Inverse problems of identifying the unknown transverse shear force in the Euler–Bernoulli beam with Kelvin–Voigt damping

In this paper, we study the inverse problems of determining the unknown transverse shear force in a system governed by the damped Euler–Bernoulli equation subject to the boundary conditions for , from the measured deflection , , and from the bending moment where the terms and account for the Kelvin–...

Full description

Saved in:
Bibliographic Details
Published inJournal of inverse and ill-posed problems Vol. 32; no. 1; pp. 75 - 106
Main Authors Kumarasamy, Sakthivel, Hasanov, Alemdar, Dileep, Anjuna
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.02.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study the inverse problems of determining the unknown transverse shear force in a system governed by the damped Euler–Bernoulli equation subject to the boundary conditions for , from the measured deflection , , and from the bending moment where the terms and account for the Kelvin–Voigt damping and external damping, respectively. The main purpose of this study is to analyze the Kelvin–Voigt damping effect on determining the unknown transverse shear force (boundary input) through the given boundary measurements. The inverse problems are transformed into minimization problems for Tikhonov functionals, and it is shown that the regularized functionals admit unique solutions for the inverse problems. By suitable regularity on the admissible class of shear force , we prove that these functionals are Fréchet differentiable, and the derivatives are expressed through the solutions of corresponding adjoint problems posed with measured data as boundary data associated with the direct problem. The solvability of these adjoint problems is obtained under the minimal regularity of the boundary data , which turns out to be the regularizing effect of the Kelvin–Voigt damping in the direct problem. Furthermore, using the Fréchet derivative of the more regularized Tikhonov functionals, we obtain remarkable Lipschitz stability estimates for the transverse shear force in terms of the given measurement by a feasible condition only on the Kelvin–Voigt damping coefficient.
AbstractList In this paper, we study the inverse problems of determining the unknown transverse shear force in a system governed by the damped Euler–Bernoulli equation subject to the boundary conditions for , from the measured deflection , , and from the bending moment where the terms and account for the Kelvin–Voigt damping and external damping, respectively. The main purpose of this study is to analyze the Kelvin–Voigt damping effect on determining the unknown transverse shear force (boundary input) through the given boundary measurements. The inverse problems are transformed into minimization problems for Tikhonov functionals, and it is shown that the regularized functionals admit unique solutions for the inverse problems. By suitable regularity on the admissible class of shear force , we prove that these functionals are Fréchet differentiable, and the derivatives are expressed through the solutions of corresponding adjoint problems posed with measured data as boundary data associated with the direct problem. The solvability of these adjoint problems is obtained under the minimal regularity of the boundary data , which turns out to be the regularizing effect of the Kelvin–Voigt damping in the direct problem. Furthermore, using the Fréchet derivative of the more regularized Tikhonov functionals, we obtain remarkable Lipschitz stability estimates for the transverse shear force in terms of the given measurement by a feasible condition only on the Kelvin–Voigt damping coefficient.
In this paper, we study the inverse problems of determining the unknown transverse shear force g ⁢ ( t ) {g(t)} in a system governed by the damped Euler–Bernoulli equation ρ ⁢ ( x ) ⁢ u t ⁢ t + μ ⁢ ( x ) ⁢ u t + ( r ⁢ ( x ) ⁢ u x ⁢ x ) x ⁢ x + ( κ ⁢ ( x ) ⁢ u x ⁢ x ⁢ t ) x ⁢ x = 0 , ( x , t ) ∈ ( 0 , ℓ ) × ( 0 , T ] , \rho(x)u_{tt}+\mu(x)u_{t}+(r(x)u_{xx})_{xx}+(\kappa(x)u_{xxt})_{xx}=0,\quad(x,% t)\in(0,\ell)\times(0,T], subject to the boundary conditions u ⁢ ( 0 , t ) = 0 , u x ⁢ ( 0 , t ) = 0 , [ r ⁢ ( x ) ⁢ u x ⁢ x + κ ⁢ ( x ) ⁢ u x ⁢ x ⁢ t ] x = ℓ = 0 , - [ ( r ⁢ ( x ) ⁢ u x ⁢ x + κ ⁢ ( x ) ⁢ u x ⁢ x ⁢ t ) x ] x = ℓ = g ⁢ ( t ) , u(0,t)=0,\quad u_{x}(0,t)=0,\quad[r(x)u_{xx}+\kappa(x)u_{xxt}]_{x=\ell}=0,% \quad-[(r(x)u_{xx}+\kappa(x)u_{xxt})_{x}]_{x=\ell}=g(t), for t ∈ [ 0 , T ] {t\in[0,T]} , from the measured deflection ν ⁢ ( t ) := u ⁢ ( ℓ , t ) {\nu(t):=u(\ell,t)} , t ∈ [ 0 , T ] {t\in[0,T]} , and from the bending moment ω ⁢ ( t ) := - ( r ⁢ ( 0 ) ⁢ u x ⁢ x ⁢ ( 0 , t ) + κ ⁢ ( 0 ) ⁢ u x ⁢ x ⁢ t ⁢ ( 0 , t ) ) , t ∈ [ 0 , T ] , \omega(t):=-(r(0)u_{xx}(0,t)+\kappa(0)u_{xxt}(0,t)),\quad t\in[0,T], where the terms ( κ ⁢ ( x ) ⁢ u x ⁢ x ⁢ t ) x ⁢ x {(\kappa(x)u_{xxt})_{xx}} and μ ⁢ ( x ) ⁢ u t {\mu(x)u_{t}} account for the Kelvin–Voigt damping and external damping, respectively. The main purpose of this study is to analyze the Kelvin–Voigt damping effect on determining the unknown transverse shear force (boundary input) through the given boundary measurements. The inverse problems are transformed into minimization problems for Tikhonov functionals, and it is shown that the regularized functionals admit unique solutions for the inverse problems. By suitable regularity on the admissible class of shear force g ⁢ ( t ) {g(t)} , we prove that these functionals are Fréchet differentiable, and the derivatives are expressed through the solutions of corresponding adjoint problems posed with measured data as boundary data associated with the direct problem. The solvability of these adjoint problems is obtained under the minimal regularity of the boundary data g ⁢ ( t ) {g(t)} , which turns out to be the regularizing effect of the Kelvin–Voigt damping in the direct problem. Furthermore, using the Fréchet derivative of the more regularized Tikhonov functionals, we obtain remarkable Lipschitz stability estimates for the transverse shear force in terms of the given measurement by a feasible condition only on the Kelvin–Voigt damping coefficient.
In this paper, we study the inverse problems of determining the unknown transverse shear force [Image omitted] in a system governed by the damped Euler–Bernoulli equation ρ ⁢ ( x ) ⁢ u t ⁢ t + μ ⁢ ( x ) ⁢ u t + ( r ⁢ ( x ) ⁢ u x ⁢ x ) x ⁢ x + ( κ ⁢ ( x ) ⁢ u x ⁢ x ⁢ t ) x ⁢ x = 0 , ( x , t ) ∈ ( 0 , ℓ ) × ( 0 , T ] , [Image omitted] \rho(x)u_{tt}+\mu(x)u_{t}+(r(x)u_{xx})_{xx}+(\kappa(x)u_{xxt})_{xx}=0,\quad(x,% t)\in(0,\ell)\times(0,T], subject to the boundary conditions u ⁢ ( 0 , t ) = 0 , u x ⁢ ( 0 , t ) = 0 , [ r ⁢ ( x ) ⁢ u x ⁢ x + κ ⁢ ( x ) ⁢ u x ⁢ x ⁢ t ] x = ℓ = 0 , - [ ( r ⁢ ( x ) ⁢ u x ⁢ x + κ ⁢ ( x ) ⁢ u x ⁢ x ⁢ t ) x ] x = ℓ = g ⁢ ( t ) , [Image omitted] u(0,t)=0,\quad u_{x}(0,t)=0,\quad[r(x)u_{xx}+\kappa(x)u_{xxt}]_{x=\ell}=0,% \quad-[(r(x)u_{xx}+\kappa(x)u_{xxt})_{x}]_{x=\ell}=g(t), for [Image omitted], from the measured deflection [Image omitted], [Image omitted], and from the bending moment ω ⁢ ( t ) := - ( r ⁢ ( 0 ) ⁢ u x ⁢ x ⁢ ( 0 , t ) + κ ⁢ ( 0 ) ⁢ u x ⁢ x ⁢ t ⁢ ( 0 , t ) ) , t ∈ [ 0 , T ] , [Image omitted] \omega(t):=-(r(0)u_{xx}(0,t)+\kappa(0)u_{xxt}(0,t)),\quad t\in[0,T], where the terms [Image omitted] and [Image omitted] account for the Kelvin–Voigt damping and external damping, respectively. The main purpose of this study is to analyze the Kelvin–Voigt damping effect on determining the unknown transverse shear force (boundary input) through the given boundary measurements. The inverse problems are transformed into minimization problems for Tikhonov functionals, and it is shown that the regularized functionals admit unique solutions for the inverse problems. By suitable regularity on the admissible class of shear force [Image omitted], we prove that these functionals are Fréchet differentiable, and the derivatives are expressed through the solutions of corresponding adjoint problems posed with measured data as boundary data associated with the direct problem. The solvability of these adjoint problems is obtained under the minimal regularity of the boundary data [Image omitted], which turns out to be the regularizing effect of the Kelvin–Voigt damping in the direct problem. Furthermore, using the Fréchet derivative of the more regularized Tikhonov functionals, we obtain remarkable Lipschitz stability estimates for the transverse shear force in terms of the given measurement by a feasible condition only on the Kelvin–Voigt damping coefficient.
Author Hasanov, Alemdar
Dileep, Anjuna
Kumarasamy, Sakthivel
Author_xml – sequence: 1
  givenname: Sakthivel
  surname: Kumarasamy
  fullname: Kumarasamy, Sakthivel
  email: sakthivel@iist.ac.in
  organization: Department of Mathematics, Indian Institute of Space Science and Technology, Trivandrum 695 547, India
– sequence: 2
  givenname: Alemdar
  surname: Hasanov
  fullname: Hasanov, Alemdar
  email: alemdar.hasanoglu@gmail.com
  organization: Department of Mathematics, Kocaeli University; and Şehit Ekrem Mah., Altinşehir Sk., Ayazma Villalari, 22, Bahčecik, Kocaeli - 41030, Türkiye
– sequence: 3
  givenname: Anjuna
  surname: Dileep
  fullname: Dileep, Anjuna
  email: dileepanjuna10@gmail.com
  organization: Department of Mathematics, Indian Institute of Space Science and Technology, Trivandrum 695 547, India
BookMark eNp1kU1LAzEQhoMoWKtXzwHPW_Oxu23wpOIXCl7U65JmJ23qNqlJtqXgwf_gP_SXmLWCIPQ0M8z7TDLvHKBd6ywgdEzJgBa0OJ0Zs8gYYSwjpOA7qEeLUmRc5MUu6hHBRhlhVOyjgxBmhNBhwVgPvd_ZJfgAeOHduIF5wE5jU4ONRq-NneA4BdzaV-tWFkcvbdjIwxSkx9p5BdjYH9VV24D_-vi8AG9d2zQGj0HO8crEKb6HZmlsar44M4m4lvNFGn6I9rRsAhz9xj56vr56urzNHh5v7i7PHzLFqYiZUkDKXFMFNZOiJkoCaCG0GKuhzPOyrBnneshzVpQcqBIkr7Uou4pwWgLvo5PN3LTkWwshVjPXepuerFJfsOGIjkZJlW9UyrsQPOhKmSijcTbtbZqKkqrzuep8rjqfq87nhA3-YQtv5tKvtwNnG2Almwi-holv1yn5-9QWkKWb8W-OKZpZ
CitedBy_id crossref_primary_10_3934_mine_2024006
Cites_doi 10.1088/1361-6420/ab2a34
10.1016/j.ijsolstr.2006.01.004
10.1016/S0304-3991(00)00087-5
10.1680/vosasuml.35393
10.1016/j.ijsolstr.2007.02.002
10.1007/978-3-030-79427-9
10.1063/1.4931595
10.1007/978-0-387-70914-7
10.1016/j.jmaa.2006.08.018
10.1109/CDC.1990.203536
10.1088/0266-5611/30/6/065008
10.1515/jiip-2019-0020
10.1515/jiip-2018-0068
10.1088/1361-6420/ac01fb
10.1016/j.apm.2019.10.066
10.1080/01630569708816750
10.1088/0266-5611/32/5/055004
10.1098/rspa.1986.0093
10.1090/gsm/112/07
10.1088/0266-5611/25/11/115015
10.1680/dorb.34716
10.1515/jiip-2018-0060
10.1016/j.automatica.2006.11.002
10.1515/jiip-2017-0038
10.1007/s00205-019-01476-4
10.1088/1361-6420/ac346c
10.1088/1361-6420/ab2aa9
10.1016/j.automatica.2016.04.034
10.1007/978-3-319-31238-5
10.1016/j.aml.2019.02.006
10.1115/1.2897253
ContentType Journal Article
Copyright 2023 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/jiip-2022-0053
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1569-3945
EndPage 106
ExternalDocumentID 10_1515_jiip_2022_0053
10_1515_jiip_2022_005332175
GrantInformation_xml – fundername: National Board for Higher Mathematics
  grantid: 02011/13/2022/R&D-II/10206
GroupedDBID 0R~
0~D
4.4
5GY
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFQUK
AFYRI
AGBEV
AHGBP
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CS3
DU5
EBS
HZ~
IY9
KDIRW
O9-
P2P
PQQKQ
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAWFC
AAYXX
CITATION
7SC
7TB
8FD
ADNPR
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-cce064f1ced2a9d0caeef99f9bc7a4466d233f7342563e1c904df9625630316e3
ISSN 0928-0219
IngestDate Wed Aug 13 11:18:17 EDT 2025
Tue Jul 01 01:23:34 EDT 2025
Thu Apr 24 23:05:46 EDT 2025
Thu Jul 10 10:30:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-cce064f1ced2a9d0caeef99f9bc7a4466d233f7342563e1c904df9625630316e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3169278188
PQPubID 2030080
PageCount 32
ParticipantIDs proquest_journals_3169278188
crossref_citationtrail_10_1515_jiip_2022_0053
crossref_primary_10_1515_jiip_2022_0053
walterdegruyter_journals_10_1515_jiip_2022_005332175
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of inverse and ill-posed problems
PublicationYear 2024
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023022715514794215_j_jiip-2022-0053_ref_030
2023022715514794215_j_jiip-2022-0053_ref_031
2023022715514794215_j_jiip-2022-0053_ref_010
2023022715514794215_j_jiip-2022-0053_ref_032
2023022715514794215_j_jiip-2022-0053_ref_011
2023022715514794215_j_jiip-2022-0053_ref_033
2023022715514794215_j_jiip-2022-0053_ref_012
2023022715514794215_j_jiip-2022-0053_ref_034
2023022715514794215_j_jiip-2022-0053_ref_013
2023022715514794215_j_jiip-2022-0053_ref_035
2023022715514794215_j_jiip-2022-0053_ref_014
2023022715514794215_j_jiip-2022-0053_ref_036
2023022715514794215_j_jiip-2022-0053_ref_015
2023022715514794215_j_jiip-2022-0053_ref_037
2023022715514794215_j_jiip-2022-0053_ref_016
2023022715514794215_j_jiip-2022-0053_ref_038
2023022715514794215_j_jiip-2022-0053_ref_017
2023022715514794215_j_jiip-2022-0053_ref_039
2023022715514794215_j_jiip-2022-0053_ref_018
2023022715514794215_j_jiip-2022-0053_ref_019
2023022715514794215_j_jiip-2022-0053_ref_040
2023022715514794215_j_jiip-2022-0053_ref_041
2023022715514794215_j_jiip-2022-0053_ref_020
2023022715514794215_j_jiip-2022-0053_ref_042
2023022715514794215_j_jiip-2022-0053_ref_021
2023022715514794215_j_jiip-2022-0053_ref_043
2023022715514794215_j_jiip-2022-0053_ref_022
2023022715514794215_j_jiip-2022-0053_ref_044
2023022715514794215_j_jiip-2022-0053_ref_001
2023022715514794215_j_jiip-2022-0053_ref_023
2023022715514794215_j_jiip-2022-0053_ref_045
2023022715514794215_j_jiip-2022-0053_ref_002
2023022715514794215_j_jiip-2022-0053_ref_024
2023022715514794215_j_jiip-2022-0053_ref_003
2023022715514794215_j_jiip-2022-0053_ref_025
2023022715514794215_j_jiip-2022-0053_ref_004
2023022715514794215_j_jiip-2022-0053_ref_026
2023022715514794215_j_jiip-2022-0053_ref_005
2023022715514794215_j_jiip-2022-0053_ref_027
2023022715514794215_j_jiip-2022-0053_ref_006
2023022715514794215_j_jiip-2022-0053_ref_028
2023022715514794215_j_jiip-2022-0053_ref_007
2023022715514794215_j_jiip-2022-0053_ref_029
2023022715514794215_j_jiip-2022-0053_ref_008
2023022715514794215_j_jiip-2022-0053_ref_009
References_xml – ident: 2023022715514794215_j_jiip-2022-0053_ref_025
  doi: 10.1088/1361-6420/ab2a34
– ident: 2023022715514794215_j_jiip-2022-0053_ref_044
  doi: 10.1016/j.ijsolstr.2006.01.004
– ident: 2023022715514794215_j_jiip-2022-0053_ref_005
  doi: 10.1016/S0304-3991(00)00087-5
– ident: 2023022715514794215_j_jiip-2022-0053_ref_015
  doi: 10.1680/vosasuml.35393
– ident: 2023022715514794215_j_jiip-2022-0053_ref_043
  doi: 10.1016/j.ijsolstr.2007.02.002
– ident: 2023022715514794215_j_jiip-2022-0053_ref_028
  doi: 10.1007/978-3-030-79427-9
– ident: 2023022715514794215_j_jiip-2022-0053_ref_040
– ident: 2023022715514794215_j_jiip-2022-0053_ref_013
– ident: 2023022715514794215_j_jiip-2022-0053_ref_034
  doi: 10.1063/1.4931595
– ident: 2023022715514794215_j_jiip-2022-0053_ref_009
  doi: 10.1007/978-0-387-70914-7
– ident: 2023022715514794215_j_jiip-2022-0053_ref_020
  doi: 10.1016/j.jmaa.2006.08.018
– ident: 2023022715514794215_j_jiip-2022-0053_ref_006
  doi: 10.1109/CDC.1990.203536
– ident: 2023022715514794215_j_jiip-2022-0053_ref_036
– ident: 2023022715514794215_j_jiip-2022-0053_ref_031
  doi: 10.1088/0266-5611/30/6/065008
– ident: 2023022715514794215_j_jiip-2022-0053_ref_024
  doi: 10.1515/jiip-2019-0020
– ident: 2023022715514794215_j_jiip-2022-0053_ref_042
  doi: 10.1515/jiip-2018-0068
– ident: 2023022715514794215_j_jiip-2022-0053_ref_027
  doi: 10.1088/1361-6420/ac01fb
– ident: 2023022715514794215_j_jiip-2022-0053_ref_033
– ident: 2023022715514794215_j_jiip-2022-0053_ref_017
  doi: 10.1016/j.apm.2019.10.066
– ident: 2023022715514794215_j_jiip-2022-0053_ref_029
  doi: 10.1080/01630569708816750
– ident: 2023022715514794215_j_jiip-2022-0053_ref_026
  doi: 10.1088/0266-5611/32/5/055004
– ident: 2023022715514794215_j_jiip-2022-0053_ref_016
  doi: 10.1098/rspa.1986.0093
– ident: 2023022715514794215_j_jiip-2022-0053_ref_041
  doi: 10.1090/gsm/112/07
– ident: 2023022715514794215_j_jiip-2022-0053_ref_021
  doi: 10.1088/0266-5611/25/11/115015
– ident: 2023022715514794215_j_jiip-2022-0053_ref_045
– ident: 2023022715514794215_j_jiip-2022-0053_ref_018
– ident: 2023022715514794215_j_jiip-2022-0053_ref_014
  doi: 10.1680/dorb.34716
– ident: 2023022715514794215_j_jiip-2022-0053_ref_019
  doi: 10.1515/jiip-2018-0060
– ident: 2023022715514794215_j_jiip-2022-0053_ref_012
– ident: 2023022715514794215_j_jiip-2022-0053_ref_010
  doi: 10.1016/j.automatica.2006.11.002
– ident: 2023022715514794215_j_jiip-2022-0053_ref_037
– ident: 2023022715514794215_j_jiip-2022-0053_ref_035
– ident: 2023022715514794215_j_jiip-2022-0053_ref_038
  doi: 10.1515/jiip-2017-0038
– ident: 2023022715514794215_j_jiip-2022-0053_ref_001
  doi: 10.1007/s00205-019-01476-4
– ident: 2023022715514794215_j_jiip-2022-0053_ref_030
– ident: 2023022715514794215_j_jiip-2022-0053_ref_002
– ident: 2023022715514794215_j_jiip-2022-0053_ref_003
  doi: 10.1088/1361-6420/ac346c
– ident: 2023022715514794215_j_jiip-2022-0053_ref_032
– ident: 2023022715514794215_j_jiip-2022-0053_ref_023
  doi: 10.1088/1361-6420/ab2aa9
– ident: 2023022715514794215_j_jiip-2022-0053_ref_004
– ident: 2023022715514794215_j_jiip-2022-0053_ref_011
– ident: 2023022715514794215_j_jiip-2022-0053_ref_022
  doi: 10.1016/j.automatica.2016.04.034
– ident: 2023022715514794215_j_jiip-2022-0053_ref_039
  doi: 10.1007/978-3-319-31238-5
– ident: 2023022715514794215_j_jiip-2022-0053_ref_008
  doi: 10.1016/j.aml.2019.02.006
– ident: 2023022715514794215_j_jiip-2022-0053_ref_007
  doi: 10.1115/1.2897253
SSID ssj0017522
Score 2.3285944
Snippet In this paper, we study the inverse problems of determining the unknown transverse shear force in a system governed by the damped Euler–Bernoulli equation...
In this paper, we study the inverse problems of determining the unknown transverse shear force g ⁢ ( t ) {g(t)} in a system governed by the damped...
In this paper, we study the inverse problems of determining the unknown transverse shear force [Image omitted] in a system governed by the damped...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms 35A01
35G05
35R30
49J20
bending moment
Bending moments
Boundary conditions
Damping
Euler-Bernoulli beams
Euler-Bernoulli equation
Euler–Bernoulli beam
Inverse problems
Kelvin–Voigt damping
Lipschitz stability
Regularity
shear force identification
Shear forces
Transverse shear
Title Inverse problems of identifying the unknown transverse shear force in the Euler–Bernoulli beam with Kelvin–Voigt damping
URI https://www.degruyter.com/doi/10.1515/jiip-2022-0053
https://www.proquest.com/docview/3169278188
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELege4GHib9iMJAfkHioAmmcpvPjhrpVsI2Xdtpb5NiXKVObVk0LAvHAd-Ab8km4s52kYwMBL1WaXh3Lv1_OZ5_vjrGXMlMiE8YEYQ4iwBmqF6g9MIFUSkkJAmJbreHkNBlN4nfn_fM2XNFGl6yy1_rLjXEl_4Mq3kNcKUr2H5BtGsUbeI344icijJ9_hTElyVhWFOpkq8K49LE28tZFL5FRuS5p26ykWhBl5cQrqmJN5ws11Mcch2uKCPQHH8QBLMs5eYm6GaiZ26t9D9OPRdmInM2Li1XXqNminvuuW7iF7571T0ynwWJegWk6u7nfEMX1EeVaq1kvftcgh5frz3R5NMtGm_uKlPK61oPgtWoiAyFd3sha7bbbmg29nA51lVSuqfa-zYJxWRQL5ACuoEl9tJNY7bg__ZAeTo6P0_HwfHybbUW4eIg6bGv_6GB41niXBj6LfN1Vn8wTn_DmavtXjZV2BbL9yY6CgQs3Bhsmyfge2_YjzfcdMe6zW1A-YHdPmkS81UP21VOE16PO5znfoAhHWe4pwluKcEsRbinCi9JKWYr8-Pa9IQcncnAiB3fkwB8tLbinxSM2ORyO344CX3Aj0KiJV4HWgBZq3tNgIiVNqBVALmUuMz1Q5Pg3kRD5QKCeTwT0tAxjk8uEvuHckIB4zDrlvIQnjPdio_Osp6K8n8WhCWWGfwSR674aQBLu7bCgHtlU-2z0VBRlmtKqFJFICYmUkEgJiR32qpFfuDwsv5XcrYFK_btapdg7GQ3QOMUHx7-A10rd3KDAVXv_6Z9bfcbutO_KLuuslmt4jtbqKnvhyfcTNA-dyA
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9QwDPbA9gA9lPe0UMAHZjilm6yzyfrYMlsW2u2p7fSW8UMugd2kkwcMDAf-A_-QX4KUZNNS4ALHjGXHkaVItqxPjL2QWgktrPV8B8JDCxV4agLWk0opKUFA2FRrmB9Fs5Pw7dn47EouDF2rtHBe1J-rFiF1aHNT00FZjzWAFnj4Pk0vcIFxI0VSNHxXLRc32dokxP3KgK3tvt6bnvaxhLjDDJeExYwK2kE3_j7Mr6bp0t_c-NRErvtpXTFA-3eYWU29vXfyYaeu9I75cg3V8f--7S7b6PxTvtsK1D12A7L7bH3eg7uWD9hXwuYoSuBdMZqS546nTcJvkzTFkZbXGZ3WZbwiW9iSl1Q8m6OTbICnWUM1rRdQ_Pj2fQ-KLKewFNeglpwOh_kBLD6mGTae5ul5xa1aUmrXQ3ayPz1-NfO6Ig6eQe2uPGMAvR4XGLAjJa1vFICT0kltYkXBZDsSwsUC_x2RgMBIP7RORvSE_5sIxCM2yPIMNhkPQmucDtTIjXXoW19q7AjCmbGKIfInW8xbrV9iOoRzKrSxSGing6xNiLUJsTYh1m6xlz39RYvt8VfK7ZU4JJ2OlwnOTo5idHjwxeE1Ebmk-vOAAneC48f_1u05uzU7nh8mh2-ODp6w29gYttfIt9mgKmp4il5SpZ91avATwRAUTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgKyE49AFUlD7wAYlTusk6m6yPbdltobTiQCtukR_jKrBNVnmAqHrof-g_7C9hnHhTKHApx8hjxxnPZGbs8TeEvOZSMMm09nwDzEMLFXhiBNrjQgjOgUHYVGs4Oo4OTsL3n4fzbMLSpVVqOCvqH1WLkNrXuartRlmHNYAWuP8lTWe4wBhIWSnqz7R5SBZGIcYyPbKws787Pu2OEmIHGc4tFDPqp0Nu_HOU3y3Trbu5-L05uO5m9Yv9mSwROZ95m3bydbuu5La6uAPq-F-ftkwWnXdKd1pxWiEPIHtKnhx10K7lM3JpkTmKEqgrRVPS3NC0ue7bXJmiSEvrzO7VZbSylrAlL23pbIousgKaZg3VuJ5CcXN1vQtFlttDKSpBnFO7NUwPYfotzbDxNE_PKqrFub3Y9ZycTMaf9g48V8LBU6jblacUoM9jAgV6ILj2lQAwnBsuVSzsUbIeMGZihn-OiEGguB9qwyP7hH-bCNgq6WV5Bi8IDUKtjAzEwAxl6GufS-wIzKihiCHyR2vEmy9fohy-uS2zMU1snIOcTSxnE8vZxHJ2jbzp6Gctssc_KTfm0pA4DS8TnB0fxOju4IvDOxJyS_X3ARnGgcOX9-v2ijz6-HaSfHh3fLhOHmNb2OaQb5BeVdSwiS5SJbecEvwEgSES9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+problems+of+identifying+the+unknown+transverse+shear+force+in+the+Euler%E2%80%93Bernoulli+beam+with+Kelvin%E2%80%93Voigt+damping&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.date=2024-02-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0928-0219&rft.eissn=1569-3945&rft.volume=32&rft.issue=1&rft.spage=75&rft_id=info:doi/10.1515%2Fjiip-2022-0053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon