The impact assessments of the ACF shape on time series forecasting by the ANFIS model
Time series modelling and control of hydrological parameters are the most critical issues in water resources management. The subject matter of this study is finding the significant relationship between natural properties of time series like correlogram and selecting the best combination set of input...
Saved in:
Published in | Neural computing & applications Vol. 34; no. 15; pp. 12723 - 12736 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Time series modelling and control of hydrological parameters are the most critical issues in water resources management. The subject matter of this study is finding the significant relationship between natural properties of time series like correlogram and selecting the best combination set of inputs for the fuzzy-neural adaptive network model. In this regard, two different types of the ACF, including sinusoidal and descending shapes, are considered in different climate. Selecting model inputs from the stability range of the ACF diagram for any shape types and model fine tuning lead to inferior results in testing stage. The best
R
-value of the original temperature and groundwater time series in stability range is 0.2 (|SI|= 1.23, RMSE = 11.91) and 0.2 (SI = 0.14, RMSE = 3.32), respectively. When they choose from the non-stationary range of the ACF, the powerful results for sinusoidal and descending ACF shapes would be achieved. In case, the
R
-value is more than 94% (|SI|< 0.57, 2.57 < RMSE < 5.5]) and 78% (SI = 0.03 and RMSE = 0.71), respectively. Whether they are picked up from the absolute maximum of ρ value in the ACF diagram, the best model results would have appeared. By applying the inverse of standardization and reforming the shape of the descending ACF to sinusoidal form,
R
-value is upgraded about 18%, from 78 to 96% the case. Finally, using preprocessing, in particular, standardization on time series does not always lead to improve forecasting model accuracy, but it depends on the shape of the ACF diagram. If it has the sine periodic shape, applying this action leads to poor results. In opposite, by descending ACF shape, using the inverse of standardization can improve the model accuracy in case. Finally, choosing ANFIS model inputs using the ACF diagram and appropriate input sets are more effective than using the model tuning and different fuzzy generators. |
---|---|
AbstractList | Time series modelling and control of hydrological parameters are the most critical issues in water resources management. The subject matter of this study is finding the significant relationship between natural properties of time series like correlogram and selecting the best combination set of inputs for the fuzzy-neural adaptive network model. In this regard, two different types of the ACF, including sinusoidal and descending shapes, are considered in different climate. Selecting model inputs from the stability range of the ACF diagram for any shape types and model fine tuning lead to inferior results in testing stage. The best R-value of the original temperature and groundwater time series in stability range is 0.2 (|SI|= 1.23, RMSE = 11.91) and 0.2 (SI = 0.14, RMSE = 3.32), respectively. When they choose from the non-stationary range of the ACF, the powerful results for sinusoidal and descending ACF shapes would be achieved. In case, the R-value is more than 94% (|SI|< 0.57, 2.57 < RMSE < 5.5]) and 78% (SI = 0.03 and RMSE = 0.71), respectively. Whether they are picked up from the absolute maximum of ρ value in the ACF diagram, the best model results would have appeared. By applying the inverse of standardization and reforming the shape of the descending ACF to sinusoidal form, R-value is upgraded about 18%, from 78 to 96% the case. Finally, using preprocessing, in particular, standardization on time series does not always lead to improve forecasting model accuracy, but it depends on the shape of the ACF diagram. If it has the sine periodic shape, applying this action leads to poor results. In opposite, by descending ACF shape, using the inverse of standardization can improve the model accuracy in case. Finally, choosing ANFIS model inputs using the ACF diagram and appropriate input sets are more effective than using the model tuning and different fuzzy generators. Time series modelling and control of hydrological parameters are the most critical issues in water resources management. The subject matter of this study is finding the significant relationship between natural properties of time series like correlogram and selecting the best combination set of inputs for the fuzzy-neural adaptive network model. In this regard, two different types of the ACF, including sinusoidal and descending shapes, are considered in different climate. Selecting model inputs from the stability range of the ACF diagram for any shape types and model fine tuning lead to inferior results in testing stage. The best R -value of the original temperature and groundwater time series in stability range is 0.2 (|SI|= 1.23, RMSE = 11.91) and 0.2 (SI = 0.14, RMSE = 3.32), respectively. When they choose from the non-stationary range of the ACF, the powerful results for sinusoidal and descending ACF shapes would be achieved. In case, the R -value is more than 94% (|SI|< 0.57, 2.57 < RMSE < 5.5]) and 78% (SI = 0.03 and RMSE = 0.71), respectively. Whether they are picked up from the absolute maximum of ρ value in the ACF diagram, the best model results would have appeared. By applying the inverse of standardization and reforming the shape of the descending ACF to sinusoidal form, R -value is upgraded about 18%, from 78 to 96% the case. Finally, using preprocessing, in particular, standardization on time series does not always lead to improve forecasting model accuracy, but it depends on the shape of the ACF diagram. If it has the sine periodic shape, applying this action leads to poor results. In opposite, by descending ACF shape, using the inverse of standardization can improve the model accuracy in case. Finally, choosing ANFIS model inputs using the ACF diagram and appropriate input sets are more effective than using the model tuning and different fuzzy generators. |
Author | Fatemi, Seyed Ehsan Parvini, Hosna |
Author_xml | – sequence: 1 givenname: Seyed Ehsan orcidid: 0000-0002-5016-8245 surname: Fatemi fullname: Fatemi, Seyed Ehsan email: se.fatemi@razi.ac.ir organization: Water Engineering Department, Campus of Agriculture and Natural Resources, Razi University – sequence: 2 givenname: Hosna surname: Parvini fullname: Parvini, Hosna organization: Master of Water Resources, Water Engineering Department, Campus of Agriculture and Natural Resources, Razi University |
BookMark | eNp9kM1LAzEQxYNUsFX_AU8Bz6uTj_3osRSrhaIH6zlk06Td0t2smfTQ_97oCoKHngbmvd_M403IqPOdJeSOwQMDKB8RIOcsA84zKJmELL8gYyaFyATk1YiMYSqTXEhxRSaIewCQRZWPycd6Z2nT9tpEqhEtYmu7iNQ7GpMymy8o7nRvqe9obFpL0YbGInU-WKMxNt2W1qfB-7pYvtPWb-zhhlw6fUB7-zuvyXrxtJ6_ZKu35-V8tsqMYNOYGZdiOeDAZV5tuAHhhHAyLaRjYJiuig3I0pg8L2tX1YXTteUFSCN1XTFxTe6Hs33wn0eLUe39MXTpo-LFVLCy5JwnVzW4TPCIwTplmqhj47sYdHNQDNR3h2roUKUO1U-HKk8o_4f2oWl1OJ2HxABhMndbG_5SnaG-ANfjhCQ |
CitedBy_id | crossref_primary_10_1002_ird_2794 crossref_primary_10_1007_s13201_022_01861_7 crossref_primary_10_1007_s00202_023_02146_1 crossref_primary_10_3390_app14219806 crossref_primary_10_1007_s13201_024_02154_x |
Cites_doi | 10.1007/s12665-012-1967-6 10.1016/j.jhydrol.2011.03.002 10.1007/s11269-017-1632-7 10.1007/s12665-013-2702-7 10.1016/j.jclepro.2018.01.139 10.1007/s11269-015-1167-8 10.1016/j.jhydrol.2019.01.062 10.1016/j.asoc.2010.12.026 10.1016/j.jhydrol.2017.02.012 10.1016/j.jhydrol.2010.11.002 10.1016/j.geog.2020.08.001 10.1016/j.jhydrol.2019.03.013 10.1002/cplx.21458 10.1007/s41403-017-0017-9 10.1007/s11269-009-9439-9 10.1007/s11269-014-0810-0 10.1007/s00704-020-03358-2 10.1016/j.jher.2017.11.004 10.1007/s10584-013-0821-5 10.1007/s11356-013-2048-4 10.1007/s11069-013-0716-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-022-07140-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Collection (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 12736 |
ExternalDocumentID | 10_1007_s00521_022_07140_5 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-cf094f0202458d2c03f33f40204f10c1a86d047cc557bf8b6fabe2604c4ab813 |
IEDL.DBID | BENPR |
ISSN | 0941-0643 |
IngestDate | Mon Jul 14 08:16:30 EDT 2025 Tue Jul 01 01:47:05 EDT 2025 Thu Apr 24 23:02:14 EDT 2025 Fri Feb 21 02:44:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Time series forecasting GenFIS generators Preprocessing ANFIS model ACF diagram Standardization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-cf094f0202458d2c03f33f40204f10c1a86d047cc557bf8b6fabe2604c4ab813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5016-8245 |
PQID | 2693177222 |
PQPubID | 2043988 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2693177222 crossref_citationtrail_10_1007_s00521_022_07140_5 crossref_primary_10_1007_s00521_022_07140_5 springer_journals_10_1007_s00521_022_07140_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Yoon, Jun, Hyun, Bae, Lee (CR12) 2011; 396 Gong, Zhang, Lan, Wang (CR6) 2016; 30 CR19 Daneshmand, Tavousi, Khosravi, Tavakoli (CR8) 2015; 14 Bisht, Shilpa, Mohan (CR16) 2013; 51 Verma, S TN (CR7) 2013; 69 Güldal, Tongal (CR17) 2010; 24 Kousari, Zarch, Ahani, Hakimelahi (CR2) 2013; 120 Moeeni, Bonakdari, Fatemi (CR14) 2017; 547 Nourani, Kisi, K M (CR20) 2011; 402 Moeeni, Bonakdari, Fatemi, Zaji (CR13) 2017; 2 Gonzalez Del Cerro, Subathra, Manoj Kumar, Verrastro, Thomas George (CR26) 2020; 8 Affandi, Watanabe (CR15) 2007; 5 Amutha, Porchelvan (CR18) 2011; 1 Zare, Koch (CR10) 2018; 18 Salas, Delleur, Yevjevich, Lane (CR28) 1980 Wayan, Azizan Abu (CR25) 2020; 11 Maiti, Tiwari (CR5) 2014; 71 Emamgholizadeh, Moslemi, Karami (CR11) 2014; 28 Aparecido, Moraes, Meneses, Torsoni, Fausto de Lima, Costa (CR27) 2020; 142 Chen, Panahi, Khosravi, Pourghasemi, Rezaie, Parvinnezhad (CR3) 2019; 572 Darbandi, Arvanaghi (CR24) 2009; 61 Azad, Manoochehri, Kashi, Farzin, Karami, Nourani, Shiri (CR9) 2019; 571 Nadiri, Shokri, Tsai, Moghaddam (CR21) 2018; 180 Khashei, Rezvan, Hamadani, Bijari (CR1) 2013; 18 Moeeni, Bonakdari, Ebtehaj (CR29) 2017; 31 Mirzavand, Khoshnevisan, Shamshirband, Kisi, Ahmad, Akib (CR4) 2015; 1 Wan, Huang, Ma, Guo, Wang, Zhang, Li (CR22) 2011; 11 Najah, El-Shafie, Karim, El-Shafie (CR23) 2014; 21 S Wayan (7140_CR25) 2020; 11 J Wan (7140_CR22) 2011; 11 H Moeeni (7140_CR14) 2017; 547 M Mirzavand (7140_CR4) 2015; 1 AK Affandi (7140_CR15) 2007; 5 A Najah (7140_CR23) 2014; 21 LE Aparecido (7140_CR27) 2020; 142 V Güldal (7140_CR17) 2010; 24 AK Verma (7140_CR7) 2013; 69 R Amutha (7140_CR18) 2011; 1 A Azad (7140_CR9) 2019; 571 H Moeeni (7140_CR13) 2017; 2 S Darbandi (7140_CR24) 2009; 61 H Daneshmand (7140_CR8) 2015; 14 JD Salas (7140_CR28) 1980 M Khashei (7140_CR1) 2013; 18 W Chen (7140_CR3) 2019; 572 H Moeeni (7140_CR29) 2017; 31 V Nourani (7140_CR20) 2011; 402 Y Gong (7140_CR6) 2016; 30 S Maiti (7140_CR5) 2014; 71 S Emamgholizadeh (7140_CR11) 2014; 28 MR Kousari (7140_CR2) 2013; 120 RT Gonzalez Del Cerro (7140_CR26) 2020; 8 M Zare (7140_CR10) 2018; 18 7140_CR19 H Yoon (7140_CR12) 2011; 396 D Bisht (7140_CR16) 2013; 51 A Nadiri (7140_CR21) 2018; 180 |
References_xml | – volume: 69 start-page: 821 year: 2013 end-page: 829 ident: CR7 article-title: Prediction of water quality from simple field parameters publication-title: Environ Earth Sci doi: 10.1007/s12665-012-1967-6 – volume: 51 start-page: 107 year: 2013 end-page: 119 ident: CR16 article-title: Prediction of water table elevation fluctuation through fuzzy logic & artificial neural networks publication-title: Int J Adv Sci Technol – volume: 402 start-page: 41 year: 2011 end-page: 59 ident: CR20 article-title: Two-hybrid Artificial Intelligence approaches for modelling rainfall–runoff process publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.03.002 – volume: 14 start-page: 33 issue: 1 year: 2015 end-page: 40 ident: CR8 article-title: Modelling minimum temperature using adaptive neuro-fuzzy inference system based on spectral analysis of climate indices: a case study in Iran publication-title: J Saudi Soc Agric Sci – volume: 61 start-page: 290 issue: 2 year: 2009 end-page: 298 ident: CR24 article-title: Air temperature estimation using artificial intelligent methods (Case study: Maragheh City) publication-title: Eur J Sci Res – volume: 31 start-page: 2141 year: 2017 end-page: 2156 ident: CR29 article-title: Integrated SARIMA with s publication-title: Water Resour Manage doi: 10.1007/s11269-017-1632-7 – volume: 71 start-page: 3147 year: 2014 end-page: 3160 ident: CR5 article-title: A comparative study of artificial neural networks, Bayesian neural networks and adaptive Neuro-Fuzzy inference system in groundwater level prediction publication-title: Environ Earth Sci doi: 10.1007/s12665-013-2702-7 – volume: 180 start-page: 539 issue: 7 year: 2018 end-page: 549 ident: CR21 article-title: Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.01.139 – volume: 30 start-page: 375 year: 2016 end-page: 391 ident: CR6 article-title: A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida publication-title: Water Resour Manag doi: 10.1007/s11269-015-1167-8 – volume: 1 start-page: 98 year: 2011 end-page: 108 ident: CR18 article-title: Seasonal prediction of groundwater levels using ANFIS and Radial basis neural network publication-title: Geol Earth Environ Sci – volume: 8 start-page: 173 issue: 1 year: 2020 end-page: 184 ident: CR26 article-title: Modelling the daily reference evapotranspiration in semi-arid region of South India: A case study comparing ANFIS and empirical models publication-title: Inf Proc Agric – volume: 571 start-page: 214 year: 2019 end-page: 224 ident: CR9 article-title: Comparative evaluation of intelligent algorithms to improve adaptive Neuro-Fuzzy inference system performance in precipitation modelling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.01.062 – volume: 5 start-page: 1 issue: 2 year: 2007 end-page: 10 ident: CR15 article-title: Daily groundwater level fluctuation forecasting using soft computing technique publication-title: Nat Sci – volume: 11 start-page: 3238 issue: 3 year: 2011 end-page: 3246 ident: CR22 article-title: Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.12.026 – volume: 547 start-page: 348 year: 2017 end-page: 364 ident: CR14 article-title: Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.02.012 – volume: 1 start-page: 1 issue: 1 year: 2015 end-page: 15 ident: CR4 article-title: Evaluating groundwater level fluctuation by support vector regression and Neuro-Fuzzy methods: a comparative study publication-title: Nat Hazards – ident: CR19 – volume: 396 start-page: 128 issue: 1 year: 2011 end-page: 138 ident: CR12 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.11.002 – volume: 11 start-page: 411 issue: 6 year: 2020 end-page: 417 ident: CR25 article-title: Rainfall prediction by using ANFIS time series technique in South Tangerang, Indonesia publication-title: Geodesy Geodyn doi: 10.1016/j.geog.2020.08.001 – volume: 572 start-page: 435 year: 2019 end-page: 448 ident: CR3 article-title: Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.03.013 – volume: 18 start-page: 46 issue: 6 year: 2013 end-page: 57 ident: CR1 article-title: A bi-level neural-based fuzzy classification approach for credit scoring problem publication-title: Complexity doi: 10.1002/cplx.21458 – volume: 2 start-page: 13 year: 2017 end-page: 23 ident: CR13 article-title: Assessment of stochastic models and a hybrid artificial neural network-genetic algorithm method in forecasting monthly reservoir inflow publication-title: INAE Lett doi: 10.1007/s41403-017-0017-9 – volume: 24 start-page: 105 year: 2010 end-page: 128 ident: CR17 article-title: Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in E˘girdir lake level forecasting publication-title: Water Resour Manage doi: 10.1007/s11269-009-9439-9 – volume: 28 start-page: 5433 issue: 15 year: 2014 end-page: 5446 ident: CR11 article-title: Prediction of the groundwater level of Bastam Plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) publication-title: Water Resour Manag doi: 10.1007/s11269-014-0810-0 – volume: 142 start-page: 1133 issue: 4 year: 2020 end-page: 1145 ident: CR27 article-title: Köppen-Geiger and Camargo climate Classifications for the Mid-West of Brasil publication-title: Theoret Appl Climatol doi: 10.1007/s00704-020-03358-2 – volume: 18 start-page: 63 year: 2018 end-page: 76 ident: CR10 article-title: Groundwater level fluctuations simulation and prediction by ANFIS- and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: application to the Miandarband plain publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2017.11.004 – year: 1980 ident: CR28 publication-title: Applied modeling of hydrologic time series – volume: 120 start-page: 277 issue: 1 year: 2013 end-page: 298 ident: CR2 article-title: A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005 publication-title: Clim Change doi: 10.1007/s10584-013-0821-5 – volume: 21 start-page: 1658 issue: 3 year: 2014 end-page: 1670 ident: CR23 article-title: Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring publication-title: Environ Sci Poll Res doi: 10.1007/s11356-013-2048-4 – volume: 30 start-page: 375 year: 2016 ident: 7140_CR6 publication-title: Water Resour Manag doi: 10.1007/s11269-015-1167-8 – volume: 5 start-page: 1 issue: 2 year: 2007 ident: 7140_CR15 publication-title: Nat Sci – volume: 71 start-page: 3147 year: 2014 ident: 7140_CR5 publication-title: Environ Earth Sci doi: 10.1007/s12665-013-2702-7 – volume: 21 start-page: 1658 issue: 3 year: 2014 ident: 7140_CR23 publication-title: Environ Sci Poll Res doi: 10.1007/s11356-013-2048-4 – volume: 69 start-page: 821 year: 2013 ident: 7140_CR7 publication-title: Environ Earth Sci doi: 10.1007/s12665-012-1967-6 – volume: 61 start-page: 290 issue: 2 year: 2009 ident: 7140_CR24 publication-title: Eur J Sci Res – volume-title: Applied modeling of hydrologic time series year: 1980 ident: 7140_CR28 – volume: 18 start-page: 63 year: 2018 ident: 7140_CR10 publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2017.11.004 – volume: 8 start-page: 173 issue: 1 year: 2020 ident: 7140_CR26 publication-title: Inf Proc Agric – volume: 1 start-page: 1 issue: 1 year: 2015 ident: 7140_CR4 publication-title: Nat Hazards – volume: 28 start-page: 5433 issue: 15 year: 2014 ident: 7140_CR11 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0810-0 – volume: 396 start-page: 128 issue: 1 year: 2011 ident: 7140_CR12 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.11.002 – volume: 24 start-page: 105 year: 2010 ident: 7140_CR17 publication-title: Water Resour Manage doi: 10.1007/s11269-009-9439-9 – volume: 180 start-page: 539 issue: 7 year: 2018 ident: 7140_CR21 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.01.139 – volume: 572 start-page: 435 year: 2019 ident: 7140_CR3 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.03.013 – volume: 120 start-page: 277 issue: 1 year: 2013 ident: 7140_CR2 publication-title: Clim Change doi: 10.1007/s10584-013-0821-5 – ident: 7140_CR19 doi: 10.1007/s11069-013-0716-9 – volume: 571 start-page: 214 year: 2019 ident: 7140_CR9 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.01.062 – volume: 51 start-page: 107 year: 2013 ident: 7140_CR16 publication-title: Int J Adv Sci Technol – volume: 11 start-page: 411 issue: 6 year: 2020 ident: 7140_CR25 publication-title: Geodesy Geodyn doi: 10.1016/j.geog.2020.08.001 – volume: 142 start-page: 1133 issue: 4 year: 2020 ident: 7140_CR27 publication-title: Theoret Appl Climatol doi: 10.1007/s00704-020-03358-2 – volume: 18 start-page: 46 issue: 6 year: 2013 ident: 7140_CR1 publication-title: Complexity doi: 10.1002/cplx.21458 – volume: 1 start-page: 98 year: 2011 ident: 7140_CR18 publication-title: Geol Earth Environ Sci – volume: 31 start-page: 2141 year: 2017 ident: 7140_CR29 publication-title: Water Resour Manage doi: 10.1007/s11269-017-1632-7 – volume: 547 start-page: 348 year: 2017 ident: 7140_CR14 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.02.012 – volume: 402 start-page: 41 year: 2011 ident: 7140_CR20 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.03.002 – volume: 11 start-page: 3238 issue: 3 year: 2011 ident: 7140_CR22 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.12.026 – volume: 14 start-page: 33 issue: 1 year: 2015 ident: 7140_CR8 publication-title: J Saudi Soc Agric Sci – volume: 2 start-page: 13 year: 2017 ident: 7140_CR13 publication-title: INAE Lett doi: 10.1007/s41403-017-0017-9 |
SSID | ssj0004685 |
Score | 2.3253067 |
Snippet | Time series modelling and control of hydrological parameters are the most critical issues in water resources management. The subject matter of this study is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12723 |
SubjectTerms | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Forecasting Fuzzy logic Groundwater Hydrology Image Processing and Computer Vision Mathematical models Model accuracy Original Article Probability and Statistics in Computer Science Reforming Sine waves Stability Standardization Time series Water resources management |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWVh4IwIFeWCDSIlj5zFWFVFBogut1C2yHVsMKK1IGfj3nJ1HAQEScy6Wco_4O_u-O4Br3LRMqqnxMxtujAruZyKLfMVSmSRhqXhiicKP03gyZw8LvmhJYXVX7d5dSbo_dU92syeYmPpS6kg3gc-3YYfb3B29eE5Hn9iQbhAn5i22podFLVXm5zW-bkcbjPntWtTtNvkB7LUwkYwaux7Clq6OYL8bwUDaiDyGOZqZNExHIvommzVZGoLIjozGOamfxUqTZUXsGHliPU7XBKGqVqK2Nc9Evjey0_z-ibjJOCcwy-9m44nfTkrwFYbQ2lcGv9Yg8qOMpyVVQWSiyNjUkJkwUKFI4zJgiVKcJ9KkMjZCasxkmGJCpmF0CoNqWekzIFKURtlTEMFjpuJUJDELokwhzMvKQGsPwk5fhWq7iNthFi9F3__Y6bhAHRdOxwX34KZ_Z9X00PhTetiZoWjjqS5onCHQSRDMeHDbmWbz-PfVzv8nfgG71HmHrfAbwmD9-qYvEXWs5ZVzsg9wVMoA priority: 102 providerName: Springer Nature |
Title | The impact assessments of the ACF shape on time series forecasting by the ANFIS model |
URI | https://link.springer.com/article/10.1007/s00521-022-07140-5 https://www.proquest.com/docview/2693177222 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB4BvXCBXR6iwFY-cIOIxLET57Rqu015iAoBleAUOY4tDqgtpBz49zt2nXYXCU6RYsdS5uGZsWfmAzhBo2WEpibIrLoxKnmQySwOFBNlmkaV4qktFL4ZJRdjdvXIH_2BW-3TKps90W3U1VTZM_JzmmRo6lI0Z79nr4FFjbK3qx5CYx1auAULDL5avcHo9u6fykgHyokxjM3vYbEvm3HFc_ZEFN9S6op4woD_b5pW_uanK1JnefIfsOVdRtJd8PgnrOnJDmw3cAzEa-cujJHlZFH1SOSy4WZNpoagl0e6_ZzUz3KmyXRCLKQ8sdKna4Juq1aytvnPpPxYzB3ll_fEoeTswUM-eOhfBB41IVCoTvNAGfxbg14gZVxUVIWxiWNjw0RmolBFUiRVyFKlOE9LI8rEyFJjVMMUk6WI4n3YmEwn-gBIKSuj7ImI5AlTiZBpwsI4U-jyZVWodRuihl6F8h3FLbDFS7HshexoXCCNC0fjgrfhdPnNbNFP49vZxw0bCq9bdbGShDacNaxZDX-92uH3qx3BJnXSYLP7jmFj_vauf6HHMS87sC7yYQda3d6fXm6fw6frQccLG46OafcvJYDTbg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-QwEB7xKKDhcQdigQMXd9URkfiRR4FOCC7sHrANi0RnOY4tCrS7kEWIH8V_ZOwku4B0dLR5TDH-7Plsz8wH8BODlk0NtUHmphunSgSZyligeVokSVRqkbhC4ct-3L3m_27EzRy8tLUwLq2yXRP9Ql2OtDsjP6RxhqEuwXD2Z3wfONUod7vaSmjUsDg3z0-4ZauOeqc4vr8ozf8OTrpBoyoQaITbJNAWdzQWWRLlIi2pDpllzLptFLdRqCOVxmXIE62FSAqbFrFVhUHWzzVXRRoxNDsPi5yxzE2oND97U4bpFUDRvEsm4qyp0fGVeu74FZ9S6iuGwkC8j4MzcvvhPtaHuXwNVhp-So5rQK3DnBl-g9VW-4E0S8F3uEZ8kbrEkqhpd8-KjCxBSkmOT3JS3aqxIaMhcfr1xEHdVAQ5stGqcsnWpHiuv-3nvSviJXk2YPAVztyEheFoaLaAFKq02h2_KBFzHacqiXnIMo38MitDYzoQtf6Sumlf7lQ07uS08bL3sUQfS-9jKTrwe_rPuG7e8enXu-0wyGYiV3IGuw4ctEMze_1_a9ufW9uHpe7g8kJe9PrnO7BMPTJcWuEuLEweHs0PpDqTYs8DjID8YkC_AtwNCOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oBPHitzidmoM3LWvTpB_HMS2bH0Nwg91KkiZ4kG7YevC_N0nbbYoKnpsG8j6S30ve7z2AS31oqUhi5cTG3Qhm1IlZ7DuCRDwMvUzQ0BCFH0fBYELupnS6wuK32e7Nk2TFaTBVmvKyO89Ud0F8M7eZOgzG2BJwXIeuw4bejj1j1xPcW2FG2qacOoYx-T3Er2kzP8_x9Wha4s1vT6T25El2YbuGjKhX6XgP1mS-DztNOwZUe-cBTLTKUcV6RGxRcLNAM4U0ykO9foKKFzaXaJYj01IeGeuTBdKwVQpWmPxnxD-qsaNk-Ixsl5xDGCe34_7AqbsmOEKvv3SE0qtVGgViQqMMC9dXvq9MmEiU5wqPRUHmklAISkOuIh4oxqWOaoggjEeefwStfJbLY0CcZUqYGxFGAyKCiIUBcf1YaMgXZ66UbfAaeaWirihuGlu8potayFbGqZZxamWc0jZcLf6ZV_U0_hzdadSQ1r5VpDiINegJNbBpw3WjmuXn32c7-d_wC9h8uknSh-Ho_hS2sDUUk_jXgVb59i7PNBgp-bm1t09jl9Ev |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+assessments+of+the+ACF+shape+on+time+series+forecasting+by+the+ANFIS+model&rft.jtitle=Neural+computing+%26+applications&rft.au=Fatemi%2C+Seyed+Ehsan&rft.au=Parvini%2C+Hosna&rft.date=2022-08-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=15&rft.spage=12723&rft.epage=12736&rft_id=info:doi/10.1007%2Fs00521-022-07140-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_022_07140_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |