CNN based feature extraction and classification for sign language

Hand gesture is one of the most prominent ways of communication since the beginning of the human era. Hand gesture recognition extends human-computer interaction (HCI) more convenient and flexible. Therefore, it is important to identify each character correctly for calm and error-free HCI. Literatur...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 2; pp. 3051 - 3069
Main Authors Barbhuiya, Abul Abbas, Karsh, Ram Kumar, Jain, Rahul
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hand gesture is one of the most prominent ways of communication since the beginning of the human era. Hand gesture recognition extends human-computer interaction (HCI) more convenient and flexible. Therefore, it is important to identify each character correctly for calm and error-free HCI. Literature survey reveals that most of the existing hand gesture recognition (HGR) systems have considered only a few simple discriminating gestures for recognition performance. This paper applies deep learning-based convolutional neural networks (CNNs) for robust modeling of static signs in the context of sign language recognition. In this work, CNN is employed for HGR where both alphabets and numerals of ASL are considered simultaneously. The pros and cons of CNNs used for HGR are also highlighted. The CNN architecture is based on modified AlexNet and modified VGG16 models for classification. Modified pre-trained AlexNet and modified pre-trained VGG16 based architectures are used for feature extraction followed by a multiclass support vector machine (SVM) classifier. The results are evaluated based on different layer features for best recognition performance. To examine the accuracy of the HGR schemes, both the leave-one-subject-out and a random 70–30 form of cross-validation approach were adopted. This work also highlights the recognition accuracy of each character, and their similarities with identical gestures. The experiments are performed in a simple CPU system instead of high-end GPU systems to demonstrate the cost-effectiveness of this work. The proposed system has achieved a recognition accuracy of 99.82%, which is better than some of the state-of-art methods.
AbstractList Hand gesture is one of the most prominent ways of communication since the beginning of the human era. Hand gesture recognition extends human-computer interaction (HCI) more convenient and flexible. Therefore, it is important to identify each character correctly for calm and error-free HCI. Literature survey reveals that most of the existing hand gesture recognition (HGR) systems have considered only a few simple discriminating gestures for recognition performance. This paper applies deep learning-based convolutional neural networks (CNNs) for robust modeling of static signs in the context of sign language recognition. In this work, CNN is employed for HGR where both alphabets and numerals of ASL are considered simultaneously. The pros and cons of CNNs used for HGR are also highlighted. The CNN architecture is based on modified AlexNet and modified VGG16 models for classification. Modified pre-trained AlexNet and modified pre-trained VGG16 based architectures are used for feature extraction followed by a multiclass support vector machine (SVM) classifier. The results are evaluated based on different layer features for best recognition performance. To examine the accuracy of the HGR schemes, both the leave-one-subject-out and a random 70–30 form of cross-validation approach were adopted. This work also highlights the recognition accuracy of each character, and their similarities with identical gestures. The experiments are performed in a simple CPU system instead of high-end GPU systems to demonstrate the cost-effectiveness of this work. The proposed system has achieved a recognition accuracy of 99.82%, which is better than some of the state-of-art methods.
Author Jain, Rahul
Barbhuiya, Abul Abbas
Karsh, Ram Kumar
Author_xml – sequence: 1
  givenname: Abul Abbas
  orcidid: 0000-0002-9459-1213
  surname: Barbhuiya
  fullname: Barbhuiya, Abul Abbas
  email: abulabbasnet@gmail.com
  organization: Speech and Image Processing Group, Electronics and Communication Engineering Department, National Institute of Technology
– sequence: 2
  givenname: Ram Kumar
  surname: Karsh
  fullname: Karsh, Ram Kumar
  organization: Speech and Image Processing Group, Electronics and Communication Engineering Department, National Institute of Technology
– sequence: 3
  givenname: Rahul
  surname: Jain
  fullname: Jain, Rahul
  organization: Speech and Image Processing Group, Electronics and Communication Engineering Department, National Institute of Technology
BookMark eNp9kEtLw0AQgBepYFv9A54CnldndpNscixFrVDqRc_LZh8hJW7qbgL23xsbQfDQ0wzDfPP4FmTmO28JuUW4RwDxEBEhZRQYUCgLVtLjBZljJjgVguFszHkBVGSAV2QR4x4A84ylc7Ja73ZJpaI1ibOqH4JN7FcflO6bzifKm0S3KsbGNVqdSq4LSWxqn7TK14Oq7TW5dKqN9uY3Lsn70-PbekO3r88v69WWao5lT7VLbSXyvCpN7lwpELTNMpan2mgoKmOdNgwqrlkumBOGA1YVZCVyyJlD5EtyN809hO5zsLGX-24IflwpWSoKFFCKdOxiU5cOXYzBOnkIzYcKR4kgf1TJSZUcVcmTKnkcoeIfpJv-9O5oomnPo3xC47jH1zb8XXWG-gYTMoAs
CitedBy_id crossref_primary_10_3390_s22030706
crossref_primary_10_1007_s10639_022_11356_2
crossref_primary_10_1038_s41598_025_93559_4
crossref_primary_10_4018_IJSPPC_309079
crossref_primary_10_1007_s13369_022_07495_w
crossref_primary_10_1109_ACCESS_2022_3210543
crossref_primary_10_1051_itmconf_20235701019
crossref_primary_10_1109_TIM_2021_3092072
crossref_primary_10_3390_iot4030013
crossref_primary_10_32604_cmc_2023_042886
crossref_primary_10_1016_j_compeleceng_2024_109475
crossref_primary_10_1007_s13042_024_02490_z
crossref_primary_10_1080_08839514_2021_1982184
crossref_primary_10_1080_03772063_2023_2175057
crossref_primary_10_1007_s00371_022_02497_z
crossref_primary_10_4018_IJSSCI_311448
crossref_primary_10_1016_j_mlwa_2023_100492
crossref_primary_10_1002_cpe_7653
crossref_primary_10_1016_j_suscom_2025_101082
crossref_primary_10_3390_app11125594
crossref_primary_10_1016_j_knosys_2024_111833
crossref_primary_10_1007_s13369_022_07144_2
crossref_primary_10_1109_ACCESS_2024_3461572
crossref_primary_10_1007_s11042_023_17361_y
crossref_primary_10_1371_journal_pone_0276941
crossref_primary_10_1109_ACCESS_2024_3442157
crossref_primary_10_1016_j_neucom_2023_01_005
crossref_primary_10_1016_j_engappai_2024_108384
crossref_primary_10_3390_info15060360
crossref_primary_10_1088_2057_1976_ac0d91
crossref_primary_10_32604_cmes_2024_047649
crossref_primary_10_1016_j_oceaneng_2024_119600
crossref_primary_10_1016_j_neunet_2022_01_021
crossref_primary_10_1109_ACCESS_2024_3408948
crossref_primary_10_1088_2634_4386_ac94f3
crossref_primary_10_21456_vol13iss1pp52_59
crossref_primary_10_3390_agriengineering6010048
crossref_primary_10_1007_s12553_021_00620_z
crossref_primary_10_1080_08839514_2022_2112545
crossref_primary_10_1016_j_iswa_2023_200262
crossref_primary_10_32604_csse_2023_034431
crossref_primary_10_1016_j_jfca_2023_105785
crossref_primary_10_1016_j_mlwa_2023_100504
crossref_primary_10_1007_s11042_024_19225_5
crossref_primary_10_1016_j_apor_2024_104326
crossref_primary_10_1016_j_mineng_2023_108400
crossref_primary_10_1038_s41598_022_15864_6
crossref_primary_10_57197_JDR_2024_0034
crossref_primary_10_1016_j_asoc_2024_112235
crossref_primary_10_1007_s00521_024_09509_0
crossref_primary_10_51173_ijds_v1i1_6
crossref_primary_10_1016_j_chemosphere_2023_138830
crossref_primary_10_1016_j_iswa_2022_200108
crossref_primary_10_1016_j_ecoinf_2021_101492
crossref_primary_10_1080_23080477_2024_2320956
crossref_primary_10_1109_ACCESS_2022_3204110
crossref_primary_10_1007_s00371_022_02762_1
crossref_primary_10_1016_j_eswa_2024_123351
crossref_primary_10_3390_s21041480
crossref_primary_10_1007_s11042_023_16852_2
crossref_primary_10_1016_j_mejo_2024_106345
crossref_primary_10_1049_ipr2_13211
crossref_primary_10_3390_s21113937
crossref_primary_10_32628_IJSRSET219430
crossref_primary_10_3389_fnins_2024_1368733
crossref_primary_10_1007_s11042_022_14117_y
crossref_primary_10_1016_j_iswa_2021_200056
crossref_primary_10_1007_s10462_024_10792_5
crossref_primary_10_1109_ACCESS_2024_3457692
crossref_primary_10_3390_app13053029
crossref_primary_10_1002_cpe_7230
crossref_primary_10_1016_j_jisa_2025_104009
crossref_primary_10_3390_app132111625
crossref_primary_10_38124_ijisrt_IJISRT24MAY500
crossref_primary_10_1007_s00371_021_02259_3
crossref_primary_10_1016_j_measurement_2024_115693
crossref_primary_10_2478_jsiot_2024_0006
crossref_primary_10_3390_mi13122212
Cites_doi 10.3724/SP.J.1089.2018.16176
10.1049/iet-cvi.2018.5796
10.1016/j.neucom.2014.06.086
10.1007/s00521-019-04427-y
10.1109/34.598226
10.1109/TMM.2014.2374357
10.1109/JSEN.2018.2834968
10.1007/s00521-016-2294-8
10.1142/S0219843615500115
10.1007/s10462-012-9356-9
10.1007/s11042-018-6293-x
10.1007/s11036-018-1008-0
10.1016/j.asoc.2018.09.010
10.1007/s41060-016-0008-z
10.1016/j.ins.2018.02.024
10.1007/s00521-016-2244-5
10.1016/j.image.2019.115729
10.1109/TIM.2015.2498560
10.1007/s10586-018-1844-5
10.1109/ICCCI.2016.7479951
10.2139/ssrn.3545064
10.1109/CoASE.2014.6899454
10.1109/ACSAT.2012.37
10.1145/971478.971513
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-020-09829-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 3069
ExternalDocumentID 10_1007_s11042_020_09829_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-cf4eb766b9d6ff9710ce55264cdc08bdefcd20b3c2672f7d301bb05913062f113
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 07:17:43 EDT 2025
Thu Apr 24 22:58:16 EDT 2025
Tue Jul 01 04:13:06 EDT 2025
Fri Feb 21 02:37:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CNN
Human–computer interface (HCI)
Hand gesture
American sign language (ASL)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cf4eb766b9d6ff9710ce55264cdc08bdefcd20b3c2672f7d301bb05913062f113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9459-1213
PQID 2478170974
PQPubID 54626
PageCount 19
ParticipantIDs proquest_journals_2478170974
crossref_primary_10_1007_s11042_020_09829_y
crossref_citationtrail_10_1007_s11042_020_09829_y
springer_journals_10_1007_s11042_020_09829_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Sun, Li, Li, Jiang, Jiang, Liu, Zheng, Shu (CR34) 2018; 23
Wadhawan, Kumar (CR36) 2020; 1
Chevtchenko, Vale, Macario, Cordeiro (CR4) 2018; 73
CR16
Czuszyński, Rumiński, Kwaśniewska (CR5) 2018; 18
CR15
Neethu, Suguna, Sathish (CR24) 2020; 23
CR35
CR12
Plouffe, Cretu (CR28) 2015; 65
CR11
CR33
CR10
Jiang, Zheng, Li, Sun, Kong, Jiang, Xiong, Tao, Xu, Yu, Liu (CR14) 2019; 22
CR30
Li, Zhang, Sun, Kong (CR20) 2019; 78
Li, Yu, Wu, Su, Ji (CR17) 2015; 151
Oyedotun, Khashman (CR25) 2017; 28
Li, Wang, Liu, Feng (CR19) 2018; 441
Pavlovic, Sharma, Huang (CR27) 1997; 19
Dadashzadeh, Targhi, Tahmasbi, Mirmehdi (CR6) 2019; 13
Jadooki, Mohamad, Saba, Almazyad, Rehman (CR13) 2017; 28
Nagarajan, Subashini (CR23) 2013; 82
CR3
Fang, Liu, Li, Zhu (CR8) 2015; 12
Badi (CR1) 2016; 1
Rautaray, Agrawal (CR31) 2015; 43
Wang, Liu, Chan (CR37) 2014; 17
Li, Yu, Wu, Su, Ji (CR18) 2015; 151
Fang, Liang, Kang, Wang, Feng (CR9) 2020; 82
Liu, Li, Cui, Li, Yuan (CR22) 2019; 2019
Barczak, Reyes, Abastillas, Piccio, Susnjak (CR2) 2011; 15
Dehankar, Jain, Thakare (CR7) 2017; 1
CR21
Shanthakumar, Peng, Hansberger, Cao, Meacham, Blakely (CR32) 2020; 21
Ozcan, Basturk (CR26) 2019; 31
Zhao, Allison (CR38) 2019; 10
Zhong, Chen, Yu, Yang, Hu (CR39) 2018; 30
Ranga, Yadav, Garg (CR29) 2018; 13
J Zhao (9829_CR38) 2019; 10
G Li (9829_CR20) 2019; 78
L Fang (9829_CR9) 2020; 82
AV Dehankar (9829_CR7) 2017; 1
H Badi (9829_CR1) 2016; 1
D Jiang (9829_CR14) 2019; 22
T Ozcan (9829_CR26) 2019; 31
Y Sun (9829_CR34) 2018; 23
SF Chevtchenko (9829_CR4) 2018; 73
9829_CR30
9829_CR10
PS Neethu (9829_CR24) 2020; 23
V Ranga (9829_CR29) 2018; 13
9829_CR15
9829_CR16
VA Shanthakumar (9829_CR32) 2020; 21
9829_CR11
SZ Li (9829_CR18) 2015; 151
G Plouffe (9829_CR28) 2015; 65
9829_CR33
K Czuszyński (9829_CR5) 2018; 18
9829_CR12
9829_CR35
A Wadhawan (9829_CR36) 2020; 1
AL Barczak (9829_CR2) 2011; 15
VI Pavlovic (9829_CR27) 1997; 19
SS Rautaray (9829_CR31) 2015; 43
9829_CR3
C Wang (9829_CR37) 2014; 17
S Nagarajan (9829_CR23) 2013; 82
SZ Li (9829_CR17) 2015; 151
X Zhong (9829_CR39) 2018; 30
P Liu (9829_CR22) 2019; 2019
9829_CR21
Y Fang (9829_CR8) 2015; 12
S Jadooki (9829_CR13) 2017; 28
A Dadashzadeh (9829_CR6) 2019; 13
OK Oyedotun (9829_CR25) 2017; 28
Y Li (9829_CR19) 2018; 441
References_xml – volume: 82
  start-page: 28
  issue: 4
  year: 2013
  end-page: 35
  ident: CR23
  article-title: Static hand gesture recognition for sign language alphabets using edge oriented histogram and multi class SVM
  publication-title: Int J Comput Appl
– volume: 13
  start-page: 2655
  issue: 9
  year: 2018
  end-page: 2669
  ident: CR29
  article-title: American sign language fingerspelling using hybrid discrete wavelet transform-gabor filter and convolutional neural network
  publication-title: J Eng Sci Technol
– volume: 30
  start-page: 173
  issue: 1
  year: 2018
  ident: CR39
  article-title: Context-aware information based ultrasonic gesture recognition method
  publication-title: J Comput-Aided Design Comput Graphics
  doi: 10.3724/SP.J.1089.2018.16176
– volume: 13
  start-page: 700
  issue: 8
  year: 2019
  end-page: 707
  ident: CR6
  article-title: HGR-net: a fusion network for hand gesture segmentation and recognition
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2018.5796
– volume: 151
  start-page: 565
  year: 2015
  end-page: 573
  ident: CR17
  article-title: Feature learning based on SAE–PCA network for human gesture recognition in RGBD images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.086
– volume: 31
  start-page: 8955
  issue: 12
  year: 2019
  end-page: 8970
  ident: CR26
  article-title: Transfer learning-based convolutional neural networks with heuristic optimization for hand gesture recognition
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-019-04427-y
– ident: CR16
– volume: 19
  start-page: 677
  issue: 7
  year: 1997
  end-page: 695
  ident: CR27
  article-title: Visual interpretation of hand gestures for human-computer interaction: a review
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.598226
– ident: CR12
– ident: CR30
– volume: 17
  start-page: 29
  issue: 1
  year: 2014
  end-page: 39
  ident: CR37
  article-title: Superpixel-based hand gesture recognition with kinect depth camera
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2014.2374357
– ident: CR10
– volume: 23
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR24
  article-title: An efficient method for human hand gesture detection and recognition using deep learning convolutional neural networks
  publication-title: Soft Comput
– volume: 18
  start-page: 5429
  issue: 13
  year: 2018
  end-page: 5438
  ident: CR5
  article-title: Gesture recognition with the linear optical sensor and recurrent neural networks
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2018.2834968
– volume: 28
  start-page: 3941
  issue: 12
  year: 2017
  end-page: 3951
  ident: CR25
  article-title: Deep learning in vision-based static hand gesture recognition
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-016-2294-8
– ident: CR33
– volume: 151
  start-page: 565
  year: 2015
  end-page: 573
  ident: CR18
  article-title: Feature learning based on SAE–PCA network for human gesture recognition in RGBD images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.086
– ident: CR35
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 7
  ident: CR22
  article-title: Hand gesture recognition based on single-shot multibox detector deep learning
  publication-title: Mob Inf Syst
– volume: 12
  start-page: 1550011
  issue: 02
  year: 2015
  ident: CR8
  article-title: A multichannel surface EMG system for hand motion recognition
  publication-title: Int J Humanoid Robotics
  doi: 10.1142/S0219843615500115
– volume: 43
  start-page: 1
  issue: 1
  year: 2015
  end-page: 54
  ident: CR31
  article-title: Vision based hand gesture recognition for human computer interaction: a survey
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-012-9356-9
– volume: 1
  start-page: 404
  year: 2017
  end-page: 409
  ident: CR7
  article-title: Using AEPI method for hand gesture recognition in varying background and blurred images
  publication-title: IEEE Int Conf Electron Commun Aerospace Technol
– volume: 10
  start-page: 1
  year: 2019
  end-page: 0
  ident: CR38
  article-title: Comparing head gesture, hand gesture and gamepad interfaces for answering yes/no questions in virtual environments
  publication-title: Virtual Reality
– ident: CR21
– volume: 15
  start-page: 12
  year: 2011
  end-page: 20
  ident: CR2
  article-title: A new 2D static hand gesture colour image dataset for ASL gestures
  publication-title: Res Lett Inf Math Sci
– volume: 78
  start-page: 29765
  issue: 21
  year: 2019
  end-page: 29782
  ident: CR20
  article-title: Towards the sEMG hand: internet of things sensors and haptic feedback application
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6293-x
– volume: 23
  start-page: 797
  issue: 4
  year: 2018
  end-page: 805
  ident: CR34
  article-title: Gesture recognition based on kinect and sEMG signal fusion
  publication-title: Mobile Networks Appl
  doi: 10.1007/s11036-018-1008-0
– volume: 73
  start-page: 748
  year: 2018
  end-page: 766
  ident: CR4
  article-title: A convolutional neural network with feature fusion for real-time hand posture recognition
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.010
– ident: CR3
– ident: CR15
– volume: 1
  start-page: 77
  issue: 2
  year: 2016
  end-page: 87
  ident: CR1
  article-title: Recent methods in vision-based hand gesture recognition
  publication-title: Int J Data Sci Anal
  doi: 10.1007/s41060-016-0008-z
– volume: 441
  start-page: 66
  year: 2018
  end-page: 78
  ident: CR19
  article-title: Deep attention network for joint hand gesture localization and recognition using static RGB-D images
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.02.024
– volume: 21
  start-page: 1
  year: 2020
  end-page: 24
  ident: CR32
  article-title: Design and evaluation of a hand gesture recognition approach for real-time interactions
  publication-title: Multimed Tools Appl
– volume: 1
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR36
  article-title: Deep learning-based sign language recognition system for static signs
  publication-title: Neural Comput & Applic
– volume: 28
  start-page: 3285
  issue: 11
  year: 2017
  end-page: 3294
  ident: CR13
  article-title: Fused features mining for depth-based hand gesture recognition to classify blind human communication
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-016-2244-5
– ident: CR11
– volume: 82
  start-page: 115729
  year: 2020
  ident: CR9
  article-title: Real-time hand posture recognition using hand geometric features and fisher vector
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2019.115729
– volume: 65
  start-page: 305
  issue: 2
  year: 2015
  end-page: 316
  ident: CR28
  article-title: Static and dynamic hand gesture recognition in depth data using dynamic time warping
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2015.2498560
– volume: 22
  start-page: 13261
  issue: 6
  year: 2019
  end-page: 13271
  ident: CR14
  article-title: Gesture recognition based on binocular vision
  publication-title: Clust Comput
  doi: 10.1007/s10586-018-1844-5
– volume: 12
  start-page: 1550011
  issue: 02
  year: 2015
  ident: 9829_CR8
  publication-title: Int J Humanoid Robotics
  doi: 10.1142/S0219843615500115
– volume: 21
  start-page: 1
  year: 2020
  ident: 9829_CR32
  publication-title: Multimed Tools Appl
– volume: 13
  start-page: 2655
  issue: 9
  year: 2018
  ident: 9829_CR29
  publication-title: J Eng Sci Technol
– volume: 78
  start-page: 29765
  issue: 21
  year: 2019
  ident: 9829_CR20
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6293-x
– ident: 9829_CR10
  doi: 10.1109/ICCCI.2016.7479951
– ident: 9829_CR30
  doi: 10.2139/ssrn.3545064
– volume: 17
  start-page: 29
  issue: 1
  year: 2014
  ident: 9829_CR37
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2014.2374357
– volume: 31
  start-page: 8955
  issue: 12
  year: 2019
  ident: 9829_CR26
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-019-04427-y
– volume: 28
  start-page: 3285
  issue: 11
  year: 2017
  ident: 9829_CR13
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-016-2244-5
– ident: 9829_CR21
  doi: 10.1109/CoASE.2014.6899454
– volume: 1
  start-page: 1
  year: 2020
  ident: 9829_CR36
  publication-title: Neural Comput & Applic
– volume: 73
  start-page: 748
  year: 2018
  ident: 9829_CR4
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.010
– ident: 9829_CR15
– volume: 43
  start-page: 1
  issue: 1
  year: 2015
  ident: 9829_CR31
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-012-9356-9
– volume: 22
  start-page: 13261
  issue: 6
  year: 2019
  ident: 9829_CR14
  publication-title: Clust Comput
  doi: 10.1007/s10586-018-1844-5
– volume: 2019
  start-page: 1
  year: 2019
  ident: 9829_CR22
  publication-title: Mob Inf Syst
– volume: 151
  start-page: 565
  year: 2015
  ident: 9829_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.086
– volume: 23
  start-page: 1
  year: 2020
  ident: 9829_CR24
  publication-title: Soft Comput
– volume: 441
  start-page: 66
  year: 2018
  ident: 9829_CR19
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.02.024
– volume: 15
  start-page: 12
  year: 2011
  ident: 9829_CR2
  publication-title: Res Lett Inf Math Sci
– volume: 65
  start-page: 305
  issue: 2
  year: 2015
  ident: 9829_CR28
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2015.2498560
– ident: 9829_CR3
– volume: 18
  start-page: 5429
  issue: 13
  year: 2018
  ident: 9829_CR5
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2018.2834968
– volume: 151
  start-page: 565
  year: 2015
  ident: 9829_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.086
– ident: 9829_CR11
  doi: 10.1109/ACSAT.2012.37
– volume: 10
  start-page: 1
  year: 2019
  ident: 9829_CR38
  publication-title: Virtual Reality
– ident: 9829_CR16
– volume: 28
  start-page: 3941
  issue: 12
  year: 2017
  ident: 9829_CR25
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-016-2294-8
– ident: 9829_CR35
  doi: 10.1145/971478.971513
– volume: 23
  start-page: 797
  issue: 4
  year: 2018
  ident: 9829_CR34
  publication-title: Mobile Networks Appl
  doi: 10.1007/s11036-018-1008-0
– volume: 13
  start-page: 700
  issue: 8
  year: 2019
  ident: 9829_CR6
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2018.5796
– volume: 82
  start-page: 115729
  year: 2020
  ident: 9829_CR9
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2019.115729
– volume: 1
  start-page: 77
  issue: 2
  year: 2016
  ident: 9829_CR1
  publication-title: Int J Data Sci Anal
  doi: 10.1007/s41060-016-0008-z
– volume: 30
  start-page: 173
  issue: 1
  year: 2018
  ident: 9829_CR39
  publication-title: J Comput-Aided Design Comput Graphics
  doi: 10.3724/SP.J.1089.2018.16176
– volume: 82
  start-page: 28
  issue: 4
  year: 2013
  ident: 9829_CR23
  publication-title: Int J Comput Appl
– ident: 9829_CR12
– volume: 19
  start-page: 677
  issue: 7
  year: 1997
  ident: 9829_CR27
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.598226
– volume: 1
  start-page: 404
  year: 2017
  ident: 9829_CR7
  publication-title: IEEE Int Conf Electron Commun Aerospace Technol
– ident: 9829_CR33
SSID ssj0016524
Score 2.5431497
Snippet Hand gesture is one of the most prominent ways of communication since the beginning of the human era. Hand gesture recognition extends human-computer...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3051
SubjectTerms Accuracy
Artificial neural networks
Character recognition
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Error correction
Feature extraction
Feature recognition
Gesture recognition
Human-computer interaction
Human-computer interface
Literature reviews
Machine learning
Multimedia Information Systems
Sign language
Special Purpose and Application-Based Systems
Support vector machines
System effectiveness
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8CBxwAxGCgHbhDRpm3antCYNk1IVAgxabcqr57QNrZx2L_HadMVkODcJgc7tr84tj-AGx2YRBTo_XgkIxqa2NAkUh4VXqBDEWPAEbZR-Dnj40n4NI2mLuG2cmWVtU8sHbWeK5sjv2e2JzL2EP4-LD6oZY2yr6uOQmMX2uiCk6QF7cdh9vK6fUfgkaO1TTyKsdF3bTNV85xvW1Ps9clLE5bSzc_Q1ODNX0-kZeQZHcGBg4ykX-n4GHbMrAOHNR0DcdbZgf1vswVPoD_IMmJjlCaFKad3EvTDy6qPgYiZJsoCZ1spVCqHIHoltpqD1CnMU5iMhm-DMXV8CVShIa2pKkIjY85lqnlRpIgdlIkiRDxKKy-R2hRKM08GivGYFbFG25YS4RWGMc4K3w_OoDWbz8w5EBaIkAm87qA_RIjFBdNejItTpo1iUnTBr0WVKzdM3HJavOfNGGQr3hzFm5fizTdduN2uWVSjNP79u1drIHdmtcqbQ9CFu1orzee_d7v4f7dL2GO2VqVMrfSgtV5-misEG2t57U7UF0n2zz4
  priority: 102
  providerName: ProQuest
Title CNN based feature extraction and classification for sign language
URI https://link.springer.com/article/10.1007/s11042-020-09829-y
https://www.proquest.com/docview/2478170974
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBRwFRKJUHNoiUOImTjGnVtAIRIUSlMkV-ZUIBtWXov-ecJg0gQGLyENvDXe7uO98L4Eq5OuQ5aj_mC9_ydKCt0Je2xW1XeTxAg8NNofB9yqYz73buz6uisGWd7V6HJEtN3RS7OaaUxLg7dhTSyFq3oOOj724SuWY03sYOmF-Nsg1tC-2hU5XK_HzHV3PUYMxvYdHS2iSHsF_BRBJv-HoEO7rowkE9goFUEtmFvU_9BI8hHqUpMXZJkVyXHTsJ6t7FpnaB8EIRacCyyQ4qGUIQsRKTwUHqZ8sTmCXjp9HUqmYkWBKFZ2XJ3NMiYExEiuV5hHhBat9HlCOVtEOhdC4VtYUrKQtoHiiUZyEQUqHpYjR3HPcU2sVroc-AUJd7lKOLgzoQYRXjVNkBHo6o0pIK3gOnJlUmqwbiZo7FS9a0PjbkzZC8WUnebN2D6-2Zt037jD9392sOZJUoLTNqimEDG_2eHtzUXGk-_37b-f-2X8AuNfkq5fNKH9qrxbu-RMCxEgNohclkAJ04GQ5Ts06e78a4Dsfpw-Og_Ps-AHfu0Mk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgADjwKiUMADTGCROImTDAihQmmBdgKJLfiVCbWlLUL9U_xGznlQQIKtc2IP5_N3n-377gCOtGcikSL68UAG1DehoVGgHCocT_sixIAjrFC42-PtR__2KXiqwEephbFplSUmZkCtB8rekZ8xq4kMHaS_F8NXartG2dfVsoVG7hZ3ZvqOR7bxeecK1_eYsdb1Q7NNi64CVKG7TahKfSNDzmWseZrGGGGVCQLkBUorJ5LapEozR3qK8ZClocYdICWSEAR7zlLX9XDeBVj0PYzkVpneuvl6teBB0UQ3cihGYrcQ6eRSPdcKYexhzYkjFtPpz0A4Y7e_HmSzONdah9WCoJLL3KM2oGL6NVgrmz-QAgtqsPKtkuEmXDZ7PWIjoiapyWqFEkT9Ua6aIKKvibI03eYlZa5AkCsTmztCygvTLXicix23odof9M0OEOYJnwk8XCH6IqHjgmknxMEx00YxKerglqZKVFG63HbQeElmRZeteRM0b5KZN5nW4eRrzDAv3PHv341yBZJiE4-TmcvV4bRcldnnv2fb_X-2Q1hqP3Tvk_tO724PlpnNkskudRpQnYzezD7SnIk8yHyLwPO8nfkT6swLOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB3BIiEouBHL6QIqsEicxEkKhLhWnBFCINEFnxVarkVof42vY5w4LCBBR514ivHzzBt7DoB1HZlMWLR-PJEJjU1qaJaogIog0rFI0eEIVyh8UfDjm_j0NrkdgvemFsalVTY2sTLU-kG5O_Jt5moi0wDp77b1aRGXh53dxyfqJki5l9ZmnEYNkTPTf8Pw7WXn5BD3eoOxztH1wTH1EwaoQuj1qLKxkSnnMtfc2hy9rTJJghxBaRVkUhurNAtkpBhPmU01ngYpkZCg4efMhmGEcodhJHVRUQtG9o-Ky6vPNwye-JG6WUDRL4e-ZKcu3AtdWYwL3YI8Yzntf3eLA67743m28nqdKZjwdJXs1fiahiHTnYHJZhQE8ZZhBsa_9DWchb2DoiDOP2piTdU5lKAin-saCiK6mihH2l2WUgUMgsyZuEwS0lyfzsHNv2hyHlrdh65ZAMIiETOBoRbaYqR3XDAdpLg4Z9ooJkUbwkZVpfKNzN08jfty0ILZqbdE9ZaVest-GzY_1zzWbTz-_Hu52YHSH-mXcgDANmw1uzL4_Lu0xb-lrcEoArk8PynOlmCMuZSZ6oZnGVq951ezgpynJ1c9uAjc_TeePwDx-BDL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN+based+feature+extraction+and+classification+for+sign+language&rft.jtitle=Multimedia+tools+and+applications&rft.au=Barbhuiya%2C+Abul+Abbas&rft.au=Karsh%2C+Ram+Kumar&rft.au=Jain%2C+Rahul&rft.date=2021-01-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=2&rft.spage=3051&rft.epage=3069&rft_id=info:doi/10.1007%2Fs11042-020-09829-y&rft.externalDocID=10_1007_s11042_020_09829_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon