Inverse problems of identifying the unknown transverse shear force in the Euler–Bernoulli beam with Kelvin–Voigt damping
In this paper, we study the inverse problems of determining the unknown transverse shear force in a system governed by the damped Euler–Bernoulli equation subject to the boundary conditions for , from the measured deflection , , and from the bending moment where the terms and account for the Kelvin–...
Saved in:
Published in | Journal of inverse and ill-posed problems Vol. 32; no. 1; pp. 75 - 106 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.02.2024
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study the inverse problems of determining the unknown transverse shear force
in a system governed by the damped Euler–Bernoulli equation
subject to the boundary conditions
for
,
from the measured deflection
,
, and from the bending moment
where the terms
and
account for the Kelvin–Voigt damping and external damping, respectively.
The main purpose of this study is to analyze the Kelvin–Voigt damping effect on determining the unknown transverse shear force (boundary input) through the given boundary measurements. The inverse problems are transformed into minimization problems for Tikhonov functionals, and it is shown that the regularized functionals admit unique solutions for the inverse problems. By suitable regularity on the admissible class of shear force
, we prove that these functionals are Fréchet differentiable, and the derivatives are expressed through the solutions of corresponding adjoint problems posed with measured data as boundary data associated with the direct problem. The solvability of these adjoint problems is obtained under the minimal regularity of the boundary data
, which turns out to be the regularizing effect of the Kelvin–Voigt damping in the direct problem. Furthermore, using the Fréchet derivative of the more regularized Tikhonov functionals, we obtain remarkable Lipschitz stability estimates for the transverse shear force in terms of the given measurement by a feasible condition only on the Kelvin–Voigt damping coefficient. |
---|---|
AbstractList | In this paper, we study the inverse problems of determining the unknown transverse shear force
in a system governed by the damped Euler–Bernoulli equation
subject to the boundary conditions
for
,
from the measured deflection
,
, and from the bending moment
where the terms
and
account for the Kelvin–Voigt damping and external damping, respectively.
The main purpose of this study is to analyze the Kelvin–Voigt damping effect on determining the unknown transverse shear force (boundary input) through the given boundary measurements. The inverse problems are transformed into minimization problems for Tikhonov functionals, and it is shown that the regularized functionals admit unique solutions for the inverse problems. By suitable regularity on the admissible class of shear force
, we prove that these functionals are Fréchet differentiable, and the derivatives are expressed through the solutions of corresponding adjoint problems posed with measured data as boundary data associated with the direct problem. The solvability of these adjoint problems is obtained under the minimal regularity of the boundary data
, which turns out to be the regularizing effect of the Kelvin–Voigt damping in the direct problem. Furthermore, using the Fréchet derivative of the more regularized Tikhonov functionals, we obtain remarkable Lipschitz stability estimates for the transverse shear force in terms of the given measurement by a feasible condition only on the Kelvin–Voigt damping coefficient. In this paper, we study the inverse problems of determining the unknown transverse shear force g ( t ) {g(t)} in a system governed by the damped Euler–Bernoulli equation ρ ( x ) u t t + μ ( x ) u t + ( r ( x ) u x x ) x x + ( κ ( x ) u x x t ) x x = 0 , ( x , t ) ∈ ( 0 , ℓ ) × ( 0 , T ] , \rho(x)u_{tt}+\mu(x)u_{t}+(r(x)u_{xx})_{xx}+(\kappa(x)u_{xxt})_{xx}=0,\quad(x,% t)\in(0,\ell)\times(0,T], subject to the boundary conditions u ( 0 , t ) = 0 , u x ( 0 , t ) = 0 , [ r ( x ) u x x + κ ( x ) u x x t ] x = ℓ = 0 , - [ ( r ( x ) u x x + κ ( x ) u x x t ) x ] x = ℓ = g ( t ) , u(0,t)=0,\quad u_{x}(0,t)=0,\quad[r(x)u_{xx}+\kappa(x)u_{xxt}]_{x=\ell}=0,% \quad-[(r(x)u_{xx}+\kappa(x)u_{xxt})_{x}]_{x=\ell}=g(t), for t ∈ [ 0 , T ] {t\in[0,T]} , from the measured deflection ν ( t ) := u ( ℓ , t ) {\nu(t):=u(\ell,t)} , t ∈ [ 0 , T ] {t\in[0,T]} , and from the bending moment ω ( t ) := - ( r ( 0 ) u x x ( 0 , t ) + κ ( 0 ) u x x t ( 0 , t ) ) , t ∈ [ 0 , T ] , \omega(t):=-(r(0)u_{xx}(0,t)+\kappa(0)u_{xxt}(0,t)),\quad t\in[0,T], where the terms ( κ ( x ) u x x t ) x x {(\kappa(x)u_{xxt})_{xx}} and μ ( x ) u t {\mu(x)u_{t}} account for the Kelvin–Voigt damping and external damping, respectively. The main purpose of this study is to analyze the Kelvin–Voigt damping effect on determining the unknown transverse shear force (boundary input) through the given boundary measurements. The inverse problems are transformed into minimization problems for Tikhonov functionals, and it is shown that the regularized functionals admit unique solutions for the inverse problems. By suitable regularity on the admissible class of shear force g ( t ) {g(t)} , we prove that these functionals are Fréchet differentiable, and the derivatives are expressed through the solutions of corresponding adjoint problems posed with measured data as boundary data associated with the direct problem. The solvability of these adjoint problems is obtained under the minimal regularity of the boundary data g ( t ) {g(t)} , which turns out to be the regularizing effect of the Kelvin–Voigt damping in the direct problem. Furthermore, using the Fréchet derivative of the more regularized Tikhonov functionals, we obtain remarkable Lipschitz stability estimates for the transverse shear force in terms of the given measurement by a feasible condition only on the Kelvin–Voigt damping coefficient. In this paper, we study the inverse problems of determining the unknown transverse shear force [Image omitted] in a system governed by the damped Euler–Bernoulli equation ρ ( x ) u t t + μ ( x ) u t + ( r ( x ) u x x ) x x + ( κ ( x ) u x x t ) x x = 0 , ( x , t ) ∈ ( 0 , ℓ ) × ( 0 , T ] , [Image omitted] \rho(x)u_{tt}+\mu(x)u_{t}+(r(x)u_{xx})_{xx}+(\kappa(x)u_{xxt})_{xx}=0,\quad(x,% t)\in(0,\ell)\times(0,T], subject to the boundary conditions u ( 0 , t ) = 0 , u x ( 0 , t ) = 0 , [ r ( x ) u x x + κ ( x ) u x x t ] x = ℓ = 0 , - [ ( r ( x ) u x x + κ ( x ) u x x t ) x ] x = ℓ = g ( t ) , [Image omitted] u(0,t)=0,\quad u_{x}(0,t)=0,\quad[r(x)u_{xx}+\kappa(x)u_{xxt}]_{x=\ell}=0,% \quad-[(r(x)u_{xx}+\kappa(x)u_{xxt})_{x}]_{x=\ell}=g(t), for [Image omitted], from the measured deflection [Image omitted], [Image omitted], and from the bending moment ω ( t ) := - ( r ( 0 ) u x x ( 0 , t ) + κ ( 0 ) u x x t ( 0 , t ) ) , t ∈ [ 0 , T ] , [Image omitted] \omega(t):=-(r(0)u_{xx}(0,t)+\kappa(0)u_{xxt}(0,t)),\quad t\in[0,T], where the terms [Image omitted] and [Image omitted] account for the Kelvin–Voigt damping and external damping, respectively. The main purpose of this study is to analyze the Kelvin–Voigt damping effect on determining the unknown transverse shear force (boundary input) through the given boundary measurements. The inverse problems are transformed into minimization problems for Tikhonov functionals, and it is shown that the regularized functionals admit unique solutions for the inverse problems. By suitable regularity on the admissible class of shear force [Image omitted], we prove that these functionals are Fréchet differentiable, and the derivatives are expressed through the solutions of corresponding adjoint problems posed with measured data as boundary data associated with the direct problem. The solvability of these adjoint problems is obtained under the minimal regularity of the boundary data [Image omitted], which turns out to be the regularizing effect of the Kelvin–Voigt damping in the direct problem. Furthermore, using the Fréchet derivative of the more regularized Tikhonov functionals, we obtain remarkable Lipschitz stability estimates for the transverse shear force in terms of the given measurement by a feasible condition only on the Kelvin–Voigt damping coefficient. |
Author | Hasanov, Alemdar Dileep, Anjuna Kumarasamy, Sakthivel |
Author_xml | – sequence: 1 givenname: Sakthivel surname: Kumarasamy fullname: Kumarasamy, Sakthivel email: sakthivel@iist.ac.in organization: Department of Mathematics, Indian Institute of Space Science and Technology, Trivandrum 695 547, India – sequence: 2 givenname: Alemdar surname: Hasanov fullname: Hasanov, Alemdar email: alemdar.hasanoglu@gmail.com organization: Department of Mathematics, Kocaeli University; and Şehit Ekrem Mah., Altinşehir Sk., Ayazma Villalari, 22, Bahčecik, Kocaeli - 41030, Türkiye – sequence: 3 givenname: Anjuna surname: Dileep fullname: Dileep, Anjuna email: dileepanjuna10@gmail.com organization: Department of Mathematics, Indian Institute of Space Science and Technology, Trivandrum 695 547, India |
BookMark | eNp1kU1LAzEQhoMoWKtXzwHPW_Oxu23wpOIXCl7U65JmJ23qNqlJtqXgwf_gP_SXmLWCIPQ0M8z7TDLvHKBd6ywgdEzJgBa0OJ0Zs8gYYSwjpOA7qEeLUmRc5MUu6hHBRhlhVOyjgxBmhNBhwVgPvd_ZJfgAeOHduIF5wE5jU4ONRq-NneA4BdzaV-tWFkcvbdjIwxSkx9p5BdjYH9VV24D_-vi8AG9d2zQGj0HO8crEKb6HZmlsar44M4m4lvNFGn6I9rRsAhz9xj56vr56urzNHh5v7i7PHzLFqYiZUkDKXFMFNZOiJkoCaCG0GKuhzPOyrBnneshzVpQcqBIkr7Uou4pwWgLvo5PN3LTkWwshVjPXepuerFJfsOGIjkZJlW9UyrsQPOhKmSijcTbtbZqKkqrzuep8rjqfq87nhA3-YQtv5tKvtwNnG2Almwi-holv1yn5-9QWkKWb8W-OKZpZ |
CitedBy_id | crossref_primary_10_3934_mine_2024006 |
Cites_doi | 10.1088/1361-6420/ab2a34 10.1016/j.ijsolstr.2006.01.004 10.1016/S0304-3991(00)00087-5 10.1680/vosasuml.35393 10.1016/j.ijsolstr.2007.02.002 10.1007/978-3-030-79427-9 10.1063/1.4931595 10.1007/978-0-387-70914-7 10.1016/j.jmaa.2006.08.018 10.1109/CDC.1990.203536 10.1088/0266-5611/30/6/065008 10.1515/jiip-2019-0020 10.1515/jiip-2018-0068 10.1088/1361-6420/ac01fb 10.1016/j.apm.2019.10.066 10.1080/01630569708816750 10.1088/0266-5611/32/5/055004 10.1098/rspa.1986.0093 10.1090/gsm/112/07 10.1088/0266-5611/25/11/115015 10.1680/dorb.34716 10.1515/jiip-2018-0060 10.1016/j.automatica.2006.11.002 10.1515/jiip-2017-0038 10.1007/s00205-019-01476-4 10.1088/1361-6420/ac346c 10.1088/1361-6420/ab2aa9 10.1016/j.automatica.2016.04.034 10.1007/978-3-319-31238-5 10.1016/j.aml.2019.02.006 10.1115/1.2897253 |
ContentType | Journal Article |
Copyright | 2023 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1515/jiip-2022-0053 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1569-3945 |
EndPage | 106 |
ExternalDocumentID | 10_1515_jiip_2022_0053 10_1515_jiip_2022_005332175 |
GrantInformation_xml | – fundername: National Board for Higher Mathematics grantid: 02011/13/2022/R&D-II/10206 |
GroupedDBID | 0R~ 0~D 4.4 5GY AAAEU AADQG AAFPC AAGVJ AAJBH AALGR AAOUV AAPJK AAQCX AARVR AASOL AASQH AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACIWK ACPMA ACUND ACZBO ADEQT ADGQD ADGYE ADJVZ ADOZN AECWL AEGVQ AEICA AEJTT AENEX AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFQUK AFYRI AGBEV AHGBP AHVWV AHXUK AIERV AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM ASYPN BAKPI BBCWN BCIFA CFGNV CS3 DU5 EBS HZ~ IY9 KDIRW O9- P2P PQQKQ QD8 RDG SA. SLJYH UK5 WTRAM AAWFC AAYXX CITATION 7SC 7TB 8FD ADNPR FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c319t-cce064f1ced2a9d0caeef99f9bc7a4466d233f7342563e1c904df9625630316e3 |
ISSN | 0928-0219 |
IngestDate | Wed Aug 13 11:18:17 EDT 2025 Tue Jul 01 01:23:34 EDT 2025 Thu Apr 24 23:05:46 EDT 2025 Thu Jul 10 10:30:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-cce064f1ced2a9d0caeef99f9bc7a4466d233f7342563e1c904df9625630316e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3169278188 |
PQPubID | 2030080 |
PageCount | 32 |
ParticipantIDs | proquest_journals_3169278188 crossref_citationtrail_10_1515_jiip_2022_0053 crossref_primary_10_1515_jiip_2022_0053 walterdegruyter_journals_10_1515_jiip_2022_005332175 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of inverse and ill-posed problems |
PublicationYear | 2024 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023022715514794215_j_jiip-2022-0053_ref_030 2023022715514794215_j_jiip-2022-0053_ref_031 2023022715514794215_j_jiip-2022-0053_ref_010 2023022715514794215_j_jiip-2022-0053_ref_032 2023022715514794215_j_jiip-2022-0053_ref_011 2023022715514794215_j_jiip-2022-0053_ref_033 2023022715514794215_j_jiip-2022-0053_ref_012 2023022715514794215_j_jiip-2022-0053_ref_034 2023022715514794215_j_jiip-2022-0053_ref_013 2023022715514794215_j_jiip-2022-0053_ref_035 2023022715514794215_j_jiip-2022-0053_ref_014 2023022715514794215_j_jiip-2022-0053_ref_036 2023022715514794215_j_jiip-2022-0053_ref_015 2023022715514794215_j_jiip-2022-0053_ref_037 2023022715514794215_j_jiip-2022-0053_ref_016 2023022715514794215_j_jiip-2022-0053_ref_038 2023022715514794215_j_jiip-2022-0053_ref_017 2023022715514794215_j_jiip-2022-0053_ref_039 2023022715514794215_j_jiip-2022-0053_ref_018 2023022715514794215_j_jiip-2022-0053_ref_019 2023022715514794215_j_jiip-2022-0053_ref_040 2023022715514794215_j_jiip-2022-0053_ref_041 2023022715514794215_j_jiip-2022-0053_ref_020 2023022715514794215_j_jiip-2022-0053_ref_042 2023022715514794215_j_jiip-2022-0053_ref_021 2023022715514794215_j_jiip-2022-0053_ref_043 2023022715514794215_j_jiip-2022-0053_ref_022 2023022715514794215_j_jiip-2022-0053_ref_044 2023022715514794215_j_jiip-2022-0053_ref_001 2023022715514794215_j_jiip-2022-0053_ref_023 2023022715514794215_j_jiip-2022-0053_ref_045 2023022715514794215_j_jiip-2022-0053_ref_002 2023022715514794215_j_jiip-2022-0053_ref_024 2023022715514794215_j_jiip-2022-0053_ref_003 2023022715514794215_j_jiip-2022-0053_ref_025 2023022715514794215_j_jiip-2022-0053_ref_004 2023022715514794215_j_jiip-2022-0053_ref_026 2023022715514794215_j_jiip-2022-0053_ref_005 2023022715514794215_j_jiip-2022-0053_ref_027 2023022715514794215_j_jiip-2022-0053_ref_006 2023022715514794215_j_jiip-2022-0053_ref_028 2023022715514794215_j_jiip-2022-0053_ref_007 2023022715514794215_j_jiip-2022-0053_ref_029 2023022715514794215_j_jiip-2022-0053_ref_008 2023022715514794215_j_jiip-2022-0053_ref_009 |
References_xml | – ident: 2023022715514794215_j_jiip-2022-0053_ref_025 doi: 10.1088/1361-6420/ab2a34 – ident: 2023022715514794215_j_jiip-2022-0053_ref_044 doi: 10.1016/j.ijsolstr.2006.01.004 – ident: 2023022715514794215_j_jiip-2022-0053_ref_005 doi: 10.1016/S0304-3991(00)00087-5 – ident: 2023022715514794215_j_jiip-2022-0053_ref_015 doi: 10.1680/vosasuml.35393 – ident: 2023022715514794215_j_jiip-2022-0053_ref_043 doi: 10.1016/j.ijsolstr.2007.02.002 – ident: 2023022715514794215_j_jiip-2022-0053_ref_028 doi: 10.1007/978-3-030-79427-9 – ident: 2023022715514794215_j_jiip-2022-0053_ref_040 – ident: 2023022715514794215_j_jiip-2022-0053_ref_013 – ident: 2023022715514794215_j_jiip-2022-0053_ref_034 doi: 10.1063/1.4931595 – ident: 2023022715514794215_j_jiip-2022-0053_ref_009 doi: 10.1007/978-0-387-70914-7 – ident: 2023022715514794215_j_jiip-2022-0053_ref_020 doi: 10.1016/j.jmaa.2006.08.018 – ident: 2023022715514794215_j_jiip-2022-0053_ref_006 doi: 10.1109/CDC.1990.203536 – ident: 2023022715514794215_j_jiip-2022-0053_ref_036 – ident: 2023022715514794215_j_jiip-2022-0053_ref_031 doi: 10.1088/0266-5611/30/6/065008 – ident: 2023022715514794215_j_jiip-2022-0053_ref_024 doi: 10.1515/jiip-2019-0020 – ident: 2023022715514794215_j_jiip-2022-0053_ref_042 doi: 10.1515/jiip-2018-0068 – ident: 2023022715514794215_j_jiip-2022-0053_ref_027 doi: 10.1088/1361-6420/ac01fb – ident: 2023022715514794215_j_jiip-2022-0053_ref_033 – ident: 2023022715514794215_j_jiip-2022-0053_ref_017 doi: 10.1016/j.apm.2019.10.066 – ident: 2023022715514794215_j_jiip-2022-0053_ref_029 doi: 10.1080/01630569708816750 – ident: 2023022715514794215_j_jiip-2022-0053_ref_026 doi: 10.1088/0266-5611/32/5/055004 – ident: 2023022715514794215_j_jiip-2022-0053_ref_016 doi: 10.1098/rspa.1986.0093 – ident: 2023022715514794215_j_jiip-2022-0053_ref_041 doi: 10.1090/gsm/112/07 – ident: 2023022715514794215_j_jiip-2022-0053_ref_021 doi: 10.1088/0266-5611/25/11/115015 – ident: 2023022715514794215_j_jiip-2022-0053_ref_045 – ident: 2023022715514794215_j_jiip-2022-0053_ref_018 – ident: 2023022715514794215_j_jiip-2022-0053_ref_014 doi: 10.1680/dorb.34716 – ident: 2023022715514794215_j_jiip-2022-0053_ref_019 doi: 10.1515/jiip-2018-0060 – ident: 2023022715514794215_j_jiip-2022-0053_ref_012 – ident: 2023022715514794215_j_jiip-2022-0053_ref_010 doi: 10.1016/j.automatica.2006.11.002 – ident: 2023022715514794215_j_jiip-2022-0053_ref_037 – ident: 2023022715514794215_j_jiip-2022-0053_ref_035 – ident: 2023022715514794215_j_jiip-2022-0053_ref_038 doi: 10.1515/jiip-2017-0038 – ident: 2023022715514794215_j_jiip-2022-0053_ref_001 doi: 10.1007/s00205-019-01476-4 – ident: 2023022715514794215_j_jiip-2022-0053_ref_030 – ident: 2023022715514794215_j_jiip-2022-0053_ref_002 – ident: 2023022715514794215_j_jiip-2022-0053_ref_003 doi: 10.1088/1361-6420/ac346c – ident: 2023022715514794215_j_jiip-2022-0053_ref_032 – ident: 2023022715514794215_j_jiip-2022-0053_ref_023 doi: 10.1088/1361-6420/ab2aa9 – ident: 2023022715514794215_j_jiip-2022-0053_ref_004 – ident: 2023022715514794215_j_jiip-2022-0053_ref_011 – ident: 2023022715514794215_j_jiip-2022-0053_ref_022 doi: 10.1016/j.automatica.2016.04.034 – ident: 2023022715514794215_j_jiip-2022-0053_ref_039 doi: 10.1007/978-3-319-31238-5 – ident: 2023022715514794215_j_jiip-2022-0053_ref_008 doi: 10.1016/j.aml.2019.02.006 – ident: 2023022715514794215_j_jiip-2022-0053_ref_007 doi: 10.1115/1.2897253 |
SSID | ssj0017522 |
Score | 2.3285944 |
Snippet | In this paper, we study the inverse problems of determining the unknown transverse shear force
in a system governed by the damped Euler–Bernoulli equation... In this paper, we study the inverse problems of determining the unknown transverse shear force g ( t ) {g(t)} in a system governed by the damped... In this paper, we study the inverse problems of determining the unknown transverse shear force [Image omitted] in a system governed by the damped... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 75 |
SubjectTerms | 35A01 35G05 35R30 49J20 bending moment Bending moments Boundary conditions Damping Euler-Bernoulli beams Euler-Bernoulli equation Euler–Bernoulli beam Inverse problems Kelvin–Voigt damping Lipschitz stability Regularity shear force identification Shear forces Transverse shear |
Title | Inverse problems of identifying the unknown transverse shear force in the Euler–Bernoulli beam with Kelvin–Voigt damping |
URI | https://www.degruyter.com/doi/10.1515/jiip-2022-0053 https://www.proquest.com/docview/3169278188 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELege4GHib9iMJAfkHioAmmcpvPjhrpVsI2Xdtpb5NiXKVObVk0LAvHAd-Ab8km4s52kYwMBL1WaXh3Lv1_OZ5_vjrGXMlMiE8YEYQ4iwBmqF6g9MIFUSkkJAmJbreHkNBlN4nfn_fM2XNFGl6yy1_rLjXEl_4Mq3kNcKUr2H5BtGsUbeI344icijJ9_hTElyVhWFOpkq8K49LE28tZFL5FRuS5p26ykWhBl5cQrqmJN5ws11Mcch2uKCPQHH8QBLMs5eYm6GaiZ26t9D9OPRdmInM2Li1XXqNminvuuW7iF7571T0ynwWJegWk6u7nfEMX1EeVaq1kvftcgh5frz3R5NMtGm_uKlPK61oPgtWoiAyFd3sha7bbbmg29nA51lVSuqfa-zYJxWRQL5ACuoEl9tJNY7bg__ZAeTo6P0_HwfHybbUW4eIg6bGv_6GB41niXBj6LfN1Vn8wTn_DmavtXjZV2BbL9yY6CgQs3Bhsmyfge2_YjzfcdMe6zW1A-YHdPmkS81UP21VOE16PO5znfoAhHWe4pwluKcEsRbinCi9JKWYr8-Pa9IQcncnAiB3fkwB8tLbinxSM2ORyO344CX3Aj0KiJV4HWgBZq3tNgIiVNqBVALmUuMz1Q5Pg3kRD5QKCeTwT0tAxjk8uEvuHckIB4zDrlvIQnjPdio_Osp6K8n8WhCWWGfwSR674aQBLu7bCgHtlU-2z0VBRlmtKqFJFICYmUkEgJiR32qpFfuDwsv5XcrYFK_btapdg7GQ3QOMUHx7-A10rd3KDAVXv_6Z9bfcbutO_KLuuslmt4jtbqKnvhyfcTNA-dyA |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9QwDPbA9gA9lPe0UMAHZjilm6yzyfrYMlsW2u2p7fSW8UMugd2kkwcMDAf-A_-QX4KUZNNS4ALHjGXHkaVItqxPjL2QWgktrPV8B8JDCxV4agLWk0opKUFA2FRrmB9Fs5Pw7dn47EouDF2rtHBe1J-rFiF1aHNT00FZjzWAFnj4Pk0vcIFxI0VSNHxXLRc32dokxP3KgK3tvt6bnvaxhLjDDJeExYwK2kE3_j7Mr6bp0t_c-NRErvtpXTFA-3eYWU29vXfyYaeu9I75cg3V8f--7S7b6PxTvtsK1D12A7L7bH3eg7uWD9hXwuYoSuBdMZqS546nTcJvkzTFkZbXGZ3WZbwiW9iSl1Q8m6OTbICnWUM1rRdQ_Pj2fQ-KLKewFNeglpwOh_kBLD6mGTae5ul5xa1aUmrXQ3ayPz1-NfO6Ig6eQe2uPGMAvR4XGLAjJa1vFICT0kltYkXBZDsSwsUC_x2RgMBIP7RORvSE_5sIxCM2yPIMNhkPQmucDtTIjXXoW19q7AjCmbGKIfInW8xbrV9iOoRzKrSxSGing6xNiLUJsTYh1m6xlz39RYvt8VfK7ZU4JJ2OlwnOTo5idHjwxeE1Ebmk-vOAAneC48f_1u05uzU7nh8mh2-ODp6w29gYttfIt9mgKmp4il5SpZ91avATwRAUTw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgKyE49AFUlD7wAYlTusk6m6yPbdltobTiQCtukR_jKrBNVnmAqHrof-g_7C9hnHhTKHApx8hjxxnPZGbs8TeEvOZSMMm09nwDzEMLFXhiBNrjQgjOgUHYVGs4Oo4OTsL3n4fzbMLSpVVqOCvqH1WLkNrXuartRlmHNYAWuP8lTWe4wBhIWSnqz7R5SBZGIcYyPbKws787Pu2OEmIHGc4tFDPqp0Nu_HOU3y3Trbu5-L05uO5m9Yv9mSwROZ95m3bydbuu5La6uAPq-F-ftkwWnXdKd1pxWiEPIHtKnhx10K7lM3JpkTmKEqgrRVPS3NC0ue7bXJmiSEvrzO7VZbSylrAlL23pbIousgKaZg3VuJ5CcXN1vQtFlttDKSpBnFO7NUwPYfotzbDxNE_PKqrFub3Y9ZycTMaf9g48V8LBU6jblacUoM9jAgV6ILj2lQAwnBsuVSzsUbIeMGZihn-OiEGguB9qwyP7hH-bCNgq6WV5Bi8IDUKtjAzEwAxl6GufS-wIzKihiCHyR2vEmy9fohy-uS2zMU1snIOcTSxnE8vZxHJ2jbzp6Gctssc_KTfm0pA4DS8TnB0fxOju4IvDOxJyS_X3ARnGgcOX9-v2ijz6-HaSfHh3fLhOHmNb2OaQb5BeVdSwiS5SJbecEvwEgSES9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+problems+of+identifying+the+unknown+transverse+shear+force+in+the+Euler%E2%80%93Bernoulli+beam+with+Kelvin%E2%80%93Voigt+damping&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.date=2024-02-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0928-0219&rft.eissn=1569-3945&rft.volume=32&rft.issue=1&rft.spage=75&rft_id=info:doi/10.1515%2Fjiip-2022-0053&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon |