Pitfalls in Piezoresistivity Testing
The field of piezoresistivity (the effect of strain/stress on the electrical resistivity of a material) has been growing exponentially since 1990, with the growth being particularly sharp since 2015, due to the rise of the multifunctionality and smartness of materials and structures. Most research i...
Saved in:
Published in | Journal of electronic materials Vol. 51; no. 10; pp. 5473 - 5481 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The field of piezoresistivity (the effect of strain/stress on the electrical resistivity of a material) has been growing exponentially since 1990, with the growth being particularly sharp since 2015, due to the rise of the multifunctionality and smartness of materials and structures. Most research involves composites with low-conductivity matrices (particularly polymers and cement) and high-conductivity fillers (metals and carbons, particularly microfillers and nanofillers). The composites also include high-performance structural materials containing continuous fibers (e.g., carbon fibers). The piezoresistivity enables structural self-sensing (without device incorporation). Unfortunately, pitfalls are common, due to the subject’s interdisciplinary character and the dominance of researchers without adequate background in electrical testing. This commentary coherently describes the common pitfalls, which pertain to the experimental methods of piezoresistivity testing. The specific pitfalls include (i) using two electrodes rather than four electrodes for the resistance measurement, (ii) poor electrode design, (iii) improper electrode placement, (iv) improper design of the piezoresistive material, (v) improper data interpretation, (vi) unreliable determination of the gage factor (fractional change in resistance per unit strain), and (vii) unreliable measurement of the strain. Some of the pitfalls, such as allowing the silver paint to dry before electrode application, cannot be discerned from publications, but are revealed upon private discussion between this author and the authors of those publications (not referenced here to avoid embarrassment to those authors). These pitfalls result in questionable experimental results, which render the associated modeling work insufficiently meaningful. The hope is to improve the quality of future research in this field. |
---|---|
AbstractList | The field of piezoresistivity (the effect of strain/stress on the electrical resistivity of a material) has been growing exponentially since 1990, with the growth being particularly sharp since 2015, due to the rise of the multifunctionality and smartness of materials and structures. Most research involves composites with low-conductivity matrices (particularly polymers and cement) and high-conductivity fillers (metals and carbons, particularly microfillers and nanofillers). The composites also include high-performance structural materials containing continuous fibers (e.g., carbon fibers). The piezoresistivity enables structural self-sensing (without device incorporation). Unfortunately, pitfalls are common, due to the subject’s interdisciplinary character and the dominance of researchers without adequate background in electrical testing. This commentary coherently describes the common pitfalls, which pertain to the experimental methods of piezoresistivity testing. The specific pitfalls include (i) using two electrodes rather than four electrodes for the resistance measurement, (ii) poor electrode design, (iii) improper electrode placement, (iv) improper design of the piezoresistive material, (v) improper data interpretation, (vi) unreliable determination of the gage factor (fractional change in resistance per unit strain), and (vii) unreliable measurement of the strain. Some of the pitfalls, such as allowing the silver paint to dry before electrode application, cannot be discerned from publications, but are revealed upon private discussion between this author and the authors of those publications (not referenced here to avoid embarrassment to those authors). These pitfalls result in questionable experimental results, which render the associated modeling work insufficiently meaningful. The hope is to improve the quality of future research in this field. |
Author | Chung, D. D. L. |
Author_xml | – sequence: 1 givenname: D. D. L. orcidid: 0000-0002-4746-6276 surname: Chung fullname: Chung, D. D. L. email: ddlchung@buffalo.edu organization: Composite Materials Research Laboratory, Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8FvUYz-d6jFK1CwR4qeAvbbLak1GxNUqH-eqMrCB56mjk8z7zDO0KD0AWH0CWQGyBE3SYAKTkmlGJSaaEwP0FDEJxh0PJ1gIaEScCCMnGGRiltCAEBGoboeuFzW2-3aeLDZOHdZxdd8in7D58Pk6UrW1ifo9PCJHfxO8fo5eF-OX3E8-fZ0_Ruji2DKmPbSiG0qJVmleAV11yCUrxutXacr7QUVtlK06pZkUZrK23DSVs3UhGlyq9sjK76u7vYve9Lttl0-xhKpKGFoQUEWijaUzZ2KUXXml30b3U8GCDmuw3Tt2FKG-anDcOLpP9J1uc6-y7kWPvtcZX1aio5Ye3i31dHrC-C_nPt |
CitedBy_id | crossref_primary_10_1088_1361_6501_ad929a crossref_primary_10_3390_ma17071577 crossref_primary_10_3390_s24030792 crossref_primary_10_1142_S2810922822300045 crossref_primary_10_1016_j_isatra_2024_06_034 crossref_primary_10_1016_j_carbon_2022_11_076 crossref_primary_10_1016_j_cemconcomp_2024_105757 crossref_primary_10_1007_s10853_022_08106_7 crossref_primary_10_1016_j_cemconcomp_2024_105587 crossref_primary_10_1016_j_cemconcomp_2023_105350 crossref_primary_10_1016_j_compositesb_2023_111042 crossref_primary_10_1016_j_conbuildmat_2023_131682 crossref_primary_10_1016_j_conbuildmat_2024_135049 crossref_primary_10_1016_j_istruc_2023_105760 crossref_primary_10_1088_1361_665X_acdf9f crossref_primary_10_1016_j_geoen_2024_212997 crossref_primary_10_3390_s24061737 crossref_primary_10_1016_j_conbuildmat_2024_136880 |
Cites_doi | 10.1016/j.ceramint.2021.09.299 10.1007/s10853-006-0580-z 10.1063/1.1702605 10.1016/j.mspro.2014.07.447 10.1016/j.compositesb.2018.03.025 10.1016/j.sna.2022.113414 10.1016/j.mser.2017.01.002 10.1016/S0008-6223(97)00011-0 10.1109/JMEMS.2011.2153825 10.1080/19475411.2020.1843560 10.1016/j.cemconcomp.2022.104454 10.1016/j.conbuildmat.2021.125784 10.1016/j.compositesb.2017.09.061 10.1016/j.compositesa.2021.106716 10.1002/app.51516 10.1016/j.compositesb.2018.12.117 10.1016/j.cemconcomp.2021.104379 10.1007/s11664-021-09223-w 10.3390/s22020484 10.1021/acsami.1c20491 10.1016/j.sna.2011.09.031 10.1007/s11664-004-0180-0 10.1016/j.matdes.2021.110323 10.1007/s10853-020-05099-z 10.1063/1.3599881 10.1016/j.sna.2022.113367 10.5772/39517 |
ContentType | Journal Article |
Copyright | The Minerals, Metals & Materials Society 2022.
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Minerals, Metals & Materials Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Minerals, Metals & Materials Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Minerals, Metals & Materials Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7XB 88I 8AF 8AO 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ GUQSH HCIFZ KB. L6V M2O M2P M7S MBDVC P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0X |
DOI | 10.1007/s11664-022-09857-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SIRS Editorial Materials Science Collection ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Research Library ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1543-186X |
EndPage | 5481 |
ExternalDocumentID | 10_1007_s11664_022_09857_4 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 78A 88I 8AF 8AO 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDPE ABDZT ABECU ABEFU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C1A CAG CCPQU COF CS3 CSCUP CZ9 D-I D1I DDRTE DNIVK DPUIP DU5 DWQXO E3Z EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KDC KOV L6V LLZTM M2O M2P M2Q M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9N PDBOC PF0 PKN PQQKQ PROAC PT4 PT5 PTHSS Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RWL RXW RZK S0X S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z8Z Z92 ZE2 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7XB 8FK ABRTQ MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-cf65585a783954948461774af88e44b865c7c9829db0d88c6cd40fad670775433 |
IEDL.DBID | U2A |
ISSN | 0361-5235 |
IngestDate | Sat Aug 16 17:22:24 EDT 2025 Tue Jul 01 04:28:18 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 Fri Feb 21 02:45:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | polymer-matrix composites Piezoresistivity piezoresistive materials electrical properties cement-based materials electrical resistivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-cf65585a783954948461774af88e44b865c7c9829db0d88c6cd40fad670775433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4746-6276 |
PQID | 2707267012 |
PQPubID | 48394 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2707267012 crossref_primary_10_1007_s11664_022_09857_4 crossref_citationtrail_10_1007_s11664_022_09857_4 springer_journals_10_1007_s11664_022_09857_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221000 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Warrendale |
PublicationTitle | Journal of electronic materials |
PublicationTitleAbbrev | J. Electron. Mater |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Alpuim, Gaspar, Gieschke, Ehling, Kistner, Goncalves, Vasilevskiy, Paul (CR12) 2011; 109 Demircilioglu, Teomete, Ozbulut, Kahraman (CR19) 2022; 316 Ricohermoso, Klug, Schlaak, Riedel, Ionescu (CR6) 2022; 213 Chung (CR9) 2021; 12 Jiang, Xu, Liao, Zheng (CR7) 2022; 48 Kumar, Patro (CR2) 2022; 139 CR14 Kim, Kim, An (CR29) 2018; 134 Ansari, Gangadhara (CR16) 2014; 5 Balam, Pech-Piste, Valdez-Nava, Gamboa, Castillo-Atoche, Aviles (CR1) 2022; 22 Abhang (CR17) 2018; 7 Zhang, Liu, Ru, Zhang, Dong, Sun (CR15) 2011; 20 Tufte, Stelzer (CR18) 1963; 34 Dong, Li, Guo, Qu, Wang, Sheng (CR11) 2022; 126 Tsai, Li, Hsu (CR4) 2021; 6 Chung (CR23) 2017; 113 Chung (CR8) 2019; 160 Haghgoo, Ansari, Hassanzadeh-Aghdam (CR25) 2022; 152 Wang, Chung (CR26) 1997; 35 Uhlig, Rau, Schultes (CR13) 2011; 172 Wang, Zhang (CR28) 2022; 336 Verma, Ubaid, Varadarajan, Wardle, Kumar (CR3) 2022; 14 Spinelli, Lamberti, Tucci, Vertuccio, Guadagno (CR20) 2018; 145 Leong, Chung (CR22) 2004; 33 Chung (CR21) 2021; 50 Chung (CR5) 2020; 55 Li, Dong, Guo, Wang, Shah (CR10) 2022; 128 Haghgoo, Ansari, Hassanzadeh-Aghdam (CR24) 2022; 336 Wang, Chung (CR27) 2007; 42 A Balam (9857_CR1) 2022; 22 W Dong (9857_CR11) 2022; 126 M Haghgoo (9857_CR24) 2022; 336 Y Wang (9857_CR28) 2022; 336 G Spinelli (9857_CR20) 2018; 145 C Leong (9857_CR22) 2004; 33 E Ricohermoso III (9857_CR6) 2022; 213 9857_CR14 MZ Ansari (9857_CR16) 2014; 5 MK Kim (9857_CR29) 2018; 134 S Uhlig (9857_CR13) 2011; 172 Y Abhang (9857_CR17) 2018; 7 S Wang (9857_CR26) 1997; 35 W Li (9857_CR10) 2022; 128 E Demircilioglu (9857_CR19) 2022; 316 H Tsai (9857_CR4) 2021; 6 M Jiang (9857_CR7) 2022; 48 ON Tufte (9857_CR18) 1963; 34 M Haghgoo (9857_CR25) 2022; 152 DDL Chung (9857_CR21) 2021; 50 DDL Chung (9857_CR9) 2021; 12 S Wang (9857_CR27) 2007; 42 GS Kumar (9857_CR2) 2022; 139 Y Zhang (9857_CR15) 2011; 20 P Verma (9857_CR3) 2022; 14 DDL Chung (9857_CR8) 2019; 160 DDL Chung (9857_CR23) 2017; 113 DDL Chung (9857_CR5) 2020; 55 P Alpuim (9857_CR12) 2011; 109 |
References_xml | – volume: 48 start-page: 2112 issue: 2 year: 2022 end-page: 2117 ident: CR7 article-title: Effect of Sputtering Power on Piezoresistivity and Interfacial Strength of SiCN Thin Films Prepared by Magnetic Sputtering publication-title: Ceramics Int. doi: 10.1016/j.ceramint.2021.09.299 – volume: 42 start-page: 4987 issue: 13 year: 2007 end-page: 4995 ident: CR27 article-title: Negative Piezoresistivity in Continuous Carbon Fiber Epoxy-Matrix Composite publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0580-z – ident: CR14 – volume: 34 start-page: 313 year: 1963 end-page: 318 ident: CR18 article-title: Piezoresistive Properties of Silicon Diffused Layers publication-title: J. Appl. Phys. doi: 10.1063/1.1702605 – volume: 5 start-page: 1308 year: 2014 end-page: 1313 ident: CR16 article-title: Piezoresistivity and its Applications in Nanomechanical Sensors publication-title: Procedia. Mater. Sci. doi: 10.1016/j.mspro.2014.07.447 – volume: 6 start-page: 538 issue: 4 year: 2021 end-page: 542 ident: CR4 article-title: Excellent Piezoresistivity of Composites Made From Networked Carbon Nanotubes and Polydimethylsiloxane: An Intertube Barrier Driven Strain Sensing publication-title: J. Sci.: Adv. Mater. Devices – volume: 145 start-page: 90 year: 2018 end-page: 99 ident: CR20 article-title: Experimental and Theoretical Study on Piezoresistive Properties of a Structural Resin Reinforced with Carbon Nanotubes for Strain Sensing and Damage Monitoring publication-title: Compos. B doi: 10.1016/j.compositesb.2018.03.025 – volume: 336 start-page: 113414 year: 2022 ident: CR24 article-title: Prediction of Piezoresistive Sensitivity and Percolation Probability of Synergetic CNT-GNP Conductive Network Composite publication-title: Sensors Actuators A doi: 10.1016/j.sna.2022.113414 – volume: 113 start-page: 1 year: 2017 end-page: 29 ident: CR23 article-title: Processing-Structure-Property Relationships of Continuous Carbon Fiber Polymer-Matrix Composites publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2017.01.002 – volume: 7 start-page: 1000432 issue: 2 year: 2018 ident: CR17 article-title: Review of Different Tactile Sensors Using Piezoresistivity Mechanism publication-title: J. Mater. Sci. Eng. – volume: 35 start-page: 621 issue: 5 year: 1997 end-page: 630 ident: CR26 article-title: Self-Monitoring of Strain and Damage by a Carbon-Carbon Composite publication-title: Carbon doi: 10.1016/S0008-6223(97)00011-0 – volume: 20 start-page: 959 issue: 4 year: 2011 end-page: 967 ident: CR15 article-title: Piezoresistivity Characterization of Synthetic Silicon Nanowires Using a MEMS Device publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2011.2153825 – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 19 ident: CR9 article-title: Self-Sensing Concrete: from Resistance-Based Sensing to Capacitance-Based Sensing publication-title: Int. J. Smart Nano Mater. doi: 10.1080/19475411.2020.1843560 – volume: 128 start-page: 104454 year: 2022 ident: CR10 article-title: Advances in Multifunctional Cementitious Composites with Conductive Carbon Nanomaterials for Smart Infrastructure publication-title: Ce. Concr. Compos. doi: 10.1016/j.cemconcomp.2022.104454 – volume: 316 start-page: 125784 year: 2022 ident: CR19 article-title: Cross Tension and Compression Loading and Large-Scale Testing of Strain and Damage Sensing Smart Concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125784 – volume: 134 start-page: 254 year: 2018 end-page: 264 ident: CR29 article-title: Electro-Mechanical Self-Sensing Response of Ultra-High-Performance Fiber-Reinforced Concrete in Tension publication-title: Compos. B doi: 10.1016/j.compositesb.2017.09.061 – volume: 152 start-page: 106716 year: 2022 ident: CR25 article-title: Monte Carlo Analytical-Geometrical Simulation of Piezoresistivity and Electrical Conductivity of Polymeric Nanocomposites Filled with Hybrid Carbon Nanotubes/Graphene Nanoplatelets publication-title: Compos. A doi: 10.1016/j.compositesa.2021.106716 – volume: 139 start-page: 51516 issue: 3 year: 2022 ident: CR2 article-title: Tuning the Piezoresistive Strain-Sensing Behavior of Poly(Vinylidene Fluoride)- CNT Composites: the Role of Polymer- CNT Interface and Composite Processing Technique publication-title: J. Appl. Polymer Sci. doi: 10.1002/app.51516 – volume: 160 start-page: 644 year: 2019 end-page: 660 ident: CR8 article-title: A Review of Multifunctional Polymer-Matrix Structural Composites publication-title: Compos. B doi: 10.1016/j.compositesb.2018.12.117 – volume: 126 start-page: 104379 year: 2022 ident: CR11 article-title: Piezoresistive Performance of Hydrophobic Cement-Based Sensors Under Moisture and Chloride-Rich Environments publication-title: Ce. Concr. Compos. doi: 10.1016/j.cemconcomp.2021.104379 – volume: 50 start-page: 6567 issue: 2 year: 2021 end-page: 6574 ident: CR21 article-title: Pitfalls and Methods in the Measurement of the Electrical Resistance and Capacitance of Materials publication-title: J. Electron. Mater. doi: 10.1007/s11664-021-09223-w – volume: 22 start-page: 484 issue: 2 year: 2022 ident: CR1 article-title: A Comparative Study of the Electrical and Electromechanical Responses of Carbon Nanotube/Polypropylene Composites in Alternating and Direct Current publication-title: Sensors doi: 10.3390/s22020484 – volume: 14 start-page: 8361 year: 2022 end-page: 8372 ident: CR3 article-title: Synthesis and Characterization of Carbon Nanotube-Doped Thermoplastic Nanocomposites for the Additive Manufacturing of Self-Sensing Piezoresistive Materials publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c20491 – volume: 172 start-page: 447 issue: 2 year: 2011 end-page: 454 ident: CR13 article-title: Piezoresistivity of Polycrystalline Silicon Applying the AIC Process-Route publication-title: Sensors Actuators A doi: 10.1016/j.sna.2011.09.031 – volume: 33 start-page: 203 issue: 3 year: 2004 end-page: 206 ident: CR22 article-title: Pressure Electrical Contact Improved by Carbon Black Paste publication-title: J. Electron. Mater. doi: 10.1007/s11664-004-0180-0 – volume: 213 start-page: 110323 year: 2022 ident: CR6 article-title: Microstrain-Range Giant Piezoresistivity of Silicon Oxycarbide Thin Films Under Mechanical Cyclic Loads publication-title: Mater. Design doi: 10.1016/j.matdes.2021.110323 – volume: 55 start-page: 15367 issue: 32 year: 2020 end-page: 15396 ident: CR5 article-title: A Critical Review of Piezoresistivity and its Application in Electrical-Resistance-Based Strain Sensing publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05099-z – volume: 109 start-page: 123717 issue: 12 year: 2011 ident: CR12 article-title: Study of the Piezoresistivity of Doped Nanocrystalline Silicon Thin Films publication-title: J. Appl. Phys. doi: 10.1063/1.3599881 – volume: 336 start-page: 113367 year: 2022 ident: CR28 article-title: Development of Self-Sensing Cementitious Composite Incorporating Hybrid Graphene Nanoplates and Carbon Nanotubes for Structural Health Monitoring publication-title: Sensors Actuators A doi: 10.1016/j.sna.2022.113367 – volume: 7 start-page: 1000432 issue: 2 year: 2018 ident: 9857_CR17 publication-title: J. Mater. Sci. Eng. – volume: 145 start-page: 90 year: 2018 ident: 9857_CR20 publication-title: Compos. B doi: 10.1016/j.compositesb.2018.03.025 – volume: 6 start-page: 538 issue: 4 year: 2021 ident: 9857_CR4 publication-title: J. Sci.: Adv. Mater. Devices – volume: 55 start-page: 15367 issue: 32 year: 2020 ident: 9857_CR5 publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05099-z – volume: 42 start-page: 4987 issue: 13 year: 2007 ident: 9857_CR27 publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0580-z – volume: 139 start-page: 51516 issue: 3 year: 2022 ident: 9857_CR2 publication-title: J. Appl. Polymer Sci. doi: 10.1002/app.51516 – volume: 213 start-page: 110323 year: 2022 ident: 9857_CR6 publication-title: Mater. Design doi: 10.1016/j.matdes.2021.110323 – volume: 134 start-page: 254 year: 2018 ident: 9857_CR29 publication-title: Compos. B doi: 10.1016/j.compositesb.2017.09.061 – volume: 48 start-page: 2112 issue: 2 year: 2022 ident: 9857_CR7 publication-title: Ceramics Int. doi: 10.1016/j.ceramint.2021.09.299 – volume: 50 start-page: 6567 issue: 2 year: 2021 ident: 9857_CR21 publication-title: J. Electron. Mater. doi: 10.1007/s11664-021-09223-w – volume: 22 start-page: 484 issue: 2 year: 2022 ident: 9857_CR1 publication-title: Sensors doi: 10.3390/s22020484 – volume: 14 start-page: 8361 year: 2022 ident: 9857_CR3 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c20491 – volume: 160 start-page: 644 year: 2019 ident: 9857_CR8 publication-title: Compos. B doi: 10.1016/j.compositesb.2018.12.117 – volume: 109 start-page: 123717 issue: 12 year: 2011 ident: 9857_CR12 publication-title: J. Appl. Phys. doi: 10.1063/1.3599881 – volume: 172 start-page: 447 issue: 2 year: 2011 ident: 9857_CR13 publication-title: Sensors Actuators A doi: 10.1016/j.sna.2011.09.031 – volume: 20 start-page: 959 issue: 4 year: 2011 ident: 9857_CR15 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2011.2153825 – volume: 34 start-page: 313 year: 1963 ident: 9857_CR18 publication-title: J. Appl. Phys. doi: 10.1063/1.1702605 – volume: 113 start-page: 1 year: 2017 ident: 9857_CR23 publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2017.01.002 – volume: 336 start-page: 113367 year: 2022 ident: 9857_CR28 publication-title: Sensors Actuators A doi: 10.1016/j.sna.2022.113367 – volume: 35 start-page: 621 issue: 5 year: 1997 ident: 9857_CR26 publication-title: Carbon doi: 10.1016/S0008-6223(97)00011-0 – volume: 5 start-page: 1308 year: 2014 ident: 9857_CR16 publication-title: Procedia. Mater. Sci. doi: 10.1016/j.mspro.2014.07.447 – volume: 336 start-page: 113414 year: 2022 ident: 9857_CR24 publication-title: Sensors Actuators A doi: 10.1016/j.sna.2022.113414 – ident: 9857_CR14 doi: 10.5772/39517 – volume: 126 start-page: 104379 year: 2022 ident: 9857_CR11 publication-title: Ce. Concr. Compos. doi: 10.1016/j.cemconcomp.2021.104379 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 9857_CR9 publication-title: Int. J. Smart Nano Mater. doi: 10.1080/19475411.2020.1843560 – volume: 33 start-page: 203 issue: 3 year: 2004 ident: 9857_CR22 publication-title: J. Electron. Mater. doi: 10.1007/s11664-004-0180-0 – volume: 128 start-page: 104454 year: 2022 ident: 9857_CR10 publication-title: Ce. Concr. Compos. doi: 10.1016/j.cemconcomp.2022.104454 – volume: 316 start-page: 125784 year: 2022 ident: 9857_CR19 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125784 – volume: 152 start-page: 106716 year: 2022 ident: 9857_CR25 publication-title: Compos. A doi: 10.1016/j.compositesa.2021.106716 |
SSID | ssj0015181 |
Score | 2.4377594 |
Snippet | The field of piezoresistivity (the effect of strain/stress on the electrical resistivity of a material) has been growing exponentially since 1990, with the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5473 |
SubjectTerms | Carbon fibers Characterization and Evaluation of Materials Chemistry and Materials Science Commentary Composite materials Electrodes Electronics and Microelectronics Instrumentation Materials Science Optical and Electronic Materials Piezoresistivity Research methodology Resistance factors Silver Solid State Physics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_odtGD-InTKT3spsF-JGl6EpWNITiGbLBbaZNUBqOdrl78633p0lUFd-ipbaC_9H38kpffA-ipiMkskCnBKyBUZBJtTgdESYz-kcoSFZizwy8jPpzS5xmb2QW3lS2rrH1i5ahVIc0a-Z0fuqHPQ_Sn98t3YrpGmd1V20JjF9roggWSr_ZjfzR-3ewjMK9qU4pu2jOUi9ljM-vDcx7nlJhqdjcygkj0d2hq8s0_W6RV5BkcwoFNGZ2H9RwfwY7Oj2H_h5DgCfTG8zJLFouVM8-d8Vx_FciijfWazhDOxChp5G-nMB30J09DYvsfEImGURKZcYbZfBJiEsOMjAvFdCOkSSaEpjQVnMlQRsKPVOoqISSXirqILqJkdO2C4AxaeZHrc3DSBKmVQm6GRJr6rhZuFirkhjplri9T3gGv_vRYWnFw06NiETeyxgauGOGKK7hi2oGbzTvLtTTG1qe7NaKxNZNV3ExqB25rlJvb_492sX20S9jzzcRWRXddaJUfn_oKk4cyvbZ_yDcC572j priority: 102 providerName: ProQuest |
Title | Pitfalls in Piezoresistivity Testing |
URI | https://link.springer.com/article/10.1007/s11664-022-09857-4 https://www.proquest.com/docview/2707267012 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoEB8RSFUmXoBpESx3acsUAfAlpV0EplihLbQZWqFNGy8Os5p0kDCJAYIg9xLOfss-_T3X0H0FIBk4knYxsfz6Yikahz2rOVxNs_UEmkPJM7PBjy_oTeTtk0TwpbFtHuhUsyO6nLZDeXc2qb6HMnMARGtAI1ZrA77uIJaW98B8zNSpPi0ewamMXyVJmfx_h6HZU25je3aHbbdPdgNzcTrfZ6XfdhS6cHsPOJPPAQWqPZKonm86U1S63RTL8vEDkbjTXVIKyxYc9In49g0u2Mr_t2XvPAlqgMK1smnKEFH_louDBD3ULRxPBplAihKY0FZ9KXgSCBih0lhORSUQclyv2My87zjqGaLlJ9AlYcIZxSiMcQPFPiaOEkvkI8qGPmEBnzOrjFr4cyJwQ3dSnmYUllbMQVorjCTFwhrcPF5puXNR3Gn70bhUTDXDWWIcGZEpyuS-pwWUi5fP37aKf_634G28QsdBZ414Dq6vVNn6MBsYqbUBHdXhNq7ZvB_aNpe093HWyvOsPRQzPbTR8vIL70 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4NAEJ409aAejM9YrcqhnpRIYYHlYIxRa2sf6aFNekPYXUyThlaLMfqj_I3OUGjVRG89kJAAC8zOzsy3u_MNQEV6togsEep4WDrjkcAxpyxdCvT-nowCaVHucLvj1PvsYWAPCvCZ58LQtsrcJqaGWo4FzZFfmK7hmo6L9vRq8qxT1ShaXc1LaMzUoqne3xCyTS8bt9i_p6ZZu-vd1PWsqoAuUN0SXUSOjTFy4GJoYBM5CkMn7rIg4lwxFnLHFq7wuOnJ0JCcC0dIZuA347uJLY4mQNHkr-CJRyOK1-7nqxZ2NS2Kik6hSgDPzpJ0Zql6VcdhOu2dNzyiX2I_HeEiuv21IJv6udombGQBqnY906gtKKh4G9a_0RbuQKU7TKJgNJpqw1jrDtXHGDE72QqqQ6H1iLcjftqF_lLksgfFeByrfdDCAIGcRCSIsJ2ZhuJG5EpEoiq0DVOETgmq-a_7IqMip4oYI39Bokzi8lFcfioun5XgbP7MZEbE8e_d5VyifjYop_5ChUpwnkt5cfnv1g7-b-0EVuu9dstvNTrNQ1gzqZPT7X5lKCYvr-oIw5YkPE51RYPHZSvnF7859x8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QSIwejM-IovaAJ20oZfs6GKMCAVFCDCTcaru7NSSkoNQY_Wn-OmdKS9VEbhx6artpZ2dn5tud-QagLByDBzXuq3jVVGYHHNecrKmCo_d3ROCJGtUOP3TN1oDdDY1hDr7SWhhKq0xtYmyoxYTTHnlFtzRLNy20p5UgSYvo1ZtX0xeVOkjRSWvaTmOuIh358Y7wbXbZruNcn-l6s9G_balJhwGVo-pFKg9MA-Nlz8IwwSCiFIYO3WJeYNuSMd82DW5xx9Yd4WvCtrnJBdPw-_E7iDmONkPR_BcsREVaHgo3jW7vcXGGYVTjFqnoIqoE94ykZGdeuFc1TaZSJr3mEBkT--0Ws1j3z_Fs7PWaW7CZhKvK9Vy_tiEnwx3Y-EFiuAvl3igKvPF4poxCpTeSnxNE8GQ5qCuF0icWj_B5DwYrkcw-5MNJKA9A8T2EdQJxIYJ4pmvS1gJLIC6VvqHp3DeLUE1_3eUJMTn1xxi7GaUyictFcbmxuFxWhPPFO9M5LcfSp0upRN1kic7cTKGKcJFKObv9_2iHy0c7hTVUTPe-3e0cwbpOcxzn_pUgH72-yWOMYSL_JFEWBZ5WrZ_fwNz8sQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pitfalls+in+Piezoresistivity+Testing&rft.jtitle=Journal+of+electronic+materials&rft.au=Chung%2C+D.+D.+L.&rft.date=2022-10-01&rft.pub=Springer+US&rft.issn=0361-5235&rft.eissn=1543-186X&rft.volume=51&rft.issue=10&rft.spage=5473&rft.epage=5481&rft_id=info:doi/10.1007%2Fs11664-022-09857-4&rft.externalDocID=10_1007_s11664_022_09857_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-5235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-5235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-5235&client=summon |