A fatigue-resistance topology optimization formulation for continua subject to general loads using rainflow counting

Currently, fatigue-resistance topology optimization has received ever increasing attention, in which most of the literature considers this issue as a simple extension of stress-based topology optimization. However, previous approaches may not be applicable when considering general loads, as the conv...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 66; no. 9; p. 210
Main Authors Chen, Zhuo, Long, Kai, Zhang, Chengwan, Yang, Xiaoyu, Lu, Feiyu, Wang, Rixin, Zhu, Benliang, Zhang, Xianmin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, fatigue-resistance topology optimization has received ever increasing attention, in which most of the literature considers this issue as a simple extension of stress-based topology optimization. However, previous approaches may not be applicable when considering general loads, as the conventional uniaxial rainflow counting method, commonly employed in prior studies, can result in significant errors. Furthermore, the inclusion of general loads introduces additional nonlinearity to fatigue-resistant topology optimization, posing challenges in identifying the optimal solution. To this end, a novel methodology for fatigue-resistance topology optimization considering general loads is proposed in this paper. The independent rainflow counting method is utilized during the process of structural damage estimation. The damage penalization model is subsequently adopted to reduce the nonlinearity by scaling the value of fatigue damage. To illustrate the necessity of an independent rainflow counting method, an example of a double L -shaped structure subjected to general loads is presented. The augmented Lagrangian (AL) approach is introduced to transform numerous damage constraint equations into the objective function, generating a sequence of box-constrained optimization sub-problems. After employing the typical SIMP technique, the relative sensitivities of the AL function regarding design variables are derived, which facilitates the efficient solution using the method of moving asymptotes (MMA). Through 2D and 3D numerical tests, the effectiveness of the proposed method is validated in comparison to the traditional method. Further investigation is conducted into the influences of general loads, damage penalization model, and manufacturing error robustness. In addition, the fatigue-resistance performance of a bearing support of a wind turbine is improved by the suggested approach, and its overall weight is decreased by 25.40%. The proposed method addresses the nonlinear and localized nature of fatigue-resistant topology optimization more efficiently. The results indicate that the proposed method can develop a lightweight design for structures under general loads.
AbstractList Currently, fatigue-resistance topology optimization has received ever increasing attention, in which most of the literature considers this issue as a simple extension of stress-based topology optimization. However, previous approaches may not be applicable when considering general loads, as the conventional uniaxial rainflow counting method, commonly employed in prior studies, can result in significant errors. Furthermore, the inclusion of general loads introduces additional nonlinearity to fatigue-resistant topology optimization, posing challenges in identifying the optimal solution. To this end, a novel methodology for fatigue-resistance topology optimization considering general loads is proposed in this paper. The independent rainflow counting method is utilized during the process of structural damage estimation. The damage penalization model is subsequently adopted to reduce the nonlinearity by scaling the value of fatigue damage. To illustrate the necessity of an independent rainflow counting method, an example of a double L -shaped structure subjected to general loads is presented. The augmented Lagrangian (AL) approach is introduced to transform numerous damage constraint equations into the objective function, generating a sequence of box-constrained optimization sub-problems. After employing the typical SIMP technique, the relative sensitivities of the AL function regarding design variables are derived, which facilitates the efficient solution using the method of moving asymptotes (MMA). Through 2D and 3D numerical tests, the effectiveness of the proposed method is validated in comparison to the traditional method. Further investigation is conducted into the influences of general loads, damage penalization model, and manufacturing error robustness. In addition, the fatigue-resistance performance of a bearing support of a wind turbine is improved by the suggested approach, and its overall weight is decreased by 25.40%. The proposed method addresses the nonlinear and localized nature of fatigue-resistant topology optimization more efficiently. The results indicate that the proposed method can develop a lightweight design for structures under general loads.
Currently, fatigue-resistance topology optimization has received ever increasing attention, in which most of the literature considers this issue as a simple extension of stress-based topology optimization. However, previous approaches may not be applicable when considering general loads, as the conventional uniaxial rainflow counting method, commonly employed in prior studies, can result in significant errors. Furthermore, the inclusion of general loads introduces additional nonlinearity to fatigue-resistant topology optimization, posing challenges in identifying the optimal solution. To this end, a novel methodology for fatigue-resistance topology optimization considering general loads is proposed in this paper. The independent rainflow counting method is utilized during the process of structural damage estimation. The damage penalization model is subsequently adopted to reduce the nonlinearity by scaling the value of fatigue damage. To illustrate the necessity of an independent rainflow counting method, an example of a double L-shaped structure subjected to general loads is presented. The augmented Lagrangian (AL) approach is introduced to transform numerous damage constraint equations into the objective function, generating a sequence of box-constrained optimization sub-problems. After employing the typical SIMP technique, the relative sensitivities of the AL function regarding design variables are derived, which facilitates the efficient solution using the method of moving asymptotes (MMA). Through 2D and 3D numerical tests, the effectiveness of the proposed method is validated in comparison to the traditional method. Further investigation is conducted into the influences of general loads, damage penalization model, and manufacturing error robustness. In addition, the fatigue-resistance performance of a bearing support of a wind turbine is improved by the suggested approach, and its overall weight is decreased by 25.40%. The proposed method addresses the nonlinear and localized nature of fatigue-resistant topology optimization more efficiently. The results indicate that the proposed method can develop a lightweight design for structures under general loads.
ArticleNumber 210
Author Wang, Rixin
Zhang, Chengwan
Zhu, Benliang
Chen, Zhuo
Lu, Feiyu
Long, Kai
Yang, Xiaoyu
Zhang, Xianmin
Author_xml – sequence: 1
  givenname: Zhuo
  surname: Chen
  fullname: Chen, Zhuo
  organization: School of Mechanical and Automotive Engineering, South China University of Technology, State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University
– sequence: 2
  givenname: Kai
  orcidid: 0000-0001-6323-5681
  surname: Long
  fullname: Long, Kai
  email: longkai1978@163.com
  organization: State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University
– sequence: 3
  givenname: Chengwan
  surname: Zhang
  fullname: Zhang, Chengwan
  organization: State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University
– sequence: 4
  givenname: Xiaoyu
  surname: Yang
  fullname: Yang, Xiaoyu
  organization: State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University
– sequence: 5
  givenname: Feiyu
  surname: Lu
  fullname: Lu, Feiyu
  organization: State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University
– sequence: 6
  givenname: Rixin
  surname: Wang
  fullname: Wang, Rixin
  organization: School of Mechanical and Automotive Engineering, South China University of Technology
– sequence: 7
  givenname: Benliang
  surname: Zhu
  fullname: Zhu, Benliang
  organization: School of Mechanical and Automotive Engineering, South China University of Technology
– sequence: 8
  givenname: Xianmin
  surname: Zhang
  fullname: Zhang, Xianmin
  organization: School of Mechanical and Automotive Engineering, South China University of Technology
BookMark eNp9kEtLAzEUhYNUsK3-AVcB16PJZDqTLEvxBQU3Cu5CJk2GlGlS80DrrzftSAUXXd2zON-995wJGFlnFQDXGN1ihJq7gBCe0QKVpECkzurrDIxxjWcFrigdHXXzfgEmIawRQhRVbAziHGoRTZdU4VUwIQorFYxu63rX7aDbRrMx39nhLNTOb1J_1FA6G41NAobUrpWMGYOdssqLHvZOrAJMwdgOemGs7t1nBtKe6C7BuRZ9UFe_cwreHu5fF0_F8uXxeTFfFpJgFgspESN1WylKG1zXaiVVSUkj6xK3SmIiRSUapiu9kjm-pkwzyTAmVLRYMKzIFNwMe7fefSQVIl-75G0-yUtaVwjNcMOyiw4u6V0IXmkuTTykjPnznmPE9x3zoWOeO-aHjvlXRst_6NabjfC70xAZoJDNtlP-76sT1A-F5JUs
CitedBy_id crossref_primary_10_1016_j_cma_2024_117136
crossref_primary_10_1016_j_cma_2024_117542
crossref_primary_10_1016_j_advengsoft_2023_103590
crossref_primary_10_1016_j_cma_2024_117594
crossref_primary_10_1016_j_tws_2025_112907
crossref_primary_10_3390_jmse12101807
crossref_primary_10_1016_j_engfailanal_2025_109502
crossref_primary_10_1007_s10409_024_23452_x
crossref_primary_10_3389_fams_2025_1556150
crossref_primary_10_32604_cmes_2024_048118
crossref_primary_10_1016_j_istruc_2024_106183
crossref_primary_10_1002_nme_7561
crossref_primary_10_32604_cmes_2023_031538
crossref_primary_10_3390_agriculture15060632
Cites_doi 10.1080/0305215X.2022.21296281-15
10.1002/nme.6548
10.1016/j.cma.2013.10.022
10.1016/0045-7825(88)90086-2
10.1007/s00158-021-02954-8
10.1002/nme.5607
10.1016/0045-7825(91)90046-9
10.1007/s00158-016-1510-6
10.1002/nme.6781
10.1016/j.apm.2014.07.020
10.1016/j.ijfatigue.2021.106176
10.1007/s00158-021-02995-z
10.1007/BF01650949
10.1016/j.camwa.2015.08.006
10.1007/s00158-013-0956-z
10.1016/j.finel.2017.05.004
10.1016/j.advengsoft.2020.102924
10.1016/j.cma.2019.05.046
10.1007/s00158-018-1984-5
10.1016/j.compstruc.2018.01.008
10.1007/s00158-017-1701-9
10.1007/s11465-021-0636-4
10.1007/s00158-010-0602-y
10.1016/j.matdes.2019.107586
10.1115/1.4009458
10.1007/s00158-020-02573-9
10.1007/s00158-018-2159-0
10.3390/ma14195726
10.1016/j.compstruc.2020.106455
10.1007/s00158-020-02760-8
10.1007/s00158-019-02400-w
10.1007/BF01197454
10.32604/cmes.2023.029876
10.1016/j.apm.2017.12.017
10.1007/s00158-020-02677-2
10.1007/s00158-007-0203-6
10.1016/j.cma.2018.11.015
10.1016/j.cma.2018.10.020
10.1007/s00158-014-1054-6
10.1115/1.2806822
10.1016/j.cma.2018.08.013
10.1007/s00158-009-0440-y
10.1002/nme.1620240207
10.1016/j.cma.2016.09.049
10.1007/s00158-013-0978-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s00158-023-03658-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
ExternalDocumentID 10_1007_s00158_023_03658_x
GrantInformation_xml – fundername: National Key R&D Program
  grantid: 2022YFB4201300
– fundername: National Natural Science Foundation of China
  grantid: 52130508; 51820105007
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2022A1515240057
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-cc0936b4e887166edce2837c621bec13ca4a79f4fdc001f89f9c91138ab1a91e3
IEDL.DBID U2A
ISSN 1615-147X
IngestDate Fri Jul 25 10:43:15 EDT 2025
Tue Jul 01 01:31:48 EDT 2025
Thu Apr 24 23:11:39 EDT 2025
Fri Feb 21 02:41:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Topology optimization
Fatigue resistance
Augmented lagrangian
General loads
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cc0936b4e887166edce2837c621bec13ca4a79f4fdc001f89f9c91138ab1a91e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6323-5681
PQID 2864005179
PQPubID 2043658
ParticipantIDs proquest_journals_2864005179
crossref_citationtrail_10_1007_s00158_023_03658_x
crossref_primary_10_1007_s00158_023_03658_x
springer_journals_10_1007_s00158_023_03658_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References James, Waisman (CR15) 2014; 268
Olesen, Hermansen, Lund (CR30) 2021; 64
Bendsøe, Kikuchi (CR3) 1988; 71
Giraldo-Londoño, Aguiló, Paulino (CR12) 2021; 64
Bruggi (CR5) 2008; 36
Wang, Brown (CR44) 1996; 118
Nabaki, Shen, Huang (CR28) 2019; 166
Saeed, Long, Li, Saeed, Zhang, Cheng (CR31) 2022
Svanberg (CR43) 1987; 24
Zhang, Le, Gain, Norato (CR48) 2019; 345
Senhora, Giraldo-Londoño, Menezes, Paulino (CR32) 2020; 62
Silva, Aage, Beck, Sigmund (CR39) 2021; 122
Suresh, Lindström, Thore, Klarbring (CR42) 2021; 63
Long, Yang, Saeed, Tian, Wen, Wang (CR24) 2021; 16
Silva, Cardoso (CR34) 2017; 313
Chen, Long, Wen, Nouman (CR6) 2020; 150
Stephens, Fatemi, Stephens, Fuchs (CR40) 2000
Miner (CR26) 1945; 12
Yang, Liu, Zhang, Li (CR47) 2018; 198
Zhao, Xu, Han, Xue, Rong (CR51) 2020; 205
Silva, Aage, Beck, Sigmund (CR38) 2021; 122
Gao, Caivano, Tridello, Chiandussi, Ma, Paolino, Berto (CR10) 2021; 147
Giraldo-Londoño, Paulino (CR11) 2021; 63
Holmberg, Torstenfelt, Klarbring (CR14) 2014; 50
Bendsoe, Sigmund (CR4) 2003
Le, Norato, Bruns, Ha, Tortorelli (CR18) 2010; 41
Silva, Beck, Cardoso (CR35) 2018; 113
Collet, Bruggi, Duysinx (CR8) 2017; 55
Li, Zhang, Khandelwal (CR20) 2018; 58
Suresh, Lindström, Thore, Torstenfelt, Klarbring (CR41) 2020; 61
Jeong, Choi, Yoon (CR16) 2015; 39
Wang, Liu, Kang, Long, Meng (CR46) 2021; 244
CR50
Jeong, Lee, Yoon, Choi (CR17) 2018; 56
Cheng, Guo (CR7) 1997; 13
Zhang, Long, Zhang, Lu, Bai, Jia (CR49) 2022; 266
Nabaki, Shen, Huang (CR27) 2018; 12
Silva, Beck, Sigmund (CR36) 2019; 354
Zhou, Rozvany (CR52) 1991; 89
Long, Wang, Liu (CR22) 2019; 59
Lu, Long, Zhang, Zhang, Tao (CR25) 2023; 280
Silva, Beck, Sigmund (CR37) 2019; 344
Lee, Yoon, Jeong (CR19) 2015; 70
Bendsøe (CR2) 1989; 1
Alberdi, Khandelwal (CR1) 2017; 133
Deaton, Grandhi (CR9) 2014; 49
Han, Xu, Duan, Huang (CR13) 2022; 396
Wang, Lazarov, Sigmund (CR45) 2011; 43
Sigmund, Maute (CR33) 2013; 48
Liu, Yang, Hao, Zhu (CR21) 2018; 342
Long, Chen, Zhang, Yang, Saeed (CR23) 2021; 14
Oest, Lund (CR29) 2017; 56
MA Miner (3658_CR26) 1945; 12
GA Silva (3658_CR37) 2019; 344
K Long (3658_CR23) 2021; 14
L Li (3658_CR20) 2018; 58
E Holmberg (3658_CR14) 2014; 50
Y Han (3658_CR13) 2022; 396
GA Silva (3658_CR36) 2019; 354
GA Silva (3658_CR38) 2021; 122
KA James (3658_CR15) 2014; 268
3658_CR50
L Zhao (3658_CR51) 2020; 205
O Giraldo-Londoño (3658_CR11) 2021; 63
GD Cheng (3658_CR7) 1997; 13
SH Jeong (3658_CR16) 2015; 39
MP Bendsøe (3658_CR3) 1988; 71
JD Deaton (3658_CR9) 2014; 49
K Long (3658_CR24) 2021; 16
GA Silva (3658_CR39) 2021; 122
S Suresh (3658_CR42) 2021; 63
F Lu (3658_CR25) 2023; 280
Z Chen (3658_CR6) 2020; 150
J Oest (3658_CR29) 2017; 56
O Giraldo-Londoño (3658_CR12) 2021; 64
S Zhang (3658_CR48) 2019; 345
R Alberdi (3658_CR1) 2017; 133
FV Senhora (3658_CR32) 2020; 62
GA Silva (3658_CR34) 2017; 313
MP Bendsøe (3658_CR2) 1989; 1
O Sigmund (3658_CR33) 2013; 48
X Wang (3658_CR46) 2021; 244
C Zhang (3658_CR49) 2022; 266
D Yang (3658_CR47) 2018; 198
M Bruggi (3658_CR5) 2008; 36
JW Lee (3658_CR19) 2015; 70
K Svanberg (3658_CR43) 1987; 24
AM Olesen (3658_CR30) 2021; 64
C Le (3658_CR18) 2010; 41
H Liu (3658_CR21) 2018; 342
K Nabaki (3658_CR27) 2018; 12
X Gao (3658_CR10) 2021; 147
RI Stephens (3658_CR40) 2000
S Suresh (3658_CR41) 2020; 61
N Saeed (3658_CR31) 2022
C Wang (3658_CR44) 1996; 118
MP Bendsoe (3658_CR4) 2003
K Long (3658_CR22) 2019; 59
M Zhou (3658_CR52) 1991; 89
M Collet (3658_CR8) 2017; 55
SH Jeong (3658_CR17) 2018; 56
F Wang (3658_CR45) 2011; 43
GA Silva (3658_CR35) 2018; 113
K Nabaki (3658_CR28) 2019; 166
References_xml – year: 2000
  ident: CR40
  publication-title: Metal fatigue in engineering
– year: 2003
  ident: CR4
  publication-title: Topology optimization: theory, methods, and applications
– volume: 70
  start-page: 1852
  issue: 8
  year: 2015
  end-page: 1877
  ident: CR19
  article-title: Topology optimization considering fatigue life in the frequency domain
  publication-title: Comput Math Appl
– volume: 12
  start-page: 113
  issue: 2
  year: 2018
  end-page: 118
  ident: CR27
  article-title: Bi-directional evolutionary topology optimization based on critical fatigue constraint
  publication-title: Internal J Civ Environ Eng
– volume: 48
  start-page: 1031
  issue: 6
  year: 2013
  end-page: 1055
  ident: CR33
  article-title: Topology optimization approaches
  publication-title: Struct Multidisc Optim
– volume: 71
  start-page: 197
  issue: 2
  year: 1988
  end-page: 224
  ident: CR3
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput Methods Appl Mech Engrg
– volume: 133
  start-page: 42
  year: 2017
  end-page: 61
  ident: CR1
  article-title: Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints
  publication-title: Finite Elem Anal Des
– volume: 147
  start-page: 106176
  year: 2021
  ident: CR10
  article-title: Innovative formulation for topological fatigue optimisation based on material defects distribution and TopFat algorithm
  publication-title: Internal. J. Fatigue.
– volume: 118
  start-page: 371
  issue: 3
  year: 1996
  end-page: 374
  ident: CR44
  article-title: Life prediction techniques for variable amplitude multiaxial fatigue—part 2: comparison with experimental results
  publication-title: J Engrg Mater Technol
– volume: 61
  start-page: 1011
  issue: 3
  year: 2020
  end-page: 1025
  ident: CR41
  article-title: Topology optimization using a continuous-time high-cycle fatigue model
  publication-title: Struct Multidisc Optim
– volume: 63
  start-page: 2065
  issue: 4
  year: 2021
  end-page: 2097
  ident: CR11
  article-title: PolyStress: a Matlab implementation for local stress-constrained topology optimization using the augmented Lagrangian method
  publication-title: Struct Multidisc Optim
– volume: 268
  start-page: 614
  year: 2014
  end-page: 631
  ident: CR15
  article-title: Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model
  publication-title: Comput Methods Appl Mech Engrg
– volume: 280
  year: 2023
  ident: CR25
  article-title: A novel design of the offshore wind turbine tripod structure using topology optimization methodology
  publication-title: Ocean Eng
– volume: 56
  start-page: 626
  year: 2018
  end-page: 647
  ident: CR17
  article-title: Topology optimization considering the fatigue constraint of variable amplitude load based on the equivalent static load approach
  publication-title: Appl Math Model
– volume: 56
  start-page: 1045
  issue: 5
  year: 2017
  end-page: 1059
  ident: CR29
  article-title: Topology optimization with finite-life fatigue constraints
  publication-title: Struct Multidisc Optim
– volume: 313
  start-page: 647
  year: 2017
  end-page: 672
  ident: CR34
  article-title: Stress-based topology optimization of continuum structures under uncertainties
  publication-title: Comput Methods Appl Mech Engrg
– volume: 89
  start-page: 309
  issue: 1
  year: 1991
  end-page: 336
  ident: CR52
  article-title: The COC algorithm, part II: topological, geometrical and generalized shape optimization
  publication-title: Comput Methods Appl Mech Eng
– volume: 266
  year: 2022
  ident: CR49
  article-title: A topology optimization methodology for the offshore wind turbine jacket structure in the concept phase
  publication-title: Ocean Eng
– volume: 16
  start-page: 593
  issue: 3
  year: 2021
  end-page: 606
  ident: CR24
  article-title: Topology optimization of transient problem with maximum dynamic response constraint using SOAR scheme
  publication-title: Front Mech Eng
– ident: CR50
– volume: 64
  start-page: 1041
  issue: 3
  year: 2021
  end-page: 1062
  ident: CR30
  article-title: Simultaneous optimization of topology and print orientation for transversely isotropic fatigue
  publication-title: Struct Multidisc Optim
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  end-page: 373
  ident: CR43
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Int Journal Numer Methods Eng
– volume: 345
  start-page: 805
  year: 2019
  end-page: 825
  ident: CR48
  article-title: Fatigue-based topology optimization with non-proportional loads
  publication-title: Comput Methods Appl Mech Eng
– volume: 122
  start-page: 548
  issue: 2
  year: 2021
  end-page: 578
  ident: CR38
  article-title: Three-dimensional manufacturing tolerant topology optimization with hundreds of millions of local stress constraints
  publication-title: Internat J Numer Methods Eng
– volume: 122
  start-page: 6003
  issue: 21
  year: 2021
  end-page: 6036
  ident: CR39
  article-title: Local versus global stress constraint strategies in topology optimization: A comparative study
  publication-title: Internat J Numer Methods Eng
– volume: 113
  start-page: 153
  issue: 1
  year: 2018
  end-page: 178
  ident: CR35
  article-title: Topology optimization of continuum structures with stress constraints and uncertainties in loading
  publication-title: Internat J Numer Methods Eng
– volume: 43
  start-page: 767
  issue: 6
  year: 2011
  end-page: 784
  ident: CR45
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct Multidisc Optim
– volume: 198
  start-page: 23
  year: 2018
  end-page: 39
  ident: CR47
  article-title: Stress-constrained topology optimization based on maximum stress measures
  publication-title: Comput Struct
– volume: 36
  start-page: 125
  issue: 2
  year: 2008
  end-page: 141
  ident: CR5
  article-title: On an alternative approach to stress constraints relaxation in topology optimization
  publication-title: Struct Multidisc Optim
– volume: 62
  start-page: 1639
  issue: 4
  year: 2020
  end-page: 1668
  ident: CR32
  article-title: Topology optimization with local stress constraints: a stress aggregation-free approach
  publication-title: Struct Multidisc Optim
– volume: 12
  start-page: 159
  issue: 3
  year: 1945
  end-page: 164
  ident: CR26
  article-title: Cumulative damage in fatigue
  publication-title: J Appl Mech
– volume: 58
  start-page: 1589
  issue: 4
  year: 2018
  end-page: 1618
  ident: CR20
  article-title: Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model
  publication-title: Struct Multidisc Optim
– volume: 59
  start-page: 1747
  year: 2019
  end-page: 1759
  ident: CR22
  article-title: Stress-constrained topology optimization of continuum structures subject to harmonic force excitation using sequential quadratic programming
  publication-title: Struct Multidisc Optim
– volume: 166
  year: 2019
  ident: CR28
  article-title: Evolutionary topology optimization of continuum structures considering fatigue failure
  publication-title: Mater Des
– year: 2022
  ident: CR31
  article-title: An augmented Lagrangian method for multiple nodal displacement-constrained topology optimization
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2022.21296281-15
– volume: 55
  start-page: 839
  issue: 3
  year: 2017
  end-page: 855
  ident: CR8
  article-title: Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance
  publication-title: Struct Multidisc Optim
– volume: 396
  year: 2022
  ident: CR13
  article-title: Stress-based bi-directional evolutionary structural topology optimization considering nonlinear continuum damage
  publication-title: Comput Methods Appl Mech Engrg
– volume: 344
  start-page: 512
  year: 2019
  end-page: 537
  ident: CR37
  article-title: Stress-constrained topology optimization considering uniform manufacturing uncertainties
  publication-title: Comput Methods Appl Mech Eng
– volume: 244
  year: 2021
  ident: CR46
  article-title: Topology optimization for minimum stress design with embedded movable holes
  publication-title: Comput Struct
– volume: 39
  start-page: 1137
  issue: 3
  year: 2015
  end-page: 1162
  ident: CR16
  article-title: Fatigue and static failure considerations using a topology optimization method
  publication-title: Appl Math Model
– volume: 50
  start-page: 207
  issue: 2
  year: 2014
  end-page: 219
  ident: CR14
  article-title: Fatigue constrained topology optimization
  publication-title: Struct Multidisc Optim
– volume: 342
  start-page: 625
  year: 2018
  end-page: 652
  ident: CR21
  article-title: Isogeometric analysis based topology optimization design with global stress constraint
  publication-title: Comput Methods Appl Mech Eng
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  end-page: 202
  ident: CR2
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct Optim
– volume: 150
  year: 2020
  ident: CR6
  article-title: Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage
  publication-title: Adv Eng Softw
– volume: 13
  start-page: 258
  issue: 4
  year: 1997
  end-page: 266
  ident: CR7
  article-title: ε-relaxed approach in structural topology optimization
  publication-title: Struct Multidisc Optim
– volume: 49
  start-page: 1
  issue: 1
  year: 2014
  end-page: 38
  ident: CR9
  article-title: A survey of structural and multidisciplinary continuum topology optimization: post 2000
  publication-title: Struct Multidisc Optim
– volume: 64
  start-page: 3287
  issue: 6
  year: 2021
  end-page: 3309
  ident: CR12
  article-title: Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach
  publication-title: Struct Multidisc Optim
– volume: 354
  start-page: 397
  year: 2019
  end-page: 421
  ident: CR36
  article-title: Topology optimization of compliant mechanisms with stress constraints and manufacturing error robustness
  publication-title: Comput Methods Appl Mech Eng
– volume: 41
  start-page: 605
  issue: 4
  year: 2010
  end-page: 620
  ident: CR18
  article-title: Stress-based topology optimization for continua
  publication-title: Struct Multidisc Optim
– volume: 63
  start-page: 161
  issue: 1
  year: 2021
  end-page: 172
  ident: CR42
  article-title: Topology optimization for transversely isotropic materials with high-cycle fatigue as a constraint
  publication-title: Struct Multidisc Optim
– volume: 205
  year: 2020
  ident: CR51
  article-title: Structural topological optimization with dynamic fatigue constraints subject to dynamic random loads
  publication-title: Engrg Struct
– volume: 14
  start-page: 5726
  issue: 19
  year: 2021
  ident: CR23
  article-title: An aggregation-free local volume fraction formulation for topological design of porous structure
  publication-title: Materials
– volume: 122
  start-page: 548
  issue: 2
  year: 2021
  ident: 3658_CR38
  publication-title: Internat J Numer Methods Eng
  doi: 10.1002/nme.6548
– volume: 268
  start-page: 614
  year: 2014
  ident: 3658_CR15
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2013.10.022
– volume: 71
  start-page: 197
  issue: 2
  year: 1988
  ident: 3658_CR3
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/0045-7825(88)90086-2
– volume: 64
  start-page: 3287
  issue: 6
  year: 2021
  ident: 3658_CR12
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-021-02954-8
– volume: 113
  start-page: 153
  issue: 1
  year: 2018
  ident: 3658_CR35
  publication-title: Internat J Numer Methods Eng
  doi: 10.1002/nme.5607
– volume: 89
  start-page: 309
  issue: 1
  year: 1991
  ident: 3658_CR52
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(91)90046-9
– volume: 55
  start-page: 839
  issue: 3
  year: 2017
  ident: 3658_CR8
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-016-1510-6
– volume: 122
  start-page: 6003
  issue: 21
  year: 2021
  ident: 3658_CR39
  publication-title: Internat J Numer Methods Eng
  doi: 10.1002/nme.6781
– volume: 39
  start-page: 1137
  issue: 3
  year: 2015
  ident: 3658_CR16
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2014.07.020
– volume: 147
  start-page: 106176
  year: 2021
  ident: 3658_CR10
  publication-title: Internal. J. Fatigue.
  doi: 10.1016/j.ijfatigue.2021.106176
– volume: 64
  start-page: 1041
  issue: 3
  year: 2021
  ident: 3658_CR30
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-021-02995-z
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  ident: 3658_CR2
  publication-title: Struct Optim
  doi: 10.1007/BF01650949
– volume: 70
  start-page: 1852
  issue: 8
  year: 2015
  ident: 3658_CR19
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2015.08.006
– volume: 49
  start-page: 1
  issue: 1
  year: 2014
  ident: 3658_CR9
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-013-0956-z
– volume: 133
  start-page: 42
  year: 2017
  ident: 3658_CR1
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2017.05.004
– volume: 150
  year: 2020
  ident: 3658_CR6
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2020.102924
– volume: 354
  start-page: 397
  year: 2019
  ident: 3658_CR36
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.05.046
– volume: 58
  start-page: 1589
  issue: 4
  year: 2018
  ident: 3658_CR20
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-018-1984-5
– volume: 198
  start-page: 23
  year: 2018
  ident: 3658_CR47
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2018.01.008
– volume: 56
  start-page: 1045
  issue: 5
  year: 2017
  ident: 3658_CR29
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-017-1701-9
– year: 2022
  ident: 3658_CR31
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2022.21296281-15
– volume-title: Metal fatigue in engineering
  year: 2000
  ident: 3658_CR40
– volume: 16
  start-page: 593
  issue: 3
  year: 2021
  ident: 3658_CR24
  publication-title: Front Mech Eng
  doi: 10.1007/s11465-021-0636-4
– volume: 280
  year: 2023
  ident: 3658_CR25
  publication-title: Ocean Eng
– volume: 43
  start-page: 767
  issue: 6
  year: 2011
  ident: 3658_CR45
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-010-0602-y
– volume: 166
  year: 2019
  ident: 3658_CR28
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.107586
– volume: 12
  start-page: 159
  issue: 3
  year: 1945
  ident: 3658_CR26
  publication-title: J Appl Mech
  doi: 10.1115/1.4009458
– volume: 62
  start-page: 1639
  issue: 4
  year: 2020
  ident: 3658_CR32
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02573-9
– volume: 59
  start-page: 1747
  year: 2019
  ident: 3658_CR22
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-018-2159-0
– volume: 14
  start-page: 5726
  issue: 19
  year: 2021
  ident: 3658_CR23
  publication-title: Materials
  doi: 10.3390/ma14195726
– volume: 244
  year: 2021
  ident: 3658_CR46
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2020.106455
– volume: 63
  start-page: 2065
  issue: 4
  year: 2021
  ident: 3658_CR11
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02760-8
– volume: 61
  start-page: 1011
  issue: 3
  year: 2020
  ident: 3658_CR41
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-019-02400-w
– volume: 13
  start-page: 258
  issue: 4
  year: 1997
  ident: 3658_CR7
  publication-title: Struct Multidisc Optim
  doi: 10.1007/BF01197454
– ident: 3658_CR50
  doi: 10.32604/cmes.2023.029876
– volume: 56
  start-page: 626
  year: 2018
  ident: 3658_CR17
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.12.017
– volume: 63
  start-page: 161
  issue: 1
  year: 2021
  ident: 3658_CR42
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-020-02677-2
– volume: 36
  start-page: 125
  issue: 2
  year: 2008
  ident: 3658_CR5
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-007-0203-6
– volume: 345
  start-page: 805
  year: 2019
  ident: 3658_CR48
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.11.015
– volume: 344
  start-page: 512
  year: 2019
  ident: 3658_CR37
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.10.020
– volume: 50
  start-page: 207
  issue: 2
  year: 2014
  ident: 3658_CR14
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-014-1054-6
– volume: 118
  start-page: 371
  issue: 3
  year: 1996
  ident: 3658_CR44
  publication-title: J Engrg Mater Technol
  doi: 10.1115/1.2806822
– volume: 342
  start-page: 625
  year: 2018
  ident: 3658_CR21
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.08.013
– volume: 41
  start-page: 605
  issue: 4
  year: 2010
  ident: 3658_CR18
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-009-0440-y
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  ident: 3658_CR43
  publication-title: Int Journal Numer Methods Eng
  doi: 10.1002/nme.1620240207
– volume: 12
  start-page: 113
  issue: 2
  year: 2018
  ident: 3658_CR27
  publication-title: Internal J Civ Environ Eng
– volume: 396
  year: 2022
  ident: 3658_CR13
  publication-title: Comput Methods Appl Mech Engrg
– volume: 205
  year: 2020
  ident: 3658_CR51
  publication-title: Engrg Struct
– volume: 313
  start-page: 647
  year: 2017
  ident: 3658_CR34
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2016.09.049
– volume: 266
  year: 2022
  ident: 3658_CR49
  publication-title: Ocean Eng
– volume: 48
  start-page: 1031
  issue: 6
  year: 2013
  ident: 3658_CR33
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-013-0978-6
– volume-title: Topology optimization: theory, methods, and applications
  year: 2003
  ident: 3658_CR4
SSID ssj0008049
Score 2.4630103
Snippet Currently, fatigue-resistance topology optimization has received ever increasing attention, in which most of the literature considers this issue as a simple...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 210
SubjectTerms Asymptotes
Computational Mathematics and Numerical Analysis
Constraints
Damage assessment
Engineering
Engineering Design
Fatigue failure
Fatigue strength
Nonlinearity
Optimization
Research Paper
Robustness (mathematics)
Structural damage
Theoretical and Applied Mechanics
Topology optimization
Wind turbines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aXvQgfmK1Sg7eNGh20zR7kiotRbCIWOht2WSzRajd6m6x_ntndrOtCvYW2I_DTDJ5M5m8R8iFFlpEEusahhsmdKvFtIAshZs40VZqbizWOx4Hsj8UD6PWyBXcMtdWWcXEIlDHqcEa-bWnpCgJpW5n7wxVo_B01UlobJI6hGAFyVf9rjt4el7GYlUCYIQ1jIv2yF2bKS7PIVxQDPYsBlEcRovfW9MKb_45Ii12nt4u2XGQkXZKH--RDTvdJ9s_iAQPSN6hCZh4PLcM0meEhOBLmpcCCF80hbjw5i5cUkSpTrMLxxSb1V-n84hmc41FGfiMjksyajpJozij2Bs_pqglkUzST1rJSxySYa_7ct9nTk-BGVhoOTPmJvClFlZhliSx_xO5b4z0OHiS-yYSUTtIRBIbsE2igiQwEAt9FWkeBdz6R6Q2Taf2mFDjJdqTCunBIJ-0bSU8zxiATwGK3si4QXhlytA4snHUvJiES5rkwvwhmD8szB8uGuRy-c2spNpY-3az8lDoll0WriZJg1xVXls9_v9vJ-v_dkq2vGKiYG9Zk9Tyj7k9AzCS63M3474BSQXdxQ
  priority: 102
  providerName: ProQuest
Title A fatigue-resistance topology optimization formulation for continua subject to general loads using rainflow counting
URI https://link.springer.com/article/10.1007/s00158-023-03658-x
https://www.proquest.com/docview/2864005179
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXvQgPrFaSw7eNGC2aZo9bqUPFIuIhXpaNtlsEequ2C3qv3dmX1VRwdMGNslhJpl8k8x8Q8ipFloEEu81DDdM6E6HaQFeCjdhpK3U3Fi877gZy9FEXE070yIpbFFGu5dPkpmlrpLd8HhXDM4YBlYXWoAc6x303WEVTxyvsr8qB70IZRgX3WmRKvPzHF-PoxXG_PYsmp02g22yVcBE6uV63SFrNt4lm5_IA_dI6tEIxDpbWgYuM8JA0B9N86IH7zQBW_BUJFlSRKZFnS5sUwxQf4yXAV0sNV7EwDA6ywmo6TwJwgXFePgZxfoR0Tx5pWVJiX0yGfTvL0esqKHADGyulBlz4balFlahZyQx5hP5box0OGiPt00ggq4biSg0IJtIuZFrwP61VaB54HLbPiC1OIntIaHGibQjFVKCgQ9pu0o4jjEAmVwsdCPDBuGlKH1TEIxjnYu5X1EjZ-L3Qfx-Jn7_rUHOqjHPOb3Gn72bpYb8YqstfEdJkTONNch5qbXV799nO_pf92Oy4WQLB-PLmqSWviztCQCSVLfIuhoMW6TuDXq9MX6HD9d9-Pb649u7VrY6PwAV2N9i
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOMAe0PIS5ekDnMBCdlzXOaxWiKWU5wmk3kLsOBVSaViaCvhT-xt3Jo8WkODGLVJiS5kZj7-xZ-YD2LXKqljTuYYTjivbbHKrMEoRLkmt11Y4T-cdV9e6c6vOu83uFPyra2EorbL2iYWjTjJHZ-SH0mhVNpT6_fiXE2sU3a7WFBqlWVz412cM2Ya_zv6gfvekbJ_cHHd4xSrAHZpbzp3DIF5b5Q3FCpqyIKkDjNNS4P-IwMUqboWpShOHLjw1YRo69AiBia2IQ-EDnHcaZlUQhLSiTPt07PlNCbcJRHGhWt2qSKco1SNwYjjukBz3DHx6eb8RTtDthwvZYp9r_4SFCqCyo9KiFmHKD5bgx5u2hcuQH7EUFdobeY7BOgFQtByWl3QLryxDL_RQlXcywsQVQxg9M0qNvx-MYjYcWToCwmGsV7a-Zv0sToaMMvF7jJgr0n72zGoyixW4_RY5r8LMIBv4NWBOplZqQ83IMHr1LaOkdA7BWkgUOzppgKhFGbmqtTkxbPSjcVPmQvwRij8qxB-9NGB_POaxbOzx5debtYaiapEPo4lJNuCg1trk9eezrX892w7MdW6uLqPLs-uLDZiXhdFQVtsmzORPI7-FMCi324XtMbj7bmP_DzCuGeY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQfRB_MTp1Dz4pmGmzbL2cajDz-GDg72VJk2GMNvhWtT_3rt-bYoKvhWaBHqX3v0uufsdISdKKBFKPNfQXDOhOh2mBEQpXEdWGam4Nnje8TCQ10NxO-qMFqr482z36kqyqGlAlqY4bU8j264L39DVewz8DQMLDE-AIpfBHHPc10OnV9tirwDACGsYF91RWTbz8xpfXdMcb367Is09T3-DrJeQkfYKHW-SJRNvkbUFIsFtkvaoBRGPM8MgfEZICLqkadEA4YMmYBdeyoJLiii17NmFzxS__DnOQjrLFB7KwDQ6Lsio6SQJoxnF3PgxxV4SdpK80aq9xA4Z9q-eLq5Z2U-BaZBMyrQ-912phPEwSpKY_4ncN1o6HDTJXR2KsOtbYSMNsrGeb30NttD1QsVDnxt3lzTiJDZ7hGrHKkd6SA8G8aTpesJxtAb45GPTGxk1Ca9EGeiSbBx7XkyCmiY5F38A4g9y8QfvTXJaz5kWVBt_jm5VGgrK324WOJ4UBetYk5xVWpu__n21_f8NPyYrj5f94P5mcHdAVp18D2HaWYs00tfMHAJOSdVRvhU_AWPi4QE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fatigue-resistance+topology+optimization+formulation+for+continua+subject+to+general+loads+using+rainflow+counting&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Chen%2C+Zhuo&rft.au=Long%2C+Kai&rft.au=Zhang%2C+Chengwan&rft.au=Yang%2C+Xiaoyu&rft.date=2023-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=66&rft.issue=9&rft_id=info:doi/10.1007%2Fs00158-023-03658-x&rft.externalDocID=10_1007_s00158_023_03658_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon