Multi-layered semantic representation network for multi-label image classification
Multi-label image classification is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep convolutional neural network (CNN) based approaches have been proposed which model label correlations to discover semantics of labels and learn...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 14; no. 10; pp. 3427 - 3435 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-023-01841-6 |
Cover
Loading…
Abstract | Multi-label image classification is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep convolutional neural network (CNN) based approaches have been proposed which model label correlations to discover semantics of labels and learn semantic representations of images. This paper advances this research direction by improving both the modeling of label correlations and the learning of semantic representations. On the one hand, besides the local semantics of each label, we propose to further explore global semantics shared by multiple labels. On the other hand, existing approaches mainly learn the semantic representations at the last convolutional layer of a CNN. But it has been noted that the image representations of different layers of CNN capture different levels or scales of features and have different discriminative abilities. We thus propose to learn semantic representations at multiple convolutional layers. To this end, this paper designs a Multi-layered Semantic Representation Network (MSRN) which discovers both local and global semantics of labels through modeling label correlations and utilizes the label semantics to guide the semantic representations learning at multiple layers through an attention mechanism. Extensive experiments on five benchmark datasets including VOC2007, VOC2012, MS-COCO, NUS-WIDE, and Apparel show a competitive performance of the proposed MSRN against state-of-the-art models. |
---|---|
AbstractList | Multi-label image classification is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep convolutional neural network (CNN) based approaches have been proposed which model label correlations to discover semantics of labels and learn semantic representations of images. This paper advances this research direction by improving both the modeling of label correlations and the learning of semantic representations. On the one hand, besides the local semantics of each label, we propose to further explore global semantics shared by multiple labels. On the other hand, existing approaches mainly learn the semantic representations at the last convolutional layer of a CNN. But it has been noted that the image representations of different layers of CNN capture different levels or scales of features and have different discriminative abilities. We thus propose to learn semantic representations at multiple convolutional layers. To this end, this paper designs a Multi-layered Semantic Representation Network (MSRN) which discovers both local and global semantics of labels through modeling label correlations and utilizes the label semantics to guide the semantic representations learning at multiple layers through an attention mechanism. Extensive experiments on five benchmark datasets including VOC2007, VOC2012, MS-COCO, NUS-WIDE, and Apparel show a competitive performance of the proposed MSRN against state-of-the-art models. |
Author | Qu, Xiwen Che, Hao Xu, Linchuan Zheng, Xiao Huang, Jun |
Author_xml | – sequence: 1 givenname: Xiwen surname: Qu fullname: Qu, Xiwen organization: School of Computer Science and Technology, Anhui University of Technology – sequence: 2 givenname: Hao surname: Che fullname: Che, Hao email: chehao17@gmail.com organization: Australian National University – sequence: 3 givenname: Jun orcidid: 0000-0002-2022-5747 surname: Huang fullname: Huang, Jun email: huangjun.cs@ahut.edu.cn organization: School of Computer Science and Technology, Anhui University of Technology, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center – sequence: 4 givenname: Linchuan surname: Xu fullname: Xu, Linchuan organization: Department of Computing, The Hong Kong Polytechnic University – sequence: 5 givenname: Xiao surname: Zheng fullname: Zheng, Xiao organization: School of Computer Science and Technology, Anhui University of Technology, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center |
BookMark | eNp9kE9LAzEQxYNUsNZ-AU8LnqOZZLObPUrxH1QEUfAW0uxsSd1ma5IifnvXblHw0LnMHN5vZt47JSPfeSTkHNglMFZeRRAs55RxQRmoHGhxRMagCkUVU2-j37mEEzKNccX6KpgQjI_J8-O2TY625gsD1lnEtfHJ2SzgJmBEn0xync88ps8uvGdNF7L1nlhgm7m1WWJmWxOja5zdic_IcWPaiNN9n5DX25uX2T2dP909zK7n1AqoErW4kHnOLVTGgsiZEsYIw1XNBbfC8qIujWKSQV7ksEAFUlhbV0Ji2TSorJiQi2HvJnQfW4xJr7pt8P1JzSuoJJMSeK9Sg8qGLsaAjbZuMJWCca0Gpn9C1EOIug9R70LURY_yf-gm9IbD12FIDFDsxX6J4e-rA9Q3fKWG2w |
CitedBy_id | crossref_primary_10_1007_s11227_024_06792_5 crossref_primary_10_1007_s10489_024_05819_x crossref_primary_10_1109_TNNLS_2022_3165299 crossref_primary_10_3390_s24144525 crossref_primary_10_3390_electronics14051040 |
Cites_doi | 10.1609/aaai.v32i1.11770 10.1109/CVPR.2016.95 10.1109/TSMC.2021.3103842 10.1609/aaai.v34i07.6909 10.1145/3340531.3411880 10.1609/aaai.v32i1.12281 10.1109/ICCV.2015.144 10.1109/CVPR.2019.00532 10.1109/CVPR42600.2020.01099 10.1007/978-3-319-46493-0_22 10.1109/ICCV.2017.58 10.1016/j.neucom.2022.11.022 10.1109/TPAMI.2015.2491929 10.1609/aaai.v32i1.12230 10.1007/978-3-319-10602-1_48 10.1145/1646396.1646452 10.1109/CVPR.2017.219 10.1109/TPAMI.2018.2849378 10.1109/TNNLS.2017.2712801 10.1109/ICME.2018.8486592 10.1145/3240508.3240567 10.1109/TKDE.2013.39 10.1109/CVPR.2016.90 10.1609/aaai.v34i07.6964 10.1109/TPAMI.2017.2769047 10.1109/CVPR.2018.00170 10.1007/978-3-030-01240-3_17 10.1109/CVPR.2016.251 10.1007/978-3-319-10602-1_26 10.1109/ICCV.2019.00061 10.1007/s11263-009-0275-4 10.1109/CVPR.2016.37 10.1016/j.patrec.2020.07.040 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s13042-023-01841-6 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 3435 |
ExternalDocumentID | 10_1007_s13042_023_01841_6 |
GrantInformation_xml | – fundername: Young Scientists Fund (CN) grantid: 61806005 – fundername: The University Synergy Innovation Program of Anhui Province grantid: GXXT-2022-052 – fundername: the Outstanding Young Talents Support project of Anhui Province grantid: gxyqZD2022032 – fundername: Natural Science Foundation for Young Scientists of Anhui Province grantid: KJ2021A0373 – fundername: Young Scientists Fund grantid: 61906003 funderid: http://dx.doi.org/10.13039/501100010909 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-ceb5442c19ac134083aa3a28d232c3c26d7a805014641be8153ccd935e7ffe8c3 |
IEDL.DBID | U2A |
ISSN | 1868-8071 |
IngestDate | Fri Jul 25 09:56:38 EDT 2025 Tue Jul 01 03:51:03 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Fri Feb 21 02:43:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Multi-layered attention Multi-label image classification Convolutional neural network Label embeddings |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ceb5442c19ac134083aa3a28d232c3c26d7a805014641be8153ccd935e7ffe8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2022-5747 |
PQID | 2919505512 |
PQPubID | 2043904 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2919505512 crossref_citationtrail_10_1007_s13042_023_01841_6 crossref_primary_10_1007_s13042_023_01841_6 springer_journals_10_1007_s13042_023_01841_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231000 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Yuan J, Chen S, Zhang Y, Shi Z, Geng X, Fan J, Rui Y (2022) Graph attention transformer network for multi-label image classification YouRGuoZCuiLLongXBaoYWenSCross-modality attention with semantic graph embedding for multi-label classificationAAAI202034127091271610.1609/aaai.v34i07.6964 Gao H, Z, Liu M, Laurens W, Kilian Q (2017) Densely connected convolutional networks. In: CVPR, pp 4700–4708 Everingham M, Gool LV, Williams CK, Winn J, Zisserman A (2012) The PASCAL visual object classes challenge (VOC2012) results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html ZhangMLZhouZHA review on multi-label learning algorithmsIEEE Trans Knowl Data Eng20142681819183710.1109/TKDE.2013.39 Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph Attention Networks. In: ICLR Chen S, Chen Y, Yeh C, Wang YF (2018) Order-free rnn with visual attention for multi-label classification. In: AAAI Wang Y, He D, Li F, Long X, Zhou Z, Ma J, Wen S (2020) Multi-label classification with label graph superimposing. In: AAAI, pp 12265–12272 ChenBZhangZLYChenFLuGZhangDSemantic-interactive graph convolutional network for multilabel image recognitionIEEE Trans Syst Man Cybernet Syst202110.1109/TSMC.2021.3103842 Cai Z, Fan Q, Feris RS, Vasconcelos N (2016) A unified multi-scale deep convolutional neural network for fast object detection. In: ECCV, pp 354–370 Chen T, Xu M, Hui X, Wu H, Lin L (2019) Learning semantic-specific graph representation for multi-label image recognition. In: ICCV, pp 522–531 ZhangZXuYShaoLYangJDiscriminative block-diagonal representation learning for image recognitionIEEE Trans Neural Netw Learn Syst201829731113125381927510.1109/TNNLS.2017.2712801 Zhao H, Zhang Y, Liu S, Shi J, Loy C, Lin D, Jia J (2018) Psanet: point-wise spatial attention network for scene parsing. In: Computer vision—ECCV 2018. . Springer, Cham, pp 270–286 Yang S, Ramanan D (2015) Multi-scale recognition with dag-cnns. In: ICCV, pp 1215–1223 Zagoruyko S, Komodakis N (2017) Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR Kim J, On K, Kim J, Ha J, Zhang B (2016) Hadamard product for low-rank bilinear pooling (10) Ge ZY, Mahapatra D, Sedai S, Garnavi R, Chakravorty R (2018) Chest x-rays classification: a multi-label and fine-grained problem. arXiv Zitnick CL, Dollár P (2014) Edge boxes: locating object proposals from edges. In: ECCV, pp 391–405 Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) Nus-wide: a real-world web image database from national university of Singapore. In: ICIVR, ACM HouCZhouZOne-pass learning with incremental and decremental featuresIEEE Trans Pattern Anal Mach Intell201840112776279210.1109/TPAMI.2017.2769047 HouCZengLHuDSafe classification with augmented featuresIEEE Trans Pattern Anal Mach Intell20194192176219210.1109/TPAMI.2018.2849378 LiQPengXQiaoYPengQLearning label correlations for multi-label image recognition with graph networksPRL202013837838410.1016/j.patrec.2020.07.040 Chen Z, Wei X, Wang P, Guo Y (2019) Multi-label image recognition with graph convolutional networks. In: CVPR, pp 5172–5181. https://doi.org/10.1109/CVPR.2019.00532 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR Jetley S, Lord NA, Lee N, Torr PHS (2018) Learn to pay attention. In: ICLR Yang H, Zhou T, Zhang Y, Gao B, Wu J, Cai J (2016) Exploit bounding box annotations for multi-label object recognition. In: CVPR, pp 280–288 Lin T, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollr P (2014) Microsoft coco: common objects in context Yin R, You J, Morris C, Ren X, Hamilton WL, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: NIPS, pp 4805–4815 EveringhamMGoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeIJCV201088230333810.1007/s11263-009-0275-4 Wang Z, Chen T, Li G, Xu R, Lin L (2017) Multi-label image recognition by recurrently discovering attentional regions. In: ICCV, pp 464–472 WeiYXiaWLinMHuangJNiBDongJZhaoYYanSHcp: a flexible cnn framework for multi-label image classificationIEEE Trans Pattern Anal Mach Intell20163891901190710.1109/TPAMI.2015.2491929 He S, Xu C, Guo T, Xu C, Tao D (2018) Reinforced multi-label image classification by exploring curriculum. In: Proceedings of the AAAI conference on artificial intelligence, vol 32(1). https://ojs.aaai.org/index.php/AAAI/article/view/11770 Lee C, Fang W, Yeh C, Wang FY (2018) Multi-label zero-shot learning with structured knowledge graphs. In: CVPR, pp 1576–1585. https://doi.org/10.1109/CVPR.2018.00170 Ma C, Chen Z, Lu J, Zhou J (2018) Rank-consistency multi-label deep hashing. In: ICME, pp 1–6 Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W (2016) CNN-RNN: a unified framework for multi-label image classification. In: CVPR, pp 2285–2294. https://doi.org/10.1109/CVPR.2016.251 Zhu F, Li H, Ouyang W, Yu N, Wang X (2017) Learning spatial regularization with image-level supervisions for multi-label image classification. In: CVPR, pp 2027–2036. https://doi.org/10.1109/CVPR.2017.219 Wang Y, Xie Y, Liu Y, Zhou K, Li X (2020) Fast graph convolution network based multi-label image recognition via cross-modal fusion. In: CIKM, pp 1575–1584 Wang D, Zhang S (2020) Unsupervised person re-identification via multi-label classification. In: CVPR, pp 10978–10987 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778. https://doi.org/10.1109/CVPR.2016.90 Kang K, Ouyang W, Li H, Wang X (2016) Object detection from video tubelets with convolutional neural networks. In: CVPR, pp 817–825. https://doi.org/10.1109/CVPR.2016.95 Liu Y, Sheng L, Shao J, Yan J, Xiang S, Pan C (2018) Multi-label image classification via knowledge distillation from weakly supervised detection. In: ACM MM, pp 700–708 Chen T, Wang Z, Li G, Lin L (2017) Recurrent attentional reinforcement learning for multi-label image recognition. In: AAAI 1841_CR19 1841_CR17 1841_CR18 R You (1841_CR35) 2020; 34 1841_CR30 B Chen (1841_CR6) 2021 1841_CR1 1841_CR3 Y Wei (1841_CR31) 2016; 38 1841_CR37 1841_CR2 1841_CR16 1841_CR5 1841_CR13 Q Li (1841_CR20) 2020; 138 1841_CR4 1841_CR36 1841_CR7 1841_CR11 1841_CR33 1841_CR12 1841_CR34 M Everingham (1841_CR8) 2010; 88 1841_CR9 1841_CR10 1841_CR32 C Hou (1841_CR15) 2019; 41 1841_CR28 1841_CR29 ML Zhang (1841_CR38) 2014; 26 C Hou (1841_CR14) 2018; 40 1841_CR40 1841_CR41 Z Zhang (1841_CR39) 2018; 29 1841_CR26 1841_CR27 1841_CR24 1841_CR25 1841_CR22 1841_CR23 1841_CR42 1841_CR21 |
References_xml | – reference: LiQPengXQiaoYPengQLearning label correlations for multi-label image recognition with graph networksPRL202013837838410.1016/j.patrec.2020.07.040 – reference: Zhao H, Zhang Y, Liu S, Shi J, Loy C, Lin D, Jia J (2018) Psanet: point-wise spatial attention network for scene parsing. In: Computer vision—ECCV 2018. . Springer, Cham, pp 270–286 – reference: Yang S, Ramanan D (2015) Multi-scale recognition with dag-cnns. In: ICCV, pp 1215–1223 – reference: Zagoruyko S, Komodakis N (2017) Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR – reference: Lin T, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollr P (2014) Microsoft coco: common objects in context – reference: Yuan J, Chen S, Zhang Y, Shi Z, Geng X, Fan J, Rui Y (2022) Graph attention transformer network for multi-label image classification – reference: Kim J, On K, Kim J, Ha J, Zhang B (2016) Hadamard product for low-rank bilinear pooling (10) – reference: ChenBZhangZLYChenFLuGZhangDSemantic-interactive graph convolutional network for multilabel image recognitionIEEE Trans Syst Man Cybernet Syst202110.1109/TSMC.2021.3103842 – reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR – reference: Wang D, Zhang S (2020) Unsupervised person re-identification via multi-label classification. In: CVPR, pp 10978–10987 – reference: Yang H, Zhou T, Zhang Y, Gao B, Wu J, Cai J (2016) Exploit bounding box annotations for multi-label object recognition. In: CVPR, pp 280–288 – reference: Chen T, Xu M, Hui X, Wu H, Lin L (2019) Learning semantic-specific graph representation for multi-label image recognition. In: ICCV, pp 522–531 – reference: ZhangMLZhouZHA review on multi-label learning algorithmsIEEE Trans Knowl Data Eng20142681819183710.1109/TKDE.2013.39 – reference: Lee C, Fang W, Yeh C, Wang FY (2018) Multi-label zero-shot learning with structured knowledge graphs. In: CVPR, pp 1576–1585. https://doi.org/10.1109/CVPR.2018.00170 – reference: Wang Y, Xie Y, Liu Y, Zhou K, Li X (2020) Fast graph convolution network based multi-label image recognition via cross-modal fusion. In: CIKM, pp 1575–1584 – reference: Kang K, Ouyang W, Li H, Wang X (2016) Object detection from video tubelets with convolutional neural networks. In: CVPR, pp 817–825. https://doi.org/10.1109/CVPR.2016.95 – reference: Gao H, Z, Liu M, Laurens W, Kilian Q (2017) Densely connected convolutional networks. In: CVPR, pp 4700–4708 – reference: Zitnick CL, Dollár P (2014) Edge boxes: locating object proposals from edges. In: ECCV, pp 391–405 – reference: Yin R, You J, Morris C, Ren X, Hamilton WL, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: NIPS, pp 4805–4815 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778. https://doi.org/10.1109/CVPR.2016.90 – reference: Everingham M, Gool LV, Williams CK, Winn J, Zisserman A (2012) The PASCAL visual object classes challenge (VOC2012) results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html – reference: HouCZengLHuDSafe classification with augmented featuresIEEE Trans Pattern Anal Mach Intell20194192176219210.1109/TPAMI.2018.2849378 – reference: Ma C, Chen Z, Lu J, Zhou J (2018) Rank-consistency multi-label deep hashing. In: ICME, pp 1–6 – reference: He S, Xu C, Guo T, Xu C, Tao D (2018) Reinforced multi-label image classification by exploring curriculum. In: Proceedings of the AAAI conference on artificial intelligence, vol 32(1). https://ojs.aaai.org/index.php/AAAI/article/view/11770 – reference: WeiYXiaWLinMHuangJNiBDongJZhaoYYanSHcp: a flexible cnn framework for multi-label image classificationIEEE Trans Pattern Anal Mach Intell20163891901190710.1109/TPAMI.2015.2491929 – reference: Chen S, Chen Y, Yeh C, Wang YF (2018) Order-free rnn with visual attention for multi-label classification. In: AAAI – reference: Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph Attention Networks. In: ICLR – reference: YouRGuoZCuiLLongXBaoYWenSCross-modality attention with semantic graph embedding for multi-label classificationAAAI202034127091271610.1609/aaai.v34i07.6964 – reference: HouCZhouZOne-pass learning with incremental and decremental featuresIEEE Trans Pattern Anal Mach Intell201840112776279210.1109/TPAMI.2017.2769047 – reference: Jetley S, Lord NA, Lee N, Torr PHS (2018) Learn to pay attention. In: ICLR – reference: ZhangZXuYShaoLYangJDiscriminative block-diagonal representation learning for image recognitionIEEE Trans Neural Netw Learn Syst201829731113125381927510.1109/TNNLS.2017.2712801 – reference: Wang Y, He D, Li F, Long X, Zhou Z, Ma J, Wen S (2020) Multi-label classification with label graph superimposing. In: AAAI, pp 12265–12272 – reference: Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W (2016) CNN-RNN: a unified framework for multi-label image classification. In: CVPR, pp 2285–2294. https://doi.org/10.1109/CVPR.2016.251 – reference: EveringhamMGoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeIJCV201088230333810.1007/s11263-009-0275-4 – reference: Cai Z, Fan Q, Feris RS, Vasconcelos N (2016) A unified multi-scale deep convolutional neural network for fast object detection. In: ECCV, pp 354–370 – reference: Chen Z, Wei X, Wang P, Guo Y (2019) Multi-label image recognition with graph convolutional networks. In: CVPR, pp 5172–5181. https://doi.org/10.1109/CVPR.2019.00532 – reference: Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) Nus-wide: a real-world web image database from national university of Singapore. In: ICIVR, ACM – reference: Ge ZY, Mahapatra D, Sedai S, Garnavi R, Chakravorty R (2018) Chest x-rays classification: a multi-label and fine-grained problem. arXiv – reference: Chen T, Wang Z, Li G, Lin L (2017) Recurrent attentional reinforcement learning for multi-label image recognition. In: AAAI – reference: Zhu F, Li H, Ouyang W, Yu N, Wang X (2017) Learning spatial regularization with image-level supervisions for multi-label image classification. In: CVPR, pp 2027–2036. https://doi.org/10.1109/CVPR.2017.219 – reference: Liu Y, Sheng L, Shao J, Yan J, Xiang S, Pan C (2018) Multi-label image classification via knowledge distillation from weakly supervised detection. In: ACM MM, pp 700–708 – reference: Wang Z, Chen T, Li G, Xu R, Lin L (2017) Multi-label image recognition by recurrently discovering attentional regions. In: ICCV, pp 464–472 – ident: 1841_CR25 – ident: 1841_CR13 doi: 10.1609/aaai.v32i1.11770 – ident: 1841_CR17 doi: 10.1109/CVPR.2016.95 – year: 2021 ident: 1841_CR6 publication-title: IEEE Trans Syst Man Cybernet Syst doi: 10.1109/TSMC.2021.3103842 – ident: 1841_CR29 doi: 10.1609/aaai.v34i07.6909 – ident: 1841_CR30 doi: 10.1145/3340531.3411880 – ident: 1841_CR2 doi: 10.1609/aaai.v32i1.12281 – ident: 1841_CR32 doi: 10.1109/ICCV.2015.144 – ident: 1841_CR4 doi: 10.1109/CVPR.2019.00532 – ident: 1841_CR26 doi: 10.1109/CVPR42600.2020.01099 – ident: 1841_CR37 – ident: 1841_CR1 doi: 10.1007/978-3-319-46493-0_22 – ident: 1841_CR28 doi: 10.1109/ICCV.2017.58 – ident: 1841_CR10 – ident: 1841_CR36 doi: 10.1016/j.neucom.2022.11.022 – ident: 1841_CR18 – volume: 38 start-page: 1901 issue: 9 year: 2016 ident: 1841_CR31 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2491929 – ident: 1841_CR3 doi: 10.1609/aaai.v32i1.12230 – ident: 1841_CR21 doi: 10.1007/978-3-319-10602-1_48 – ident: 1841_CR7 doi: 10.1145/1646396.1646452 – ident: 1841_CR41 doi: 10.1109/CVPR.2017.219 – volume: 41 start-page: 2176 issue: 9 year: 2019 ident: 1841_CR15 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2849378 – ident: 1841_CR16 – ident: 1841_CR24 – volume: 29 start-page: 3111 issue: 7 year: 2018 ident: 1841_CR39 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2712801 – ident: 1841_CR23 doi: 10.1109/ICME.2018.8486592 – ident: 1841_CR22 doi: 10.1145/3240508.3240567 – volume: 26 start-page: 1819 issue: 8 year: 2014 ident: 1841_CR38 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.39 – ident: 1841_CR12 doi: 10.1109/CVPR.2016.90 – ident: 1841_CR11 – volume: 34 start-page: 12709 year: 2020 ident: 1841_CR35 publication-title: AAAI doi: 10.1609/aaai.v34i07.6964 – volume: 40 start-page: 2776 issue: 11 year: 2018 ident: 1841_CR14 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2769047 – ident: 1841_CR19 doi: 10.1109/CVPR.2018.00170 – ident: 1841_CR40 doi: 10.1007/978-3-030-01240-3_17 – ident: 1841_CR27 doi: 10.1109/CVPR.2016.251 – ident: 1841_CR42 doi: 10.1007/978-3-319-10602-1_26 – ident: 1841_CR9 – ident: 1841_CR5 doi: 10.1109/ICCV.2019.00061 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 1841_CR8 publication-title: IJCV doi: 10.1007/s11263-009-0275-4 – ident: 1841_CR33 doi: 10.1109/CVPR.2016.37 – ident: 1841_CR34 – volume: 138 start-page: 378 year: 2020 ident: 1841_CR20 publication-title: PRL doi: 10.1016/j.patrec.2020.07.040 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.364322 |
Snippet | Multi-label image classification is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3427 |
SubjectTerms | Artificial Intelligence Artificial neural networks Classification Complex Systems Computational Intelligence Control Correlation Deep learning Engineering Image classification Labels Learning Mechatronics Methods Modelling Multilayers Neural networks Original Article Pattern Recognition Representations Robotics Semantics Systems Biology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyI8wOnU3LwoGhwadosPYnKxvAwZDjYraRJCsLWTTcP_ve-16YrCu7aJjm8vK8k7_1-hFxltitSIThzXGYsBJ1iCCvOrIky7IPEmITVFiM5nIQv02jqL9xWvqyy8omFo7YLg3fk90GMhKUQ34OH5QdD1ih8XfUUGrukCS5YRQ3SfOqPXseVRgmOWCt1wBUiLDCnNrcwXQnfysJEJRUi83LfWVP21-Fhn0FYgxO3CjmTv6NXnZL-eUUtgtPggOz7rJI-lmrQIjsuPyQtb7creu3BpW-OyLjouGUz_Y0knXTl5iDad0MLcMuqESmneVkdTiGlpXM_I3Uz-j4H_0MNptxYY1QMPiaTQf_tecg8rwIzYHBrZlwahWFgeKwNB4koobXQgbKQXRlhAml7WnXxwVGGPHUKnKIxNhaR62WZU0ackEa-yN0poSbmgYmdTrlOC2x6LV0srNMRuApldZvwSl6J8aDjyH0xS2q4ZJRxAjJOChknsk1uN3OWJeTG1tGdahsSb36rpFaWNrmrtqb-_f9qZ9tXOyd7SDdfFvN1SGP9-eUuIClZp5de834AcIjYag priority: 102 providerName: ProQuest |
Title | Multi-layered semantic representation network for multi-label image classification |
URI | https://link.springer.com/article/10.1007/s13042-023-01841-6 https://www.proquest.com/docview/2919505512 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SzaU9hLxKN49FhxxSGsHKshX5uBv2QQtLWLqwPRlZliGw64Ts5pB_nxlZjtvQFnoy2JINI2nmk_XNNwCXZdGXuZSCO6FKHuOc4iQrzgublJQHSTGJ2BYzNV3E35bJMiSFbRq2e3Mk6T11m-xGO2-OMQa3vzoWXO3CXoJ7dyLyLaJBM4ukIH2VNshKGXudqbc_L32F92oyolaa1HhFyKb582d-j1gtDH13cuoD0vgA9gOSZIN66A9hx1VH8PEXfcEjOAwrd8Ougrz0l2OY-5xbvjIvVKaTbdwajXtvmZe3bFKRKlbV_HCGoJatQ4_crdj9Gj0QswS6iWXkG5_AYjz6cTvlobICt7jktty6PInjyIrUWIH20dIYaSJdIL6y0kaquDG6T0eOKha50-gWrS1SmbibsnTayk_QqR4q9xmYTUVkU2dyYXKvTm-US2XhTILOQhemC6KxXmaD7DhVv1hlrWAyWTxDi2fe4pnqwte3Po-16MY_W583g5KFBbjJopTq2yIcjLpw3QxU-_jvbzv9v-Zn8IEK0Nf0vnPobJ-e3QXClG3eg109nvRgbzAeDmd0nfz8PsLrcDS7m_f8nH0FJCfd-g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHOCCeIrBgBxAAkEEadrSHhDisWm8JoRA4lbSNJWQtm6wIcSf4jditykVSHDj2iY-OI7tJPb3AWykyb6MpRTcCD_lLtoUJ1hxnmgvpT5IiklUbdHx2_fuxYP3MAYfZS8MlVWWPjF31Elf0x35nhMSYSnGd-do8MyJNYpeV0sKjcIsLs37Gx7ZhofnZ7i-m47Tat6dtrllFeAazW3EtYk913W0CJUW0sUURCmpnCDB3EJL7fjJgQr26bnNd0VsAnQJWieh9MxBmppAS5Q7DhOYZoS4iyZOmp2b29KCpSBslyrAS5TvWZo4GxvwW1EIGfgBIQEL28lT9PPR5QLHMIon_MAV3P8eLasU-MerbR4MWzMwbbNYdlyY3SyMmWwOZq2fGLItC2a9PQ-3eYcv76p3IgVlQ9PDpXzSLAfTLBufMpYV1egMU2jWszNi02VPPfR3TFOKTzVN-eAFuP8XjS9CLetnZgmYDoWjQ6NioeIcC1_5JpSJUR66piBRdRClviJtQc6Ja6MbVfDMpOMIdRzlOo78Oux8zRkUEB9_jm6UyxDZ7T6MKuOsw265NNXv36Ut_y1tHSbbd9dX0dV553IFpojqvigkbEBt9PJqVjEhGsVr1goZPP634X8CyPoVAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB-8FQ598Ftcvy4PPpxodNO02fRR1D2_kEMU9KmkaQribhW3-6B_vZk0tZ6oIPfaJi3JTGYmyW9-A7CRZx2ecs6oYSKnodUpirTiNNNRjnmQ6JMQbXEujq7Ck-vo-k0Wv0O711eSVU4DsjQV5e5Dlu82iW-4C6fW39itsAwZFT9gPERy9haM7_25OT2sdYozZFtpXC7noWOdej2H6Qj7rIImSiGRm5f53JqPf_Sv_2qC0nf3qM499aZB1QOrUCl3O6My3dHP7zgf_2fkMzDlY1eyVynbLIyZYg4m3zAazsGstxVD8tsTWm_Ow4XL8qV99YSFQcnQDKw4bzVxhJp18lNBigqRTmwYTQa-R2r65HZgbR7RGOYjrsk1XoCr3uHl_hH1tRyotou8pNqkURgGmsVKMysDyZXiKpCZjeg014HIukp28JJThCw10hpirbOYR6ab50Zqvgit4r4wS0B0zAIdG5UylTo-fCVMzDOjImueZKbawGoJJdoTnWO9jX7SUDTjJCZ2EhM3iYlow9Zrn4eK5uPL1qu14BO_5IdJEGNFXRuABm3YruXYvP78a8vfa_4Lfv496CVnx-enKzARoCY4bOEqtMrHkVmzMVKZrvtl8AJeywE7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-layered+semantic+representation+network+for+multi-label+image+classification&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Qu%2C+Xiwen&rft.au=Che%2C+Hao&rft.au=Huang%2C+Jun&rft.au=Xu%2C+Linchuan&rft.date=2023-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=14&rft.issue=10&rft.spage=3427&rft.epage=3435&rft_id=info:doi/10.1007%2Fs13042-023-01841-6&rft.externalDocID=10_1007_s13042_023_01841_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |