Exploring the electrochemical performance of nickel-zinc ferrite nanoparticles for supercapacitor applications

In this research, nickel-zinc (Ni 0.5 Zn 0.5 Fe 2 O 4 ) nanoparticles of ferrite are tested to see whether they can function as electrodes in supercapacitors. The synthesized nanoparticles have been found to have a single-phase face-centered cubic structure, according to structural, morphological, a...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 35; no. 8; p. 606
Main Authors Kharat, Prashant B., Somvanshi, Sandeep B., Dawi, Elmuez A., Mopari, Anuja M., Bansod, Nitin H.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this research, nickel-zinc (Ni 0.5 Zn 0.5 Fe 2 O 4 ) nanoparticles of ferrite are tested to see whether they can function as electrodes in supercapacitors. The synthesized nanoparticles have been found to have a single-phase face-centered cubic structure, according to structural, morphological, and compositional analyses. The nanoparticles are confirmed to be in their typical structure since Fourier transform infrared examination shows that they contain no organic components. Analyses of the material's surface and magnetic properties suggest that it has superparamagnetic properties and a particular surface area of 42.26 m 2  g −1 , both of which are essential for improving energy storage efficiency. Reversible and steady redox behavior may be shown in cyclic voltammetry investigations as confirmed from the well-developed curve. Rapid charge–discharge response, potential plateaus, with overall stability indicate that these nanoparticles are well-suited for high-rate applications. The effect of the applied current density upon charge storage capacity is highlighted by a specific capacitance study showing an inverse connection between current density with capacitance. Analyzing the impedance and the Nyquist plot may provide light on the kinetics of charge transfer and the capacitive behavior. These results show that nickel-zinc ferrite nanoparticles may function well as supercapacitor electrodes. For the sake of designing and optimizing supercapacitors to satisfy future energy needs, this work adds to our knowledge of their electrochemical characteristics and energy storage capacity.
AbstractList In this research, nickel-zinc (Ni0.5Zn0.5Fe2O4) nanoparticles of ferrite are tested to see whether they can function as electrodes in supercapacitors. The synthesized nanoparticles have been found to have a single-phase face-centered cubic structure, according to structural, morphological, and compositional analyses. The nanoparticles are confirmed to be in their typical structure since Fourier transform infrared examination shows that they contain no organic components. Analyses of the material's surface and magnetic properties suggest that it has superparamagnetic properties and a particular surface area of 42.26 m2 g−1, both of which are essential for improving energy storage efficiency. Reversible and steady redox behavior may be shown in cyclic voltammetry investigations as confirmed from the well-developed curve. Rapid charge–discharge response, potential plateaus, with overall stability indicate that these nanoparticles are well-suited for high-rate applications. The effect of the applied current density upon charge storage capacity is highlighted by a specific capacitance study showing an inverse connection between current density with capacitance. Analyzing the impedance and the Nyquist plot may provide light on the kinetics of charge transfer and the capacitive behavior. These results show that nickel-zinc ferrite nanoparticles may function well as supercapacitor electrodes. For the sake of designing and optimizing supercapacitors to satisfy future energy needs, this work adds to our knowledge of their electrochemical characteristics and energy storage capacity.
In this research, nickel-zinc (Ni 0.5 Zn 0.5 Fe 2 O 4 ) nanoparticles of ferrite are tested to see whether they can function as electrodes in supercapacitors. The synthesized nanoparticles have been found to have a single-phase face-centered cubic structure, according to structural, morphological, and compositional analyses. The nanoparticles are confirmed to be in their typical structure since Fourier transform infrared examination shows that they contain no organic components. Analyses of the material's surface and magnetic properties suggest that it has superparamagnetic properties and a particular surface area of 42.26 m 2  g −1 , both of which are essential for improving energy storage efficiency. Reversible and steady redox behavior may be shown in cyclic voltammetry investigations as confirmed from the well-developed curve. Rapid charge–discharge response, potential plateaus, with overall stability indicate that these nanoparticles are well-suited for high-rate applications. The effect of the applied current density upon charge storage capacity is highlighted by a specific capacitance study showing an inverse connection between current density with capacitance. Analyzing the impedance and the Nyquist plot may provide light on the kinetics of charge transfer and the capacitive behavior. These results show that nickel-zinc ferrite nanoparticles may function well as supercapacitor electrodes. For the sake of designing and optimizing supercapacitors to satisfy future energy needs, this work adds to our knowledge of their electrochemical characteristics and energy storage capacity.
ArticleNumber 606
Author Mopari, Anuja M.
Bansod, Nitin H.
Kharat, Prashant B.
Somvanshi, Sandeep B.
Dawi, Elmuez A.
Author_xml – sequence: 1
  givenname: Prashant B.
  surname: Kharat
  fullname: Kharat, Prashant B.
  email: drpbkharat@gmail.com
  organization: Department of Physics, Vinayak Vidnyan Mahavidyalaya, Nandgaon Khandeshwar
– sequence: 2
  givenname: Sandeep B.
  orcidid: 0000-0001-9911-411X
  surname: Somvanshi
  fullname: Somvanshi, Sandeep B.
  email: sbsomvanshi1993@gmail.com
  organization: School of Materials Engineering, Purdue University
– sequence: 3
  givenname: Elmuez A.
  surname: Dawi
  fullname: Dawi, Elmuez A.
  organization: College of Humanities and Sciences, Ajman University
– sequence: 4
  givenname: Anuja M.
  surname: Mopari
  fullname: Mopari, Anuja M.
  organization: Department of Chemistry, Shri Shivaji Science College
– sequence: 5
  givenname: Nitin H.
  surname: Bansod
  fullname: Bansod, Nitin H.
  organization: Department of Chemistry, Shri Shivaji Science College
BookMark eNp9kMtqWzEURUVJoU7aH-hI0LFSva_usBjnAYZMUuhM6MpSLfdaUiUZknx9ZbsQyCCjw4G9ztmsS3ARU3QAfCX4mmA8fK8EK8ERphwRyiRGwwewIGJgiCv66wIs8CgGxAWln8BlrTuMseRMLUBcPeU5lRB_w7Z10M3OtpLs1u2DNTPMrvhU9iZaB5OHMdg_bkYvIVroXSmhORhNTNmUFuzsKuxpWA8dsyYbG1pfTc5zP9ZCivUz-OjNXN2X__MK_LxZPS7v0Prh9n75Y40sI2NDGzopPzCnxs3IyGaYJJGKUjZ5PnolPLYUW-4nMgkvFRdcemMs4xvFjeRcsSvw7Xw3l_T34GrTu3Qosb_UdJRKCoEx7Sl1TtmSai3O6974VLQVE2ZNsD7a1We7utvVJ7t66Ch9g-YS9qY8vw-xM1Tz0bgrr63eof4BdbeRcw
CitedBy_id crossref_primary_10_3390_polym16243455
crossref_primary_10_1016_j_cap_2024_10_010
crossref_primary_10_1016_j_jpcs_2024_112195
crossref_primary_10_1002_crat_202400183
crossref_primary_10_1007_s10751_024_01930_0
crossref_primary_10_1007_s10971_024_06600_9
crossref_primary_10_1016_j_rinma_2024_100596
crossref_primary_10_1016_j_solidstatesciences_2024_107573
crossref_primary_10_1007_s10854_024_13567_4
crossref_primary_10_1016_j_jics_2024_101542
crossref_primary_10_1016_j_inoche_2024_112907
crossref_primary_10_1021_acs_inorgchem_4c03468
crossref_primary_10_1007_s10971_025_06672_1
crossref_primary_10_1016_j_apt_2024_104748
crossref_primary_10_1016_j_ijhydene_2024_08_163
crossref_primary_10_1016_j_matchemphys_2024_130016
crossref_primary_10_1016_j_nanoso_2025_101458
Cites_doi 10.1016/j.ceramint.2021.09.209
10.1016/j.engappai.2024.107880
10.1016/j.matchemphys.2017.01.054
10.1016/j.solidstatesciences.2022.106841
10.1016/j.jtice.2023.105010
10.1039/D0RA05522K
10.1016/j.est.2021.103257
10.1016/j.jallcom.2020.156297
10.1016/j.materresbull.2017.11.002
10.1016/j.est.2023.109821
10.1080/10667857.2021.1949527
10.1016/j.ceramint.2020.03.175
10.1080/16583655.2022.2161333
10.1017/9781009433181
10.1016/j.ceramint.2022.06.276
10.1016/j.matchemphys.2016.02.065
10.1088/1361-6528/ad1e96
10.1016/j.est.2023.109274
10.1016/j.jallcom.2024.173529
10.1088/2053-1591/acd50e
10.1016/j.ceramint.2020.07.166
10.1016/j.matchemphys.2023.128169
10.1016/j.ceramint.2020.04.255
10.1016/j.jmrt.2022.06.095
10.1039/D3SC05639B
10.1007/s00339-020-3313-2
10.1016/j.est.2023.110092
10.3390/nano9111602
10.1016/j.jmmm.2019.04.074
10.1016/j.synthmet.2022.117201
10.1016/j.est.2023.109984
10.1002/masy.202100162
10.1007/s10854-020-04830-5
10.1002/aoc.4174
10.1016/j.materresbull.2018.08.020
10.1016/j.rser.2023.114196
10.1201/9780429296871
10.1080/10408436.2023.2272963
10.1016/j.est.2023.109835
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
S0W
DOI 10.1007/s10854-024-12360-7
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
ExternalDocumentID 10_1007_s10854_024_12360_7
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-d2b8f73e89d931d7b6168223bf49f85f0c20c4fb1b5f684546faac34d84a64483
IEDL.DBID U2A
ISSN 0957-4522
IngestDate Fri Jul 25 12:07:17 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
Tue Jul 01 01:57:07 EDT 2025
Fri Feb 21 02:44:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d2b8f73e89d931d7b6168223bf49f85f0c20c4fb1b5f684546faac34d84a64483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9911-411X
PQID 2968655002
PQPubID 326250
ParticipantIDs proquest_journals_2968655002
crossref_citationtrail_10_1007_s10854_024_12360_7
crossref_primary_10_1007_s10854_024_12360_7
springer_journals_10_1007_s10854_024_12360_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WaniTASureshGMasrourRBatooKMRasoolAA structural, morphological, optical and magnetic study of nickel-substituted zinc (Ni–Zn) ferrite nanoparticles synthesized via glycine assisted gel autocombustion synthesis routeMater. Chem. Phys.20233071281691:CAS:528:DC%2BB3sXhsFGqtb7E10.1016/j.matchemphys.2023.128169
AbdulwahabKOKhanMMJenningsJRFerrites and ferrite-based composites for energy conversion and storage applicationsCritic. Rev. Solid State Mater. Sci.202310.1080/10408436.2023.2272963
MaryBCJVijayaJJSaravanakumarBBououdinaMKennedyLJNiFe2O4 and 2D-rGO decorated with NiFe2O4 nanoparticles as highly efficient electrodes for supercapacitorsSynth. Metals202229111720110.1016/j.synthmet.2022.117201
WangQHouXLiuSWangYGuSZhouGChaiJRambutan-like Ni0. 5Zn0. 5Fe2O4 nanospheres with tunable N-doped carbon shell as anode materials for high performance lithium-ion batteriesJ. Alloys Compd.20249781735291:CAS:528:DC%2BB2cXhtlSitrY%3D10.1016/j.jallcom.2024.173529
SakthipandiKLeninNKannaRRAfrozeASSivabharathyMPVA-doped NiNdxFe2-xO4 nanoferrites: tuning of dielectric and magnetic propertiesJ. Magnet. Magnet. Mater.20194851051111:CAS:528:DC%2BC1MXotVKnu7g%3D10.1016/j.jmmm.2019.04.074
Reveles-MirandaMRamirez-RiveraVPacheco-CatalánDHybrid energy storage: features, applications, and ancillary benefitsRenew. Sustain. Energy Rev.202419211419610.1016/j.rser.2023.114196
AlamSKhanQZGassoumiAKhanMIIqbalMZAhmadZInnovating synthesis approaches in advancing electrochemical efficiency: A journey into hydrothermal and sonochemical realmsJ. Energy Storage20247810982110.1016/j.est.2023.109821
IbrahimEMMAbdel-RahmanLHAbu-DiefAMElshafaieAHamdanSKAhmedAMElectric, thermoelectric and magnetic characterization of γ-Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schiff base complexesMater. Res. Bullet.2018991031081:CAS:528:DC%2BC2sXhsl2js7zK10.1016/j.materresbull.2017.11.002
MohamedWSHadiaNMAAlzaidMAbu-DiefAMImpact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approachSolid State Sci.20221251068411:CAS:528:DC%2BB38Xjt1ektL0%3D10.1016/j.solidstatesciences.2022.106841
IbrahimEMMAbu-DiefAMElshafaieAAhmedAMElectrical, thermoelectrical and magnetic properties of approximately 20-nm Ni-Co-O nanoparticles and investigation of their conduction phenomenaMater. Chem. Phys.201719241471:CAS:528:DC%2BC2sXhslensrs%3D10.1016/j.matchemphys.2017.01.054
AlahmadiMAlsaediWHMohamedWSHassanHMEzzeldienMAbu-DiefAMDevelopment of Bi2O3/MoSe2 mixed nanostructures for photocatalytic degradation of methylene blue dyeJ. Taibah Univ. Sci.2023171216133310.1080/16583655.2022.2161333
PawadeVBSalamePHBhanvaseBAMultifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices2020Boca RatonCRC Press10.1201/9780429296871
PalaniHRastogiAEffect of annealing temperature on structural and electrochemical behaviour on MgFe2O4 as electrode material in neutral aqueous electrolyte for supercapacitorsNanotechnology2024351717540110.1088/1361-6528/ad1e96
MukhopadhyaySKottaichamyARDevendrachariMCMendheRMKotreshHMNVinodCPThotiylMOElectrochemical energy storage in an organic supercapacitor via a non-electrochemical proton charge assemblyChem. Sci.2024155172617351:CAS:528:DC%2BB2cXivVKruw%3D%3D10.1039/D3SC05639B38303938
WhiteJKThe Truth About Energy: Our Fossil-Fuel Addiction and the Transition to Renewables2024CambridgeCambridge University Press10.1017/9781009433181
MayakkannanMMuruganAShameemASivaVSasikumarSThangarasuSBahadurSAInvestigations on ternary transition metal ferrite: NiCoFe2O4 as potential electrode for supercapacitor prepared by microwave irradiation methodJ. Energy Storage20214410325710.1016/j.est.2021.103257
RoshaniRTadjarodiASynthesis of ZnFe2O4 nanoparticles with high specific surface area for high-performance supercapacitorJ. Mater. Sci. Mater. Electron.2020312423025230361:CAS:528:DC%2BB3cXitlCktbvJ10.1007/s10854-020-04830-5
Abdel RahmanLHAbu-DiefAMEl-KhatibRMAbdel-FatahSMAdamAMIbrahimEMMSonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu (II), Co (II) and Ni (II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxidesAppl. Organometal. Chem.2018323e417410.1002/aoc.4174
Gayathri ManjuBRajiPGreen synthesis, characterization, and antibacterial activity of lime-juice-mediated copper–nickel mixed ferrite nanoparticlesAppl. Phys. A202012631561:CAS:528:DC%2BB3cXktFCnsrg%3D10.1007/s00339-020-3313-2
MassoudiJSmariMNouriKDhahriEKhirouniKBertainaSBessaisLMagnetic and spectroscopic properties of Ni–Zn–Al ferrite spinel: from the nanoscale to microscaleRSC Adv.2020105734556345801:CAS:528:DC%2BB3cXhvVGgsrvF10.1039/D0RA05522K355144269056800
BoruahDChandelSSTechno-economic feasibility analysis of a commercial grid-connected photovoltaic plant with battery energy storage-achieving a net zero energy systemJ. Energy Storage20247710998410.1016/j.est.2023.109984
TiwariNKadamSIngoleRKulkarniSFacile hydrothermal synthesis of ZnFe2O4 nanostructures for high-performance supercapacitor applicationCeram. Int.2022481929478294831:CAS:528:DC%2BB38Xhs1CrtrjI10.1016/j.ceramint.2022.06.276
KenariKHBahariALashkenariMSWidely improved supercapacitance properties of zirconium–cobalt ferrite nanoparticles by N-doped graphene oxide as an electrode in supercapacitorJ. Energy Storage20237410927410.1016/j.est.2023.109274
P.B. Kharat, S.B. Somvanshi, S.B. Somwanshi, A.M. Mopari, 2021 Investigation of Super‐Capacitive Properties of Nanocrystalline Copper‐Zinc (Cu0 5Zn0 5Fe2O4) Ferrite Nanoparticles, Macromolecular Symposia, Wiley, Hoboken, pp. 2100162.
ChehadeWBasmaHAbdallahAMHassanRSAwadRSynthesis and magneto-optical studies of novel Ni0. 5Zn0. 5Fe2O4/Zn0. 95Co0. 05O nanocomposite as a candidate for photocatalytic applicationsCeram. Int.2022481123812551:CAS:528:DC%2BB3MXitF2htbzK10.1016/j.ceramint.2021.09.209
P.P. GaunsDessai, Synthesis, Characterization and Study of Solid State Properties of Mn/Al Doped Nickel Zinc Ferrite and Their Applications, Goa University, 2020.
Abu-DiefAMAbdelbakyMSMartínez-BlancoDAmghouzZGarcía-GrandaSEffect of chromium substitution on the structural and magnetic properties of nanocrystalline zinc ferriteMater. Chem. Phys.20161741641711:CAS:528:DC%2BC28XjslSjt7w%3D10.1016/j.matchemphys.2016.02.065
IbrahimEMMAbdel-RahmanLHAbu-DiefAMElshafaieAHamdanSKAhmedAMThe synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic propertiesMater. Res. Bullet.20181074924971:CAS:528:DC%2BC1cXhs1Wnt73L10.1016/j.materresbull.2018.08.020
TianXTaoFFuZZhuLSunHSongSOptimizing fuel economy of fuel cell hybrid electric vehicle based on energy management strategy with integrated rapid thermal regulationEng. Appl. Artif. Intell.202413210788010.1016/j.engappai.2024.107880
BatoolZRehmanAAhmadMIqbalMWWabaidurSMSiddiquiMRGlassJTFabrication of (Ag, Zn, Co) based spinel ferrites as electrode materials for high energy density hybrid supercapacitorsJ. Energy Storage20247911009210.1016/j.est.2023.110092
HarishVAnsariMMTewariDYadavABSharmaNBawarigSGarcía-BetancourtMLKaratutluABechelanyMBarhoumACutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: a reviewJ. Taiwan Inst. Chem. Eng.20231491050101:CAS:528:DC%2BB3sXhtlGisLvM10.1016/j.jtice.2023.105010
SakthipandiKKannagiKHossainAEffect of lanthanum doping on the structural, electrical, and magnetic properties of Mn0. 5Cu0. 5LaxFe2− xO4 nanoferritesCeram. Int.2020461119634196381:CAS:528:DC%2BB3cXovFOjsrw%3D10.1016/j.ceramint.2020.04.255
SivakumarSMalaNABatooKMRaslanEHEfficient, highly stable Zn2+ doped NiO nanoparticles with enhanced magnetic and supercapacitor applicationsMater. Technol.20223710137513871:CAS:528:DC%2BB3MXhsFGlt7%2FE10.1080/10667857.2021.1949527
HossainAYandaPCherepanovVASakthipandiKSundaresanASynthesis, structure, optical and magnetic properties of Nd1− xAxMn0. 5Co0. 5O3− δ (A= Ba, Sr and Ca; x= 0 and 0.25)Ceram. Int.2020461726895269021:CAS:528:DC%2BB3cXhsVKrs7%2FJ10.1016/j.ceramint.2020.07.166
AlKawakOAKumarJRRDanielSSReddyCVKHybrid method based energy management of electric vehicles using battery-super capacitor energy storageJ. Energy Storage20247710983510.1016/j.est.2023.109835
ShumeWMZereffaERavikumarCRFakrudeenSPChanKYMurthyHALanthanum substituted Ni-Zn ferrite (Ni0. 75Zn0. 25Fe2O4) nanomaterial and its composite with rGO for degradation of binary dyes under visible light irradiationMater. Res. Exp.202310505500510.1088/2053-1591/acd50e
HossainAGilevARYandaPCherepanovVAVolegovASSakthipandiKSundaresanAOptical, magnetic and magneto-transport properties of Nd 1-xAxMn0. 5Fe0. 5O3-δ (A= Ca, Sr, Ba; x= 0, 0.25)J. Alloys Compd.20208471562971:CAS:528:DC%2BB3cXhsF2qtLfM10.1016/j.jallcom.2020.156297
MohamedWSAlzaidMAbdelbakySMMAmghouzZGarcía-GrandaSAbu-DiefMAImpact of Co2+ substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticlesNanomaterials201991116021:CAS:528:DC%2BC1MXitlOksLzK10.3390/nano9111602317180626915397
ToghanAKhairyMKamarEMMousaMAEffect of particle size and morphological structure on the physical properties of NiFe2O4 for supercapacitor applicationJ. Mater. Res. Technol202219352135351:CAS:528:DC%2BB38XitFentb%2FK10.1016/j.jmrt.2022.06.095
MohamedWSAbu-DiefAMImpact of rare earth europium (RE-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2− xEuxO4 nanosystemsCeram. Int.2020461016196162091:CAS:528:DC%2BB3cXltlGjsrw%3D10.1016/j.ceramint.2020.03.175
B Gayathri Manju (12360_CR38) 2020; 126
S Alam (12360_CR8) 2024; 78
A Toghan (12360_CR29) 2022; 19
BCJ Mary (12360_CR30) 2022; 291
M Mayakkannan (12360_CR13) 2021; 44
H Palani (12360_CR11) 2024; 35
K Sakthipandi (12360_CR18) 2019; 485
EMM Ibrahim (12360_CR27) 2018; 107
K Sakthipandi (12360_CR19) 2020; 46
WS Mohamed (12360_CR22) 2020; 46
AM Abu-Dief (12360_CR24) 2016; 174
12360_CR10
M Alahmadi (12360_CR35) 2023; 17
12360_CR31
VB Pawade (12360_CR6) 2020
TA Wani (12360_CR36) 2023; 307
EMM Ibrahim (12360_CR26) 2018; 99
W Chehade (12360_CR32) 2022; 48
WS Mohamed (12360_CR23) 2019; 9
S Mukhopadhyay (12360_CR39) 2024; 15
EMM Ibrahim (12360_CR25) 2017; 192
Q Wang (12360_CR40) 2024; 978
Z Batool (12360_CR5) 2024; 79
WM Shume (12360_CR34) 2023; 10
JK White (12360_CR1) 2024
A Hossain (12360_CR17) 2020; 46
N Tiwari (12360_CR16) 2022; 48
KH Kenari (12360_CR14) 2023; 74
J Massoudi (12360_CR37) 2020; 10
A Hossain (12360_CR20) 2020; 847
M Reveles-Miranda (12360_CR3) 2024; 192
OA AlKawak (12360_CR7) 2024; 77
D Boruah (12360_CR2) 2024; 77
KO Abdulwahab (12360_CR9) 2023
WS Mohamed (12360_CR21) 2022; 125
X Tian (12360_CR4) 2024; 132
R Roshani (12360_CR12) 2020; 31
S Sivakumar (12360_CR15) 2022; 37
V Harish (12360_CR33) 2023; 149
LH Abdel Rahman (12360_CR28) 2018; 32
References_xml – reference: ToghanAKhairyMKamarEMMousaMAEffect of particle size and morphological structure on the physical properties of NiFe2O4 for supercapacitor applicationJ. Mater. Res. Technol202219352135351:CAS:528:DC%2BB38XitFentb%2FK10.1016/j.jmrt.2022.06.095
– reference: BatoolZRehmanAAhmadMIqbalMWWabaidurSMSiddiquiMRGlassJTFabrication of (Ag, Zn, Co) based spinel ferrites as electrode materials for high energy density hybrid supercapacitorsJ. Energy Storage20247911009210.1016/j.est.2023.110092
– reference: IbrahimEMMAbdel-RahmanLHAbu-DiefAMElshafaieAHamdanSKAhmedAMElectric, thermoelectric and magnetic characterization of γ-Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schiff base complexesMater. Res. Bullet.2018991031081:CAS:528:DC%2BC2sXhsl2js7zK10.1016/j.materresbull.2017.11.002
– reference: KenariKHBahariALashkenariMSWidely improved supercapacitance properties of zirconium–cobalt ferrite nanoparticles by N-doped graphene oxide as an electrode in supercapacitorJ. Energy Storage20237410927410.1016/j.est.2023.109274
– reference: Abu-DiefAMAbdelbakyMSMartínez-BlancoDAmghouzZGarcía-GrandaSEffect of chromium substitution on the structural and magnetic properties of nanocrystalline zinc ferriteMater. Chem. Phys.20161741641711:CAS:528:DC%2BC28XjslSjt7w%3D10.1016/j.matchemphys.2016.02.065
– reference: WaniTASureshGMasrourRBatooKMRasoolAA structural, morphological, optical and magnetic study of nickel-substituted zinc (Ni–Zn) ferrite nanoparticles synthesized via glycine assisted gel autocombustion synthesis routeMater. Chem. Phys.20233071281691:CAS:528:DC%2BB3sXhsFGqtb7E10.1016/j.matchemphys.2023.128169
– reference: BoruahDChandelSSTechno-economic feasibility analysis of a commercial grid-connected photovoltaic plant with battery energy storage-achieving a net zero energy systemJ. Energy Storage20247710998410.1016/j.est.2023.109984
– reference: PawadeVBSalamePHBhanvaseBAMultifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices2020Boca RatonCRC Press10.1201/9780429296871
– reference: P.P. GaunsDessai, Synthesis, Characterization and Study of Solid State Properties of Mn/Al Doped Nickel Zinc Ferrite and Their Applications, Goa University, 2020.
– reference: PalaniHRastogiAEffect of annealing temperature on structural and electrochemical behaviour on MgFe2O4 as electrode material in neutral aqueous electrolyte for supercapacitorsNanotechnology2024351717540110.1088/1361-6528/ad1e96
– reference: Abdel RahmanLHAbu-DiefAMEl-KhatibRMAbdel-FatahSMAdamAMIbrahimEMMSonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu (II), Co (II) and Ni (II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxidesAppl. Organometal. Chem.2018323e417410.1002/aoc.4174
– reference: SakthipandiKKannagiKHossainAEffect of lanthanum doping on the structural, electrical, and magnetic properties of Mn0. 5Cu0. 5LaxFe2− xO4 nanoferritesCeram. Int.2020461119634196381:CAS:528:DC%2BB3cXovFOjsrw%3D10.1016/j.ceramint.2020.04.255
– reference: ShumeWMZereffaERavikumarCRFakrudeenSPChanKYMurthyHALanthanum substituted Ni-Zn ferrite (Ni0. 75Zn0. 25Fe2O4) nanomaterial and its composite with rGO for degradation of binary dyes under visible light irradiationMater. Res. Exp.202310505500510.1088/2053-1591/acd50e
– reference: AlahmadiMAlsaediWHMohamedWSHassanHMEzzeldienMAbu-DiefAMDevelopment of Bi2O3/MoSe2 mixed nanostructures for photocatalytic degradation of methylene blue dyeJ. Taibah Univ. Sci.2023171216133310.1080/16583655.2022.2161333
– reference: MukhopadhyaySKottaichamyARDevendrachariMCMendheRMKotreshHMNVinodCPThotiylMOElectrochemical energy storage in an organic supercapacitor via a non-electrochemical proton charge assemblyChem. Sci.2024155172617351:CAS:528:DC%2BB2cXivVKruw%3D%3D10.1039/D3SC05639B38303938
– reference: HossainAYandaPCherepanovVASakthipandiKSundaresanASynthesis, structure, optical and magnetic properties of Nd1− xAxMn0. 5Co0. 5O3− δ (A= Ba, Sr and Ca; x= 0 and 0.25)Ceram. Int.2020461726895269021:CAS:528:DC%2BB3cXhsVKrs7%2FJ10.1016/j.ceramint.2020.07.166
– reference: MohamedWSHadiaNMAAlzaidMAbu-DiefAMImpact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approachSolid State Sci.20221251068411:CAS:528:DC%2BB38Xjt1ektL0%3D10.1016/j.solidstatesciences.2022.106841
– reference: HarishVAnsariMMTewariDYadavABSharmaNBawarigSGarcía-BetancourtMLKaratutluABechelanyMBarhoumACutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: a reviewJ. Taiwan Inst. Chem. Eng.20231491050101:CAS:528:DC%2BB3sXhtlGisLvM10.1016/j.jtice.2023.105010
– reference: TiwariNKadamSIngoleRKulkarniSFacile hydrothermal synthesis of ZnFe2O4 nanostructures for high-performance supercapacitor applicationCeram. Int.2022481929478294831:CAS:528:DC%2BB38Xhs1CrtrjI10.1016/j.ceramint.2022.06.276
– reference: MayakkannanMMuruganAShameemASivaVSasikumarSThangarasuSBahadurSAInvestigations on ternary transition metal ferrite: NiCoFe2O4 as potential electrode for supercapacitor prepared by microwave irradiation methodJ. Energy Storage20214410325710.1016/j.est.2021.103257
– reference: WangQHouXLiuSWangYGuSZhouGChaiJRambutan-like Ni0. 5Zn0. 5Fe2O4 nanospheres with tunable N-doped carbon shell as anode materials for high performance lithium-ion batteriesJ. Alloys Compd.20249781735291:CAS:528:DC%2BB2cXhtlSitrY%3D10.1016/j.jallcom.2024.173529
– reference: AlamSKhanQZGassoumiAKhanMIIqbalMZAhmadZInnovating synthesis approaches in advancing electrochemical efficiency: A journey into hydrothermal and sonochemical realmsJ. Energy Storage20247810982110.1016/j.est.2023.109821
– reference: WhiteJKThe Truth About Energy: Our Fossil-Fuel Addiction and the Transition to Renewables2024CambridgeCambridge University Press10.1017/9781009433181
– reference: MaryBCJVijayaJJSaravanakumarBBououdinaMKennedyLJNiFe2O4 and 2D-rGO decorated with NiFe2O4 nanoparticles as highly efficient electrodes for supercapacitorsSynth. Metals202229111720110.1016/j.synthmet.2022.117201
– reference: IbrahimEMMAbdel-RahmanLHAbu-DiefAMElshafaieAHamdanSKAhmedAMThe synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic propertiesMater. Res. Bullet.20181074924971:CAS:528:DC%2BC1cXhs1Wnt73L10.1016/j.materresbull.2018.08.020
– reference: P.B. Kharat, S.B. Somvanshi, S.B. Somwanshi, A.M. Mopari, 2021 Investigation of Super‐Capacitive Properties of Nanocrystalline Copper‐Zinc (Cu0 5Zn0 5Fe2O4) Ferrite Nanoparticles, Macromolecular Symposia, Wiley, Hoboken, pp. 2100162.
– reference: Gayathri ManjuBRajiPGreen synthesis, characterization, and antibacterial activity of lime-juice-mediated copper–nickel mixed ferrite nanoparticlesAppl. Phys. A202012631561:CAS:528:DC%2BB3cXktFCnsrg%3D10.1007/s00339-020-3313-2
– reference: Reveles-MirandaMRamirez-RiveraVPacheco-CatalánDHybrid energy storage: features, applications, and ancillary benefitsRenew. Sustain. Energy Rev.202419211419610.1016/j.rser.2023.114196
– reference: RoshaniRTadjarodiASynthesis of ZnFe2O4 nanoparticles with high specific surface area for high-performance supercapacitorJ. Mater. Sci. Mater. Electron.2020312423025230361:CAS:528:DC%2BB3cXitlCktbvJ10.1007/s10854-020-04830-5
– reference: IbrahimEMMAbu-DiefAMElshafaieAAhmedAMElectrical, thermoelectrical and magnetic properties of approximately 20-nm Ni-Co-O nanoparticles and investigation of their conduction phenomenaMater. Chem. Phys.201719241471:CAS:528:DC%2BC2sXhslensrs%3D10.1016/j.matchemphys.2017.01.054
– reference: TianXTaoFFuZZhuLSunHSongSOptimizing fuel economy of fuel cell hybrid electric vehicle based on energy management strategy with integrated rapid thermal regulationEng. Appl. Artif. Intell.202413210788010.1016/j.engappai.2024.107880
– reference: AlKawakOAKumarJRRDanielSSReddyCVKHybrid method based energy management of electric vehicles using battery-super capacitor energy storageJ. Energy Storage20247710983510.1016/j.est.2023.109835
– reference: ChehadeWBasmaHAbdallahAMHassanRSAwadRSynthesis and magneto-optical studies of novel Ni0. 5Zn0. 5Fe2O4/Zn0. 95Co0. 05O nanocomposite as a candidate for photocatalytic applicationsCeram. Int.2022481123812551:CAS:528:DC%2BB3MXitF2htbzK10.1016/j.ceramint.2021.09.209
– reference: AbdulwahabKOKhanMMJenningsJRFerrites and ferrite-based composites for energy conversion and storage applicationsCritic. Rev. Solid State Mater. Sci.202310.1080/10408436.2023.2272963
– reference: SivakumarSMalaNABatooKMRaslanEHEfficient, highly stable Zn2+ doped NiO nanoparticles with enhanced magnetic and supercapacitor applicationsMater. Technol.20223710137513871:CAS:528:DC%2BB3MXhsFGlt7%2FE10.1080/10667857.2021.1949527
– reference: MohamedWSAlzaidMAbdelbakySMMAmghouzZGarcía-GrandaSAbu-DiefMAImpact of Co2+ substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticlesNanomaterials201991116021:CAS:528:DC%2BC1MXitlOksLzK10.3390/nano9111602317180626915397
– reference: HossainAGilevARYandaPCherepanovVAVolegovASSakthipandiKSundaresanAOptical, magnetic and magneto-transport properties of Nd 1-xAxMn0. 5Fe0. 5O3-δ (A= Ca, Sr, Ba; x= 0, 0.25)J. Alloys Compd.20208471562971:CAS:528:DC%2BB3cXhsF2qtLfM10.1016/j.jallcom.2020.156297
– reference: MohamedWSAbu-DiefAMImpact of rare earth europium (RE-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2− xEuxO4 nanosystemsCeram. Int.2020461016196162091:CAS:528:DC%2BB3cXltlGjsrw%3D10.1016/j.ceramint.2020.03.175
– reference: SakthipandiKLeninNKannaRRAfrozeASSivabharathyMPVA-doped NiNdxFe2-xO4 nanoferrites: tuning of dielectric and magnetic propertiesJ. Magnet. Magnet. Mater.20194851051111:CAS:528:DC%2BC1MXotVKnu7g%3D10.1016/j.jmmm.2019.04.074
– reference: MassoudiJSmariMNouriKDhahriEKhirouniKBertainaSBessaisLMagnetic and spectroscopic properties of Ni–Zn–Al ferrite spinel: from the nanoscale to microscaleRSC Adv.2020105734556345801:CAS:528:DC%2BB3cXhvVGgsrvF10.1039/D0RA05522K355144269056800
– volume: 48
  start-page: 1238
  issue: 1
  year: 2022
  ident: 12360_CR32
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.09.209
– ident: 12360_CR10
– volume: 132
  start-page: 107880
  year: 2024
  ident: 12360_CR4
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.107880
– volume: 192
  start-page: 41
  year: 2017
  ident: 12360_CR25
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.01.054
– volume: 125
  start-page: 106841
  year: 2022
  ident: 12360_CR21
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2022.106841
– volume: 149
  start-page: 105010
  year: 2023
  ident: 12360_CR33
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2023.105010
– volume: 10
  start-page: 34556
  issue: 57
  year: 2020
  ident: 12360_CR37
  publication-title: RSC Adv.
  doi: 10.1039/D0RA05522K
– volume: 44
  start-page: 103257
  year: 2021
  ident: 12360_CR13
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103257
– volume: 847
  start-page: 156297
  year: 2020
  ident: 12360_CR20
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.156297
– volume: 99
  start-page: 103
  year: 2018
  ident: 12360_CR26
  publication-title: Mater. Res. Bullet.
  doi: 10.1016/j.materresbull.2017.11.002
– volume: 78
  start-page: 109821
  year: 2024
  ident: 12360_CR8
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109821
– volume: 37
  start-page: 1375
  issue: 10
  year: 2022
  ident: 12360_CR15
  publication-title: Mater. Technol.
  doi: 10.1080/10667857.2021.1949527
– volume: 46
  start-page: 16196
  issue: 10
  year: 2020
  ident: 12360_CR22
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.175
– volume: 17
  start-page: 2161333
  issue: 1
  year: 2023
  ident: 12360_CR35
  publication-title: J. Taibah Univ. Sci.
  doi: 10.1080/16583655.2022.2161333
– volume-title: The Truth About Energy: Our Fossil-Fuel Addiction and the Transition to Renewables
  year: 2024
  ident: 12360_CR1
  doi: 10.1017/9781009433181
– volume: 48
  start-page: 29478
  issue: 19
  year: 2022
  ident: 12360_CR16
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2022.06.276
– volume: 174
  start-page: 164
  year: 2016
  ident: 12360_CR24
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2016.02.065
– volume: 35
  start-page: 175401
  issue: 17
  year: 2024
  ident: 12360_CR11
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ad1e96
– volume: 74
  start-page: 109274
  year: 2023
  ident: 12360_CR14
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109274
– volume: 978
  start-page: 173529
  year: 2024
  ident: 12360_CR40
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2024.173529
– volume: 10
  start-page: 055005
  issue: 5
  year: 2023
  ident: 12360_CR34
  publication-title: Mater. Res. Exp.
  doi: 10.1088/2053-1591/acd50e
– volume: 46
  start-page: 26895
  issue: 17
  year: 2020
  ident: 12360_CR17
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.07.166
– volume: 307
  start-page: 128169
  year: 2023
  ident: 12360_CR36
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2023.128169
– volume: 46
  start-page: 19634
  issue: 11
  year: 2020
  ident: 12360_CR19
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.255
– volume: 19
  start-page: 3521
  year: 2022
  ident: 12360_CR29
  publication-title: J. Mater. Res. Technol
  doi: 10.1016/j.jmrt.2022.06.095
– volume: 15
  start-page: 1726
  issue: 5
  year: 2024
  ident: 12360_CR39
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC05639B
– volume: 126
  start-page: 156
  issue: 3
  year: 2020
  ident: 12360_CR38
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-3313-2
– volume: 79
  start-page: 110092
  year: 2024
  ident: 12360_CR5
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.110092
– volume: 9
  start-page: 1602
  issue: 11
  year: 2019
  ident: 12360_CR23
  publication-title: Nanomaterials
  doi: 10.3390/nano9111602
– volume: 485
  start-page: 105
  year: 2019
  ident: 12360_CR18
  publication-title: J. Magnet. Magnet. Mater.
  doi: 10.1016/j.jmmm.2019.04.074
– volume: 291
  start-page: 117201
  year: 2022
  ident: 12360_CR30
  publication-title: Synth. Metals
  doi: 10.1016/j.synthmet.2022.117201
– volume: 77
  start-page: 109984
  year: 2024
  ident: 12360_CR2
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109984
– ident: 12360_CR31
  doi: 10.1002/masy.202100162
– volume: 31
  start-page: 23025
  issue: 24
  year: 2020
  ident: 12360_CR12
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-020-04830-5
– volume: 32
  start-page: e4174
  issue: 3
  year: 2018
  ident: 12360_CR28
  publication-title: Appl. Organometal. Chem.
  doi: 10.1002/aoc.4174
– volume: 107
  start-page: 492
  year: 2018
  ident: 12360_CR27
  publication-title: Mater. Res. Bullet.
  doi: 10.1016/j.materresbull.2018.08.020
– volume: 192
  start-page: 114196
  year: 2024
  ident: 12360_CR3
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.114196
– volume-title: Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices
  year: 2020
  ident: 12360_CR6
  doi: 10.1201/9780429296871
– year: 2023
  ident: 12360_CR9
  publication-title: Critic. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408436.2023.2272963
– volume: 77
  start-page: 109835
  year: 2024
  ident: 12360_CR7
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109835
SSID ssj0006438
Score 2.5007687
Snippet In this research, nickel-zinc (Ni 0.5 Zn 0.5 Fe 2 O 4 ) nanoparticles of ferrite are tested to see whether they can function as electrodes in supercapacitors....
In this research, nickel-zinc (Ni0.5Zn0.5Fe2O4) nanoparticles of ferrite are tested to see whether they can function as electrodes in supercapacitors. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 606
SubjectTerms Capacitance
Characterization and Evaluation of Materials
Charge transfer
Chemistry and Materials Science
Current density
Electrochemical analysis
Electrodes
Energy storage
Fourier transforms
Infrared analysis
Magnetic properties
Materials Science
Nanoparticles
Nickel
Nyquist plots
Optical and Electronic Materials
Storage capacity
Supercapacitors
Zinc ferrites
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaJQdvGuxms7vJSVRaimARsdDbks0DCpLWdnvx1zvZpt0q2HMeh5nMMzPfIHST2sSjtHMiqRQ-W2WITCJDqIYwTltjpPSNwq-DtD9kL6NkFBJu81BWudKJlaLWE-Vz5PdUpL6HEgT4YfpF_NQo_7saRmjsoiaoYM4bqPnUHby9r3Ux2Fu-RNvz6N6UhraZ0DzHE0bARhGPQNIh2W_TVPubf75IK8vTO0QHwWXEj0seH6Ed447R_gaQ4Aly61I6DA4dDrNtVAADwNO6OwBPLHZjEN1P8j12CluPzFga7KSD8DlUyWHYjecLOKbAlioQ-hne_Ok-RcNe9-O5T8IkBaJAxEqiacFtFhsutIgjnRVplIJnEBeWCcsT21G0o5gtoiKxKWcJS62UKmaaM-kDuPgMNdzEmXOEiywtGFMyMxqiak2FEqAkhFFGCR5r2ULRioi5CjDjftrFZ14DJHvC50D4vCJ8nrXQ7frMdAmysXV3e8WbPAjcPK-fRwvdrfhVL_9_28X22y7RHvVPpKo6a6NGOVuYK3BDyuI6vLUfq6TbjA
  priority: 102
  providerName: ProQuest
Title Exploring the electrochemical performance of nickel-zinc ferrite nanoparticles for supercapacitor applications
URI https://link.springer.com/article/10.1007/s10854-024-12360-7
https://www.proquest.com/docview/2968655002
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6svehBfGJ9lBy8aaCbze4mxyqtRbGIWKinJZsHCGUVWy_-eifbbFtFBU97yOMwk3ntzHwDcJa6xKO0C6qYkv5vlaUqiSxlBsM446xVyjcK3w3TwYjfjJNxaAqb1tXudUqy0tQrzW4i4RRtCvWIIR2aNaCZYOzuC7lGrLvQv2hjxRxhzyN6MxZaZX6-46s5WvqY39KilbXpb8NWcBNJd87XHViz5S5sroAH7kG5KJ8j6MSRMM9GBwAA8rrsCCAvjpTPKK4T-vFcauI8GuPMklKVGDKHyjiCu8n0HY9ptJ8aBf2NrGa392HU7z1eDWiYnkA1itWMGlYIl8VWSCPjyGRFGqXoDcSF49KJxHU062juiqhIXCp4wlOnlI65EVz5oC0-gPXypbSHQIosLTjXKrMGI2nDpJaoGKTVVksRG9WCqCZirgO0uJ9wMcmXoMie8DkSPq8In2ctOF-ceZ0Da_y5-6TmTR6EbJozmfq2WtTpLbio-bVc_v22o_9tP4YN5p9MVXl2Auuzt3d7iq7IrGhDQ_Sv29DsXj_d9vB72RveP7Sr9_gJlT_bHw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQcqkJbEcrDh3JqrWa93l37gBAqhNA8TomU29brh4SENoEEofZH9Td2vPFmaSVy4-zHYTyehz3fNwCfU5d4lnZBFVPSv1ZZqpLIUmYwjTPOWqU8UHgwTLtj_mOSTDbgT42F8WWVtU2sDLWZav9G_o3J1GMo8QKfze6o7xrlf1frFhpLtejZX4-Yss1Pry_wfE8Y61yOvndp6CpANarbghpWCJfFVkgj48hkRRql6CXjwnHpROLamrU1d0VUJC4VPOGpU0rH3AiufDIT476vYIvH6Mk9Mr1ztbL86N3FktvPc4kzFkA6AaonEk7RI1LPd9Km2b-OsIlu__uQrfxc5x28DQEqOV9q1A5s2HIXtp_QFr6HclW4RzB8JKGTjg7UA2TWYBHI1JHyBg3FLf19U2riPA_kwpJSlZish5o8grPJ_AGXafTcGk3MPXn6r_4Bxi8i4Y-wWU5LuwekyNKCc60yazCHN0xqiSZJWm21FLFRLYhqIeY6kJr73hq3eUPH7AWfo-DzSvB51oIvqzWzJaXH2tkH9dnk4XrP80YZW_C1Pq9m-Pnd9tfvdgyvu6NBP-9fD3uf4A3z6lLVux3A5uL-wR5iALQojiqtI_DzpdX8L3Y9Fq0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VREJwqMpLDW3BBziB1azXu2sfqqoljVIKUYWI1Nvi9UOKFG1CHkLw0_h1jDfebEEit5z9OIw_z8Oe-QbgTeoSz9IuqGJK-tcqS1USWcoMhnHGWauULxT-PEwHI_7xLrnbg991LYxPq6x1YqWozVT7N_JTJlNfQ4kX-NSFtIjbXv989p36DlL-p7Vup7GGyI39-QPDt8XZdQ_P-i1j_auvHwY0dBigGqG3pIYVwmWxFdLIODJZkUYpWsy4cFw6kbiuZl3NXREViUsFT3jqlNIxN4IrH9jEuO8DaGc-KmpB-_JqePtlYwfQ1os1059nFmcslOyEwj2RcIr2kXr2ky7N_jaLja_7z_dsZfX6B7Af3FVyscbXE9iz5VN4fI_E8BmUmzQ-gs4kCX11dCAiILOmMoFMHSnHqDYm9Ne41MR5VsilJaUqMXQPGXoEZ5PFCpdptOMaFc6c3P9lfw6jncj4BbTKaWkPgRRZWnCuVWYNRvSGSS1RQUmrrZYiNqoDUS3EXAeKc99pY5I35Mxe8DkKPq8En2cdeLdZM1sTfGydfVyfTR4u-yJvoNmB9_V5NcP_3-3l9t1ew0OEeP7penhzBI-YR0uV_HYMreV8ZU_QG1oWrwLsCHzbNdL_ABi4HD8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+electrochemical+performance+of+nickel-zinc+ferrite+nanoparticles+for+supercapacitor+applications&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Kharat%2C+Prashant+B.&rft.au=Somvanshi%2C+Sandeep+B.&rft.au=Dawi%2C+Elmuez+A.&rft.au=Mopari%2C+Anuja+M.&rft.date=2024-03-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=35&rft.issue=8&rft_id=info:doi/10.1007%2Fs10854-024-12360-7&rft.externalDocID=10_1007_s10854_024_12360_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon