Multi-layered semantic representation network for multi-label image classification

Multi-label image classification is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep convolutional neural network (CNN) based approaches have been proposed which model label correlations to discover semantics of labels and learn...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 14; no. 10; pp. 3427 - 3435
Main Authors Qu, Xiwen, Che, Hao, Huang, Jun, Xu, Linchuan, Zheng, Xiao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-023-01841-6

Cover

Loading…
Abstract Multi-label image classification is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep convolutional neural network (CNN) based approaches have been proposed which model label correlations to discover semantics of labels and learn semantic representations of images. This paper advances this research direction by improving both the modeling of label correlations and the learning of semantic representations. On the one hand, besides the local semantics of each label, we propose to further explore global semantics shared by multiple labels. On the other hand, existing approaches mainly learn the semantic representations at the last convolutional layer of a CNN. But it has been noted that the image representations of different layers of CNN capture different levels or scales of features and have different discriminative abilities. We thus propose to learn semantic representations at multiple convolutional layers. To this end, this paper designs a Multi-layered Semantic Representation Network (MSRN) which discovers both local and global semantics of labels through modeling label correlations and utilizes the label semantics to guide the semantic representations learning at multiple layers through an attention mechanism. Extensive experiments on five benchmark datasets including VOC2007, VOC2012, MS-COCO, NUS-WIDE, and Apparel show a competitive performance of the proposed MSRN against state-of-the-art models.
AbstractList Multi-label image classification is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep convolutional neural network (CNN) based approaches have been proposed which model label correlations to discover semantics of labels and learn semantic representations of images. This paper advances this research direction by improving both the modeling of label correlations and the learning of semantic representations. On the one hand, besides the local semantics of each label, we propose to further explore global semantics shared by multiple labels. On the other hand, existing approaches mainly learn the semantic representations at the last convolutional layer of a CNN. But it has been noted that the image representations of different layers of CNN capture different levels or scales of features and have different discriminative abilities. We thus propose to learn semantic representations at multiple convolutional layers. To this end, this paper designs a Multi-layered Semantic Representation Network (MSRN) which discovers both local and global semantics of labels through modeling label correlations and utilizes the label semantics to guide the semantic representations learning at multiple layers through an attention mechanism. Extensive experiments on five benchmark datasets including VOC2007, VOC2012, MS-COCO, NUS-WIDE, and Apparel show a competitive performance of the proposed MSRN against state-of-the-art models.
Author Qu, Xiwen
Che, Hao
Xu, Linchuan
Zheng, Xiao
Huang, Jun
Author_xml – sequence: 1
  givenname: Xiwen
  surname: Qu
  fullname: Qu, Xiwen
  organization: School of Computer Science and Technology, Anhui University of Technology
– sequence: 2
  givenname: Hao
  surname: Che
  fullname: Che, Hao
  email: chehao17@gmail.com
  organization: Australian National University
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-2022-5747
  surname: Huang
  fullname: Huang, Jun
  email: huangjun.cs@ahut.edu.cn
  organization: School of Computer Science and Technology, Anhui University of Technology, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center
– sequence: 4
  givenname: Linchuan
  surname: Xu
  fullname: Xu, Linchuan
  organization: Department of Computing, The Hong Kong Polytechnic University
– sequence: 5
  givenname: Xiao
  surname: Zheng
  fullname: Zheng, Xiao
  organization: School of Computer Science and Technology, Anhui University of Technology, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center
BookMark eNp9kE9LAzEQxYNUsNZ-AU8LnqOZZLObPUrxH1QEUfAW0uxsSd1ma5IifnvXblHw0LnMHN5vZt47JSPfeSTkHNglMFZeRRAs55RxQRmoHGhxRMagCkUVU2-j37mEEzKNccX6KpgQjI_J8-O2TY625gsD1lnEtfHJ2SzgJmBEn0xync88ps8uvGdNF7L1nlhgm7m1WWJmWxOja5zdic_IcWPaiNN9n5DX25uX2T2dP909zK7n1AqoErW4kHnOLVTGgsiZEsYIw1XNBbfC8qIujWKSQV7ksEAFUlhbV0Ji2TSorJiQi2HvJnQfW4xJr7pt8P1JzSuoJJMSeK9Sg8qGLsaAjbZuMJWCca0Gpn9C1EOIug9R70LURY_yf-gm9IbD12FIDFDsxX6J4e-rA9Q3fKWG2w
CitedBy_id crossref_primary_10_1007_s11227_024_06792_5
crossref_primary_10_1007_s10489_024_05819_x
crossref_primary_10_1109_TNNLS_2022_3165299
crossref_primary_10_3390_s24144525
crossref_primary_10_3390_electronics14051040
Cites_doi 10.1609/aaai.v32i1.11770
10.1109/CVPR.2016.95
10.1109/TSMC.2021.3103842
10.1609/aaai.v34i07.6909
10.1145/3340531.3411880
10.1609/aaai.v32i1.12281
10.1109/ICCV.2015.144
10.1109/CVPR.2019.00532
10.1109/CVPR42600.2020.01099
10.1007/978-3-319-46493-0_22
10.1109/ICCV.2017.58
10.1016/j.neucom.2022.11.022
10.1109/TPAMI.2015.2491929
10.1609/aaai.v32i1.12230
10.1007/978-3-319-10602-1_48
10.1145/1646396.1646452
10.1109/CVPR.2017.219
10.1109/TPAMI.2018.2849378
10.1109/TNNLS.2017.2712801
10.1109/ICME.2018.8486592
10.1145/3240508.3240567
10.1109/TKDE.2013.39
10.1109/CVPR.2016.90
10.1609/aaai.v34i07.6964
10.1109/TPAMI.2017.2769047
10.1109/CVPR.2018.00170
10.1007/978-3-030-01240-3_17
10.1109/CVPR.2016.251
10.1007/978-3-319-10602-1_26
10.1109/ICCV.2019.00061
10.1007/s11263-009-0275-4
10.1109/CVPR.2016.37
10.1016/j.patrec.2020.07.040
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s13042-023-01841-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 3435
ExternalDocumentID 10_1007_s13042_023_01841_6
GrantInformation_xml – fundername: Young Scientists Fund (CN)
  grantid: 61806005
– fundername: The University Synergy Innovation Program of Anhui Province
  grantid: GXXT-2022-052
– fundername: the Outstanding Young Talents Support project of Anhui Province
  grantid: gxyqZD2022032
– fundername: Natural Science Foundation for Young Scientists of Anhui Province
  grantid: KJ2021A0373
– fundername: Young Scientists Fund
  grantid: 61906003
  funderid: http://dx.doi.org/10.13039/501100010909
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-ceb5442c19ac134083aa3a28d232c3c26d7a805014641be8153ccd935e7ffe8c3
IEDL.DBID U2A
ISSN 1868-8071
IngestDate Fri Jul 25 09:56:38 EDT 2025
Tue Jul 01 03:51:03 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Fri Feb 21 02:43:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Multi-layered attention
Multi-label image classification
Convolutional neural network
Label embeddings
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ceb5442c19ac134083aa3a28d232c3c26d7a805014641be8153ccd935e7ffe8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2022-5747
PQID 2919505512
PQPubID 2043904
PageCount 9
ParticipantIDs proquest_journals_2919505512
crossref_citationtrail_10_1007_s13042_023_01841_6
crossref_primary_10_1007_s13042_023_01841_6
springer_journals_10_1007_s13042_023_01841_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231000
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Yuan J, Chen S, Zhang Y, Shi Z, Geng X, Fan J, Rui Y (2022) Graph attention transformer network for multi-label image classification
YouRGuoZCuiLLongXBaoYWenSCross-modality attention with semantic graph embedding for multi-label classificationAAAI202034127091271610.1609/aaai.v34i07.6964
Gao H, Z, Liu M, Laurens W, Kilian Q (2017) Densely connected convolutional networks. In: CVPR, pp 4700–4708
Everingham M, Gool LV, Williams CK, Winn J, Zisserman A (2012) The PASCAL visual object classes challenge (VOC2012) results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
ZhangMLZhouZHA review on multi-label learning algorithmsIEEE Trans Knowl Data Eng20142681819183710.1109/TKDE.2013.39
Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph Attention Networks. In: ICLR
Chen S, Chen Y, Yeh C, Wang YF (2018) Order-free rnn with visual attention for multi-label classification. In: AAAI
Wang Y, He D, Li F, Long X, Zhou Z, Ma J, Wen S (2020) Multi-label classification with label graph superimposing. In: AAAI, pp 12265–12272
ChenBZhangZLYChenFLuGZhangDSemantic-interactive graph convolutional network for multilabel image recognitionIEEE Trans Syst Man Cybernet Syst202110.1109/TSMC.2021.3103842
Cai Z, Fan Q, Feris RS, Vasconcelos N (2016) A unified multi-scale deep convolutional neural network for fast object detection. In: ECCV, pp 354–370
Chen T, Xu M, Hui X, Wu H, Lin L (2019) Learning semantic-specific graph representation for multi-label image recognition. In: ICCV, pp 522–531
ZhangZXuYShaoLYangJDiscriminative block-diagonal representation learning for image recognitionIEEE Trans Neural Netw Learn Syst201829731113125381927510.1109/TNNLS.2017.2712801
Zhao H, Zhang Y, Liu S, Shi J, Loy C, Lin D, Jia J (2018) Psanet: point-wise spatial attention network for scene parsing. In: Computer vision—ECCV 2018. . Springer, Cham, pp 270–286
Yang S, Ramanan D (2015) Multi-scale recognition with dag-cnns. In: ICCV, pp 1215–1223
Zagoruyko S, Komodakis N (2017) Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR
Kim J, On K, Kim J, Ha J, Zhang B (2016) Hadamard product for low-rank bilinear pooling (10)
Ge ZY, Mahapatra D, Sedai S, Garnavi R, Chakravorty R (2018) Chest x-rays classification: a multi-label and fine-grained problem. arXiv
Zitnick CL, Dollár P (2014) Edge boxes: locating object proposals from edges. In: ECCV, pp 391–405
Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) Nus-wide: a real-world web image database from national university of Singapore. In: ICIVR, ACM
HouCZhouZOne-pass learning with incremental and decremental featuresIEEE Trans Pattern Anal Mach Intell201840112776279210.1109/TPAMI.2017.2769047
HouCZengLHuDSafe classification with augmented featuresIEEE Trans Pattern Anal Mach Intell20194192176219210.1109/TPAMI.2018.2849378
LiQPengXQiaoYPengQLearning label correlations for multi-label image recognition with graph networksPRL202013837838410.1016/j.patrec.2020.07.040
Chen Z, Wei X, Wang P, Guo Y (2019) Multi-label image recognition with graph convolutional networks. In: CVPR, pp 5172–5181. https://doi.org/10.1109/CVPR.2019.00532
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR
Jetley S, Lord NA, Lee N, Torr PHS (2018) Learn to pay attention. In: ICLR
Yang H, Zhou T, Zhang Y, Gao B, Wu J, Cai J (2016) Exploit bounding box annotations for multi-label object recognition. In: CVPR, pp 280–288
Lin T, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollr P (2014) Microsoft coco: common objects in context
Yin R, You J, Morris C, Ren X, Hamilton WL, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: NIPS, pp 4805–4815
EveringhamMGoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeIJCV201088230333810.1007/s11263-009-0275-4
Wang Z, Chen T, Li G, Xu R, Lin L (2017) Multi-label image recognition by recurrently discovering attentional regions. In: ICCV, pp 464–472
WeiYXiaWLinMHuangJNiBDongJZhaoYYanSHcp: a flexible cnn framework for multi-label image classificationIEEE Trans Pattern Anal Mach Intell20163891901190710.1109/TPAMI.2015.2491929
He S, Xu C, Guo T, Xu C, Tao D (2018) Reinforced multi-label image classification by exploring curriculum. In: Proceedings of the AAAI conference on artificial intelligence, vol 32(1). https://ojs.aaai.org/index.php/AAAI/article/view/11770
Lee C, Fang W, Yeh C, Wang FY (2018) Multi-label zero-shot learning with structured knowledge graphs. In: CVPR, pp 1576–1585. https://doi.org/10.1109/CVPR.2018.00170
Ma C, Chen Z, Lu J, Zhou J (2018) Rank-consistency multi-label deep hashing. In: ICME, pp 1–6
Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W (2016) CNN-RNN: a unified framework for multi-label image classification. In: CVPR, pp 2285–2294. https://doi.org/10.1109/CVPR.2016.251
Zhu F, Li H, Ouyang W, Yu N, Wang X (2017) Learning spatial regularization with image-level supervisions for multi-label image classification. In: CVPR, pp 2027–2036. https://doi.org/10.1109/CVPR.2017.219
Wang Y, Xie Y, Liu Y, Zhou K, Li X (2020) Fast graph convolution network based multi-label image recognition via cross-modal fusion. In: CIKM, pp 1575–1584
Wang D, Zhang S (2020) Unsupervised person re-identification via multi-label classification. In: CVPR, pp 10978–10987
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778. https://doi.org/10.1109/CVPR.2016.90
Kang K, Ouyang W, Li H, Wang X (2016) Object detection from video tubelets with convolutional neural networks. In: CVPR, pp 817–825. https://doi.org/10.1109/CVPR.2016.95
Liu Y, Sheng L, Shao J, Yan J, Xiang S, Pan C (2018) Multi-label image classification via knowledge distillation from weakly supervised detection. In: ACM MM, pp 700–708
Chen T, Wang Z, Li G, Lin L (2017) Recurrent attentional reinforcement learning for multi-label image recognition. In: AAAI
1841_CR19
1841_CR17
1841_CR18
R You (1841_CR35) 2020; 34
1841_CR30
B Chen (1841_CR6) 2021
1841_CR1
1841_CR3
Y Wei (1841_CR31) 2016; 38
1841_CR37
1841_CR2
1841_CR16
1841_CR5
1841_CR13
Q Li (1841_CR20) 2020; 138
1841_CR4
1841_CR36
1841_CR7
1841_CR11
1841_CR33
1841_CR12
1841_CR34
M Everingham (1841_CR8) 2010; 88
1841_CR9
1841_CR10
1841_CR32
C Hou (1841_CR15) 2019; 41
1841_CR28
1841_CR29
ML Zhang (1841_CR38) 2014; 26
C Hou (1841_CR14) 2018; 40
1841_CR40
1841_CR41
Z Zhang (1841_CR39) 2018; 29
1841_CR26
1841_CR27
1841_CR24
1841_CR25
1841_CR22
1841_CR23
1841_CR42
1841_CR21
References_xml – reference: LiQPengXQiaoYPengQLearning label correlations for multi-label image recognition with graph networksPRL202013837838410.1016/j.patrec.2020.07.040
– reference: Zhao H, Zhang Y, Liu S, Shi J, Loy C, Lin D, Jia J (2018) Psanet: point-wise spatial attention network for scene parsing. In: Computer vision—ECCV 2018. . Springer, Cham, pp 270–286
– reference: Yang S, Ramanan D (2015) Multi-scale recognition with dag-cnns. In: ICCV, pp 1215–1223
– reference: Zagoruyko S, Komodakis N (2017) Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR
– reference: Lin T, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollr P (2014) Microsoft coco: common objects in context
– reference: Yuan J, Chen S, Zhang Y, Shi Z, Geng X, Fan J, Rui Y (2022) Graph attention transformer network for multi-label image classification
– reference: Kim J, On K, Kim J, Ha J, Zhang B (2016) Hadamard product for low-rank bilinear pooling (10)
– reference: ChenBZhangZLYChenFLuGZhangDSemantic-interactive graph convolutional network for multilabel image recognitionIEEE Trans Syst Man Cybernet Syst202110.1109/TSMC.2021.3103842
– reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR
– reference: Wang D, Zhang S (2020) Unsupervised person re-identification via multi-label classification. In: CVPR, pp 10978–10987
– reference: Yang H, Zhou T, Zhang Y, Gao B, Wu J, Cai J (2016) Exploit bounding box annotations for multi-label object recognition. In: CVPR, pp 280–288
– reference: Chen T, Xu M, Hui X, Wu H, Lin L (2019) Learning semantic-specific graph representation for multi-label image recognition. In: ICCV, pp 522–531
– reference: ZhangMLZhouZHA review on multi-label learning algorithmsIEEE Trans Knowl Data Eng20142681819183710.1109/TKDE.2013.39
– reference: Lee C, Fang W, Yeh C, Wang FY (2018) Multi-label zero-shot learning with structured knowledge graphs. In: CVPR, pp 1576–1585. https://doi.org/10.1109/CVPR.2018.00170
– reference: Wang Y, Xie Y, Liu Y, Zhou K, Li X (2020) Fast graph convolution network based multi-label image recognition via cross-modal fusion. In: CIKM, pp 1575–1584
– reference: Kang K, Ouyang W, Li H, Wang X (2016) Object detection from video tubelets with convolutional neural networks. In: CVPR, pp 817–825. https://doi.org/10.1109/CVPR.2016.95
– reference: Gao H, Z, Liu M, Laurens W, Kilian Q (2017) Densely connected convolutional networks. In: CVPR, pp 4700–4708
– reference: Zitnick CL, Dollár P (2014) Edge boxes: locating object proposals from edges. In: ECCV, pp 391–405
– reference: Yin R, You J, Morris C, Ren X, Hamilton WL, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: NIPS, pp 4805–4815
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778. https://doi.org/10.1109/CVPR.2016.90
– reference: Everingham M, Gool LV, Williams CK, Winn J, Zisserman A (2012) The PASCAL visual object classes challenge (VOC2012) results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
– reference: HouCZengLHuDSafe classification with augmented featuresIEEE Trans Pattern Anal Mach Intell20194192176219210.1109/TPAMI.2018.2849378
– reference: Ma C, Chen Z, Lu J, Zhou J (2018) Rank-consistency multi-label deep hashing. In: ICME, pp 1–6
– reference: He S, Xu C, Guo T, Xu C, Tao D (2018) Reinforced multi-label image classification by exploring curriculum. In: Proceedings of the AAAI conference on artificial intelligence, vol 32(1). https://ojs.aaai.org/index.php/AAAI/article/view/11770
– reference: WeiYXiaWLinMHuangJNiBDongJZhaoYYanSHcp: a flexible cnn framework for multi-label image classificationIEEE Trans Pattern Anal Mach Intell20163891901190710.1109/TPAMI.2015.2491929
– reference: Chen S, Chen Y, Yeh C, Wang YF (2018) Order-free rnn with visual attention for multi-label classification. In: AAAI
– reference: Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph Attention Networks. In: ICLR
– reference: YouRGuoZCuiLLongXBaoYWenSCross-modality attention with semantic graph embedding for multi-label classificationAAAI202034127091271610.1609/aaai.v34i07.6964
– reference: HouCZhouZOne-pass learning with incremental and decremental featuresIEEE Trans Pattern Anal Mach Intell201840112776279210.1109/TPAMI.2017.2769047
– reference: Jetley S, Lord NA, Lee N, Torr PHS (2018) Learn to pay attention. In: ICLR
– reference: ZhangZXuYShaoLYangJDiscriminative block-diagonal representation learning for image recognitionIEEE Trans Neural Netw Learn Syst201829731113125381927510.1109/TNNLS.2017.2712801
– reference: Wang Y, He D, Li F, Long X, Zhou Z, Ma J, Wen S (2020) Multi-label classification with label graph superimposing. In: AAAI, pp 12265–12272
– reference: Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W (2016) CNN-RNN: a unified framework for multi-label image classification. In: CVPR, pp 2285–2294. https://doi.org/10.1109/CVPR.2016.251
– reference: EveringhamMGoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeIJCV201088230333810.1007/s11263-009-0275-4
– reference: Cai Z, Fan Q, Feris RS, Vasconcelos N (2016) A unified multi-scale deep convolutional neural network for fast object detection. In: ECCV, pp 354–370
– reference: Chen Z, Wei X, Wang P, Guo Y (2019) Multi-label image recognition with graph convolutional networks. In: CVPR, pp 5172–5181. https://doi.org/10.1109/CVPR.2019.00532
– reference: Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) Nus-wide: a real-world web image database from national university of Singapore. In: ICIVR, ACM
– reference: Ge ZY, Mahapatra D, Sedai S, Garnavi R, Chakravorty R (2018) Chest x-rays classification: a multi-label and fine-grained problem. arXiv
– reference: Chen T, Wang Z, Li G, Lin L (2017) Recurrent attentional reinforcement learning for multi-label image recognition. In: AAAI
– reference: Zhu F, Li H, Ouyang W, Yu N, Wang X (2017) Learning spatial regularization with image-level supervisions for multi-label image classification. In: CVPR, pp 2027–2036. https://doi.org/10.1109/CVPR.2017.219
– reference: Liu Y, Sheng L, Shao J, Yan J, Xiang S, Pan C (2018) Multi-label image classification via knowledge distillation from weakly supervised detection. In: ACM MM, pp 700–708
– reference: Wang Z, Chen T, Li G, Xu R, Lin L (2017) Multi-label image recognition by recurrently discovering attentional regions. In: ICCV, pp 464–472
– ident: 1841_CR25
– ident: 1841_CR13
  doi: 10.1609/aaai.v32i1.11770
– ident: 1841_CR17
  doi: 10.1109/CVPR.2016.95
– year: 2021
  ident: 1841_CR6
  publication-title: IEEE Trans Syst Man Cybernet Syst
  doi: 10.1109/TSMC.2021.3103842
– ident: 1841_CR29
  doi: 10.1609/aaai.v34i07.6909
– ident: 1841_CR30
  doi: 10.1145/3340531.3411880
– ident: 1841_CR2
  doi: 10.1609/aaai.v32i1.12281
– ident: 1841_CR32
  doi: 10.1109/ICCV.2015.144
– ident: 1841_CR4
  doi: 10.1109/CVPR.2019.00532
– ident: 1841_CR26
  doi: 10.1109/CVPR42600.2020.01099
– ident: 1841_CR37
– ident: 1841_CR1
  doi: 10.1007/978-3-319-46493-0_22
– ident: 1841_CR28
  doi: 10.1109/ICCV.2017.58
– ident: 1841_CR10
– ident: 1841_CR36
  doi: 10.1016/j.neucom.2022.11.022
– ident: 1841_CR18
– volume: 38
  start-page: 1901
  issue: 9
  year: 2016
  ident: 1841_CR31
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2491929
– ident: 1841_CR3
  doi: 10.1609/aaai.v32i1.12230
– ident: 1841_CR21
  doi: 10.1007/978-3-319-10602-1_48
– ident: 1841_CR7
  doi: 10.1145/1646396.1646452
– ident: 1841_CR41
  doi: 10.1109/CVPR.2017.219
– volume: 41
  start-page: 2176
  issue: 9
  year: 2019
  ident: 1841_CR15
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2849378
– ident: 1841_CR16
– ident: 1841_CR24
– volume: 29
  start-page: 3111
  issue: 7
  year: 2018
  ident: 1841_CR39
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2712801
– ident: 1841_CR23
  doi: 10.1109/ICME.2018.8486592
– ident: 1841_CR22
  doi: 10.1145/3240508.3240567
– volume: 26
  start-page: 1819
  issue: 8
  year: 2014
  ident: 1841_CR38
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.39
– ident: 1841_CR12
  doi: 10.1109/CVPR.2016.90
– ident: 1841_CR11
– volume: 34
  start-page: 12709
  year: 2020
  ident: 1841_CR35
  publication-title: AAAI
  doi: 10.1609/aaai.v34i07.6964
– volume: 40
  start-page: 2776
  issue: 11
  year: 2018
  ident: 1841_CR14
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2769047
– ident: 1841_CR19
  doi: 10.1109/CVPR.2018.00170
– ident: 1841_CR40
  doi: 10.1007/978-3-030-01240-3_17
– ident: 1841_CR27
  doi: 10.1109/CVPR.2016.251
– ident: 1841_CR42
  doi: 10.1007/978-3-319-10602-1_26
– ident: 1841_CR9
– ident: 1841_CR5
  doi: 10.1109/ICCV.2019.00061
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 1841_CR8
  publication-title: IJCV
  doi: 10.1007/s11263-009-0275-4
– ident: 1841_CR33
  doi: 10.1109/CVPR.2016.37
– ident: 1841_CR34
– volume: 138
  start-page: 378
  year: 2020
  ident: 1841_CR20
  publication-title: PRL
  doi: 10.1016/j.patrec.2020.07.040
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.364322
Snippet Multi-label image classification is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3427
SubjectTerms Artificial Intelligence
Artificial neural networks
Classification
Complex Systems
Computational Intelligence
Control
Correlation
Deep learning
Engineering
Image classification
Labels
Learning
Mechatronics
Methods
Modelling
Multilayers
Neural networks
Original Article
Pattern Recognition
Representations
Robotics
Semantics
Systems Biology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyI8wOnU3LwoGhwadosPYnKxvAwZDjYraRJCsLWTTcP_ve-16YrCu7aJjm8vK8k7_1-hFxltitSIThzXGYsBJ1iCCvOrIky7IPEmITVFiM5nIQv02jqL9xWvqyy8omFo7YLg3fk90GMhKUQ34OH5QdD1ih8XfUUGrukCS5YRQ3SfOqPXseVRgmOWCt1wBUiLDCnNrcwXQnfysJEJRUi83LfWVP21-Fhn0FYgxO3CjmTv6NXnZL-eUUtgtPggOz7rJI-lmrQIjsuPyQtb7creu3BpW-OyLjouGUz_Y0knXTl5iDad0MLcMuqESmneVkdTiGlpXM_I3Uz-j4H_0MNptxYY1QMPiaTQf_tecg8rwIzYHBrZlwahWFgeKwNB4koobXQgbKQXRlhAml7WnXxwVGGPHUKnKIxNhaR62WZU0ackEa-yN0poSbmgYmdTrlOC2x6LV0srNMRuApldZvwSl6J8aDjyH0xS2q4ZJRxAjJOChknsk1uN3OWJeTG1tGdahsSb36rpFaWNrmrtqb-_f9qZ9tXOyd7SDdfFvN1SGP9-eUuIClZp5de834AcIjYag
  priority: 102
  providerName: ProQuest
Title Multi-layered semantic representation network for multi-label image classification
URI https://link.springer.com/article/10.1007/s13042-023-01841-6
https://www.proquest.com/docview/2919505512
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SzaU9hLxKN49FhxxSGsHKshX5uBv2QQtLWLqwPRlZliGw64Ts5pB_nxlZjtvQFnoy2JINI2nmk_XNNwCXZdGXuZSCO6FKHuOc4iQrzgublJQHSTGJ2BYzNV3E35bJMiSFbRq2e3Mk6T11m-xGO2-OMQa3vzoWXO3CXoJ7dyLyLaJBM4ukIH2VNshKGXudqbc_L32F92oyolaa1HhFyKb582d-j1gtDH13cuoD0vgA9gOSZIN66A9hx1VH8PEXfcEjOAwrd8Ougrz0l2OY-5xbvjIvVKaTbdwajXtvmZe3bFKRKlbV_HCGoJatQ4_crdj9Gj0QswS6iWXkG5_AYjz6cTvlobICt7jktty6PInjyIrUWIH20dIYaSJdIL6y0kaquDG6T0eOKha50-gWrS1SmbibsnTayk_QqR4q9xmYTUVkU2dyYXKvTm-US2XhTILOQhemC6KxXmaD7DhVv1hlrWAyWTxDi2fe4pnqwte3Po-16MY_W583g5KFBbjJopTq2yIcjLpw3QxU-_jvbzv9v-Zn8IEK0Nf0vnPobJ-e3QXClG3eg109nvRgbzAeDmd0nfz8PsLrcDS7m_f8nH0FJCfd-g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHOCCeIrBgBxAAkEEadrSHhDisWm8JoRA4lbSNJWQtm6wIcSf4jditykVSHDj2iY-OI7tJPb3AWykyb6MpRTcCD_lLtoUJ1hxnmgvpT5IiklUbdHx2_fuxYP3MAYfZS8MlVWWPjF31Elf0x35nhMSYSnGd-do8MyJNYpeV0sKjcIsLs37Gx7ZhofnZ7i-m47Tat6dtrllFeAazW3EtYk913W0CJUW0sUURCmpnCDB3EJL7fjJgQr26bnNd0VsAnQJWieh9MxBmppAS5Q7DhOYZoS4iyZOmp2b29KCpSBslyrAS5TvWZo4GxvwW1EIGfgBIQEL28lT9PPR5QLHMIon_MAV3P8eLasU-MerbR4MWzMwbbNYdlyY3SyMmWwOZq2fGLItC2a9PQ-3eYcv76p3IgVlQ9PDpXzSLAfTLBufMpYV1egMU2jWszNi02VPPfR3TFOKTzVN-eAFuP8XjS9CLetnZgmYDoWjQ6NioeIcC1_5JpSJUR66piBRdRClviJtQc6Ja6MbVfDMpOMIdRzlOo78Oux8zRkUEB9_jm6UyxDZ7T6MKuOsw265NNXv36Ut_y1tHSbbd9dX0dV553IFpojqvigkbEBt9PJqVjEhGsVr1goZPP634X8CyPoVAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB-8FQ598Ftcvy4PPpxodNO02fRR1D2_kEMU9KmkaQribhW3-6B_vZk0tZ6oIPfaJi3JTGYmyW9-A7CRZx2ecs6oYSKnodUpirTiNNNRjnmQ6JMQbXEujq7Ck-vo-k0Wv0O711eSVU4DsjQV5e5Dlu82iW-4C6fW39itsAwZFT9gPERy9haM7_25OT2sdYozZFtpXC7noWOdej2H6Qj7rIImSiGRm5f53JqPf_Sv_2qC0nf3qM499aZB1QOrUCl3O6My3dHP7zgf_2fkMzDlY1eyVynbLIyZYg4m3zAazsGstxVD8tsTWm_Ow4XL8qV99YSFQcnQDKw4bzVxhJp18lNBigqRTmwYTQa-R2r65HZgbR7RGOYjrsk1XoCr3uHl_hH1tRyotou8pNqkURgGmsVKMysDyZXiKpCZjeg014HIukp28JJThCw10hpirbOYR6ab50Zqvgit4r4wS0B0zAIdG5UylTo-fCVMzDOjImueZKbawGoJJdoTnWO9jX7SUDTjJCZ2EhM3iYlow9Zrn4eK5uPL1qu14BO_5IdJEGNFXRuABm3YruXYvP78a8vfa_4Lfv496CVnx-enKzARoCY4bOEqtMrHkVmzMVKZrvtl8AJeywE7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-layered+semantic+representation+network+for+multi-label+image+classification&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Qu%2C+Xiwen&rft.au=Che%2C+Hao&rft.au=Huang%2C+Jun&rft.au=Xu%2C+Linchuan&rft.date=2023-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=14&rft.issue=10&rft.spage=3427&rft.epage=3435&rft_id=info:doi/10.1007%2Fs13042-023-01841-6&rft.externalDocID=10_1007_s13042_023_01841_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon