The impact assessments of the ACF shape on time series forecasting by the ANFIS model

Time series modelling and control of hydrological parameters are the most critical issues in water resources management. The subject matter of this study is finding the significant relationship between natural properties of time series like correlogram and selecting the best combination set of input...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 34; no. 15; pp. 12723 - 12736
Main Authors Fatemi, Seyed Ehsan, Parvini, Hosna
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Time series modelling and control of hydrological parameters are the most critical issues in water resources management. The subject matter of this study is finding the significant relationship between natural properties of time series like correlogram and selecting the best combination set of inputs for the fuzzy-neural adaptive network model. In this regard, two different types of the ACF, including sinusoidal and descending shapes, are considered in different climate. Selecting model inputs from the stability range of the ACF diagram for any shape types and model fine tuning lead to inferior results in testing stage. The best R -value of the original temperature and groundwater time series in stability range is 0.2 (|SI|= 1.23, RMSE = 11.91) and 0.2 (SI = 0.14, RMSE = 3.32), respectively. When they choose from the non-stationary range of the ACF, the powerful results for sinusoidal and descending ACF shapes would be achieved. In case, the R -value is more than 94% (|SI|< 0.57, 2.57 < RMSE < 5.5]) and 78% (SI = 0.03 and RMSE = 0.71), respectively. Whether they are picked up from the absolute maximum of ρ value in the ACF diagram, the best model results would have appeared. By applying the inverse of standardization and reforming the shape of the descending ACF to sinusoidal form, R -value is upgraded about 18%, from 78 to 96% the case. Finally, using preprocessing, in particular, standardization on time series does not always lead to improve forecasting model accuracy, but it depends on the shape of the ACF diagram. If it has the sine periodic shape, applying this action leads to poor results. In opposite, by descending ACF shape, using the inverse of standardization can improve the model accuracy in case. Finally, choosing ANFIS model inputs using the ACF diagram and appropriate input sets are more effective than using the model tuning and different fuzzy generators.
AbstractList Time series modelling and control of hydrological parameters are the most critical issues in water resources management. The subject matter of this study is finding the significant relationship between natural properties of time series like correlogram and selecting the best combination set of inputs for the fuzzy-neural adaptive network model. In this regard, two different types of the ACF, including sinusoidal and descending shapes, are considered in different climate. Selecting model inputs from the stability range of the ACF diagram for any shape types and model fine tuning lead to inferior results in testing stage. The best R-value of the original temperature and groundwater time series in stability range is 0.2 (|SI|= 1.23, RMSE = 11.91) and 0.2 (SI = 0.14, RMSE = 3.32), respectively. When they choose from the non-stationary range of the ACF, the powerful results for sinusoidal and descending ACF shapes would be achieved. In case, the R-value is more than 94% (|SI|< 0.57, 2.57 < RMSE < 5.5]) and 78% (SI = 0.03 and RMSE = 0.71), respectively. Whether they are picked up from the absolute maximum of ρ value in the ACF diagram, the best model results would have appeared. By applying the inverse of standardization and reforming the shape of the descending ACF to sinusoidal form, R-value is upgraded about 18%, from 78 to 96% the case. Finally, using preprocessing, in particular, standardization on time series does not always lead to improve forecasting model accuracy, but it depends on the shape of the ACF diagram. If it has the sine periodic shape, applying this action leads to poor results. In opposite, by descending ACF shape, using the inverse of standardization can improve the model accuracy in case. Finally, choosing ANFIS model inputs using the ACF diagram and appropriate input sets are more effective than using the model tuning and different fuzzy generators.
Time series modelling and control of hydrological parameters are the most critical issues in water resources management. The subject matter of this study is finding the significant relationship between natural properties of time series like correlogram and selecting the best combination set of inputs for the fuzzy-neural adaptive network model. In this regard, two different types of the ACF, including sinusoidal and descending shapes, are considered in different climate. Selecting model inputs from the stability range of the ACF diagram for any shape types and model fine tuning lead to inferior results in testing stage. The best R -value of the original temperature and groundwater time series in stability range is 0.2 (|SI|= 1.23, RMSE = 11.91) and 0.2 (SI = 0.14, RMSE = 3.32), respectively. When they choose from the non-stationary range of the ACF, the powerful results for sinusoidal and descending ACF shapes would be achieved. In case, the R -value is more than 94% (|SI|< 0.57, 2.57 < RMSE < 5.5]) and 78% (SI = 0.03 and RMSE = 0.71), respectively. Whether they are picked up from the absolute maximum of ρ value in the ACF diagram, the best model results would have appeared. By applying the inverse of standardization and reforming the shape of the descending ACF to sinusoidal form, R -value is upgraded about 18%, from 78 to 96% the case. Finally, using preprocessing, in particular, standardization on time series does not always lead to improve forecasting model accuracy, but it depends on the shape of the ACF diagram. If it has the sine periodic shape, applying this action leads to poor results. In opposite, by descending ACF shape, using the inverse of standardization can improve the model accuracy in case. Finally, choosing ANFIS model inputs using the ACF diagram and appropriate input sets are more effective than using the model tuning and different fuzzy generators.
Author Fatemi, Seyed Ehsan
Parvini, Hosna
Author_xml – sequence: 1
  givenname: Seyed Ehsan
  orcidid: 0000-0002-5016-8245
  surname: Fatemi
  fullname: Fatemi, Seyed Ehsan
  email: se.fatemi@razi.ac.ir
  organization: Water Engineering Department, Campus of Agriculture and Natural Resources, Razi University
– sequence: 2
  givenname: Hosna
  surname: Parvini
  fullname: Parvini, Hosna
  organization: Master of Water Resources, Water Engineering Department, Campus of Agriculture and Natural Resources, Razi University
BookMark eNp9kM1LAzEQxYNUsFX_AU8Bz6uTj_3osRSrhaIH6zlk06Td0t2smfTQ_97oCoKHngbmvd_M403IqPOdJeSOwQMDKB8RIOcsA84zKJmELL8gYyaFyATk1YiMYSqTXEhxRSaIewCQRZWPycd6Z2nT9tpEqhEtYmu7iNQ7GpMymy8o7nRvqe9obFpL0YbGInU-WKMxNt2W1qfB-7pYvtPWb-zhhlw6fUB7-zuvyXrxtJ6_ZKu35-V8tsqMYNOYGZdiOeDAZV5tuAHhhHAyLaRjYJiuig3I0pg8L2tX1YXTteUFSCN1XTFxTe6Hs33wn0eLUe39MXTpo-LFVLCy5JwnVzW4TPCIwTplmqhj47sYdHNQDNR3h2roUKUO1U-HKk8o_4f2oWl1OJ2HxABhMndbG_5SnaG-ANfjhCQ
CitedBy_id crossref_primary_10_1002_ird_2794
crossref_primary_10_1007_s13201_022_01861_7
crossref_primary_10_1007_s00202_023_02146_1
crossref_primary_10_3390_app14219806
crossref_primary_10_1007_s13201_024_02154_x
Cites_doi 10.1007/s12665-012-1967-6
10.1016/j.jhydrol.2011.03.002
10.1007/s11269-017-1632-7
10.1007/s12665-013-2702-7
10.1016/j.jclepro.2018.01.139
10.1007/s11269-015-1167-8
10.1016/j.jhydrol.2019.01.062
10.1016/j.asoc.2010.12.026
10.1016/j.jhydrol.2017.02.012
10.1016/j.jhydrol.2010.11.002
10.1016/j.geog.2020.08.001
10.1016/j.jhydrol.2019.03.013
10.1002/cplx.21458
10.1007/s41403-017-0017-9
10.1007/s11269-009-9439-9
10.1007/s11269-014-0810-0
10.1007/s00704-020-03358-2
10.1016/j.jher.2017.11.004
10.1007/s10584-013-0821-5
10.1007/s11356-013-2048-4
10.1007/s11069-013-0716-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-022-07140-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Collection (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 12736
ExternalDocumentID 10_1007_s00521_022_07140_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-cf094f0202458d2c03f33f40204f10c1a86d047cc557bf8b6fabe2604c4ab813
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Mon Jul 14 08:16:30 EDT 2025
Tue Jul 01 01:47:05 EDT 2025
Thu Apr 24 23:02:14 EDT 2025
Fri Feb 21 02:44:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Time series forecasting
GenFIS generators
Preprocessing
ANFIS model
ACF diagram
Standardization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cf094f0202458d2c03f33f40204f10c1a86d047cc557bf8b6fabe2604c4ab813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5016-8245
PQID 2693177222
PQPubID 2043988
PageCount 14
ParticipantIDs proquest_journals_2693177222
crossref_citationtrail_10_1007_s00521_022_07140_5
crossref_primary_10_1007_s00521_022_07140_5
springer_journals_10_1007_s00521_022_07140_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Yoon, Jun, Hyun, Bae, Lee (CR12) 2011; 396
Gong, Zhang, Lan, Wang (CR6) 2016; 30
CR19
Daneshmand, Tavousi, Khosravi, Tavakoli (CR8) 2015; 14
Bisht, Shilpa, Mohan (CR16) 2013; 51
Verma, S TN (CR7) 2013; 69
Güldal, Tongal (CR17) 2010; 24
Kousari, Zarch, Ahani, Hakimelahi (CR2) 2013; 120
Moeeni, Bonakdari, Fatemi (CR14) 2017; 547
Nourani, Kisi, K M (CR20) 2011; 402
Moeeni, Bonakdari, Fatemi, Zaji (CR13) 2017; 2
Gonzalez Del Cerro, Subathra, Manoj Kumar, Verrastro, Thomas George (CR26) 2020; 8
Affandi, Watanabe (CR15) 2007; 5
Amutha, Porchelvan (CR18) 2011; 1
Zare, Koch (CR10) 2018; 18
Salas, Delleur, Yevjevich, Lane (CR28) 1980
Wayan, Azizan Abu (CR25) 2020; 11
Maiti, Tiwari (CR5) 2014; 71
Emamgholizadeh, Moslemi, Karami (CR11) 2014; 28
Aparecido, Moraes, Meneses, Torsoni, Fausto de Lima, Costa (CR27) 2020; 142
Chen, Panahi, Khosravi, Pourghasemi, Rezaie, Parvinnezhad (CR3) 2019; 572
Darbandi, Arvanaghi (CR24) 2009; 61
Azad, Manoochehri, Kashi, Farzin, Karami, Nourani, Shiri (CR9) 2019; 571
Nadiri, Shokri, Tsai, Moghaddam (CR21) 2018; 180
Khashei, Rezvan, Hamadani, Bijari (CR1) 2013; 18
Moeeni, Bonakdari, Ebtehaj (CR29) 2017; 31
Mirzavand, Khoshnevisan, Shamshirband, Kisi, Ahmad, Akib (CR4) 2015; 1
Wan, Huang, Ma, Guo, Wang, Zhang, Li (CR22) 2011; 11
Najah, El-Shafie, Karim, El-Shafie (CR23) 2014; 21
S Wayan (7140_CR25) 2020; 11
J Wan (7140_CR22) 2011; 11
H Moeeni (7140_CR14) 2017; 547
M Mirzavand (7140_CR4) 2015; 1
AK Affandi (7140_CR15) 2007; 5
A Najah (7140_CR23) 2014; 21
LE Aparecido (7140_CR27) 2020; 142
V Güldal (7140_CR17) 2010; 24
AK Verma (7140_CR7) 2013; 69
R Amutha (7140_CR18) 2011; 1
A Azad (7140_CR9) 2019; 571
H Moeeni (7140_CR13) 2017; 2
S Darbandi (7140_CR24) 2009; 61
H Daneshmand (7140_CR8) 2015; 14
JD Salas (7140_CR28) 1980
M Khashei (7140_CR1) 2013; 18
W Chen (7140_CR3) 2019; 572
H Moeeni (7140_CR29) 2017; 31
V Nourani (7140_CR20) 2011; 402
Y Gong (7140_CR6) 2016; 30
S Maiti (7140_CR5) 2014; 71
S Emamgholizadeh (7140_CR11) 2014; 28
MR Kousari (7140_CR2) 2013; 120
RT Gonzalez Del Cerro (7140_CR26) 2020; 8
M Zare (7140_CR10) 2018; 18
7140_CR19
H Yoon (7140_CR12) 2011; 396
D Bisht (7140_CR16) 2013; 51
A Nadiri (7140_CR21) 2018; 180
References_xml – volume: 69
  start-page: 821
  year: 2013
  end-page: 829
  ident: CR7
  article-title: Prediction of water quality from simple field parameters
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-012-1967-6
– volume: 51
  start-page: 107
  year: 2013
  end-page: 119
  ident: CR16
  article-title: Prediction of water table elevation fluctuation through fuzzy logic & artificial neural networks
  publication-title: Int J Adv Sci Technol
– volume: 402
  start-page: 41
  year: 2011
  end-page: 59
  ident: CR20
  article-title: Two-hybrid Artificial Intelligence approaches for modelling rainfall–runoff process
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.03.002
– volume: 14
  start-page: 33
  issue: 1
  year: 2015
  end-page: 40
  ident: CR8
  article-title: Modelling minimum temperature using adaptive neuro-fuzzy inference system based on spectral analysis of climate indices: a case study in Iran
  publication-title: J Saudi Soc Agric Sci
– volume: 61
  start-page: 290
  issue: 2
  year: 2009
  end-page: 298
  ident: CR24
  article-title: Air temperature estimation using artificial intelligent methods (Case study: Maragheh City)
  publication-title: Eur J Sci Res
– volume: 31
  start-page: 2141
  year: 2017
  end-page: 2156
  ident: CR29
  article-title: Integrated SARIMA with s
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-017-1632-7
– volume: 71
  start-page: 3147
  year: 2014
  end-page: 3160
  ident: CR5
  article-title: A comparative study of artificial neural networks, Bayesian neural networks and adaptive Neuro-Fuzzy inference system in groundwater level prediction
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-013-2702-7
– volume: 180
  start-page: 539
  issue: 7
  year: 2018
  end-page: 549
  ident: CR21
  article-title: Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.01.139
– volume: 30
  start-page: 375
  year: 2016
  end-page: 391
  ident: CR6
  article-title: A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1167-8
– volume: 1
  start-page: 98
  year: 2011
  end-page: 108
  ident: CR18
  article-title: Seasonal prediction of groundwater levels using ANFIS and Radial basis neural network
  publication-title: Geol Earth Environ Sci
– volume: 8
  start-page: 173
  issue: 1
  year: 2020
  end-page: 184
  ident: CR26
  article-title: Modelling the daily reference evapotranspiration in semi-arid region of South India: A case study comparing ANFIS and empirical models
  publication-title: Inf Proc Agric
– volume: 571
  start-page: 214
  year: 2019
  end-page: 224
  ident: CR9
  article-title: Comparative evaluation of intelligent algorithms to improve adaptive Neuro-Fuzzy inference system performance in precipitation modelling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.01.062
– volume: 5
  start-page: 1
  issue: 2
  year: 2007
  end-page: 10
  ident: CR15
  article-title: Daily groundwater level fluctuation forecasting using soft computing technique
  publication-title: Nat Sci
– volume: 11
  start-page: 3238
  issue: 3
  year: 2011
  end-page: 3246
  ident: CR22
  article-title: Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.12.026
– volume: 547
  start-page: 348
  year: 2017
  end-page: 364
  ident: CR14
  article-title: Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.02.012
– volume: 1
  start-page: 1
  issue: 1
  year: 2015
  end-page: 15
  ident: CR4
  article-title: Evaluating groundwater level fluctuation by support vector regression and Neuro-Fuzzy methods: a comparative study
  publication-title: Nat Hazards
– ident: CR19
– volume: 396
  start-page: 128
  issue: 1
  year: 2011
  end-page: 138
  ident: CR12
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 11
  start-page: 411
  issue: 6
  year: 2020
  end-page: 417
  ident: CR25
  article-title: Rainfall prediction by using ANFIS time series technique in South Tangerang, Indonesia
  publication-title: Geodesy Geodyn
  doi: 10.1016/j.geog.2020.08.001
– volume: 572
  start-page: 435
  year: 2019
  end-page: 448
  ident: CR3
  article-title: Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.03.013
– volume: 18
  start-page: 46
  issue: 6
  year: 2013
  end-page: 57
  ident: CR1
  article-title: A bi-level neural-based fuzzy classification approach for credit scoring problem
  publication-title: Complexity
  doi: 10.1002/cplx.21458
– volume: 2
  start-page: 13
  year: 2017
  end-page: 23
  ident: CR13
  article-title: Assessment of stochastic models and a hybrid artificial neural network-genetic algorithm method in forecasting monthly reservoir inflow
  publication-title: INAE Lett
  doi: 10.1007/s41403-017-0017-9
– volume: 24
  start-page: 105
  year: 2010
  end-page: 128
  ident: CR17
  article-title: Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in E˘girdir lake level forecasting
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-009-9439-9
– volume: 28
  start-page: 5433
  issue: 15
  year: 2014
  end-page: 5446
  ident: CR11
  article-title: Prediction of the groundwater level of Bastam Plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0810-0
– volume: 142
  start-page: 1133
  issue: 4
  year: 2020
  end-page: 1145
  ident: CR27
  article-title: Köppen-Geiger and Camargo climate Classifications for the Mid-West of Brasil
  publication-title: Theoret Appl Climatol
  doi: 10.1007/s00704-020-03358-2
– volume: 18
  start-page: 63
  year: 2018
  end-page: 76
  ident: CR10
  article-title: Groundwater level fluctuations simulation and prediction by ANFIS- and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: application to the Miandarband plain
  publication-title: J Hydro-Environ Res
  doi: 10.1016/j.jher.2017.11.004
– year: 1980
  ident: CR28
  publication-title: Applied modeling of hydrologic time series
– volume: 120
  start-page: 277
  issue: 1
  year: 2013
  end-page: 298
  ident: CR2
  article-title: A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005
  publication-title: Clim Change
  doi: 10.1007/s10584-013-0821-5
– volume: 21
  start-page: 1658
  issue: 3
  year: 2014
  end-page: 1670
  ident: CR23
  article-title: Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring
  publication-title: Environ Sci Poll Res
  doi: 10.1007/s11356-013-2048-4
– volume: 30
  start-page: 375
  year: 2016
  ident: 7140_CR6
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1167-8
– volume: 5
  start-page: 1
  issue: 2
  year: 2007
  ident: 7140_CR15
  publication-title: Nat Sci
– volume: 71
  start-page: 3147
  year: 2014
  ident: 7140_CR5
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-013-2702-7
– volume: 21
  start-page: 1658
  issue: 3
  year: 2014
  ident: 7140_CR23
  publication-title: Environ Sci Poll Res
  doi: 10.1007/s11356-013-2048-4
– volume: 69
  start-page: 821
  year: 2013
  ident: 7140_CR7
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-012-1967-6
– volume: 61
  start-page: 290
  issue: 2
  year: 2009
  ident: 7140_CR24
  publication-title: Eur J Sci Res
– volume-title: Applied modeling of hydrologic time series
  year: 1980
  ident: 7140_CR28
– volume: 18
  start-page: 63
  year: 2018
  ident: 7140_CR10
  publication-title: J Hydro-Environ Res
  doi: 10.1016/j.jher.2017.11.004
– volume: 8
  start-page: 173
  issue: 1
  year: 2020
  ident: 7140_CR26
  publication-title: Inf Proc Agric
– volume: 1
  start-page: 1
  issue: 1
  year: 2015
  ident: 7140_CR4
  publication-title: Nat Hazards
– volume: 28
  start-page: 5433
  issue: 15
  year: 2014
  ident: 7140_CR11
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0810-0
– volume: 396
  start-page: 128
  issue: 1
  year: 2011
  ident: 7140_CR12
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 24
  start-page: 105
  year: 2010
  ident: 7140_CR17
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-009-9439-9
– volume: 180
  start-page: 539
  issue: 7
  year: 2018
  ident: 7140_CR21
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.01.139
– volume: 572
  start-page: 435
  year: 2019
  ident: 7140_CR3
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.03.013
– volume: 120
  start-page: 277
  issue: 1
  year: 2013
  ident: 7140_CR2
  publication-title: Clim Change
  doi: 10.1007/s10584-013-0821-5
– ident: 7140_CR19
  doi: 10.1007/s11069-013-0716-9
– volume: 571
  start-page: 214
  year: 2019
  ident: 7140_CR9
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.01.062
– volume: 51
  start-page: 107
  year: 2013
  ident: 7140_CR16
  publication-title: Int J Adv Sci Technol
– volume: 11
  start-page: 411
  issue: 6
  year: 2020
  ident: 7140_CR25
  publication-title: Geodesy Geodyn
  doi: 10.1016/j.geog.2020.08.001
– volume: 142
  start-page: 1133
  issue: 4
  year: 2020
  ident: 7140_CR27
  publication-title: Theoret Appl Climatol
  doi: 10.1007/s00704-020-03358-2
– volume: 18
  start-page: 46
  issue: 6
  year: 2013
  ident: 7140_CR1
  publication-title: Complexity
  doi: 10.1002/cplx.21458
– volume: 1
  start-page: 98
  year: 2011
  ident: 7140_CR18
  publication-title: Geol Earth Environ Sci
– volume: 31
  start-page: 2141
  year: 2017
  ident: 7140_CR29
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-017-1632-7
– volume: 547
  start-page: 348
  year: 2017
  ident: 7140_CR14
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.02.012
– volume: 402
  start-page: 41
  year: 2011
  ident: 7140_CR20
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.03.002
– volume: 11
  start-page: 3238
  issue: 3
  year: 2011
  ident: 7140_CR22
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.12.026
– volume: 14
  start-page: 33
  issue: 1
  year: 2015
  ident: 7140_CR8
  publication-title: J Saudi Soc Agric Sci
– volume: 2
  start-page: 13
  year: 2017
  ident: 7140_CR13
  publication-title: INAE Lett
  doi: 10.1007/s41403-017-0017-9
SSID ssj0004685
Score 2.3253067
Snippet Time series modelling and control of hydrological parameters are the most critical issues in water resources management. The subject matter of this study is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12723
SubjectTerms Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Forecasting
Fuzzy logic
Groundwater
Hydrology
Image Processing and Computer Vision
Mathematical models
Model accuracy
Original Article
Probability and Statistics in Computer Science
Reforming
Sine waves
Stability
Standardization
Time series
Water resources management
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWVh4IwIFeWCDSIlj5zFWFVFBogut1C2yHVsMKK1IGfj3nJ1HAQEScy6Wco_4O_u-O4Br3LRMqqnxMxtujAruZyKLfMVSmSRhqXhiicKP03gyZw8LvmhJYXVX7d5dSbo_dU92syeYmPpS6kg3gc-3YYfb3B29eE5Hn9iQbhAn5i22podFLVXm5zW-bkcbjPntWtTtNvkB7LUwkYwaux7Clq6OYL8bwUDaiDyGOZqZNExHIvommzVZGoLIjozGOamfxUqTZUXsGHliPU7XBKGqVqK2Nc9Evjey0_z-ibjJOCcwy-9m44nfTkrwFYbQ2lcGv9Yg8qOMpyVVQWSiyNjUkJkwUKFI4zJgiVKcJ9KkMjZCasxkmGJCpmF0CoNqWekzIFKURtlTEMFjpuJUJDELokwhzMvKQGsPwk5fhWq7iNthFi9F3__Y6bhAHRdOxwX34KZ_Z9X00PhTetiZoWjjqS5onCHQSRDMeHDbmWbz-PfVzv8nfgG71HmHrfAbwmD9-qYvEXWs5ZVzsg9wVMoA
  priority: 102
  providerName: Springer Nature
Title The impact assessments of the ACF shape on time series forecasting by the ANFIS model
URI https://link.springer.com/article/10.1007/s00521-022-07140-5
https://www.proquest.com/docview/2693177222
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB4BvXCBXR6iwFY-cIOIxLET57Rqu015iAoBleAUOY4tDqgtpBz49zt2nXYXCU6RYsdS5uGZsWfmAzhBo2WEpibIrLoxKnmQySwOFBNlmkaV4qktFL4ZJRdjdvXIH_2BW-3TKps90W3U1VTZM_JzmmRo6lI0Z79nr4FFjbK3qx5CYx1auAULDL5avcHo9u6fykgHyokxjM3vYbEvm3HFc_ZEFN9S6op4woD_b5pW_uanK1JnefIfsOVdRtJd8PgnrOnJDmw3cAzEa-cujJHlZFH1SOSy4WZNpoagl0e6_ZzUz3KmyXRCLKQ8sdKna4Juq1aytvnPpPxYzB3ll_fEoeTswUM-eOhfBB41IVCoTvNAGfxbg14gZVxUVIWxiWNjw0RmolBFUiRVyFKlOE9LI8rEyFJjVMMUk6WI4n3YmEwn-gBIKSuj7ImI5AlTiZBpwsI4U-jyZVWodRuihl6F8h3FLbDFS7HshexoXCCNC0fjgrfhdPnNbNFP49vZxw0bCq9bdbGShDacNaxZDX-92uH3qx3BJnXSYLP7jmFj_vauf6HHMS87sC7yYQda3d6fXm6fw6frQccLG46OafcvJYDTbg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-QwEB7xKKDhcQdigQMXd9URkfiRR4FOCC7sHrANi0RnOY4tCrS7kEWIH8V_ZOwku4B0dLR5TDH-7Plsz8wH8BODlk0NtUHmphunSgSZyligeVokSVRqkbhC4ct-3L3m_27EzRy8tLUwLq2yXRP9Ql2OtDsjP6RxhqEuwXD2Z3wfONUod7vaSmjUsDg3z0-4ZauOeqc4vr8ozf8OTrpBoyoQaITbJNAWdzQWWRLlIi2pDpllzLptFLdRqCOVxmXIE62FSAqbFrFVhUHWzzVXRRoxNDsPi5yxzE2oND97U4bpFUDRvEsm4qyp0fGVeu74FZ9S6iuGwkC8j4MzcvvhPtaHuXwNVhp-So5rQK3DnBl-g9VW-4E0S8F3uEZ8kbrEkqhpd8-KjCxBSkmOT3JS3aqxIaMhcfr1xEHdVAQ5stGqcsnWpHiuv-3nvSviJXk2YPAVztyEheFoaLaAFKq02h2_KBFzHacqiXnIMo38MitDYzoQtf6Sumlf7lQ07uS08bL3sUQfS-9jKTrwe_rPuG7e8enXu-0wyGYiV3IGuw4ctEMze_1_a9ufW9uHpe7g8kJe9PrnO7BMPTJcWuEuLEweHs0PpDqTYs8DjID8YkC_AtwNCOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oBPHitzidmoM3LWvTpB_HMS2bH0Nwg91KkiZ4kG7YevC_N0nbbYoKnpsG8j6S30ve7z2AS31oqUhi5cTG3Qhm1IlZ7DuCRDwMvUzQ0BCFH0fBYELupnS6wuK32e7Nk2TFaTBVmvKyO89Ud0F8M7eZOgzG2BJwXIeuw4bejj1j1xPcW2FG2qacOoYx-T3Er2kzP8_x9Wha4s1vT6T25El2YbuGjKhX6XgP1mS-DztNOwZUe-cBTLTKUcV6RGxRcLNAM4U0ykO9foKKFzaXaJYj01IeGeuTBdKwVQpWmPxnxD-qsaNk-Ixsl5xDGCe34_7AqbsmOEKvv3SE0qtVGgViQqMMC9dXvq9MmEiU5wqPRUHmklAISkOuIh4oxqWOaoggjEeefwStfJbLY0CcZUqYGxFGAyKCiIUBcf1YaMgXZ66UbfAaeaWirihuGlu8potayFbGqZZxamWc0jZcLf6ZV_U0_hzdadSQ1r5VpDiINegJNbBpw3WjmuXn32c7-d_wC9h8uknSh-Ho_hS2sDUUk_jXgVb59i7PNBgp-bm1t09jl9Ev
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+assessments+of+the+ACF+shape+on+time+series+forecasting+by+the+ANFIS+model&rft.jtitle=Neural+computing+%26+applications&rft.au=Fatemi%2C+Seyed+Ehsan&rft.au=Parvini%2C+Hosna&rft.date=2022-08-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=15&rft.spage=12723&rft.epage=12736&rft_id=info:doi/10.1007%2Fs00521-022-07140-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_022_07140_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon