A copy-move forgery detection technique using DBSCAN-based keypoint similarity matching

In an era marked by the contrast between information and disinformation, the ability to differentiate between authentic and manipulated images holds immense importance for both security professionals and the scientific community. Copy-move forgery is widely practiced thus, sprang up as a prevalent f...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 15; no. 12; pp. 5607 - 5634
Main Authors Mukherjee, Soumya, Pal, Arup Kumar, Maji, Soham
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-024-02268-3

Cover

Loading…
Abstract In an era marked by the contrast between information and disinformation, the ability to differentiate between authentic and manipulated images holds immense importance for both security professionals and the scientific community. Copy-move forgery is widely practiced thus, sprang up as a prevalent form of image manipulation among different types of forgeries. In this counterfeiting process, a region of an image is copied and pasted into different parts of the same image to hide or replicate the same objects. As copy-move forgery is hard to detect and localize, a swift and efficacious detection scheme based on keypoint detection is introduced. Especially the localization of forged areas becomes more difficult when the forged image is subjected to different post-processing attacks and geometrical attacks. In this paper, a robust, translation-invariant, and efficient copy-move forgery detection technique has been introduced. To achieve this goal, we developed an AKAZE-driven keypoint-based forgery detection technique. AKAZE is applied to the LL sub-band of the SWT-transformed image to extract translation invariant features, rather than extracting them directly from the original image. We then use the DBSCAN clustering algorithm and a uniform quantizer on each cluster to form group pairs based on their feature descriptor values. To mitigate false positives, keypoint pairs are separated by a distance greater than a predefined shift vector distance. This process forms a collection of keypoints within each cluster by leveraging their similarities in feature descriptors. Our clustering-based similarity-matching algorithm effectively locates the forged region. To assess the proposed scheme we deploy it on different datasets with post-processing attacks ranging from blurring, color reduction, contrast adjustment, brightness change, and noise addition. Even our method successfully withstands geometrical manipulations like rotation, skewing, and different affine transform attacks. Visual outcomes, numerical results, and comparative analysis show that the proposed model accurately detects the forged area with fewer false positives and is more computationally efficient than other methods.
AbstractList In an era marked by the contrast between information and disinformation, the ability to differentiate between authentic and manipulated images holds immense importance for both security professionals and the scientific community. Copy-move forgery is widely practiced thus, sprang up as a prevalent form of image manipulation among different types of forgeries. In this counterfeiting process, a region of an image is copied and pasted into different parts of the same image to hide or replicate the same objects. As copy-move forgery is hard to detect and localize, a swift and efficacious detection scheme based on keypoint detection is introduced. Especially the localization of forged areas becomes more difficult when the forged image is subjected to different post-processing attacks and geometrical attacks. In this paper, a robust, translation-invariant, and efficient copy-move forgery detection technique has been introduced. To achieve this goal, we developed an AKAZE-driven keypoint-based forgery detection technique. AKAZE is applied to the LL sub-band of the SWT-transformed image to extract translation invariant features, rather than extracting them directly from the original image. We then use the DBSCAN clustering algorithm and a uniform quantizer on each cluster to form group pairs based on their feature descriptor values. To mitigate false positives, keypoint pairs are separated by a distance greater than a predefined shift vector distance. This process forms a collection of keypoints within each cluster by leveraging their similarities in feature descriptors. Our clustering-based similarity-matching algorithm effectively locates the forged region. To assess the proposed scheme we deploy it on different datasets with post-processing attacks ranging from blurring, color reduction, contrast adjustment, brightness change, and noise addition. Even our method successfully withstands geometrical manipulations like rotation, skewing, and different affine transform attacks. Visual outcomes, numerical results, and comparative analysis show that the proposed model accurately detects the forged area with fewer false positives and is more computationally efficient than other methods.
Author Maji, Soham
Mukherjee, Soumya
Pal, Arup Kumar
Author_xml – sequence: 1
  givenname: Soumya
  surname: Mukherjee
  fullname: Mukherjee, Soumya
  email: mukhsoumya@gmail.com
  organization: Department of Computer Science Engineering, Indian Institute of Technology (ISM), Department of Computer Science Engineering (Data Science), Haldia Institute of Technology
– sequence: 2
  givenname: Arup Kumar
  surname: Pal
  fullname: Pal, Arup Kumar
  organization: Department of Computer Science Engineering, Indian Institute of Technology (ISM)
– sequence: 3
  givenname: Soham
  surname: Maji
  fullname: Maji, Soham
  organization: Department of Computer Science Engineering (Data Science), Haldia Institute of Technology
BookMark eNp9kF1PwyAUhomZiXPuD3hF4nWVj7bQyzk_k0Uv1OgdoZRuzLVUYCb99zJrNPFiJOSci_eBc55jMGptqwE4xegcI8QuPKYoJQkiabwk5wk9AGPMY8MRfxv99gwfgan3axRPjihFZAxeZ1DZrk8a-6lhbd1Sux5WOmgVjG1hrKvWfGw13HrTLuHV5dN89pCU0usKvuu-s6YN0JvGbKQzoYeNDGoVkyfgsJYbr6c_dQJebq6f53fJ4vH2fj5bJIriIiSqYoXCTGGd5TVjShKJlMqyPCsI4hXLZc0rVUhW0TItNcsRz1Mk87TMMlZKRifgbHi3czaO6YNY261r45eCYhIXp5SnMcWHlHLWe6droUyQuw2Dk2YjMBI7k2IwKaJJ8W1S0IiSf2jnTCNdvx-iA-RjuI1O_6baQ30Bg2iIBQ
CitedBy_id crossref_primary_10_1007_s00542_024_05773_1
Cites_doi 10.1109/TIFS.2011.2129512
10.1109/ICCV.1999.790410
10.1016/j.jvcir.2017.04.004
10.1007/s13369-019-04238-2
10.1049/ipr2.12578
10.1016/j.forsciint.2013.05.027
10.1016/j.eswa.2012.08.002
10.1142/S0218001423500118
10.1109/ACCESS.2023.3304728
10.1109/ACCESS.2020.2974804
10.1007/s11042-015-2872-2
10.1016/j.eswa.2021.115282
10.1109/TIFS.2015.2455334
10.1007/s11042-023-15499-3
10.1109/TPAMI.2005.188
10.1049/iet-ipr.2019.1145
10.1109/TIFS.2012.2218597
10.1109/TIFS.2018.2876837
10.1109/TSP.2017.8076056
10.1109/ICCV.2011.6126294
10.1007/978-981-10-2053-7_29
10.1007/s11760-017-1191-7
10.1016/j.engappai.2016.12.022
10.1109/ICIP.2014.7026075
10.1016/j.jvcir.2021.103057
10.1109/TIFS.2015.2445742
10.1109/CIRSYSSIM.2017.8023194
10.1007/s11042-018-6922-4
10.1587/transinf.2016EDL8024
10.1111/1556-4029.13456
10.1007/s11049-014-9271-7
10.1109/ICCAIS.2018.8570513
10.1016/j.jvcir.2013.01.008
10.1109/ICIP.2016.7532339
10.1007/s11042-014-2431-2
10.3390/sym10120706
10.1109/ICADIWT.2014.6814687
10.1109/SPIN48934.2020.9071015
10.1007/s00500-020-04795-x
10.1109/ACCESS.2024.3380460
10.1016/j.ins.2018.06.040
10.1007/s11045-016-0416-1
10.1109/ICASSP.2011.5946873
10.1109/ChinaSIP.2013.6625374
10.1007/978-3-319-04960-1
10.1145/2791405.2791453
10.1109/ICCCNT49239.2020.9225658
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13042-024-02268-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 5634
ExternalDocumentID 10_1007_s13042_024_02268_3
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
JQ2
ID FETCH-LOGICAL-c319t-cd79c17c1e56f77ca2a0cc55659208d76af8dc9a7d3b4be7608640a64b557ba73
IEDL.DBID U2A
ISSN 1868-8071
IngestDate Fri Jul 25 11:05:59 EDT 2025
Tue Jul 01 03:51:05 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
Fri Feb 21 02:36:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords SWT
Image forensics
DBSCAN
Copy-move forgery detection (CMFD )
AKAZE
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cd79c17c1e56f77ca2a0cc55659208d76af8dc9a7d3b4be7608640a64b557ba73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3121863384
PQPubID 2043904
PageCount 28
ParticipantIDs proquest_journals_3121863384
crossref_citationtrail_10_1007_s13042_024_02268_3
crossref_primary_10_1007_s13042_024_02268_3
springer_journals_10_1007_s13042_024_02268_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Jaiswal A.K, Gupta D, Srivastava R (2020) Detection of copy-move forgery using hybrid approach of dct and brisk. In: 2020 7th International conference on signal processing and integrated networks (SPIN). IEEE, pp 471–476
Tralic D, Zupancic I, Grgic S, Grgic M (2013) Comofod-new database for copy-move forgery detection. In: Proceedings ELMAR-2013. IEEE, pp 49–54
ZhuYShenXChenHCopy-move forgery detection based on scaled orbMultimedia Tools Appl2016753221323310.1007/s11042-014-2431-2
Torres-TamaritFLength and voicing in friulian and milanese: or why rule-free derivations are neededNat Lang Linguist Theory2015331351138610.1007/s11049-014-9271-7
Dong J, Wang W, Tan T (2013) Casia image tampering detection evaluation database. In: 2013 IEEE China summit and international conference on signal and information processing. IEEE, pp 422–426
LyuQLuoJLiuKYinXLiuJLuWCopy move forgery detection based on double matchingJ Vis Commun Image Rep20217610.1016/j.jvcir.2021.103057
EmamMHanQZhangHTwo-stage keypoint detection scheme for region duplication forgery detection in digital imagesJ Forens Sci201863110211110.1111/1556-4029.13456
WangCZhangZZhouXAn image copy-move forgery detection scheme based on a-kaze and surf featuresSymmetry2018101270610.3390/sym10120706
Narayanan S.S, Gopakumar G (2020) Recursive block based keypoint matching for copy move image forgery detection. In: 2020 11th international conference on computing, communication and networking technologies (ICCCNT). IEEE, pp 1–6
GuoJ-MLiuY-FWuZ-JDuplication forgery detection using improved daisy descriptorExpert Syst Appl201340270771410.1016/j.eswa.2012.08.002
YangJLiangZLiJGanYZhongJA novel copy-move forgery detection algorithm via gradient-hash matching and simplified cluster-based filteringInt J Pattern Recognit Artif Intell20233706235001110.1142/S0218001423500118
AlcantarillaPFSolutionsTFast explicit diffusion for accelerated features in nonlinear scale spacesIEEE Trans Pattern Anal Mach Intell201134712811298
DhivyaSSangeethaJSudhakarBCopy-move forgery detection using surf feature extraction and svm supervised learning techniqueSoft Comput202024144291444010.1007/s00500-020-04795-x
ManuVMehtreBMCopy-move tampering detection using affine transformation property preservation on clustered keypointsSIViP20181254955610.1007/s11760-017-1191-7
SoniBDasPKThounaojamDMGeometric transformation invariant block based copy-move forgery detection using fast and efficient hybrid local featuresJ Inf Secur Appl2019454451
ArdizzoneEBrunoAMazzolaGCopy-move forgery detection by matching triangles of keypointsIEEE Trans Inf Forens Secur201510102084209410.1109/TIFS.2015.2445742
Isaac M.M, Wilscy M (2015) Copy-move forgery detection based on harris corner points and brisk. In: Proceedings of the third international symposium on women in computing and informatics, pp 394–399
LinCLuWHuangXLiuKSunWLinHTanZCopy-move forgery detection using combined features and transitive matchingMultimedia Tools Appl201978300813009610.1007/s11042-018-6922-4
WangX-yWangX-qNiuP-pYangH-yAccurate and robust image copy-move forgery detection using adaptive keypoints and fqgpcet-glcm featureMultimedia Tools Appl20248312203223510.1007/s11042-023-15499-3
Khan K, Rehman S.U, Aziz K, Fong S, Sarasvady S (2014) Dbscan: past, present and future. In: The fifth international conference on the applications of digital information and web technologies (ICADIWT 2014). IEEE, pp 232–238
PunC-MChungJ-LA two-stage localization for copy-move forgery detectionInf Sci20184633355383670910.1016/j.ins.2018.06.040
LiYZhouJFast and effective image copy-move forgery detection via hierarchical feature point matchingIEEE Trans Inf Forens Secur20181451307132210.1109/TIFS.2018.2876837
Al-QershiOMKhooBEPassive detection of copy-move forgery in digital images: state-of-the-artForensic Sci Int20132311–328429510.1016/j.forsciint.2013.05.027
EmamMHanQNiuXPcet based copy-move forgery detection in images under geometric transformsMultimedia Tools Appl201675115131152710.1007/s11042-015-2872-2
Du T, Tian L, Li C (2018) Image copy-move forgery detection based on sift-brisk. In: 2018 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, pp 141–145
SunYNiRZhaoYNonoverlapping blocks based copy-move forgery detectionSecur Commun Netw20182018111
ChenHYangXLyuYCopy-move forgery detection based on keypoint clustering and similar neighborhood search algorithmIEEE Access20208368633687510.1109/ACCESS.2020.2974804
YueGDuanQLiuRPengWLiaoYLiuJSmdaf: a novel keypoint based method for copy-move forgery detectionIET Image Proc202216133589360210.1049/ipr2.12578
Wang Z, Fan B, Wu F (2011). Local intensity order pattern for feature description. In: 2011 International conference on computer vision. IEEE, pp 603–610
Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2. Ieee, pp 1150–1157
Emam M, Han Q, Zhang H (2016) Detection of copy-scale-move forgery in digital images using sfop and mrogh. In: Social computing: second international conference of young computer scientists, engineers and educators, ICYCSEE 2016, Harbin, China, August 20–22, 2016, Proceedings, Part I 2, pp 326–334 Springer
Emam M, Han Q, Li Q, Zhang H (2017) A robust detection algorithm for image copy-move forgery in smooth regions. In: 2017 International conference on circuits, system and simulation (ICCSS). IEEE, pp 119–123
BilalMHabibHAMehmoodZSabaTRashidMSingle and multiple copy-move forgery detection and localization in digital images based on the sparsely encoded distinctive features and dbscan clusteringArab J Sci Eng2020452975299210.1007/s13369-019-04238-2
DiwanARoyAKCnn-keypoint based two-stage hybrid approach for copy-move forgery detectionIEEE Access202412438094382610.1109/ACCESS.2024.3380460
ShivakumarBBabooSSDetection of region duplication forgery in digital images using surfInt J Comput Sci Issues (IJCSI)201184199
Muzaffer G, Ulutas G (2017) A fast and effective digital image copy move forgery detection with binarized sift. In: 2017 40th international conference on telecommunications and signal processing (TSP). IEEE, pp 595–598
MikolajczykKSchmidCA performance evaluation of local descriptorsIEEE Trans Pattern Anal Mach Intell200527101615163010.1109/TPAMI.2005.188
ChristleinVRiessCJordanJRiessCAngelopoulouEAn evaluation of popular copy-move forgery detection approachesIEEE Trans Inf Forens Secur2012761841185410.1109/TIFS.2012.2218597
Ester M, Kriegel H.-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, 96, 226–231
AmeriniIBallanLCaldelliRDel BimboASerraGA sift-based forensic method for copy-move attack detection and transformation recoveryIEEE Trans Inf Forens Secur2011631099111010.1109/TIFS.2011.2129512
Wen B, Zhu Y, Subramanian R, Ng T.-T, Shen X, Winkler S (2016) Coverage—a novel database for copy-move forgery detection. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 161–165
Broz M (2024) How many pictures are there: statistics, trends, and forecasts. photutorial.com (November 23, 2023)
CozzolinoDPoggiGVerdolivaLEfficient dense-field copy-move forgery detectionIEEE Trans Inf Forens Secur201510112284229710.1109/TIFS.2015.2455334
ZhengJLiuYRenJZhuTYanYYangHFusion of block and keypoints based approaches for effective copy-move image forgery detectionMultidimens Syst Signal Process2016279891005353599510.1007/s11045-016-0416-1
Cozzolino D, Poggi G, Verdoliva L (2014) Copy-move forgery detection based on patchmatch. In: 2014 IEEE international conference on image processing (ICIP), pp 5312–5316. https://doi.org/10.1109/ICIP.2014.7026075
TianXZhouGXuMImage copy-move forgery detection algorithm based on orb and novel similarity metricIET Image Proc202014102092210010.1049/iet-ipr.2019.1145
Bravo-Solorio S, Nandi AK (2011) Exposing duplicated regions affected by reflection, rotation and scaling. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1880–1883
YangFLiJLuWWengJCopy-move forgery detection based on hybrid featuresEng Appl Artif Intell201759738310.1016/j.engappai.2016.12.022
ChenLLuWNiJSunWHuangJRegion duplication detection based on Harris corner points and step sector statisticsJ Vis Commun Image Rep201324324425410.1016/j.jvcir.2013.01.008
EmamMHanQYuLZhangHA keypoint-based region duplication forgery detection algorithmIEICE Trans Inf Syst20169992413241610.1587/transinf.2016EDL8024
ThampiSMGelbukhAMukhopadhyayJAdvances in signal processing and intelligent recognition systems2014BerlinSpringer10.1007/978-3-319-04960-1
Diwan A, Kumar D, Mahadeva R, Perera H, Alawatugoda J (2023) Unveiling copy-move forgeries: enhancing detection with superpoint keypoint architecture. IEEE Access
WarifNBAWahabAWAIdrisMYISallehROthmanFSift-symmetry: a robust detection method for copy-move forgery with reflection attackJ Vis Commun Image Rep20174621923210.1016/j.jvcir.2017.04.004
DixitABagSA fast technique to detect copy-move image forgery with reflection and non-affine transformation attacksExpert Syst Appl202118210.1016/j.eswa.2021.115282
J Zheng (2268_CR21) 2016; 27
2268_CR49
C Wang (2268_CR43) 2018; 10
SM Thampi (2268_CR46) 2014
L Chen (2268_CR18) 2013; 24
H Chen (2268_CR44) 2020; 8
X-y Wang (2268_CR31) 2024; 83
Y Zhu (2268_CR56) 2016; 75
F Torres-Tamarit (2268_CR47) 2015; 33
M Emam (2268_CR25) 2016; 75
X Tian (2268_CR23) 2020; 14
J-M Guo (2268_CR52) 2013; 40
OM Al-Qershi (2268_CR2) 2013; 231
2268_CR17
V Christlein (2268_CR39) 2012; 7
F Yang (2268_CR50) 2017; 59
I Amerini (2268_CR35) 2011; 6
Y Sun (2268_CR42) 2018; 2018
M Emam (2268_CR27) 2016; 99
2268_CR5
M Bilal (2268_CR7) 2020; 45
2268_CR6
2268_CR8
PF Alcantarilla (2268_CR4) 2011; 34
G Yue (2268_CR10) 2022; 16
M Emam (2268_CR26) 2018; 63
2268_CR54
2268_CR51
2268_CR1
2268_CR13
2268_CR14
2268_CR28
2268_CR29
V Manu (2268_CR45) 2018; 12
B Shivakumar (2268_CR15) 2011; 8
D Cozzolino (2268_CR40) 2015; 10
2268_CR20
S Dhivya (2268_CR22) 2020; 24
A Dixit (2268_CR16) 2021; 182
I Amerini (2268_CR24) 2011; 6
NBA Warif (2268_CR53) 2017; 46
C-M Pun (2268_CR12) 2018; 463
2268_CR38
E Ardizzone (2268_CR9) 2015; 10
Y Li (2268_CR41) 2018; 14
B Soni (2268_CR55) 2019; 45
Q Lyu (2268_CR11) 2021; 76
C Lin (2268_CR19) 2019; 78
A Diwan (2268_CR48) 2024; 12
K Mikolajczyk (2268_CR3) 2005; 27
2268_CR30
J Yang (2268_CR32) 2023; 37
2268_CR36
2268_CR33
I Amerini (2268_CR37) 2011; 6
2268_CR34
References_xml – reference: Ester M, Kriegel H.-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, 96, 226–231
– reference: ManuVMehtreBMCopy-move tampering detection using affine transformation property preservation on clustered keypointsSIViP20181254955610.1007/s11760-017-1191-7
– reference: ZhuYShenXChenHCopy-move forgery detection based on scaled orbMultimedia Tools Appl2016753221323310.1007/s11042-014-2431-2
– reference: DhivyaSSangeethaJSudhakarBCopy-move forgery detection using surf feature extraction and svm supervised learning techniqueSoft Comput202024144291444010.1007/s00500-020-04795-x
– reference: Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2. Ieee, pp 1150–1157
– reference: EmamMHanQYuLZhangHA keypoint-based region duplication forgery detection algorithmIEICE Trans Inf Syst20169992413241610.1587/transinf.2016EDL8024
– reference: Bravo-Solorio S, Nandi AK (2011) Exposing duplicated regions affected by reflection, rotation and scaling. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1880–1883
– reference: LinCLuWHuangXLiuKSunWLinHTanZCopy-move forgery detection using combined features and transitive matchingMultimedia Tools Appl201978300813009610.1007/s11042-018-6922-4
– reference: TianXZhouGXuMImage copy-move forgery detection algorithm based on orb and novel similarity metricIET Image Proc202014102092210010.1049/iet-ipr.2019.1145
– reference: Wen B, Zhu Y, Subramanian R, Ng T.-T, Shen X, Winkler S (2016) Coverage—a novel database for copy-move forgery detection. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 161–165
– reference: DixitABagSA fast technique to detect copy-move image forgery with reflection and non-affine transformation attacksExpert Syst Appl202118210.1016/j.eswa.2021.115282
– reference: Muzaffer G, Ulutas G (2017) A fast and effective digital image copy move forgery detection with binarized sift. In: 2017 40th international conference on telecommunications and signal processing (TSP). IEEE, pp 595–598
– reference: Du T, Tian L, Li C (2018) Image copy-move forgery detection based on sift-brisk. In: 2018 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, pp 141–145
– reference: YangJLiangZLiJGanYZhongJA novel copy-move forgery detection algorithm via gradient-hash matching and simplified cluster-based filteringInt J Pattern Recognit Artif Intell20233706235001110.1142/S0218001423500118
– reference: ShivakumarBBabooSSDetection of region duplication forgery in digital images using surfInt J Comput Sci Issues (IJCSI)201184199
– reference: Narayanan S.S, Gopakumar G (2020) Recursive block based keypoint matching for copy move image forgery detection. In: 2020 11th international conference on computing, communication and networking technologies (ICCCNT). IEEE, pp 1–6
– reference: WangX-yWangX-qNiuP-pYangH-yAccurate and robust image copy-move forgery detection using adaptive keypoints and fqgpcet-glcm featureMultimedia Tools Appl20248312203223510.1007/s11042-023-15499-3
– reference: SoniBDasPKThounaojamDMGeometric transformation invariant block based copy-move forgery detection using fast and efficient hybrid local featuresJ Inf Secur Appl2019454451
– reference: EmamMHanQNiuXPcet based copy-move forgery detection in images under geometric transformsMultimedia Tools Appl201675115131152710.1007/s11042-015-2872-2
– reference: Khan K, Rehman S.U, Aziz K, Fong S, Sarasvady S (2014) Dbscan: past, present and future. In: The fifth international conference on the applications of digital information and web technologies (ICADIWT 2014). IEEE, pp 232–238
– reference: WangCZhangZZhouXAn image copy-move forgery detection scheme based on a-kaze and surf featuresSymmetry2018101270610.3390/sym10120706
– reference: EmamMHanQZhangHTwo-stage keypoint detection scheme for region duplication forgery detection in digital imagesJ Forens Sci201863110211110.1111/1556-4029.13456
– reference: Cozzolino D, Poggi G, Verdoliva L (2014) Copy-move forgery detection based on patchmatch. In: 2014 IEEE international conference on image processing (ICIP), pp 5312–5316. https://doi.org/10.1109/ICIP.2014.7026075
– reference: Broz M (2024) How many pictures are there: statistics, trends, and forecasts. photutorial.com (November 23, 2023)
– reference: ChenHYangXLyuYCopy-move forgery detection based on keypoint clustering and similar neighborhood search algorithmIEEE Access20208368633687510.1109/ACCESS.2020.2974804
– reference: Tralic D, Zupancic I, Grgic S, Grgic M (2013) Comofod-new database for copy-move forgery detection. In: Proceedings ELMAR-2013. IEEE, pp 49–54
– reference: Isaac M.M, Wilscy M (2015) Copy-move forgery detection based on harris corner points and brisk. In: Proceedings of the third international symposium on women in computing and informatics, pp 394–399
– reference: ArdizzoneEBrunoAMazzolaGCopy-move forgery detection by matching triangles of keypointsIEEE Trans Inf Forens Secur201510102084209410.1109/TIFS.2015.2445742
– reference: YangFLiJLuWWengJCopy-move forgery detection based on hybrid featuresEng Appl Artif Intell201759738310.1016/j.engappai.2016.12.022
– reference: PunC-MChungJ-LA two-stage localization for copy-move forgery detectionInf Sci20184633355383670910.1016/j.ins.2018.06.040
– reference: LyuQLuoJLiuKYinXLiuJLuWCopy move forgery detection based on double matchingJ Vis Commun Image Rep20217610.1016/j.jvcir.2021.103057
– reference: SunYNiRZhaoYNonoverlapping blocks based copy-move forgery detectionSecur Commun Netw20182018111
– reference: Al-QershiOMKhooBEPassive detection of copy-move forgery in digital images: state-of-the-artForensic Sci Int20132311–328429510.1016/j.forsciint.2013.05.027
– reference: AmeriniIBallanLCaldelliRDel BimboASerraGA sift-based forensic method for copy-move attack detection and transformation recoveryIEEE Trans Inf Forens Secur2011631099111010.1109/TIFS.2011.2129512
– reference: Emam M, Han Q, Li Q, Zhang H (2017) A robust detection algorithm for image copy-move forgery in smooth regions. In: 2017 International conference on circuits, system and simulation (ICCSS). IEEE, pp 119–123
– reference: LiYZhouJFast and effective image copy-move forgery detection via hierarchical feature point matchingIEEE Trans Inf Forens Secur20181451307132210.1109/TIFS.2018.2876837
– reference: MikolajczykKSchmidCA performance evaluation of local descriptorsIEEE Trans Pattern Anal Mach Intell200527101615163010.1109/TPAMI.2005.188
– reference: BilalMHabibHAMehmoodZSabaTRashidMSingle and multiple copy-move forgery detection and localization in digital images based on the sparsely encoded distinctive features and dbscan clusteringArab J Sci Eng2020452975299210.1007/s13369-019-04238-2
– reference: WarifNBAWahabAWAIdrisMYISallehROthmanFSift-symmetry: a robust detection method for copy-move forgery with reflection attackJ Vis Commun Image Rep20174621923210.1016/j.jvcir.2017.04.004
– reference: Torres-TamaritFLength and voicing in friulian and milanese: or why rule-free derivations are neededNat Lang Linguist Theory2015331351138610.1007/s11049-014-9271-7
– reference: YueGDuanQLiuRPengWLiaoYLiuJSmdaf: a novel keypoint based method for copy-move forgery detectionIET Image Proc202216133589360210.1049/ipr2.12578
– reference: Emam M, Han Q, Zhang H (2016) Detection of copy-scale-move forgery in digital images using sfop and mrogh. In: Social computing: second international conference of young computer scientists, engineers and educators, ICYCSEE 2016, Harbin, China, August 20–22, 2016, Proceedings, Part I 2, pp 326–334 Springer
– reference: ZhengJLiuYRenJZhuTYanYYangHFusion of block and keypoints based approaches for effective copy-move image forgery detectionMultidimens Syst Signal Process2016279891005353599510.1007/s11045-016-0416-1
– reference: ChristleinVRiessCJordanJRiessCAngelopoulouEAn evaluation of popular copy-move forgery detection approachesIEEE Trans Inf Forens Secur2012761841185410.1109/TIFS.2012.2218597
– reference: AlcantarillaPFSolutionsTFast explicit diffusion for accelerated features in nonlinear scale spacesIEEE Trans Pattern Anal Mach Intell201134712811298
– reference: Jaiswal A.K, Gupta D, Srivastava R (2020) Detection of copy-move forgery using hybrid approach of dct and brisk. In: 2020 7th International conference on signal processing and integrated networks (SPIN). IEEE, pp 471–476
– reference: ThampiSMGelbukhAMukhopadhyayJAdvances in signal processing and intelligent recognition systems2014BerlinSpringer10.1007/978-3-319-04960-1
– reference: DiwanARoyAKCnn-keypoint based two-stage hybrid approach for copy-move forgery detectionIEEE Access202412438094382610.1109/ACCESS.2024.3380460
– reference: Wang Z, Fan B, Wu F (2011). Local intensity order pattern for feature description. In: 2011 International conference on computer vision. IEEE, pp 603–610
– reference: Dong J, Wang W, Tan T (2013) Casia image tampering detection evaluation database. In: 2013 IEEE China summit and international conference on signal and information processing. IEEE, pp 422–426
– reference: Diwan A, Kumar D, Mahadeva R, Perera H, Alawatugoda J (2023) Unveiling copy-move forgeries: enhancing detection with superpoint keypoint architecture. IEEE Access
– reference: GuoJ-MLiuY-FWuZ-JDuplication forgery detection using improved daisy descriptorExpert Syst Appl201340270771410.1016/j.eswa.2012.08.002
– reference: ChenLLuWNiJSunWHuangJRegion duplication detection based on Harris corner points and step sector statisticsJ Vis Commun Image Rep201324324425410.1016/j.jvcir.2013.01.008
– reference: CozzolinoDPoggiGVerdolivaLEfficient dense-field copy-move forgery detectionIEEE Trans Inf Forens Secur201510112284229710.1109/TIFS.2015.2455334
– volume: 6
  start-page: 1099
  issue: 3
  year: 2011
  ident: 2268_CR24
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2011.2129512
– ident: 2268_CR20
  doi: 10.1109/ICCV.1999.790410
– volume: 2018
  start-page: 1
  year: 2018
  ident: 2268_CR42
  publication-title: Secur Commun Netw
– volume: 46
  start-page: 219
  year: 2017
  ident: 2268_CR53
  publication-title: J Vis Commun Image Rep
  doi: 10.1016/j.jvcir.2017.04.004
– volume: 45
  start-page: 2975
  year: 2020
  ident: 2268_CR7
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-04238-2
– volume: 16
  start-page: 3589
  issue: 13
  year: 2022
  ident: 2268_CR10
  publication-title: IET Image Proc
  doi: 10.1049/ipr2.12578
– volume: 231
  start-page: 284
  issue: 1–3
  year: 2013
  ident: 2268_CR2
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2013.05.027
– volume: 40
  start-page: 707
  issue: 2
  year: 2013
  ident: 2268_CR52
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.08.002
– volume: 37
  start-page: 2350011
  issue: 06
  year: 2023
  ident: 2268_CR32
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001423500118
– ident: 2268_CR30
  doi: 10.1109/ACCESS.2023.3304728
– volume: 8
  start-page: 36863
  year: 2020
  ident: 2268_CR44
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974804
– volume: 75
  start-page: 11513
  year: 2016
  ident: 2268_CR25
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-015-2872-2
– volume: 182
  year: 2021
  ident: 2268_CR16
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115282
– volume: 6
  start-page: 1099
  issue: 3
  year: 2011
  ident: 2268_CR37
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2011.2129512
– volume: 10
  start-page: 2284
  issue: 11
  year: 2015
  ident: 2268_CR40
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2015.2455334
– volume: 83
  start-page: 2203
  issue: 1
  year: 2024
  ident: 2268_CR31
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-023-15499-3
– volume: 27
  start-page: 1615
  issue: 10
  year: 2005
  ident: 2268_CR3
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.188
– volume: 14
  start-page: 2092
  issue: 10
  year: 2020
  ident: 2268_CR23
  publication-title: IET Image Proc
  doi: 10.1049/iet-ipr.2019.1145
– volume: 7
  start-page: 1841
  issue: 6
  year: 2012
  ident: 2268_CR39
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2012.2218597
– volume: 14
  start-page: 1307
  issue: 5
  year: 2018
  ident: 2268_CR41
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2018.2876837
– ident: 2268_CR49
  doi: 10.1109/TSP.2017.8076056
– ident: 2268_CR17
  doi: 10.1109/ICCV.2011.6126294
– ident: 2268_CR28
  doi: 10.1007/978-981-10-2053-7_29
– ident: 2268_CR33
– volume: 12
  start-page: 549
  year: 2018
  ident: 2268_CR45
  publication-title: SIViP
  doi: 10.1007/s11760-017-1191-7
– volume: 59
  start-page: 73
  year: 2017
  ident: 2268_CR50
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.12.022
– ident: 2268_CR34
  doi: 10.1109/ICIP.2014.7026075
– volume: 76
  year: 2021
  ident: 2268_CR11
  publication-title: J Vis Commun Image Rep
  doi: 10.1016/j.jvcir.2021.103057
– volume: 10
  start-page: 2084
  issue: 10
  year: 2015
  ident: 2268_CR9
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2015.2445742
– ident: 2268_CR29
  doi: 10.1109/CIRSYSSIM.2017.8023194
– volume: 78
  start-page: 30081
  year: 2019
  ident: 2268_CR19
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-018-6922-4
– volume: 99
  start-page: 2413
  issue: 9
  year: 2016
  ident: 2268_CR27
  publication-title: IEICE Trans Inf Syst
  doi: 10.1587/transinf.2016EDL8024
– volume: 63
  start-page: 102
  issue: 1
  year: 2018
  ident: 2268_CR26
  publication-title: J Forens Sci
  doi: 10.1111/1556-4029.13456
– volume: 33
  start-page: 1351
  year: 2015
  ident: 2268_CR47
  publication-title: Nat Lang Linguist Theory
  doi: 10.1007/s11049-014-9271-7
– ident: 2268_CR13
  doi: 10.1109/ICCAIS.2018.8570513
– volume: 45
  start-page: 44
  year: 2019
  ident: 2268_CR55
  publication-title: J Inf Secur Appl
– volume: 24
  start-page: 244
  issue: 3
  year: 2013
  ident: 2268_CR18
  publication-title: J Vis Commun Image Rep
  doi: 10.1016/j.jvcir.2013.01.008
– volume: 34
  start-page: 1281
  issue: 7
  year: 2011
  ident: 2268_CR4
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: 2268_CR36
  doi: 10.1109/ICIP.2016.7532339
– volume: 75
  start-page: 3221
  year: 2016
  ident: 2268_CR56
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-014-2431-2
– volume: 8
  start-page: 199
  issue: 4
  year: 2011
  ident: 2268_CR15
  publication-title: Int J Comput Sci Issues (IJCSI)
– volume: 10
  start-page: 706
  issue: 12
  year: 2018
  ident: 2268_CR43
  publication-title: Symmetry
  doi: 10.3390/sym10120706
– ident: 2268_CR6
  doi: 10.1109/ICADIWT.2014.6814687
– ident: 2268_CR8
  doi: 10.1109/SPIN48934.2020.9071015
– volume: 6
  start-page: 1099
  issue: 3
  year: 2011
  ident: 2268_CR35
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2011.2129512
– volume: 24
  start-page: 14429
  year: 2020
  ident: 2268_CR22
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-04795-x
– volume: 12
  start-page: 43809
  year: 2024
  ident: 2268_CR48
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3380460
– volume: 463
  start-page: 33
  year: 2018
  ident: 2268_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.06.040
– volume: 27
  start-page: 989
  year: 2016
  ident: 2268_CR21
  publication-title: Multidimens Syst Signal Process
  doi: 10.1007/s11045-016-0416-1
– ident: 2268_CR38
  doi: 10.1109/ICASSP.2011.5946873
– ident: 2268_CR51
  doi: 10.1109/ChinaSIP.2013.6625374
– volume-title: Advances in signal processing and intelligent recognition systems
  year: 2014
  ident: 2268_CR46
  doi: 10.1007/978-3-319-04960-1
– ident: 2268_CR1
– ident: 2268_CR5
– ident: 2268_CR54
  doi: 10.1145/2791405.2791453
– ident: 2268_CR14
  doi: 10.1109/ICCCNT49239.2020.9225658
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.364371
Snippet In an era marked by the contrast between information and disinformation, the ability to differentiate between authentic and manipulated images holds immense...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5607
SubjectTerms Affine transformations
Algorithms
Artificial Intelligence
Clustering
Complex Systems
Computational Intelligence
Control
Digital signatures
Engineering
Feature extraction
Forensic sciences
Forgery
Image contrast
Image manipulation
Invariants
Literature reviews
Matching
Mechatronics
Methods
Original Article
Pattern Recognition
Retouching
Robotics
Similarity
Systems Biology
Wavelet transforms
Title A copy-move forgery detection technique using DBSCAN-based keypoint similarity matching
URI https://link.springer.com/article/10.1007/s13042-024-02268-3
https://www.proquest.com/docview/3121863384
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5S-9IeSp201K0b9pBDS7Ogx2pXPspunJBQXxrT5CT25WCIJROphf77zq4lKwlNIQchkFYSzGNnRvvNtwBHLipKjAU05NpStgwVzoNK0UCnillmrPWQ_-9zfrZg51fJVdMUVrVo93ZJ0s_UXbObq7wpxhQ8Ip7S-AX0E6zdHZBvEWWtFcWh41fpgmwcM88ztfvzEnC8tgUjpviaFINs003z7888jFhdGvpo5dQHpNkbeN1kkiTbqn4Ae7bYh1f3-AX3YdB4bkU-N_TSXw7gZ0Z0uflD1-VvS5al74omxtYek1WQHakrcZD4G_Jt8mOazamLdoagx2_KVVGTarVeYU2MKTzBlNfjMd_CYnZyOT2jzfYKVKPf1VQbMdah0KFN-FIILSMZaJ0kbqE1SI3gcpkaPZbCxIopKzhWPyyQnCkUp5Iifge9oizseyA6cokXTww3CdNcjlPNmRVxaiQPlQmHELYizHXDPe62wLjNO9ZkJ_YcxZ57sefxEL7untlsmTf-O3rUaiZvvLDK0RRQxViEsyEct9rqbj_9tg_PG_4RXkbOYDzKZQS9-u6X_YS5Sq0OoZ_NJpO5O59eX5wcelP9C74M3P0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y4FyaMtL3UJbHziAqFGycezscUuhWx57gVXpKfJrqxWQrNiABL--Y6-zaVGLxCGXxHFkz3i-mXjmM8CWQ0WJWEBjri1lo1ihHVSKRjpTzDJjrU_5Px3w_pAdXaQXoShsWme711uS3lI3xW4u8qaIKXh1eEaTl7DAMAZnLVjofft5fFDrURI7hpUGZpOEeaap-b-XiOO9WTpihh1lCLOhnubfH_obsxpH9NHeqYekwzcwrAczy0S53Lut1J5-eMTz-NzRvoXXwUclvZlSLcMLW6zA0h_MhSuwHGzClGwH4uqdVfjRI7qc3NPr8s6SUenrrYmxlc_2KsicLpa4ZPtf5OuXs_3egDocNQRtyaQcFxWZjq_HGG1jcEDQmfaZnmswPDw43-_TcHAD1biiK6qN6OpY6NimfCSElh0ZaZ2mbgs3yozgcpQZ3ZXCJIopKzjGVSySnCkUk5IiWYdWURb2HRDdcS4dTw03KdNcdjPNmRVJZiSPlYnbENeiyXVgNXeHa1zlDR-zm8kcZzL3M5knbdidvzOZcXo82Xqzlnge1vc0RxVD1cHwnrXhcy3A5vH_e3v_vOafYLF_fnqSn3wfHG_Aq47TB59Lswmt6ubWfkCPqFIfwwL4Dc6e-c0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2VRaroAQq06lKgPvTQCgzJxrGzx-VjS0u7QqKocIr8lWoFJKtuqFR-PWMn2VDUIlU95JI4jmyP_WbiN88Abx0qSsQCGnJtKctCheugUjTQiWKWGWs95f_LiB-dsU_n8fm9LH7Pdm-2JKucBqfSlJe7E5PttolvLgqniC949XhCozmYZ06cvQPzgw8Xx4eNTUWhU1tpITeKmFedmv2HCTjeq6iJCVaUIOTWuTV__tDv-NU6pQ_2UT08DZdANg2rWCmXOzel2tG3DzQf_6flz2Gx9l3JoDK2ZXhi8xV4dk_RcAWW67ViSt7VgtbvV-HbgOhi8oteFz8tyQqfh02MLT0LLCczGVniSPjfycHe6f5gRB2-GoJrzKQY5yWZjq_HGIVj0EDQyfYM0BdwNjz8un9E6wMdqMaZXlJtRF-HQoc25pkQWvZkoHUcu63dIDGCyywxui-FiRRTVnCMt1ggOVM4ZEqK6CV08iK3r4DonnP1eGy4iZnmsp9ozqyIEiN5qEzYhbAZplTXaufu0I2rtNVpdj2ZYk-mvifTqAtbs3cmldbHo6XXm9FP63k_TdHc0Iww7Gdd2G4Gs33899rW_q34G3h6cjBMP38cHb-GhZ4zB0-xWYdO-ePGbqCjVKrNei7cASdXAsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+copy-move+forgery+detection+technique+using+DBSCAN-based+keypoint+similarity+matching&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Mukherjee%2C+Soumya&rft.au=Pal%2C+Arup+Kumar&rft.au=Maji%2C+Soham&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=12&rft.spage=5607&rft.epage=5634&rft_id=info:doi/10.1007%2Fs13042-024-02268-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon