CNN based feature extraction and classification for sign language
Hand gesture is one of the most prominent ways of communication since the beginning of the human era. Hand gesture recognition extends human-computer interaction (HCI) more convenient and flexible. Therefore, it is important to identify each character correctly for calm and error-free HCI. Literatur...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 2; pp. 3051 - 3069 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hand gesture is one of the most prominent ways of communication since the beginning of the human era. Hand gesture recognition extends human-computer interaction (HCI) more convenient and flexible. Therefore, it is important to identify each character correctly for calm and error-free HCI. Literature survey reveals that most of the existing hand gesture recognition (HGR) systems have considered only a few simple discriminating gestures for recognition performance. This paper applies deep learning-based convolutional neural networks (CNNs) for robust modeling of static signs in the context of sign language recognition. In this work, CNN is employed for HGR where both alphabets and numerals of ASL are considered simultaneously. The pros and cons of CNNs used for HGR are also highlighted. The CNN architecture is based on modified AlexNet and modified VGG16 models for classification. Modified pre-trained AlexNet and modified pre-trained VGG16 based architectures are used for feature extraction followed by a multiclass support vector machine (SVM) classifier. The results are evaluated based on different layer features for best recognition performance. To examine the accuracy of the HGR schemes, both the leave-one-subject-out and a random 70–30 form of cross-validation approach were adopted. This work also highlights the recognition accuracy of each character, and their similarities with identical gestures. The experiments are performed in a simple CPU system instead of high-end GPU systems to demonstrate the cost-effectiveness of this work. The proposed system has achieved a recognition accuracy of 99.82%, which is better than some of the state-of-art methods. |
---|---|
AbstractList | Hand gesture is one of the most prominent ways of communication since the beginning of the human era. Hand gesture recognition extends human-computer interaction (HCI) more convenient and flexible. Therefore, it is important to identify each character correctly for calm and error-free HCI. Literature survey reveals that most of the existing hand gesture recognition (HGR) systems have considered only a few simple discriminating gestures for recognition performance. This paper applies deep learning-based convolutional neural networks (CNNs) for robust modeling of static signs in the context of sign language recognition. In this work, CNN is employed for HGR where both alphabets and numerals of ASL are considered simultaneously. The pros and cons of CNNs used for HGR are also highlighted. The CNN architecture is based on modified AlexNet and modified VGG16 models for classification. Modified pre-trained AlexNet and modified pre-trained VGG16 based architectures are used for feature extraction followed by a multiclass support vector machine (SVM) classifier. The results are evaluated based on different layer features for best recognition performance. To examine the accuracy of the HGR schemes, both the leave-one-subject-out and a random 70–30 form of cross-validation approach were adopted. This work also highlights the recognition accuracy of each character, and their similarities with identical gestures. The experiments are performed in a simple CPU system instead of high-end GPU systems to demonstrate the cost-effectiveness of this work. The proposed system has achieved a recognition accuracy of 99.82%, which is better than some of the state-of-art methods. |
Author | Jain, Rahul Barbhuiya, Abul Abbas Karsh, Ram Kumar |
Author_xml | – sequence: 1 givenname: Abul Abbas orcidid: 0000-0002-9459-1213 surname: Barbhuiya fullname: Barbhuiya, Abul Abbas email: abulabbasnet@gmail.com organization: Speech and Image Processing Group, Electronics and Communication Engineering Department, National Institute of Technology – sequence: 2 givenname: Ram Kumar surname: Karsh fullname: Karsh, Ram Kumar organization: Speech and Image Processing Group, Electronics and Communication Engineering Department, National Institute of Technology – sequence: 3 givenname: Rahul surname: Jain fullname: Jain, Rahul organization: Speech and Image Processing Group, Electronics and Communication Engineering Department, National Institute of Technology |
BookMark | eNp9kEtLw0AQgBepYFv9A54CnldndpNscixFrVDqRc_LZh8hJW7qbgL23xsbQfDQ0wzDfPP4FmTmO28JuUW4RwDxEBEhZRQYUCgLVtLjBZljJjgVguFszHkBVGSAV2QR4x4A84ylc7Ja73ZJpaI1ibOqH4JN7FcflO6bzifKm0S3KsbGNVqdSq4LSWxqn7TK14Oq7TW5dKqN9uY3Lsn70-PbekO3r88v69WWao5lT7VLbSXyvCpN7lwpELTNMpan2mgoKmOdNgwqrlkumBOGA1YVZCVyyJlD5EtyN809hO5zsLGX-24IflwpWSoKFFCKdOxiU5cOXYzBOnkIzYcKR4kgf1TJSZUcVcmTKnkcoeIfpJv-9O5oomnPo3xC47jH1zb8XXWG-gYTMoAs |
CitedBy_id | crossref_primary_10_3390_s22030706 crossref_primary_10_1007_s10639_022_11356_2 crossref_primary_10_1038_s41598_025_93559_4 crossref_primary_10_4018_IJSPPC_309079 crossref_primary_10_1007_s13369_022_07495_w crossref_primary_10_1109_ACCESS_2022_3210543 crossref_primary_10_1051_itmconf_20235701019 crossref_primary_10_1109_TIM_2021_3092072 crossref_primary_10_3390_iot4030013 crossref_primary_10_32604_cmc_2023_042886 crossref_primary_10_1016_j_compeleceng_2024_109475 crossref_primary_10_1007_s13042_024_02490_z crossref_primary_10_1080_08839514_2021_1982184 crossref_primary_10_1080_03772063_2023_2175057 crossref_primary_10_1007_s00371_022_02497_z crossref_primary_10_4018_IJSSCI_311448 crossref_primary_10_1016_j_mlwa_2023_100492 crossref_primary_10_1002_cpe_7653 crossref_primary_10_1016_j_suscom_2025_101082 crossref_primary_10_3390_app11125594 crossref_primary_10_1016_j_knosys_2024_111833 crossref_primary_10_1007_s13369_022_07144_2 crossref_primary_10_1109_ACCESS_2024_3461572 crossref_primary_10_1007_s11042_023_17361_y crossref_primary_10_1371_journal_pone_0276941 crossref_primary_10_1109_ACCESS_2024_3442157 crossref_primary_10_1016_j_neucom_2023_01_005 crossref_primary_10_1016_j_engappai_2024_108384 crossref_primary_10_3390_info15060360 crossref_primary_10_1088_2057_1976_ac0d91 crossref_primary_10_32604_cmes_2024_047649 crossref_primary_10_1016_j_oceaneng_2024_119600 crossref_primary_10_1016_j_neunet_2022_01_021 crossref_primary_10_1109_ACCESS_2024_3408948 crossref_primary_10_1088_2634_4386_ac94f3 crossref_primary_10_21456_vol13iss1pp52_59 crossref_primary_10_3390_agriengineering6010048 crossref_primary_10_1007_s12553_021_00620_z crossref_primary_10_1080_08839514_2022_2112545 crossref_primary_10_1016_j_iswa_2023_200262 crossref_primary_10_32604_csse_2023_034431 crossref_primary_10_1016_j_jfca_2023_105785 crossref_primary_10_1016_j_mlwa_2023_100504 crossref_primary_10_1007_s11042_024_19225_5 crossref_primary_10_1016_j_apor_2024_104326 crossref_primary_10_1016_j_mineng_2023_108400 crossref_primary_10_1038_s41598_022_15864_6 crossref_primary_10_57197_JDR_2024_0034 crossref_primary_10_1016_j_asoc_2024_112235 crossref_primary_10_1007_s00521_024_09509_0 crossref_primary_10_51173_ijds_v1i1_6 crossref_primary_10_1016_j_chemosphere_2023_138830 crossref_primary_10_1016_j_iswa_2022_200108 crossref_primary_10_1016_j_ecoinf_2021_101492 crossref_primary_10_1080_23080477_2024_2320956 crossref_primary_10_1109_ACCESS_2022_3204110 crossref_primary_10_1007_s00371_022_02762_1 crossref_primary_10_1016_j_eswa_2024_123351 crossref_primary_10_3390_s21041480 crossref_primary_10_1007_s11042_023_16852_2 crossref_primary_10_1016_j_mejo_2024_106345 crossref_primary_10_1049_ipr2_13211 crossref_primary_10_3390_s21113937 crossref_primary_10_32628_IJSRSET219430 crossref_primary_10_3389_fnins_2024_1368733 crossref_primary_10_1007_s11042_022_14117_y crossref_primary_10_1016_j_iswa_2021_200056 crossref_primary_10_1007_s10462_024_10792_5 crossref_primary_10_1109_ACCESS_2024_3457692 crossref_primary_10_3390_app13053029 crossref_primary_10_1002_cpe_7230 crossref_primary_10_1016_j_jisa_2025_104009 crossref_primary_10_3390_app132111625 crossref_primary_10_38124_ijisrt_IJISRT24MAY500 crossref_primary_10_1007_s00371_021_02259_3 crossref_primary_10_1016_j_measurement_2024_115693 crossref_primary_10_2478_jsiot_2024_0006 crossref_primary_10_3390_mi13122212 |
Cites_doi | 10.3724/SP.J.1089.2018.16176 10.1049/iet-cvi.2018.5796 10.1016/j.neucom.2014.06.086 10.1007/s00521-019-04427-y 10.1109/34.598226 10.1109/TMM.2014.2374357 10.1109/JSEN.2018.2834968 10.1007/s00521-016-2294-8 10.1142/S0219843615500115 10.1007/s10462-012-9356-9 10.1007/s11042-018-6293-x 10.1007/s11036-018-1008-0 10.1016/j.asoc.2018.09.010 10.1007/s41060-016-0008-z 10.1016/j.ins.2018.02.024 10.1007/s00521-016-2244-5 10.1016/j.image.2019.115729 10.1109/TIM.2015.2498560 10.1007/s10586-018-1844-5 10.1109/ICCCI.2016.7479951 10.2139/ssrn.3545064 10.1109/CoASE.2014.6899454 10.1109/ACSAT.2012.37 10.1145/971478.971513 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-020-09829-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 3069 |
ExternalDocumentID | 10_1007_s11042_020_09829_y |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-cf4eb766b9d6ff9710ce55264cdc08bdefcd20b3c2672f7d301bb05913062f113 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 07:17:43 EDT 2025 Thu Apr 24 22:58:16 EDT 2025 Tue Jul 01 04:13:06 EDT 2025 Fri Feb 21 02:37:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | CNN Human–computer interface (HCI) Hand gesture American sign language (ASL) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-cf4eb766b9d6ff9710ce55264cdc08bdefcd20b3c2672f7d301bb05913062f113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9459-1213 |
PQID | 2478170974 |
PQPubID | 54626 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2478170974 crossref_primary_10_1007_s11042_020_09829_y crossref_citationtrail_10_1007_s11042_020_09829_y springer_journals_10_1007_s11042_020_09829_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210100 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Sun, Li, Li, Jiang, Jiang, Liu, Zheng, Shu (CR34) 2018; 23 Wadhawan, Kumar (CR36) 2020; 1 Chevtchenko, Vale, Macario, Cordeiro (CR4) 2018; 73 CR16 Czuszyński, Rumiński, Kwaśniewska (CR5) 2018; 18 CR15 Neethu, Suguna, Sathish (CR24) 2020; 23 CR35 CR12 Plouffe, Cretu (CR28) 2015; 65 CR11 CR33 CR10 Jiang, Zheng, Li, Sun, Kong, Jiang, Xiong, Tao, Xu, Yu, Liu (CR14) 2019; 22 CR30 Li, Zhang, Sun, Kong (CR20) 2019; 78 Li, Yu, Wu, Su, Ji (CR17) 2015; 151 Oyedotun, Khashman (CR25) 2017; 28 Li, Wang, Liu, Feng (CR19) 2018; 441 Pavlovic, Sharma, Huang (CR27) 1997; 19 Dadashzadeh, Targhi, Tahmasbi, Mirmehdi (CR6) 2019; 13 Jadooki, Mohamad, Saba, Almazyad, Rehman (CR13) 2017; 28 Nagarajan, Subashini (CR23) 2013; 82 CR3 Fang, Liu, Li, Zhu (CR8) 2015; 12 Badi (CR1) 2016; 1 Rautaray, Agrawal (CR31) 2015; 43 Wang, Liu, Chan (CR37) 2014; 17 Li, Yu, Wu, Su, Ji (CR18) 2015; 151 Fang, Liang, Kang, Wang, Feng (CR9) 2020; 82 Liu, Li, Cui, Li, Yuan (CR22) 2019; 2019 Barczak, Reyes, Abastillas, Piccio, Susnjak (CR2) 2011; 15 Dehankar, Jain, Thakare (CR7) 2017; 1 CR21 Shanthakumar, Peng, Hansberger, Cao, Meacham, Blakely (CR32) 2020; 21 Ozcan, Basturk (CR26) 2019; 31 Zhao, Allison (CR38) 2019; 10 Zhong, Chen, Yu, Yang, Hu (CR39) 2018; 30 Ranga, Yadav, Garg (CR29) 2018; 13 J Zhao (9829_CR38) 2019; 10 G Li (9829_CR20) 2019; 78 L Fang (9829_CR9) 2020; 82 AV Dehankar (9829_CR7) 2017; 1 H Badi (9829_CR1) 2016; 1 D Jiang (9829_CR14) 2019; 22 T Ozcan (9829_CR26) 2019; 31 Y Sun (9829_CR34) 2018; 23 SF Chevtchenko (9829_CR4) 2018; 73 9829_CR30 9829_CR10 PS Neethu (9829_CR24) 2020; 23 V Ranga (9829_CR29) 2018; 13 9829_CR15 9829_CR16 VA Shanthakumar (9829_CR32) 2020; 21 9829_CR11 SZ Li (9829_CR18) 2015; 151 G Plouffe (9829_CR28) 2015; 65 9829_CR33 K Czuszyński (9829_CR5) 2018; 18 9829_CR12 9829_CR35 A Wadhawan (9829_CR36) 2020; 1 AL Barczak (9829_CR2) 2011; 15 VI Pavlovic (9829_CR27) 1997; 19 SS Rautaray (9829_CR31) 2015; 43 9829_CR3 C Wang (9829_CR37) 2014; 17 S Nagarajan (9829_CR23) 2013; 82 SZ Li (9829_CR17) 2015; 151 X Zhong (9829_CR39) 2018; 30 P Liu (9829_CR22) 2019; 2019 9829_CR21 Y Fang (9829_CR8) 2015; 12 S Jadooki (9829_CR13) 2017; 28 A Dadashzadeh (9829_CR6) 2019; 13 OK Oyedotun (9829_CR25) 2017; 28 Y Li (9829_CR19) 2018; 441 |
References_xml | – volume: 82 start-page: 28 issue: 4 year: 2013 end-page: 35 ident: CR23 article-title: Static hand gesture recognition for sign language alphabets using edge oriented histogram and multi class SVM publication-title: Int J Comput Appl – volume: 13 start-page: 2655 issue: 9 year: 2018 end-page: 2669 ident: CR29 article-title: American sign language fingerspelling using hybrid discrete wavelet transform-gabor filter and convolutional neural network publication-title: J Eng Sci Technol – volume: 30 start-page: 173 issue: 1 year: 2018 ident: CR39 article-title: Context-aware information based ultrasonic gesture recognition method publication-title: J Comput-Aided Design Comput Graphics doi: 10.3724/SP.J.1089.2018.16176 – volume: 13 start-page: 700 issue: 8 year: 2019 end-page: 707 ident: CR6 article-title: HGR-net: a fusion network for hand gesture segmentation and recognition publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2018.5796 – volume: 151 start-page: 565 year: 2015 end-page: 573 ident: CR17 article-title: Feature learning based on SAE–PCA network for human gesture recognition in RGBD images publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.086 – volume: 31 start-page: 8955 issue: 12 year: 2019 end-page: 8970 ident: CR26 article-title: Transfer learning-based convolutional neural networks with heuristic optimization for hand gesture recognition publication-title: Neural Comput & Applic doi: 10.1007/s00521-019-04427-y – ident: CR16 – volume: 19 start-page: 677 issue: 7 year: 1997 end-page: 695 ident: CR27 article-title: Visual interpretation of hand gestures for human-computer interaction: a review publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.598226 – ident: CR12 – ident: CR30 – volume: 17 start-page: 29 issue: 1 year: 2014 end-page: 39 ident: CR37 article-title: Superpixel-based hand gesture recognition with kinect depth camera publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2014.2374357 – ident: CR10 – volume: 23 start-page: 1 year: 2020 end-page: 10 ident: CR24 article-title: An efficient method for human hand gesture detection and recognition using deep learning convolutional neural networks publication-title: Soft Comput – volume: 18 start-page: 5429 issue: 13 year: 2018 end-page: 5438 ident: CR5 article-title: Gesture recognition with the linear optical sensor and recurrent neural networks publication-title: IEEE Sensors J doi: 10.1109/JSEN.2018.2834968 – volume: 28 start-page: 3941 issue: 12 year: 2017 end-page: 3951 ident: CR25 article-title: Deep learning in vision-based static hand gesture recognition publication-title: Neural Comput & Applic doi: 10.1007/s00521-016-2294-8 – ident: CR33 – volume: 151 start-page: 565 year: 2015 end-page: 573 ident: CR18 article-title: Feature learning based on SAE–PCA network for human gesture recognition in RGBD images publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.086 – ident: CR35 – volume: 2019 start-page: 1 year: 2019 end-page: 7 ident: CR22 article-title: Hand gesture recognition based on single-shot multibox detector deep learning publication-title: Mob Inf Syst – volume: 12 start-page: 1550011 issue: 02 year: 2015 ident: CR8 article-title: A multichannel surface EMG system for hand motion recognition publication-title: Int J Humanoid Robotics doi: 10.1142/S0219843615500115 – volume: 43 start-page: 1 issue: 1 year: 2015 end-page: 54 ident: CR31 article-title: Vision based hand gesture recognition for human computer interaction: a survey publication-title: Artif Intell Rev doi: 10.1007/s10462-012-9356-9 – volume: 1 start-page: 404 year: 2017 end-page: 409 ident: CR7 article-title: Using AEPI method for hand gesture recognition in varying background and blurred images publication-title: IEEE Int Conf Electron Commun Aerospace Technol – volume: 10 start-page: 1 year: 2019 end-page: 0 ident: CR38 article-title: Comparing head gesture, hand gesture and gamepad interfaces for answering yes/no questions in virtual environments publication-title: Virtual Reality – ident: CR21 – volume: 15 start-page: 12 year: 2011 end-page: 20 ident: CR2 article-title: A new 2D static hand gesture colour image dataset for ASL gestures publication-title: Res Lett Inf Math Sci – volume: 78 start-page: 29765 issue: 21 year: 2019 end-page: 29782 ident: CR20 article-title: Towards the sEMG hand: internet of things sensors and haptic feedback application publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6293-x – volume: 23 start-page: 797 issue: 4 year: 2018 end-page: 805 ident: CR34 article-title: Gesture recognition based on kinect and sEMG signal fusion publication-title: Mobile Networks Appl doi: 10.1007/s11036-018-1008-0 – volume: 73 start-page: 748 year: 2018 end-page: 766 ident: CR4 article-title: A convolutional neural network with feature fusion for real-time hand posture recognition publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.09.010 – ident: CR3 – ident: CR15 – volume: 1 start-page: 77 issue: 2 year: 2016 end-page: 87 ident: CR1 article-title: Recent methods in vision-based hand gesture recognition publication-title: Int J Data Sci Anal doi: 10.1007/s41060-016-0008-z – volume: 441 start-page: 66 year: 2018 end-page: 78 ident: CR19 article-title: Deep attention network for joint hand gesture localization and recognition using static RGB-D images publication-title: Inf Sci doi: 10.1016/j.ins.2018.02.024 – volume: 21 start-page: 1 year: 2020 end-page: 24 ident: CR32 article-title: Design and evaluation of a hand gesture recognition approach for real-time interactions publication-title: Multimed Tools Appl – volume: 1 start-page: 1 year: 2020 end-page: 12 ident: CR36 article-title: Deep learning-based sign language recognition system for static signs publication-title: Neural Comput & Applic – volume: 28 start-page: 3285 issue: 11 year: 2017 end-page: 3294 ident: CR13 article-title: Fused features mining for depth-based hand gesture recognition to classify blind human communication publication-title: Neural Comput & Applic doi: 10.1007/s00521-016-2244-5 – ident: CR11 – volume: 82 start-page: 115729 year: 2020 ident: CR9 article-title: Real-time hand posture recognition using hand geometric features and fisher vector publication-title: Signal Process Image Commun doi: 10.1016/j.image.2019.115729 – volume: 65 start-page: 305 issue: 2 year: 2015 end-page: 316 ident: CR28 article-title: Static and dynamic hand gesture recognition in depth data using dynamic time warping publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2015.2498560 – volume: 22 start-page: 13261 issue: 6 year: 2019 end-page: 13271 ident: CR14 article-title: Gesture recognition based on binocular vision publication-title: Clust Comput doi: 10.1007/s10586-018-1844-5 – volume: 12 start-page: 1550011 issue: 02 year: 2015 ident: 9829_CR8 publication-title: Int J Humanoid Robotics doi: 10.1142/S0219843615500115 – volume: 21 start-page: 1 year: 2020 ident: 9829_CR32 publication-title: Multimed Tools Appl – volume: 13 start-page: 2655 issue: 9 year: 2018 ident: 9829_CR29 publication-title: J Eng Sci Technol – volume: 78 start-page: 29765 issue: 21 year: 2019 ident: 9829_CR20 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6293-x – ident: 9829_CR10 doi: 10.1109/ICCCI.2016.7479951 – ident: 9829_CR30 doi: 10.2139/ssrn.3545064 – volume: 17 start-page: 29 issue: 1 year: 2014 ident: 9829_CR37 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2014.2374357 – volume: 31 start-page: 8955 issue: 12 year: 2019 ident: 9829_CR26 publication-title: Neural Comput & Applic doi: 10.1007/s00521-019-04427-y – volume: 28 start-page: 3285 issue: 11 year: 2017 ident: 9829_CR13 publication-title: Neural Comput & Applic doi: 10.1007/s00521-016-2244-5 – ident: 9829_CR21 doi: 10.1109/CoASE.2014.6899454 – volume: 1 start-page: 1 year: 2020 ident: 9829_CR36 publication-title: Neural Comput & Applic – volume: 73 start-page: 748 year: 2018 ident: 9829_CR4 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.09.010 – ident: 9829_CR15 – volume: 43 start-page: 1 issue: 1 year: 2015 ident: 9829_CR31 publication-title: Artif Intell Rev doi: 10.1007/s10462-012-9356-9 – volume: 22 start-page: 13261 issue: 6 year: 2019 ident: 9829_CR14 publication-title: Clust Comput doi: 10.1007/s10586-018-1844-5 – volume: 2019 start-page: 1 year: 2019 ident: 9829_CR22 publication-title: Mob Inf Syst – volume: 151 start-page: 565 year: 2015 ident: 9829_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.086 – volume: 23 start-page: 1 year: 2020 ident: 9829_CR24 publication-title: Soft Comput – volume: 441 start-page: 66 year: 2018 ident: 9829_CR19 publication-title: Inf Sci doi: 10.1016/j.ins.2018.02.024 – volume: 15 start-page: 12 year: 2011 ident: 9829_CR2 publication-title: Res Lett Inf Math Sci – volume: 65 start-page: 305 issue: 2 year: 2015 ident: 9829_CR28 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2015.2498560 – ident: 9829_CR3 – volume: 18 start-page: 5429 issue: 13 year: 2018 ident: 9829_CR5 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2018.2834968 – volume: 151 start-page: 565 year: 2015 ident: 9829_CR18 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.086 – ident: 9829_CR11 doi: 10.1109/ACSAT.2012.37 – volume: 10 start-page: 1 year: 2019 ident: 9829_CR38 publication-title: Virtual Reality – ident: 9829_CR16 – volume: 28 start-page: 3941 issue: 12 year: 2017 ident: 9829_CR25 publication-title: Neural Comput & Applic doi: 10.1007/s00521-016-2294-8 – ident: 9829_CR35 doi: 10.1145/971478.971513 – volume: 23 start-page: 797 issue: 4 year: 2018 ident: 9829_CR34 publication-title: Mobile Networks Appl doi: 10.1007/s11036-018-1008-0 – volume: 13 start-page: 700 issue: 8 year: 2019 ident: 9829_CR6 publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2018.5796 – volume: 82 start-page: 115729 year: 2020 ident: 9829_CR9 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2019.115729 – volume: 1 start-page: 77 issue: 2 year: 2016 ident: 9829_CR1 publication-title: Int J Data Sci Anal doi: 10.1007/s41060-016-0008-z – volume: 30 start-page: 173 issue: 1 year: 2018 ident: 9829_CR39 publication-title: J Comput-Aided Design Comput Graphics doi: 10.3724/SP.J.1089.2018.16176 – volume: 82 start-page: 28 issue: 4 year: 2013 ident: 9829_CR23 publication-title: Int J Comput Appl – ident: 9829_CR12 – volume: 19 start-page: 677 issue: 7 year: 1997 ident: 9829_CR27 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.598226 – volume: 1 start-page: 404 year: 2017 ident: 9829_CR7 publication-title: IEEE Int Conf Electron Commun Aerospace Technol – ident: 9829_CR33 |
SSID | ssj0016524 |
Score | 2.5431497 |
Snippet | Hand gesture is one of the most prominent ways of communication since the beginning of the human era. Hand gesture recognition extends human-computer... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3051 |
SubjectTerms | Accuracy Artificial neural networks Character recognition Classification Computer Communication Networks Computer Science Data Structures and Information Theory Error correction Feature extraction Feature recognition Gesture recognition Human-computer interaction Human-computer interface Literature reviews Machine learning Multimedia Information Systems Sign language Special Purpose and Application-Based Systems Support vector machines System effectiveness |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8CBxwAxGCgHbhDRpm3antCYNk1IVAgxabcqr57QNrZx2L_HadMVkODcJgc7tr84tj-AGx2YRBTo_XgkIxqa2NAkUh4VXqBDEWPAEbZR-Dnj40n4NI2mLuG2cmWVtU8sHbWeK5sjv2e2JzL2EP4-LD6oZY2yr6uOQmMX2uiCk6QF7cdh9vK6fUfgkaO1TTyKsdF3bTNV85xvW1Ps9clLE5bSzc_Q1ODNX0-kZeQZHcGBg4ykX-n4GHbMrAOHNR0DcdbZgf1vswVPoD_IMmJjlCaFKad3EvTDy6qPgYiZJsoCZ1spVCqHIHoltpqD1CnMU5iMhm-DMXV8CVShIa2pKkIjY85lqnlRpIgdlIkiRDxKKy-R2hRKM08GivGYFbFG25YS4RWGMc4K3w_OoDWbz8w5EBaIkAm87qA_RIjFBdNejItTpo1iUnTBr0WVKzdM3HJavOfNGGQr3hzFm5fizTdduN2uWVSjNP79u1drIHdmtcqbQ9CFu1orzee_d7v4f7dL2GO2VqVMrfSgtV5-misEG2t57U7UF0n2zz4 priority: 102 providerName: ProQuest |
Title | CNN based feature extraction and classification for sign language |
URI | https://link.springer.com/article/10.1007/s11042-020-09829-y https://www.proquest.com/docview/2478170974 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBRwFRKJUHNoiUOImTjGnVtAIRIUSlMkV-ZUIBtWXov-ecJg0gQGLyENvDXe7uO98L4Eq5OuQ5aj_mC9_ydKCt0Je2xW1XeTxAg8NNofB9yqYz73buz6uisGWd7V6HJEtN3RS7OaaUxLg7dhTSyFq3oOOj724SuWY03sYOmF-Nsg1tC-2hU5XK_HzHV3PUYMxvYdHS2iSHsF_BRBJv-HoEO7rowkE9goFUEtmFvU_9BI8hHqUpMXZJkVyXHTsJ6t7FpnaB8EIRacCyyQ4qGUIQsRKTwUHqZ8sTmCXjp9HUqmYkWBKFZ2XJ3NMiYExEiuV5hHhBat9HlCOVtEOhdC4VtYUrKQtoHiiUZyEQUqHpYjR3HPcU2sVroc-AUJd7lKOLgzoQYRXjVNkBHo6o0pIK3gOnJlUmqwbiZo7FS9a0PjbkzZC8WUnebN2D6-2Zt037jD9392sOZJUoLTNqimEDG_2eHtzUXGk-_37b-f-2X8AuNfkq5fNKH9qrxbu-RMCxEgNohclkAJ04GQ5Ts06e78a4Dsfpw-Og_Ps-AHfu0Mk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgADjwKiUMADTGCROImTDAihQmmBdgKJLfiVCbWlLUL9U_xGznlQQIKtc2IP5_N3n-377gCOtGcikSL68UAG1DehoVGgHCocT_sixIAjrFC42-PtR__2KXiqwEephbFplSUmZkCtB8rekZ8xq4kMHaS_F8NXartG2dfVsoVG7hZ3ZvqOR7bxeecK1_eYsdb1Q7NNi64CVKG7TahKfSNDzmWseZrGGGGVCQLkBUorJ5LapEozR3qK8ZClocYdICWSEAR7zlLX9XDeBVj0PYzkVpneuvl6teBB0UQ3cihGYrcQ6eRSPdcKYexhzYkjFtPpz0A4Y7e_HmSzONdah9WCoJLL3KM2oGL6NVgrmz-QAgtqsPKtkuEmXDZ7PWIjoiapyWqFEkT9Ua6aIKKvibI03eYlZa5AkCsTmztCygvTLXicix23odof9M0OEOYJnwk8XCH6IqHjgmknxMEx00YxKerglqZKVFG63HbQeElmRZeteRM0b5KZN5nW4eRrzDAv3PHv341yBZJiE4-TmcvV4bRcldnnv2fb_X-2Q1hqP3Tvk_tO724PlpnNkskudRpQnYzezD7SnIk8yHyLwPO8nfkT6swLOQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB3BIiEouBHL6QIqsEicxEkKhLhWnBFCINEFnxVarkVof42vY5w4LCBBR514ivHzzBt7DoB1HZlMWLR-PJEJjU1qaJaogIog0rFI0eEIVyh8UfDjm_j0NrkdgvemFsalVTY2sTLU-kG5O_Jt5moi0wDp77b1aRGXh53dxyfqJki5l9ZmnEYNkTPTf8Pw7WXn5BD3eoOxztH1wTH1EwaoQuj1qLKxkSnnMtfc2hy9rTJJghxBaRVkUhurNAtkpBhPmU01ngYpkZCg4efMhmGEcodhJHVRUQtG9o-Ky6vPNwye-JG6WUDRL4e-ZKcu3AtdWYwL3YI8Yzntf3eLA67743m28nqdKZjwdJXs1fiahiHTnYHJZhQE8ZZhBsa_9DWchb2DoiDOP2piTdU5lKAin-saCiK6mihH2l2WUgUMgsyZuEwS0lyfzsHNv2hyHlrdh65ZAMIiETOBoRbaYqR3XDAdpLg4Z9ooJkUbwkZVpfKNzN08jfty0ILZqbdE9ZaVest-GzY_1zzWbTz-_Hu52YHSH-mXcgDANmw1uzL4_Lu0xb-lrcEoArk8PynOlmCMuZSZ6oZnGVq951ezgpynJ1c9uAjc_TeePwDx-BDL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN+based+feature+extraction+and+classification+for+sign+language&rft.jtitle=Multimedia+tools+and+applications&rft.au=Barbhuiya%2C+Abul+Abbas&rft.au=Karsh%2C+Ram+Kumar&rft.au=Jain%2C+Rahul&rft.date=2021-01-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=2&rft.spage=3051&rft.epage=3069&rft_id=info:doi/10.1007%2Fs11042-020-09829-y&rft.externalDocID=10_1007_s11042_020_09829_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |