A copy-move forgery detection technique using DBSCAN-based keypoint similarity matching
In an era marked by the contrast between information and disinformation, the ability to differentiate between authentic and manipulated images holds immense importance for both security professionals and the scientific community. Copy-move forgery is widely practiced thus, sprang up as a prevalent f...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 15; no. 12; pp. 5607 - 5634 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-024-02268-3 |
Cover
Loading…
Abstract | In an era marked by the contrast between information and disinformation, the ability to differentiate between authentic and manipulated images holds immense importance for both security professionals and the scientific community. Copy-move forgery is widely practiced thus, sprang up as a prevalent form of image manipulation among different types of forgeries. In this counterfeiting process, a region of an image is copied and pasted into different parts of the same image to hide or replicate the same objects. As copy-move forgery is hard to detect and localize, a swift and efficacious detection scheme based on keypoint detection is introduced. Especially the localization of forged areas becomes more difficult when the forged image is subjected to different post-processing attacks and geometrical attacks. In this paper, a robust, translation-invariant, and efficient copy-move forgery detection technique has been introduced. To achieve this goal, we developed an AKAZE-driven keypoint-based forgery detection technique. AKAZE is applied to the LL sub-band of the SWT-transformed image to extract translation invariant features, rather than extracting them directly from the original image. We then use the DBSCAN clustering algorithm and a uniform quantizer on each cluster to form group pairs based on their feature descriptor values. To mitigate false positives, keypoint pairs are separated by a distance greater than a predefined shift vector distance. This process forms a collection of keypoints within each cluster by leveraging their similarities in feature descriptors. Our clustering-based similarity-matching algorithm effectively locates the forged region. To assess the proposed scheme we deploy it on different datasets with post-processing attacks ranging from blurring, color reduction, contrast adjustment, brightness change, and noise addition. Even our method successfully withstands geometrical manipulations like rotation, skewing, and different affine transform attacks. Visual outcomes, numerical results, and comparative analysis show that the proposed model accurately detects the forged area with fewer false positives and is more computationally efficient than other methods. |
---|---|
AbstractList | In an era marked by the contrast between information and disinformation, the ability to differentiate between authentic and manipulated images holds immense importance for both security professionals and the scientific community. Copy-move forgery is widely practiced thus, sprang up as a prevalent form of image manipulation among different types of forgeries. In this counterfeiting process, a region of an image is copied and pasted into different parts of the same image to hide or replicate the same objects. As copy-move forgery is hard to detect and localize, a swift and efficacious detection scheme based on keypoint detection is introduced. Especially the localization of forged areas becomes more difficult when the forged image is subjected to different post-processing attacks and geometrical attacks. In this paper, a robust, translation-invariant, and efficient copy-move forgery detection technique has been introduced. To achieve this goal, we developed an AKAZE-driven keypoint-based forgery detection technique. AKAZE is applied to the LL sub-band of the SWT-transformed image to extract translation invariant features, rather than extracting them directly from the original image. We then use the DBSCAN clustering algorithm and a uniform quantizer on each cluster to form group pairs based on their feature descriptor values. To mitigate false positives, keypoint pairs are separated by a distance greater than a predefined shift vector distance. This process forms a collection of keypoints within each cluster by leveraging their similarities in feature descriptors. Our clustering-based similarity-matching algorithm effectively locates the forged region. To assess the proposed scheme we deploy it on different datasets with post-processing attacks ranging from blurring, color reduction, contrast adjustment, brightness change, and noise addition. Even our method successfully withstands geometrical manipulations like rotation, skewing, and different affine transform attacks. Visual outcomes, numerical results, and comparative analysis show that the proposed model accurately detects the forged area with fewer false positives and is more computationally efficient than other methods. |
Author | Maji, Soham Mukherjee, Soumya Pal, Arup Kumar |
Author_xml | – sequence: 1 givenname: Soumya surname: Mukherjee fullname: Mukherjee, Soumya email: mukhsoumya@gmail.com organization: Department of Computer Science Engineering, Indian Institute of Technology (ISM), Department of Computer Science Engineering (Data Science), Haldia Institute of Technology – sequence: 2 givenname: Arup Kumar surname: Pal fullname: Pal, Arup Kumar organization: Department of Computer Science Engineering, Indian Institute of Technology (ISM) – sequence: 3 givenname: Soham surname: Maji fullname: Maji, Soham organization: Department of Computer Science Engineering (Data Science), Haldia Institute of Technology |
BookMark | eNp9kF1PwyAUhomZiXPuD3hF4nWVj7bQyzk_k0Uv1OgdoZRuzLVUYCb99zJrNPFiJOSci_eBc55jMGptqwE4xegcI8QuPKYoJQkiabwk5wk9AGPMY8MRfxv99gwfgan3axRPjihFZAxeZ1DZrk8a-6lhbd1Sux5WOmgVjG1hrKvWfGw13HrTLuHV5dN89pCU0usKvuu-s6YN0JvGbKQzoYeNDGoVkyfgsJYbr6c_dQJebq6f53fJ4vH2fj5bJIriIiSqYoXCTGGd5TVjShKJlMqyPCsI4hXLZc0rVUhW0TItNcsRz1Mk87TMMlZKRifgbHi3czaO6YNY261r45eCYhIXp5SnMcWHlHLWe6droUyQuw2Dk2YjMBI7k2IwKaJJ8W1S0IiSf2jnTCNdvx-iA-RjuI1O_6baQ30Bg2iIBQ |
CitedBy_id | crossref_primary_10_1007_s00542_024_05773_1 |
Cites_doi | 10.1109/TIFS.2011.2129512 10.1109/ICCV.1999.790410 10.1016/j.jvcir.2017.04.004 10.1007/s13369-019-04238-2 10.1049/ipr2.12578 10.1016/j.forsciint.2013.05.027 10.1016/j.eswa.2012.08.002 10.1142/S0218001423500118 10.1109/ACCESS.2023.3304728 10.1109/ACCESS.2020.2974804 10.1007/s11042-015-2872-2 10.1016/j.eswa.2021.115282 10.1109/TIFS.2015.2455334 10.1007/s11042-023-15499-3 10.1109/TPAMI.2005.188 10.1049/iet-ipr.2019.1145 10.1109/TIFS.2012.2218597 10.1109/TIFS.2018.2876837 10.1109/TSP.2017.8076056 10.1109/ICCV.2011.6126294 10.1007/978-981-10-2053-7_29 10.1007/s11760-017-1191-7 10.1016/j.engappai.2016.12.022 10.1109/ICIP.2014.7026075 10.1016/j.jvcir.2021.103057 10.1109/TIFS.2015.2445742 10.1109/CIRSYSSIM.2017.8023194 10.1007/s11042-018-6922-4 10.1587/transinf.2016EDL8024 10.1111/1556-4029.13456 10.1007/s11049-014-9271-7 10.1109/ICCAIS.2018.8570513 10.1016/j.jvcir.2013.01.008 10.1109/ICIP.2016.7532339 10.1007/s11042-014-2431-2 10.3390/sym10120706 10.1109/ICADIWT.2014.6814687 10.1109/SPIN48934.2020.9071015 10.1007/s00500-020-04795-x 10.1109/ACCESS.2024.3380460 10.1016/j.ins.2018.06.040 10.1007/s11045-016-0416-1 10.1109/ICASSP.2011.5946873 10.1109/ChinaSIP.2013.6625374 10.1007/978-3-319-04960-1 10.1145/2791405.2791453 10.1109/ICCCNT49239.2020.9225658 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s13042-024-02268-3 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 5634 |
ExternalDocumentID | 10_1007_s13042_024_02268_3 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ JQ2 |
ID | FETCH-LOGICAL-c319t-cd79c17c1e56f77ca2a0cc55659208d76af8dc9a7d3b4be7608640a64b557ba73 |
IEDL.DBID | U2A |
ISSN | 1868-8071 |
IngestDate | Fri Jul 25 11:05:59 EDT 2025 Tue Jul 01 03:51:05 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 Fri Feb 21 02:36:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | SWT Image forensics DBSCAN Copy-move forgery detection (CMFD ) AKAZE |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-cd79c17c1e56f77ca2a0cc55659208d76af8dc9a7d3b4be7608640a64b557ba73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3121863384 |
PQPubID | 2043904 |
PageCount | 28 |
ParticipantIDs | proquest_journals_3121863384 crossref_citationtrail_10_1007_s13042_024_02268_3 crossref_primary_10_1007_s13042_024_02268_3 springer_journals_10_1007_s13042_024_02268_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Jaiswal A.K, Gupta D, Srivastava R (2020) Detection of copy-move forgery using hybrid approach of dct and brisk. In: 2020 7th International conference on signal processing and integrated networks (SPIN). IEEE, pp 471–476 Tralic D, Zupancic I, Grgic S, Grgic M (2013) Comofod-new database for copy-move forgery detection. In: Proceedings ELMAR-2013. IEEE, pp 49–54 ZhuYShenXChenHCopy-move forgery detection based on scaled orbMultimedia Tools Appl2016753221323310.1007/s11042-014-2431-2 Torres-TamaritFLength and voicing in friulian and milanese: or why rule-free derivations are neededNat Lang Linguist Theory2015331351138610.1007/s11049-014-9271-7 Dong J, Wang W, Tan T (2013) Casia image tampering detection evaluation database. In: 2013 IEEE China summit and international conference on signal and information processing. IEEE, pp 422–426 LyuQLuoJLiuKYinXLiuJLuWCopy move forgery detection based on double matchingJ Vis Commun Image Rep20217610.1016/j.jvcir.2021.103057 EmamMHanQZhangHTwo-stage keypoint detection scheme for region duplication forgery detection in digital imagesJ Forens Sci201863110211110.1111/1556-4029.13456 WangCZhangZZhouXAn image copy-move forgery detection scheme based on a-kaze and surf featuresSymmetry2018101270610.3390/sym10120706 Narayanan S.S, Gopakumar G (2020) Recursive block based keypoint matching for copy move image forgery detection. In: 2020 11th international conference on computing, communication and networking technologies (ICCCNT). IEEE, pp 1–6 GuoJ-MLiuY-FWuZ-JDuplication forgery detection using improved daisy descriptorExpert Syst Appl201340270771410.1016/j.eswa.2012.08.002 YangJLiangZLiJGanYZhongJA novel copy-move forgery detection algorithm via gradient-hash matching and simplified cluster-based filteringInt J Pattern Recognit Artif Intell20233706235001110.1142/S0218001423500118 AlcantarillaPFSolutionsTFast explicit diffusion for accelerated features in nonlinear scale spacesIEEE Trans Pattern Anal Mach Intell201134712811298 DhivyaSSangeethaJSudhakarBCopy-move forgery detection using surf feature extraction and svm supervised learning techniqueSoft Comput202024144291444010.1007/s00500-020-04795-x ManuVMehtreBMCopy-move tampering detection using affine transformation property preservation on clustered keypointsSIViP20181254955610.1007/s11760-017-1191-7 SoniBDasPKThounaojamDMGeometric transformation invariant block based copy-move forgery detection using fast and efficient hybrid local featuresJ Inf Secur Appl2019454451 ArdizzoneEBrunoAMazzolaGCopy-move forgery detection by matching triangles of keypointsIEEE Trans Inf Forens Secur201510102084209410.1109/TIFS.2015.2445742 Isaac M.M, Wilscy M (2015) Copy-move forgery detection based on harris corner points and brisk. In: Proceedings of the third international symposium on women in computing and informatics, pp 394–399 LinCLuWHuangXLiuKSunWLinHTanZCopy-move forgery detection using combined features and transitive matchingMultimedia Tools Appl201978300813009610.1007/s11042-018-6922-4 WangX-yWangX-qNiuP-pYangH-yAccurate and robust image copy-move forgery detection using adaptive keypoints and fqgpcet-glcm featureMultimedia Tools Appl20248312203223510.1007/s11042-023-15499-3 Khan K, Rehman S.U, Aziz K, Fong S, Sarasvady S (2014) Dbscan: past, present and future. In: The fifth international conference on the applications of digital information and web technologies (ICADIWT 2014). IEEE, pp 232–238 PunC-MChungJ-LA two-stage localization for copy-move forgery detectionInf Sci20184633355383670910.1016/j.ins.2018.06.040 LiYZhouJFast and effective image copy-move forgery detection via hierarchical feature point matchingIEEE Trans Inf Forens Secur20181451307132210.1109/TIFS.2018.2876837 Al-QershiOMKhooBEPassive detection of copy-move forgery in digital images: state-of-the-artForensic Sci Int20132311–328429510.1016/j.forsciint.2013.05.027 EmamMHanQNiuXPcet based copy-move forgery detection in images under geometric transformsMultimedia Tools Appl201675115131152710.1007/s11042-015-2872-2 Du T, Tian L, Li C (2018) Image copy-move forgery detection based on sift-brisk. In: 2018 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, pp 141–145 SunYNiRZhaoYNonoverlapping blocks based copy-move forgery detectionSecur Commun Netw20182018111 ChenHYangXLyuYCopy-move forgery detection based on keypoint clustering and similar neighborhood search algorithmIEEE Access20208368633687510.1109/ACCESS.2020.2974804 YueGDuanQLiuRPengWLiaoYLiuJSmdaf: a novel keypoint based method for copy-move forgery detectionIET Image Proc202216133589360210.1049/ipr2.12578 Wang Z, Fan B, Wu F (2011). Local intensity order pattern for feature description. In: 2011 International conference on computer vision. IEEE, pp 603–610 Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2. Ieee, pp 1150–1157 Emam M, Han Q, Zhang H (2016) Detection of copy-scale-move forgery in digital images using sfop and mrogh. In: Social computing: second international conference of young computer scientists, engineers and educators, ICYCSEE 2016, Harbin, China, August 20–22, 2016, Proceedings, Part I 2, pp 326–334 Springer Emam M, Han Q, Li Q, Zhang H (2017) A robust detection algorithm for image copy-move forgery in smooth regions. In: 2017 International conference on circuits, system and simulation (ICCSS). IEEE, pp 119–123 BilalMHabibHAMehmoodZSabaTRashidMSingle and multiple copy-move forgery detection and localization in digital images based on the sparsely encoded distinctive features and dbscan clusteringArab J Sci Eng2020452975299210.1007/s13369-019-04238-2 DiwanARoyAKCnn-keypoint based two-stage hybrid approach for copy-move forgery detectionIEEE Access202412438094382610.1109/ACCESS.2024.3380460 ShivakumarBBabooSSDetection of region duplication forgery in digital images using surfInt J Comput Sci Issues (IJCSI)201184199 Muzaffer G, Ulutas G (2017) A fast and effective digital image copy move forgery detection with binarized sift. In: 2017 40th international conference on telecommunications and signal processing (TSP). IEEE, pp 595–598 MikolajczykKSchmidCA performance evaluation of local descriptorsIEEE Trans Pattern Anal Mach Intell200527101615163010.1109/TPAMI.2005.188 ChristleinVRiessCJordanJRiessCAngelopoulouEAn evaluation of popular copy-move forgery detection approachesIEEE Trans Inf Forens Secur2012761841185410.1109/TIFS.2012.2218597 Ester M, Kriegel H.-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, 96, 226–231 AmeriniIBallanLCaldelliRDel BimboASerraGA sift-based forensic method for copy-move attack detection and transformation recoveryIEEE Trans Inf Forens Secur2011631099111010.1109/TIFS.2011.2129512 Wen B, Zhu Y, Subramanian R, Ng T.-T, Shen X, Winkler S (2016) Coverage—a novel database for copy-move forgery detection. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 161–165 Broz M (2024) How many pictures are there: statistics, trends, and forecasts. photutorial.com (November 23, 2023) CozzolinoDPoggiGVerdolivaLEfficient dense-field copy-move forgery detectionIEEE Trans Inf Forens Secur201510112284229710.1109/TIFS.2015.2455334 ZhengJLiuYRenJZhuTYanYYangHFusion of block and keypoints based approaches for effective copy-move image forgery detectionMultidimens Syst Signal Process2016279891005353599510.1007/s11045-016-0416-1 Cozzolino D, Poggi G, Verdoliva L (2014) Copy-move forgery detection based on patchmatch. In: 2014 IEEE international conference on image processing (ICIP), pp 5312–5316. https://doi.org/10.1109/ICIP.2014.7026075 TianXZhouGXuMImage copy-move forgery detection algorithm based on orb and novel similarity metricIET Image Proc202014102092210010.1049/iet-ipr.2019.1145 Bravo-Solorio S, Nandi AK (2011) Exposing duplicated regions affected by reflection, rotation and scaling. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1880–1883 YangFLiJLuWWengJCopy-move forgery detection based on hybrid featuresEng Appl Artif Intell201759738310.1016/j.engappai.2016.12.022 ChenLLuWNiJSunWHuangJRegion duplication detection based on Harris corner points and step sector statisticsJ Vis Commun Image Rep201324324425410.1016/j.jvcir.2013.01.008 EmamMHanQYuLZhangHA keypoint-based region duplication forgery detection algorithmIEICE Trans Inf Syst20169992413241610.1587/transinf.2016EDL8024 ThampiSMGelbukhAMukhopadhyayJAdvances in signal processing and intelligent recognition systems2014BerlinSpringer10.1007/978-3-319-04960-1 Diwan A, Kumar D, Mahadeva R, Perera H, Alawatugoda J (2023) Unveiling copy-move forgeries: enhancing detection with superpoint keypoint architecture. IEEE Access WarifNBAWahabAWAIdrisMYISallehROthmanFSift-symmetry: a robust detection method for copy-move forgery with reflection attackJ Vis Commun Image Rep20174621923210.1016/j.jvcir.2017.04.004 DixitABagSA fast technique to detect copy-move image forgery with reflection and non-affine transformation attacksExpert Syst Appl202118210.1016/j.eswa.2021.115282 J Zheng (2268_CR21) 2016; 27 2268_CR49 C Wang (2268_CR43) 2018; 10 SM Thampi (2268_CR46) 2014 L Chen (2268_CR18) 2013; 24 H Chen (2268_CR44) 2020; 8 X-y Wang (2268_CR31) 2024; 83 Y Zhu (2268_CR56) 2016; 75 F Torres-Tamarit (2268_CR47) 2015; 33 M Emam (2268_CR25) 2016; 75 X Tian (2268_CR23) 2020; 14 J-M Guo (2268_CR52) 2013; 40 OM Al-Qershi (2268_CR2) 2013; 231 2268_CR17 V Christlein (2268_CR39) 2012; 7 F Yang (2268_CR50) 2017; 59 I Amerini (2268_CR35) 2011; 6 Y Sun (2268_CR42) 2018; 2018 M Emam (2268_CR27) 2016; 99 2268_CR5 M Bilal (2268_CR7) 2020; 45 2268_CR6 2268_CR8 PF Alcantarilla (2268_CR4) 2011; 34 G Yue (2268_CR10) 2022; 16 M Emam (2268_CR26) 2018; 63 2268_CR54 2268_CR51 2268_CR1 2268_CR13 2268_CR14 2268_CR28 2268_CR29 V Manu (2268_CR45) 2018; 12 B Shivakumar (2268_CR15) 2011; 8 D Cozzolino (2268_CR40) 2015; 10 2268_CR20 S Dhivya (2268_CR22) 2020; 24 A Dixit (2268_CR16) 2021; 182 I Amerini (2268_CR24) 2011; 6 NBA Warif (2268_CR53) 2017; 46 C-M Pun (2268_CR12) 2018; 463 2268_CR38 E Ardizzone (2268_CR9) 2015; 10 Y Li (2268_CR41) 2018; 14 B Soni (2268_CR55) 2019; 45 Q Lyu (2268_CR11) 2021; 76 C Lin (2268_CR19) 2019; 78 A Diwan (2268_CR48) 2024; 12 K Mikolajczyk (2268_CR3) 2005; 27 2268_CR30 J Yang (2268_CR32) 2023; 37 2268_CR36 2268_CR33 I Amerini (2268_CR37) 2011; 6 2268_CR34 |
References_xml | – reference: Ester M, Kriegel H.-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, 96, 226–231 – reference: ManuVMehtreBMCopy-move tampering detection using affine transformation property preservation on clustered keypointsSIViP20181254955610.1007/s11760-017-1191-7 – reference: ZhuYShenXChenHCopy-move forgery detection based on scaled orbMultimedia Tools Appl2016753221323310.1007/s11042-014-2431-2 – reference: DhivyaSSangeethaJSudhakarBCopy-move forgery detection using surf feature extraction and svm supervised learning techniqueSoft Comput202024144291444010.1007/s00500-020-04795-x – reference: Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2. Ieee, pp 1150–1157 – reference: EmamMHanQYuLZhangHA keypoint-based region duplication forgery detection algorithmIEICE Trans Inf Syst20169992413241610.1587/transinf.2016EDL8024 – reference: Bravo-Solorio S, Nandi AK (2011) Exposing duplicated regions affected by reflection, rotation and scaling. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1880–1883 – reference: LinCLuWHuangXLiuKSunWLinHTanZCopy-move forgery detection using combined features and transitive matchingMultimedia Tools Appl201978300813009610.1007/s11042-018-6922-4 – reference: TianXZhouGXuMImage copy-move forgery detection algorithm based on orb and novel similarity metricIET Image Proc202014102092210010.1049/iet-ipr.2019.1145 – reference: Wen B, Zhu Y, Subramanian R, Ng T.-T, Shen X, Winkler S (2016) Coverage—a novel database for copy-move forgery detection. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 161–165 – reference: DixitABagSA fast technique to detect copy-move image forgery with reflection and non-affine transformation attacksExpert Syst Appl202118210.1016/j.eswa.2021.115282 – reference: Muzaffer G, Ulutas G (2017) A fast and effective digital image copy move forgery detection with binarized sift. In: 2017 40th international conference on telecommunications and signal processing (TSP). IEEE, pp 595–598 – reference: Du T, Tian L, Li C (2018) Image copy-move forgery detection based on sift-brisk. In: 2018 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, pp 141–145 – reference: YangJLiangZLiJGanYZhongJA novel copy-move forgery detection algorithm via gradient-hash matching and simplified cluster-based filteringInt J Pattern Recognit Artif Intell20233706235001110.1142/S0218001423500118 – reference: ShivakumarBBabooSSDetection of region duplication forgery in digital images using surfInt J Comput Sci Issues (IJCSI)201184199 – reference: Narayanan S.S, Gopakumar G (2020) Recursive block based keypoint matching for copy move image forgery detection. In: 2020 11th international conference on computing, communication and networking technologies (ICCCNT). IEEE, pp 1–6 – reference: WangX-yWangX-qNiuP-pYangH-yAccurate and robust image copy-move forgery detection using adaptive keypoints and fqgpcet-glcm featureMultimedia Tools Appl20248312203223510.1007/s11042-023-15499-3 – reference: SoniBDasPKThounaojamDMGeometric transformation invariant block based copy-move forgery detection using fast and efficient hybrid local featuresJ Inf Secur Appl2019454451 – reference: EmamMHanQNiuXPcet based copy-move forgery detection in images under geometric transformsMultimedia Tools Appl201675115131152710.1007/s11042-015-2872-2 – reference: Khan K, Rehman S.U, Aziz K, Fong S, Sarasvady S (2014) Dbscan: past, present and future. In: The fifth international conference on the applications of digital information and web technologies (ICADIWT 2014). IEEE, pp 232–238 – reference: WangCZhangZZhouXAn image copy-move forgery detection scheme based on a-kaze and surf featuresSymmetry2018101270610.3390/sym10120706 – reference: EmamMHanQZhangHTwo-stage keypoint detection scheme for region duplication forgery detection in digital imagesJ Forens Sci201863110211110.1111/1556-4029.13456 – reference: Cozzolino D, Poggi G, Verdoliva L (2014) Copy-move forgery detection based on patchmatch. In: 2014 IEEE international conference on image processing (ICIP), pp 5312–5316. https://doi.org/10.1109/ICIP.2014.7026075 – reference: Broz M (2024) How many pictures are there: statistics, trends, and forecasts. photutorial.com (November 23, 2023) – reference: ChenHYangXLyuYCopy-move forgery detection based on keypoint clustering and similar neighborhood search algorithmIEEE Access20208368633687510.1109/ACCESS.2020.2974804 – reference: Tralic D, Zupancic I, Grgic S, Grgic M (2013) Comofod-new database for copy-move forgery detection. In: Proceedings ELMAR-2013. IEEE, pp 49–54 – reference: Isaac M.M, Wilscy M (2015) Copy-move forgery detection based on harris corner points and brisk. In: Proceedings of the third international symposium on women in computing and informatics, pp 394–399 – reference: ArdizzoneEBrunoAMazzolaGCopy-move forgery detection by matching triangles of keypointsIEEE Trans Inf Forens Secur201510102084209410.1109/TIFS.2015.2445742 – reference: YangFLiJLuWWengJCopy-move forgery detection based on hybrid featuresEng Appl Artif Intell201759738310.1016/j.engappai.2016.12.022 – reference: PunC-MChungJ-LA two-stage localization for copy-move forgery detectionInf Sci20184633355383670910.1016/j.ins.2018.06.040 – reference: LyuQLuoJLiuKYinXLiuJLuWCopy move forgery detection based on double matchingJ Vis Commun Image Rep20217610.1016/j.jvcir.2021.103057 – reference: SunYNiRZhaoYNonoverlapping blocks based copy-move forgery detectionSecur Commun Netw20182018111 – reference: Al-QershiOMKhooBEPassive detection of copy-move forgery in digital images: state-of-the-artForensic Sci Int20132311–328429510.1016/j.forsciint.2013.05.027 – reference: AmeriniIBallanLCaldelliRDel BimboASerraGA sift-based forensic method for copy-move attack detection and transformation recoveryIEEE Trans Inf Forens Secur2011631099111010.1109/TIFS.2011.2129512 – reference: Emam M, Han Q, Li Q, Zhang H (2017) A robust detection algorithm for image copy-move forgery in smooth regions. In: 2017 International conference on circuits, system and simulation (ICCSS). IEEE, pp 119–123 – reference: LiYZhouJFast and effective image copy-move forgery detection via hierarchical feature point matchingIEEE Trans Inf Forens Secur20181451307132210.1109/TIFS.2018.2876837 – reference: MikolajczykKSchmidCA performance evaluation of local descriptorsIEEE Trans Pattern Anal Mach Intell200527101615163010.1109/TPAMI.2005.188 – reference: BilalMHabibHAMehmoodZSabaTRashidMSingle and multiple copy-move forgery detection and localization in digital images based on the sparsely encoded distinctive features and dbscan clusteringArab J Sci Eng2020452975299210.1007/s13369-019-04238-2 – reference: WarifNBAWahabAWAIdrisMYISallehROthmanFSift-symmetry: a robust detection method for copy-move forgery with reflection attackJ Vis Commun Image Rep20174621923210.1016/j.jvcir.2017.04.004 – reference: Torres-TamaritFLength and voicing in friulian and milanese: or why rule-free derivations are neededNat Lang Linguist Theory2015331351138610.1007/s11049-014-9271-7 – reference: YueGDuanQLiuRPengWLiaoYLiuJSmdaf: a novel keypoint based method for copy-move forgery detectionIET Image Proc202216133589360210.1049/ipr2.12578 – reference: Emam M, Han Q, Zhang H (2016) Detection of copy-scale-move forgery in digital images using sfop and mrogh. In: Social computing: second international conference of young computer scientists, engineers and educators, ICYCSEE 2016, Harbin, China, August 20–22, 2016, Proceedings, Part I 2, pp 326–334 Springer – reference: ZhengJLiuYRenJZhuTYanYYangHFusion of block and keypoints based approaches for effective copy-move image forgery detectionMultidimens Syst Signal Process2016279891005353599510.1007/s11045-016-0416-1 – reference: ChristleinVRiessCJordanJRiessCAngelopoulouEAn evaluation of popular copy-move forgery detection approachesIEEE Trans Inf Forens Secur2012761841185410.1109/TIFS.2012.2218597 – reference: AlcantarillaPFSolutionsTFast explicit diffusion for accelerated features in nonlinear scale spacesIEEE Trans Pattern Anal Mach Intell201134712811298 – reference: Jaiswal A.K, Gupta D, Srivastava R (2020) Detection of copy-move forgery using hybrid approach of dct and brisk. In: 2020 7th International conference on signal processing and integrated networks (SPIN). IEEE, pp 471–476 – reference: ThampiSMGelbukhAMukhopadhyayJAdvances in signal processing and intelligent recognition systems2014BerlinSpringer10.1007/978-3-319-04960-1 – reference: DiwanARoyAKCnn-keypoint based two-stage hybrid approach for copy-move forgery detectionIEEE Access202412438094382610.1109/ACCESS.2024.3380460 – reference: Wang Z, Fan B, Wu F (2011). Local intensity order pattern for feature description. In: 2011 International conference on computer vision. IEEE, pp 603–610 – reference: Dong J, Wang W, Tan T (2013) Casia image tampering detection evaluation database. In: 2013 IEEE China summit and international conference on signal and information processing. IEEE, pp 422–426 – reference: Diwan A, Kumar D, Mahadeva R, Perera H, Alawatugoda J (2023) Unveiling copy-move forgeries: enhancing detection with superpoint keypoint architecture. IEEE Access – reference: GuoJ-MLiuY-FWuZ-JDuplication forgery detection using improved daisy descriptorExpert Syst Appl201340270771410.1016/j.eswa.2012.08.002 – reference: ChenLLuWNiJSunWHuangJRegion duplication detection based on Harris corner points and step sector statisticsJ Vis Commun Image Rep201324324425410.1016/j.jvcir.2013.01.008 – reference: CozzolinoDPoggiGVerdolivaLEfficient dense-field copy-move forgery detectionIEEE Trans Inf Forens Secur201510112284229710.1109/TIFS.2015.2455334 – volume: 6 start-page: 1099 issue: 3 year: 2011 ident: 2268_CR24 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2011.2129512 – ident: 2268_CR20 doi: 10.1109/ICCV.1999.790410 – volume: 2018 start-page: 1 year: 2018 ident: 2268_CR42 publication-title: Secur Commun Netw – volume: 46 start-page: 219 year: 2017 ident: 2268_CR53 publication-title: J Vis Commun Image Rep doi: 10.1016/j.jvcir.2017.04.004 – volume: 45 start-page: 2975 year: 2020 ident: 2268_CR7 publication-title: Arab J Sci Eng doi: 10.1007/s13369-019-04238-2 – volume: 16 start-page: 3589 issue: 13 year: 2022 ident: 2268_CR10 publication-title: IET Image Proc doi: 10.1049/ipr2.12578 – volume: 231 start-page: 284 issue: 1–3 year: 2013 ident: 2268_CR2 publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2013.05.027 – volume: 40 start-page: 707 issue: 2 year: 2013 ident: 2268_CR52 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.08.002 – volume: 37 start-page: 2350011 issue: 06 year: 2023 ident: 2268_CR32 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001423500118 – ident: 2268_CR30 doi: 10.1109/ACCESS.2023.3304728 – volume: 8 start-page: 36863 year: 2020 ident: 2268_CR44 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974804 – volume: 75 start-page: 11513 year: 2016 ident: 2268_CR25 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-015-2872-2 – volume: 182 year: 2021 ident: 2268_CR16 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115282 – volume: 6 start-page: 1099 issue: 3 year: 2011 ident: 2268_CR37 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2011.2129512 – volume: 10 start-page: 2284 issue: 11 year: 2015 ident: 2268_CR40 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2015.2455334 – volume: 83 start-page: 2203 issue: 1 year: 2024 ident: 2268_CR31 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-023-15499-3 – volume: 27 start-page: 1615 issue: 10 year: 2005 ident: 2268_CR3 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.188 – volume: 14 start-page: 2092 issue: 10 year: 2020 ident: 2268_CR23 publication-title: IET Image Proc doi: 10.1049/iet-ipr.2019.1145 – volume: 7 start-page: 1841 issue: 6 year: 2012 ident: 2268_CR39 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2012.2218597 – volume: 14 start-page: 1307 issue: 5 year: 2018 ident: 2268_CR41 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2018.2876837 – ident: 2268_CR49 doi: 10.1109/TSP.2017.8076056 – ident: 2268_CR17 doi: 10.1109/ICCV.2011.6126294 – ident: 2268_CR28 doi: 10.1007/978-981-10-2053-7_29 – ident: 2268_CR33 – volume: 12 start-page: 549 year: 2018 ident: 2268_CR45 publication-title: SIViP doi: 10.1007/s11760-017-1191-7 – volume: 59 start-page: 73 year: 2017 ident: 2268_CR50 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.12.022 – ident: 2268_CR34 doi: 10.1109/ICIP.2014.7026075 – volume: 76 year: 2021 ident: 2268_CR11 publication-title: J Vis Commun Image Rep doi: 10.1016/j.jvcir.2021.103057 – volume: 10 start-page: 2084 issue: 10 year: 2015 ident: 2268_CR9 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2015.2445742 – ident: 2268_CR29 doi: 10.1109/CIRSYSSIM.2017.8023194 – volume: 78 start-page: 30081 year: 2019 ident: 2268_CR19 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-018-6922-4 – volume: 99 start-page: 2413 issue: 9 year: 2016 ident: 2268_CR27 publication-title: IEICE Trans Inf Syst doi: 10.1587/transinf.2016EDL8024 – volume: 63 start-page: 102 issue: 1 year: 2018 ident: 2268_CR26 publication-title: J Forens Sci doi: 10.1111/1556-4029.13456 – volume: 33 start-page: 1351 year: 2015 ident: 2268_CR47 publication-title: Nat Lang Linguist Theory doi: 10.1007/s11049-014-9271-7 – ident: 2268_CR13 doi: 10.1109/ICCAIS.2018.8570513 – volume: 45 start-page: 44 year: 2019 ident: 2268_CR55 publication-title: J Inf Secur Appl – volume: 24 start-page: 244 issue: 3 year: 2013 ident: 2268_CR18 publication-title: J Vis Commun Image Rep doi: 10.1016/j.jvcir.2013.01.008 – volume: 34 start-page: 1281 issue: 7 year: 2011 ident: 2268_CR4 publication-title: IEEE Trans Pattern Anal Mach Intell – ident: 2268_CR36 doi: 10.1109/ICIP.2016.7532339 – volume: 75 start-page: 3221 year: 2016 ident: 2268_CR56 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-014-2431-2 – volume: 8 start-page: 199 issue: 4 year: 2011 ident: 2268_CR15 publication-title: Int J Comput Sci Issues (IJCSI) – volume: 10 start-page: 706 issue: 12 year: 2018 ident: 2268_CR43 publication-title: Symmetry doi: 10.3390/sym10120706 – ident: 2268_CR6 doi: 10.1109/ICADIWT.2014.6814687 – ident: 2268_CR8 doi: 10.1109/SPIN48934.2020.9071015 – volume: 6 start-page: 1099 issue: 3 year: 2011 ident: 2268_CR35 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2011.2129512 – volume: 24 start-page: 14429 year: 2020 ident: 2268_CR22 publication-title: Soft Comput doi: 10.1007/s00500-020-04795-x – volume: 12 start-page: 43809 year: 2024 ident: 2268_CR48 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3380460 – volume: 463 start-page: 33 year: 2018 ident: 2268_CR12 publication-title: Inf Sci doi: 10.1016/j.ins.2018.06.040 – volume: 27 start-page: 989 year: 2016 ident: 2268_CR21 publication-title: Multidimens Syst Signal Process doi: 10.1007/s11045-016-0416-1 – ident: 2268_CR38 doi: 10.1109/ICASSP.2011.5946873 – ident: 2268_CR51 doi: 10.1109/ChinaSIP.2013.6625374 – volume-title: Advances in signal processing and intelligent recognition systems year: 2014 ident: 2268_CR46 doi: 10.1007/978-3-319-04960-1 – ident: 2268_CR1 – ident: 2268_CR5 – ident: 2268_CR54 doi: 10.1145/2791405.2791453 – ident: 2268_CR14 doi: 10.1109/ICCCNT49239.2020.9225658 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.364371 |
Snippet | In an era marked by the contrast between information and disinformation, the ability to differentiate between authentic and manipulated images holds immense... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5607 |
SubjectTerms | Affine transformations Algorithms Artificial Intelligence Clustering Complex Systems Computational Intelligence Control Digital signatures Engineering Feature extraction Forensic sciences Forgery Image contrast Image manipulation Invariants Literature reviews Matching Mechatronics Methods Original Article Pattern Recognition Retouching Robotics Similarity Systems Biology Wavelet transforms |
Title | A copy-move forgery detection technique using DBSCAN-based keypoint similarity matching |
URI | https://link.springer.com/article/10.1007/s13042-024-02268-3 https://www.proquest.com/docview/3121863384 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5S-9IeSp201K0b9pBDS7Ogx2pXPspunJBQXxrT5CT25WCIJROphf77zq4lKwlNIQchkFYSzGNnRvvNtwBHLipKjAU05NpStgwVzoNK0UCnillmrPWQ_-9zfrZg51fJVdMUVrVo93ZJ0s_UXbObq7wpxhQ8Ip7S-AX0E6zdHZBvEWWtFcWh41fpgmwcM88ztfvzEnC8tgUjpviaFINs003z7888jFhdGvpo5dQHpNkbeN1kkiTbqn4Ae7bYh1f3-AX3YdB4bkU-N_TSXw7gZ0Z0uflD1-VvS5al74omxtYek1WQHakrcZD4G_Jt8mOazamLdoagx2_KVVGTarVeYU2MKTzBlNfjMd_CYnZyOT2jzfYKVKPf1VQbMdah0KFN-FIILSMZaJ0kbqE1SI3gcpkaPZbCxIopKzhWPyyQnCkUp5Iifge9oizseyA6cokXTww3CdNcjlPNmRVxaiQPlQmHELYizHXDPe62wLjNO9ZkJ_YcxZ57sefxEL7untlsmTf-O3rUaiZvvLDK0RRQxViEsyEct9rqbj_9tg_PG_4RXkbOYDzKZQS9-u6X_YS5Sq0OoZ_NJpO5O59eX5wcelP9C74M3P0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y4FyaMtL3UJbHziAqFGycezscUuhWx57gVXpKfJrqxWQrNiABL--Y6-zaVGLxCGXxHFkz3i-mXjmM8CWQ0WJWEBjri1lo1ihHVSKRjpTzDJjrU_5Px3w_pAdXaQXoShsWme711uS3lI3xW4u8qaIKXh1eEaTl7DAMAZnLVjofft5fFDrURI7hpUGZpOEeaap-b-XiOO9WTpihh1lCLOhnubfH_obsxpH9NHeqYekwzcwrAczy0S53Lut1J5-eMTz-NzRvoXXwUclvZlSLcMLW6zA0h_MhSuwHGzClGwH4uqdVfjRI7qc3NPr8s6SUenrrYmxlc_2KsicLpa4ZPtf5OuXs_3egDocNQRtyaQcFxWZjq_HGG1jcEDQmfaZnmswPDw43-_TcHAD1biiK6qN6OpY6NimfCSElh0ZaZ2mbgs3yozgcpQZ3ZXCJIopKzjGVSySnCkUk5IiWYdWURb2HRDdcS4dTw03KdNcdjPNmRVJZiSPlYnbENeiyXVgNXeHa1zlDR-zm8kcZzL3M5knbdidvzOZcXo82Xqzlnge1vc0RxVD1cHwnrXhcy3A5vH_e3v_vOafYLF_fnqSn3wfHG_Aq47TB59Lswmt6ubWfkCPqFIfwwL4Dc6e-c0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2VRaroAQq06lKgPvTQCgzJxrGzx-VjS0u7QqKocIr8lWoFJKtuqFR-PWMn2VDUIlU95JI4jmyP_WbiN88Abx0qSsQCGnJtKctCheugUjTQiWKWGWs95f_LiB-dsU_n8fm9LH7Pdm-2JKucBqfSlJe7E5PttolvLgqniC949XhCozmYZ06cvQPzgw8Xx4eNTUWhU1tpITeKmFedmv2HCTjeq6iJCVaUIOTWuTV__tDv-NU6pQ_2UT08DZdANg2rWCmXOzel2tG3DzQf_6flz2Gx9l3JoDK2ZXhi8xV4dk_RcAWW67ViSt7VgtbvV-HbgOhi8oteFz8tyQqfh02MLT0LLCczGVniSPjfycHe6f5gRB2-GoJrzKQY5yWZjq_HGIVj0EDQyfYM0BdwNjz8un9E6wMdqMaZXlJtRF-HQoc25pkQWvZkoHUcu63dIDGCyywxui-FiRRTVnCMt1ggOVM4ZEqK6CV08iK3r4DonnP1eGy4iZnmsp9ozqyIEiN5qEzYhbAZplTXaufu0I2rtNVpdj2ZYk-mvifTqAtbs3cmldbHo6XXm9FP63k_TdHc0Iww7Gdd2G4Gs33899rW_q34G3h6cjBMP38cHb-GhZ4zB0-xWYdO-ePGbqCjVKrNei7cASdXAsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+copy-move+forgery+detection+technique+using+DBSCAN-based+keypoint+similarity+matching&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Mukherjee%2C+Soumya&rft.au=Pal%2C+Arup+Kumar&rft.au=Maji%2C+Soham&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=12&rft.spage=5607&rft.epage=5634&rft_id=info:doi/10.1007%2Fs13042-024-02268-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |