.1007/s00371-018-1560-4
10.1016/j.eswa.2018.08.014
10.1007/s00371-019-01722-6
10.1007/s11042-017-4610-4
10.1016/j.imavis.2009.11.014
10.1016/j.jvcir.2013.03.001
10.1007/s11771-018-3738-3
10.1016/j.image.2019.115640
10.1109/ACCESS.2018.2812929
10.1016/j.cviu.2006.07.013
10.1109/34.910878
10.1007/978-3-319-46448-0_2
10.1109/WACV.2017.23
10.1109/ICPR.2004.1334462
10.1109/CVPR.2016.90
10.21236/ADA623249
10.1109/CVPR.2009.5206525
10.1007/978-3-319-46484-8_2
10.1109/CVPRW.2009.5206821
10.1109/IROS.2017.8206288
10.1109/CVPR.2018.00096
10.1109/CVPR.2016.213
10.1109/CVPR.2017.477
10.1109/CVPR.2016.91
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-020-01868-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 1341
ExternalDocumentID 10_1007_s00371_020_01868_8
GrantInformation_xml – fundername: Fund Project of National Natural Science Foundation of China
  grantid: 61701296
– fundername: Shanghai Natural Science Foundation
  grantid: 17ZR1443500
– fundername: Joint Funds of the National Natural Science Foundation of China
  grantid: U1831133
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-d32f05a1ac1e27d5d4bd1f5fba37e6ef59a9724e1475f965ef8c05843c380db43
IEDL.DBID BENPR
ISSN 0178-2789
IngestDate Fri Jul 25 23:22:57 EDT 2025
Tue Jul 01 01:05:48 EDT 2025
Thu Apr 24 22:54:26 EDT 2025
Fri Feb 21 02:49:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Human action recognition
Video surveillance
Motion history image
Faster R-CNN
Kalman filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d32f05a1ac1e27d5d4bd1f5fba37e6ef59a9724e1475f965ef8c05843c380db43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917975384
PQPubID 2043737
PageCount 15
ParticipantIDs proquest_journals_2917975384
crossref_citationtrail_10_1007_s00371_020_01868_8
crossref_primary_10_1007_s00371_020_01868_8
springer_journals_10_1007_s00371_020_01868_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bobick, Davis (CR29) 2001; 23
Wang, Gao, Song (CR19) 2016; 99
Afrasiabi, Khotanlou, Mansoorizadeh (CR26) 2019
Ji, Xu, Yang (CR18) 2013; 35
Ko, Sim (CR40) 2018; 67
Yang, Tian (CR3) 2014; 25
CR17
Qian, Zhou, Mao (CR37) 2017; 76
CR16
CR15
CR14
CR36
Hu (CR8) 2018; 2018
CR13
CR35
CR12
CR34
CR11
CR33
CR10
Imran, Raman (CR27) 2020; 11
CR31
CR30
Siswantoro, Prabuwono, Abdullah (CR32) 2016; 49
Fujiyoshi, Lipton (CR2) 1998; 87
Chou, Prasad, Wu (CR39) 2018; 6
CR4
CR6
Weinland, Ronfard, Boyer (CR5) 2006; 104
CR7
CR9
Vishwakarma (CR44) 2020; 61
CR25
Sahoo, Ari (CR43) 2019; 115
CR23
CR22
CR21
Vishwakarma, Dhiman (CR42) 2019; 35
CR20
Yi, Li, Zhou (CR28) 2020; 80
Xu, Jiang, Sun (CR38) 2017; 27
Wang, Zhou, Xia (CR41) 2018; 25
Poppe (CR1) 2010; 28
Wang, Gao, Wang (CR24) 2018; 20
AF Bobick (1868_CR29) 2001; 23
1868_CR9
1868_CR6
KE Ko (1868_CR40) 2018; 67
PS Sahoo (1868_CR43) 2019; 115
1868_CR7
1868_CR22
M Afrasiabi (1868_CR26) 2019
J Wang (1868_CR41) 2018; 25
1868_CR21
J Imran (1868_CR27) 2020; 11
1868_CR4
KP Chou (1868_CR39) 2018; 6
1868_CR23
K Xu (1868_CR38) 2017; 27
1868_CR20
S Ji (1868_CR18) 2013; 35
X Yang (1868_CR3) 2014; 25
X Wang (1868_CR24) 2018; 20
1868_CR25
H Qian (1868_CR37) 2017; 76
X Wang (1868_CR19) 2016; 99
DK Vishwakarma (1868_CR42) 2019; 35
J Siswantoro (1868_CR32) 2016; 49
R Poppe (1868_CR1) 2010; 28
X Hu (1868_CR8) 2018; 2018
Y Yi (1868_CR28) 2020; 80
1868_CR11
1868_CR33
1868_CR10
1868_CR13
1868_CR35
H Fujiyoshi (1868_CR2) 1998; 87
1868_CR12
1868_CR34
D Weinland (1868_CR5) 2006; 104
1868_CR31
DK Vishwakarma (1868_CR44) 2020; 61
1868_CR30
1868_CR15
1868_CR14
1868_CR36
1868_CR17
1868_CR16
References_xml – volume: 87
  start-page: 113
  year: 1998
  end-page: 120
  ident: CR2
  article-title: Real-time human motion analysis by image skeletonization
  publication-title: Appl. Comput. Vis.
– ident: CR22
– ident: CR4
– ident: CR14
– ident: CR16
– ident: CR12
– ident: CR30
– ident: CR10
– ident: CR33
– ident: CR35
– ident: CR6
– volume: 49
  start-page: 112
  year: 2016
  end-page: 122
  ident: CR32
  article-title: A linear model based on Kalman filter for improving neural network classification performance
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.12.012
– volume: 67
  start-page: 226
  year: 2018
  end-page: 234
  ident: CR40
  article-title: Deep convolutional framework for abnormal activities recognition in a smart surveillance system
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.001
– ident: CR25
– volume: 2018
  start-page: 54
  issue: 1
  year: 2018
  ident: CR8
  article-title: Huang Y, Duan Q, et al, Abnormal event detection in crowded scenes using histogram of oriented contextual gradient descriptor
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-018-0574-4
– ident: CR23
– volume: 35
  start-page: 221
  issue: 1
  year: 2013
  end-page: 231
  ident: CR18
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– volume: 11
  start-page: 189
  year: 2020
  end-page: 208
  ident: CR27
  article-title: Evaluating fusion of RGB-D and inertial sensors for multimodal human action recognition
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-019-01239-9
– volume: 99
  start-page: 1
  year: 2016
  ident: CR19
  article-title: Beyond frame-level CNN: saliency-aware 3D CNN with LSTM for video action recognition
  publication-title: IEEE Signal Process. Lett.
– ident: CR21
– volume: 20
  start-page: 634
  year: 2018
  end-page: 644
  ident: CR24
  article-title: Two-stream 3-D convnet fusion for action recognition in videos with arbitrary size and length
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2017.2749159
– volume: 27
  start-page: 567
  year: 2017
  end-page: 576
  ident: CR38
  article-title: Two-stream dictionary learning architecture for action recognition
  publication-title: IEEE Trans. Circuits Syst. Video
  doi: 10.1109/TCSVT.2017.2665359
– volume: 61
  start-page: 1
  year: 2020
  end-page: 13
  ident: CR44
  article-title: A twofold transformation model for human action recognition using decisive pose
  publication-title: Cognit. Syst. Res.
  doi: 10.1016/j.cogsys.2019.12.004
– ident: CR15
– volume: 35
  start-page: 1595
  year: 2019
  end-page: 1613
  ident: CR42
  article-title: A unified model for human activity recognition using spatial distribution of gradients and difference of Gaussian kernel
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1560-4
– ident: CR17
– ident: CR31
– volume: 115
  start-page: 524
  year: 2019
  end-page: 534
  ident: CR43
  article-title: On an algorithm for human action recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.014
– ident: CR13
– ident: CR11
– year: 2019
  ident: CR26
  article-title: DTW-CNN: time series-based human interaction prediction in videos using CNN-extracted features
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01722-6
– volume: 76
  start-page: 21889
  year: 2017
  end-page: 21910
  ident: CR37
  article-title: Recognizing human actions from silhouettes described with weighted distance metric and kinematics
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-4610-4
– ident: CR9
– volume: 28
  start-page: 976
  issue: 6
  year: 2010
  end-page: 990
  ident: CR1
  article-title: A survey on vision-based human action recognition
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.11.014
– volume: 25
  start-page: 2
  issue: 1
  year: 2014
  end-page: 11
  ident: CR3
  article-title: Effective 3D action recognition using EigenJoints
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2013.03.001
– volume: 25
  start-page: 304
  issue: 2
  year: 2018
  end-page: 314
  ident: CR41
  article-title: Human interaction recognition based on sparse representation of feature covariance matrices
  publication-title: J. Central South Univ.
  doi: 10.1007/s11771-018-3738-3
– ident: CR34
– ident: CR36
– ident: CR7
– volume: 80
  start-page: 115640
  year: 2020
  ident: CR28
  article-title: Human action recognition based on action relevance weighted encoding
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2019.115640
– volume: 6
  start-page: 1
  year: 2018
  ident: CR39
  article-title: Robust feature-based automated multi-view human action recognition system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812929
– volume: 104
  start-page: 249
  issue: 2
  year: 2006
  end-page: 257
  ident: CR5
  article-title: Free viewpoint action recognition using motion history volumes
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2006.07.013
– ident: CR20
– volume: 23
  start-page: 257
  issue: 3
  year: 2001
  end-page: 267
  ident: CR29
  article-title: The recognition of human movement using temporal templates
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.910878
– ident: 1868_CR15
  doi: 10.1007/978-3-319-46448-0_2
– volume: 80
  start-page: 115640
  year: 2020
  ident: 1868_CR28
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2019.115640
– volume: 99
  start-page: 1
  year: 2016
  ident: 1868_CR19
  publication-title: IEEE Signal Process. Lett.
– ident: 1868_CR23
  doi: 10.1109/WACV.2017.23
– ident: 1868_CR6
  doi: 10.1109/ICPR.2004.1334462
– ident: 1868_CR12
  doi: 10.1109/CVPR.2016.90
– ident: 1868_CR16
– ident: 1868_CR35
– ident: 1868_CR20
– volume: 61
  start-page: 1
  year: 2020
  ident: 1868_CR44
  publication-title: Cognit. Syst. Res.
  doi: 10.1016/j.cogsys.2019.12.004
– ident: 1868_CR17
  doi: 10.21236/ADA623249
– ident: 1868_CR7
  doi: 10.1109/CVPR.2009.5206525
– volume: 28
  start-page: 976
  issue: 6
  year: 2010
  ident: 1868_CR1
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.11.014
– volume: 20
  start-page: 634
  year: 2018
  ident: 1868_CR24
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2017.2749159
– ident: 1868_CR33
– volume: 35
  start-page: 221
  issue: 1
  year: 2013
  ident: 1868_CR18
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– ident: 1868_CR22
  doi: 10.1007/978-3-319-46484-8_2
– ident: 1868_CR10
– volume: 87
  start-page: 113
  year: 1998
  ident: 1868_CR2
  publication-title: Appl. Comput. Vis.
– ident: 1868_CR4
  doi: 10.1109/CVPRW.2009.5206821
– ident: 1868_CR25
  doi: 10.1109/IROS.2017.8206288
– volume: 35
  start-page: 1595
  year: 2019
  ident: 1868_CR42
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1560-4
– ident: 1868_CR30
  doi: 10.1109/CVPR.2018.00096
– volume: 25
  start-page: 2
  issue: 1
  year: 2014
  ident: 1868_CR3
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2013.03.001
– ident: 1868_CR36
– volume: 115
  start-page: 524
  year: 2019
  ident: 1868_CR43
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.014
– ident: 1868_CR13
– ident: 1868_CR34
– ident: 1868_CR21
  doi: 10.1109/CVPR.2016.213
– ident: 1868_CR9
– volume: 27
  start-page: 567
  year: 2017
  ident: 1868_CR38
  publication-title: IEEE Trans. Circuits Syst. Video
  doi: 10.1109/TCSVT.2017.2665359
– volume: 2018
  start-page: 54
  issue: 1
  year: 2018
  ident: 1868_CR8
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-018-0574-4
– ident: 1868_CR31
  doi: 10.1109/CVPR.2017.477
– volume: 67
  start-page: 226
  year: 2018
  ident: 1868_CR40
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.001
– ident: 1868_CR14
  doi: 10.1109/CVPR.2016.91
– volume: 11
  start-page: 189
  year: 2020
  ident: 1868_CR27
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-019-01239-9
– volume: 49
  start-page: 112
  year: 2016
  ident: 1868_CR32
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.12.012
– volume: 6
  start-page: 1
  year: 2018
  ident: 1868_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812929
– year: 2019
  ident: 1868_CR26
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01722-6
– volume: 76
  start-page: 21889
  year: 2017
  ident: 1868_CR37
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-4610-4
– volume: 104
  start-page: 249
  issue: 2
  year: 2006
  ident: 1868_CR5
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2006.07.013
– ident: 1868_CR11
– volume: 25
  start-page: 304
  issue: 2
  year: 2018
  ident: 1868_CR41
  publication-title: J. Central South Univ.
  doi: 10.1007/s11771-018-3738-3
– volume: 23
  start-page: 257
  issue: 3
  year: 2001
  ident: 1868_CR29
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.910878
SSID ssj0017749
Score 2.4535217
Snippet In order to improve the accuracy of human abnormal behavior recognition, a two-stream convolution neural network model was proposed. This model includes two...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1327
SubjectTerms Algorithms
Annotations
Artificial Intelligence
Artificial neural networks
Computer Graphics
Computer Science
Deep learning
Human activity recognition
Image Processing and Computer Vision
Kalman filters
Neural networks
Original Article
Performance evaluation
Recognition
Spacetime
Support vector machines
Training
Wavelet transforms
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpbysGtnrBBVhQQTlbpF8WuCFtEg_j5nx0kBARJTosR2pLOde_i-7wAuC8OZSrWhzseYmPaUt8xU1EipXSYU55V3FO8fRtMZu5vzeQSFrdps9_ZIMvypO7BbYJej3t1JPMc7lZuwxdF394lcs2zcnR2gQROM3hT9I4_zjFCZn8f4qo7WNua3Y9GgbSb7sBvNRDJu5vUANuyiD3ttCQYSd2Qfdj7xCR5C1YQIrCGh9B5pQAukSxLC-5ZDnHj1ZQg-qd-X1CNGqmfiU9DjUsSPe6rLcAmJ4iTUzDmC2eT28WZKYw0FqnFz1dTkmUtQ3pVObSYMN0yZ1HGnqlzYkXW8qAqRMZsywV0x4tZJnaBRkutcJkax_Bh6i-XCngBx6PsYIVThUKUbnWNHD1QVKrFMJU4OIG1FWepIMO7rXDyVHTVyEH-J4i-D-Evsc9X1eWnoNf5sPWxnqIxbbVVm6HB6dLBkA7huZ239-vfRTv_X_Ay2M5_PEiIwQ-jVr2_2HA2SWl2E9fcBJtfXeg
  priority: 102
  providerName: Springer Nature
Title Improved human action recognition approach based on two-stream convolutional neural network model
URI https://link.springer.com/article/10.1007/s00371-020-01868-8
https://www.proquest.com/docview/2917975384
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6V5NIeKqBFTaHRHrjBCj924_UJpVUeAhUh1EhwsryvEyRpE8TfZ2a9TqASnGzZ3rU0-5jHzvcNwHFppdCpsdxTjEkYorwVtuZWKeOzQktZk6P4-2ownYmLW3kbA26rmFbZ7olho7YLQzHyswz9CgKBKnG-_MupahSdrsYSGjvQxS1YqQ50f46urm825who3AQDOEVfiTCfETYTwHOBrY6T-5QQZzxXr1XT1t7874g0aJ7xLnyOJiMbNmO8Bx_cfB8-vSAS_AJ1ExtwloWae6xBK7BNdhDet-ThjPSWZfhk_bTgBBWpHxjlnsc5iH8ijstwCRniLBTL-Qqz8ejPrymPxRO4wVW15jbPfIKCrk3qssJKK7RNvfS6zgs3cF6WdVlkwqWikL4cSOeVSdAayU2uEqtFfgCd-WLuvgHz6PTYotClR11uTY4NCaFa6MQJnXjVg7SVW2UiszgVuLivNpzIQdYVyroKsq6wzcmmzbLh1Xj366N2OKq4xlbVdkb04LQdou3rt3v7_n5vh_Axo8SVEGo5gs7636P7gZbHWvdhR40nfegOJ3eXo36cbPh0lg2fAe0t2Sg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHxCrK6gOcwCKL3SQHhBBQynoCiVuItxO0LEUVP8U3MuMkLSDBjVOiJHai8cQzY897A7CVGSlUqA13tMYkNFHeClNwk6baRYmSsqBA8eq61bkV53fybgw-aiwMpVXWc6KfqE1P0xr5XoRxBYFAU3Hw9MypahTtrtYlNEq1uLDvAwzZXvfPjnF8t6OofXJz1OFVVQGuUd363MSRC_ALCh3aKDHSCGVCJ50q4sS2rJNZkSWRsKFIpMta0rpUB2imYx2ngVEixn7HYULEaMkJmd4-He5aoCvl3e0QIzNCmFYgHQ_V89x4nIK1gBjqefrdEI682x8bst7OtWdhpnJQ2WGpUXMwZrvzMP2FtnABinIlwhrmK_yxEhvBhrlIeF5TlTOykobhlf6gxwmYUjwyynSvNB7fRIya_uDz0ZkvzbMIt_8i1CVodHtduwzMYYhlkkRlDj0Ho2NsSHjYRAVWqMClTQhrueW64jGnchoP-ZCB2cs6R1nnXtY5ttkZtnkqWTz-fHqtHo68-qNf85H-NWG3HqLR7d97W_m7t02Y7NxcXeaXZ9cXqzAVUcqMX-RZg0b_5c2uo8_TVxte0Rjc_7dmfwJV-RHq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VkBAMPAqI8vQAE0Qkjt0kAwOiVOVVMVCJLcSvCQqiQYh_xU_k7DwKCJAYmBIltmOdz_Gdfd93ADuJ4kwEUnnG7jExaSlvmco8FcfS0EhwnllH8bLf7g3Y2Q2_acBbhYVx0e7VkWSBabAsTcP84FGZgxr45pjmPOv6-Jbv3YvLsMpz_fqCTtvo8LSDI7xLaffk-rjnlXkFPIkKl3sqpMbHPmQy0DRSXDGhAsONyMJIt7XhSZZElOmARdwkba5NLH1cqEMZxr4SLMR2J2CKWfQxzqABParPLdCYcgZ3gL6ZxZiWMJ3v-_x5KRzbt1-OZN1K112AudJEJUeFTi1CQw-bMF-lfyDl36AJsx-4DJcgK7YntCIu7R8pABOkDlDC-4q_nNilUxF8kr88eBatkt0TG_5eTgP8uKXZdBcXpE5cvp5lGPyLnFdgcvgw1KtADPpdKopEYtCcUDLEihYkGwlfM-GbuAVBJcpUluTmNsfGXVrTMjvxpyj-1Ik_xTp7dZ3Hgtrj19Ib1Qil5TQfpRSdXYtMjlkL9qtRG7_-ubW1vxXfhumrTje9OO2fr8MMtWE1biNoAybzp2e9iXZRLracKhK4_W_dfwccARlX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+human+action+recognition+approach+based+on+two-stream+convolutional+neural+network+model&rft.jtitle=The+Visual+computer&rft.au=Liu%2C+Congcong&rft.au=Ying%2C+Jie&rft.au=Yang%2C+Haima&rft.au=Hu%2C+Xing&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=37&rft.issue=6&rft.spage=1327&rft.epage=1341&rft_id=info:doi/10.1007%2Fs00371-020-01868-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon