A fatigue-resistance topology optimization formulation for continua subject to general loads using rainflow counting
Currently, fatigue-resistance topology optimization has received ever increasing attention, in which most of the literature considers this issue as a simple extension of stress-based topology optimization. However, previous approaches may not be applicable when considering general loads, as the conv...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 66; no. 9; p. 210 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently, fatigue-resistance topology optimization has received ever increasing attention, in which most of the literature considers this issue as a simple extension of stress-based topology optimization. However, previous approaches may not be applicable when considering general loads, as the conventional uniaxial rainflow counting method, commonly employed in prior studies, can result in significant errors. Furthermore, the inclusion of general loads introduces additional nonlinearity to fatigue-resistant topology optimization, posing challenges in identifying the optimal solution. To this end, a novel methodology for fatigue-resistance topology optimization considering general loads is proposed in this paper. The independent rainflow counting method is utilized during the process of structural damage estimation. The damage penalization model is subsequently adopted to reduce the nonlinearity by scaling the value of fatigue damage. To illustrate the necessity of an independent rainflow counting method, an example of a double
L
-shaped structure subjected to general loads is presented. The augmented Lagrangian (AL) approach is introduced to transform numerous damage constraint equations into the objective function, generating a sequence of box-constrained optimization sub-problems. After employing the typical SIMP technique, the relative sensitivities of the AL function regarding design variables are derived, which facilitates the efficient solution using the method of moving asymptotes (MMA). Through 2D and 3D numerical tests, the effectiveness of the proposed method is validated in comparison to the traditional method. Further investigation is conducted into the influences of general loads, damage penalization model, and manufacturing error robustness. In addition, the fatigue-resistance performance of a bearing support of a wind turbine is improved by the suggested approach, and its overall weight is decreased by 25.40%. The proposed method addresses the nonlinear and localized nature of fatigue-resistant topology optimization more efficiently. The results indicate that the proposed method can develop a lightweight design for structures under general loads. |
---|---|
AbstractList | Currently, fatigue-resistance topology optimization has received ever increasing attention, in which most of the literature considers this issue as a simple extension of stress-based topology optimization. However, previous approaches may not be applicable when considering general loads, as the conventional uniaxial rainflow counting method, commonly employed in prior studies, can result in significant errors. Furthermore, the inclusion of general loads introduces additional nonlinearity to fatigue-resistant topology optimization, posing challenges in identifying the optimal solution. To this end, a novel methodology for fatigue-resistance topology optimization considering general loads is proposed in this paper. The independent rainflow counting method is utilized during the process of structural damage estimation. The damage penalization model is subsequently adopted to reduce the nonlinearity by scaling the value of fatigue damage. To illustrate the necessity of an independent rainflow counting method, an example of a double
L
-shaped structure subjected to general loads is presented. The augmented Lagrangian (AL) approach is introduced to transform numerous damage constraint equations into the objective function, generating a sequence of box-constrained optimization sub-problems. After employing the typical SIMP technique, the relative sensitivities of the AL function regarding design variables are derived, which facilitates the efficient solution using the method of moving asymptotes (MMA). Through 2D and 3D numerical tests, the effectiveness of the proposed method is validated in comparison to the traditional method. Further investigation is conducted into the influences of general loads, damage penalization model, and manufacturing error robustness. In addition, the fatigue-resistance performance of a bearing support of a wind turbine is improved by the suggested approach, and its overall weight is decreased by 25.40%. The proposed method addresses the nonlinear and localized nature of fatigue-resistant topology optimization more efficiently. The results indicate that the proposed method can develop a lightweight design for structures under general loads. Currently, fatigue-resistance topology optimization has received ever increasing attention, in which most of the literature considers this issue as a simple extension of stress-based topology optimization. However, previous approaches may not be applicable when considering general loads, as the conventional uniaxial rainflow counting method, commonly employed in prior studies, can result in significant errors. Furthermore, the inclusion of general loads introduces additional nonlinearity to fatigue-resistant topology optimization, posing challenges in identifying the optimal solution. To this end, a novel methodology for fatigue-resistance topology optimization considering general loads is proposed in this paper. The independent rainflow counting method is utilized during the process of structural damage estimation. The damage penalization model is subsequently adopted to reduce the nonlinearity by scaling the value of fatigue damage. To illustrate the necessity of an independent rainflow counting method, an example of a double L-shaped structure subjected to general loads is presented. The augmented Lagrangian (AL) approach is introduced to transform numerous damage constraint equations into the objective function, generating a sequence of box-constrained optimization sub-problems. After employing the typical SIMP technique, the relative sensitivities of the AL function regarding design variables are derived, which facilitates the efficient solution using the method of moving asymptotes (MMA). Through 2D and 3D numerical tests, the effectiveness of the proposed method is validated in comparison to the traditional method. Further investigation is conducted into the influences of general loads, damage penalization model, and manufacturing error robustness. In addition, the fatigue-resistance performance of a bearing support of a wind turbine is improved by the suggested approach, and its overall weight is decreased by 25.40%. The proposed method addresses the nonlinear and localized nature of fatigue-resistant topology optimization more efficiently. The results indicate that the proposed method can develop a lightweight design for structures under general loads. |
ArticleNumber | 210 |
Author | Wang, Rixin Zhang, Chengwan Zhu, Benliang Chen, Zhuo Lu, Feiyu Long, Kai Yang, Xiaoyu Zhang, Xianmin |
Author_xml | – sequence: 1 givenname: Zhuo surname: Chen fullname: Chen, Zhuo organization: School of Mechanical and Automotive Engineering, South China University of Technology, State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University – sequence: 2 givenname: Kai orcidid: 0000-0001-6323-5681 surname: Long fullname: Long, Kai email: longkai1978@163.com organization: State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University – sequence: 3 givenname: Chengwan surname: Zhang fullname: Zhang, Chengwan organization: State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University – sequence: 4 givenname: Xiaoyu surname: Yang fullname: Yang, Xiaoyu organization: State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University – sequence: 5 givenname: Feiyu surname: Lu fullname: Lu, Feiyu organization: State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University – sequence: 6 givenname: Rixin surname: Wang fullname: Wang, Rixin organization: School of Mechanical and Automotive Engineering, South China University of Technology – sequence: 7 givenname: Benliang surname: Zhu fullname: Zhu, Benliang organization: School of Mechanical and Automotive Engineering, South China University of Technology – sequence: 8 givenname: Xianmin surname: Zhang fullname: Zhang, Xianmin organization: School of Mechanical and Automotive Engineering, South China University of Technology |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcB16PJZDqTLEvxBQU3Cu5CJk2GlGlS80DrrzftSAUXXd2zON-995wJGFlnFQDXGN1ihJq7gBCe0QKVpECkzurrDIxxjWcFrigdHXXzfgEmIawRQhRVbAziHGoRTZdU4VUwIQorFYxu63rX7aDbRrMx39nhLNTOb1J_1FA6G41NAobUrpWMGYOdssqLHvZOrAJMwdgOemGs7t1nBtKe6C7BuRZ9UFe_cwreHu5fF0_F8uXxeTFfFpJgFgspESN1WylKG1zXaiVVSUkj6xK3SmIiRSUapiu9kjm-pkwzyTAmVLRYMKzIFNwMe7fefSQVIl-75G0-yUtaVwjNcMOyiw4u6V0IXmkuTTykjPnznmPE9x3zoWOeO-aHjvlXRst_6NabjfC70xAZoJDNtlP-76sT1A-F5JUs |
CitedBy_id | crossref_primary_10_1016_j_cma_2024_117136 crossref_primary_10_1016_j_cma_2024_117542 crossref_primary_10_1016_j_advengsoft_2023_103590 crossref_primary_10_1016_j_cma_2024_117594 crossref_primary_10_1016_j_tws_2025_112907 crossref_primary_10_3390_jmse12101807 crossref_primary_10_1016_j_engfailanal_2025_109502 crossref_primary_10_1007_s10409_024_23452_x crossref_primary_10_3389_fams_2025_1556150 crossref_primary_10_32604_cmes_2024_048118 crossref_primary_10_1016_j_istruc_2024_106183 crossref_primary_10_1002_nme_7561 crossref_primary_10_32604_cmes_2023_031538 crossref_primary_10_3390_agriculture15060632 |
Cites_doi | 10.1080/0305215X.2022.21296281-15 10.1002/nme.6548 10.1016/j.cma.2013.10.022 10.1016/0045-7825(88)90086-2 10.1007/s00158-021-02954-8 10.1002/nme.5607 10.1016/0045-7825(91)90046-9 10.1007/s00158-016-1510-6 10.1002/nme.6781 10.1016/j.apm.2014.07.020 10.1016/j.ijfatigue.2021.106176 10.1007/s00158-021-02995-z 10.1007/BF01650949 10.1016/j.camwa.2015.08.006 10.1007/s00158-013-0956-z 10.1016/j.finel.2017.05.004 10.1016/j.advengsoft.2020.102924 10.1016/j.cma.2019.05.046 10.1007/s00158-018-1984-5 10.1016/j.compstruc.2018.01.008 10.1007/s00158-017-1701-9 10.1007/s11465-021-0636-4 10.1007/s00158-010-0602-y 10.1016/j.matdes.2019.107586 10.1115/1.4009458 10.1007/s00158-020-02573-9 10.1007/s00158-018-2159-0 10.3390/ma14195726 10.1016/j.compstruc.2020.106455 10.1007/s00158-020-02760-8 10.1007/s00158-019-02400-w 10.1007/BF01197454 10.32604/cmes.2023.029876 10.1016/j.apm.2017.12.017 10.1007/s00158-020-02677-2 10.1007/s00158-007-0203-6 10.1016/j.cma.2018.11.015 10.1016/j.cma.2018.10.020 10.1007/s00158-014-1054-6 10.1115/1.2806822 10.1016/j.cma.2018.08.013 10.1007/s00158-009-0440-y 10.1002/nme.1620240207 10.1016/j.cma.2016.09.049 10.1007/s00158-013-0978-6 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1007/s00158-023-03658-x |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-1488 |
ExternalDocumentID | 10_1007_s00158_023_03658_x |
GrantInformation_xml | – fundername: National Key R&D Program grantid: 2022YFB4201300 – fundername: National Natural Science Foundation of China grantid: 52130508; 51820105007 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2022A1515240057 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-cc0936b4e887166edce2837c621bec13ca4a79f4fdc001f89f9c91138ab1a91e3 |
IEDL.DBID | U2A |
ISSN | 1615-147X |
IngestDate | Fri Jul 25 10:43:15 EDT 2025 Tue Jul 01 01:31:48 EDT 2025 Thu Apr 24 23:11:39 EDT 2025 Fri Feb 21 02:41:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Topology optimization Fatigue resistance Augmented lagrangian General loads |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-cc0936b4e887166edce2837c621bec13ca4a79f4fdc001f89f9c91138ab1a91e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6323-5681 |
PQID | 2864005179 |
PQPubID | 2043658 |
ParticipantIDs | proquest_journals_2864005179 crossref_citationtrail_10_1007_s00158_023_03658_x crossref_primary_10_1007_s00158_023_03658_x springer_journals_10_1007_s00158_023_03658_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230900 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Structural and multidisciplinary optimization |
PublicationTitleAbbrev | Struct Multidisc Optim |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | James, Waisman (CR15) 2014; 268 Olesen, Hermansen, Lund (CR30) 2021; 64 Bendsøe, Kikuchi (CR3) 1988; 71 Giraldo-Londoño, Aguiló, Paulino (CR12) 2021; 64 Bruggi (CR5) 2008; 36 Wang, Brown (CR44) 1996; 118 Nabaki, Shen, Huang (CR28) 2019; 166 Saeed, Long, Li, Saeed, Zhang, Cheng (CR31) 2022 Svanberg (CR43) 1987; 24 Zhang, Le, Gain, Norato (CR48) 2019; 345 Senhora, Giraldo-Londoño, Menezes, Paulino (CR32) 2020; 62 Silva, Aage, Beck, Sigmund (CR39) 2021; 122 Suresh, Lindström, Thore, Klarbring (CR42) 2021; 63 Long, Yang, Saeed, Tian, Wen, Wang (CR24) 2021; 16 Silva, Cardoso (CR34) 2017; 313 Chen, Long, Wen, Nouman (CR6) 2020; 150 Stephens, Fatemi, Stephens, Fuchs (CR40) 2000 Miner (CR26) 1945; 12 Yang, Liu, Zhang, Li (CR47) 2018; 198 Zhao, Xu, Han, Xue, Rong (CR51) 2020; 205 Silva, Aage, Beck, Sigmund (CR38) 2021; 122 Gao, Caivano, Tridello, Chiandussi, Ma, Paolino, Berto (CR10) 2021; 147 Giraldo-Londoño, Paulino (CR11) 2021; 63 Holmberg, Torstenfelt, Klarbring (CR14) 2014; 50 Bendsoe, Sigmund (CR4) 2003 Le, Norato, Bruns, Ha, Tortorelli (CR18) 2010; 41 Silva, Beck, Cardoso (CR35) 2018; 113 Collet, Bruggi, Duysinx (CR8) 2017; 55 Li, Zhang, Khandelwal (CR20) 2018; 58 Suresh, Lindström, Thore, Torstenfelt, Klarbring (CR41) 2020; 61 Jeong, Choi, Yoon (CR16) 2015; 39 Wang, Liu, Kang, Long, Meng (CR46) 2021; 244 CR50 Jeong, Lee, Yoon, Choi (CR17) 2018; 56 Cheng, Guo (CR7) 1997; 13 Zhang, Long, Zhang, Lu, Bai, Jia (CR49) 2022; 266 Nabaki, Shen, Huang (CR27) 2018; 12 Silva, Beck, Sigmund (CR36) 2019; 354 Zhou, Rozvany (CR52) 1991; 89 Long, Wang, Liu (CR22) 2019; 59 Lu, Long, Zhang, Zhang, Tao (CR25) 2023; 280 Silva, Beck, Sigmund (CR37) 2019; 344 Lee, Yoon, Jeong (CR19) 2015; 70 Bendsøe (CR2) 1989; 1 Alberdi, Khandelwal (CR1) 2017; 133 Deaton, Grandhi (CR9) 2014; 49 Han, Xu, Duan, Huang (CR13) 2022; 396 Wang, Lazarov, Sigmund (CR45) 2011; 43 Sigmund, Maute (CR33) 2013; 48 Liu, Yang, Hao, Zhu (CR21) 2018; 342 Long, Chen, Zhang, Yang, Saeed (CR23) 2021; 14 Oest, Lund (CR29) 2017; 56 MA Miner (3658_CR26) 1945; 12 GA Silva (3658_CR37) 2019; 344 K Long (3658_CR23) 2021; 14 L Li (3658_CR20) 2018; 58 E Holmberg (3658_CR14) 2014; 50 Y Han (3658_CR13) 2022; 396 GA Silva (3658_CR36) 2019; 354 GA Silva (3658_CR38) 2021; 122 KA James (3658_CR15) 2014; 268 3658_CR50 L Zhao (3658_CR51) 2020; 205 O Giraldo-Londoño (3658_CR11) 2021; 63 GD Cheng (3658_CR7) 1997; 13 SH Jeong (3658_CR16) 2015; 39 MP Bendsøe (3658_CR3) 1988; 71 JD Deaton (3658_CR9) 2014; 49 K Long (3658_CR24) 2021; 16 GA Silva (3658_CR39) 2021; 122 S Suresh (3658_CR42) 2021; 63 F Lu (3658_CR25) 2023; 280 Z Chen (3658_CR6) 2020; 150 J Oest (3658_CR29) 2017; 56 O Giraldo-Londoño (3658_CR12) 2021; 64 S Zhang (3658_CR48) 2019; 345 R Alberdi (3658_CR1) 2017; 133 FV Senhora (3658_CR32) 2020; 62 GA Silva (3658_CR34) 2017; 313 MP Bendsøe (3658_CR2) 1989; 1 O Sigmund (3658_CR33) 2013; 48 X Wang (3658_CR46) 2021; 244 C Zhang (3658_CR49) 2022; 266 D Yang (3658_CR47) 2018; 198 M Bruggi (3658_CR5) 2008; 36 JW Lee (3658_CR19) 2015; 70 K Svanberg (3658_CR43) 1987; 24 AM Olesen (3658_CR30) 2021; 64 C Le (3658_CR18) 2010; 41 H Liu (3658_CR21) 2018; 342 K Nabaki (3658_CR27) 2018; 12 X Gao (3658_CR10) 2021; 147 RI Stephens (3658_CR40) 2000 S Suresh (3658_CR41) 2020; 61 N Saeed (3658_CR31) 2022 C Wang (3658_CR44) 1996; 118 MP Bendsoe (3658_CR4) 2003 K Long (3658_CR22) 2019; 59 M Zhou (3658_CR52) 1991; 89 M Collet (3658_CR8) 2017; 55 SH Jeong (3658_CR17) 2018; 56 F Wang (3658_CR45) 2011; 43 GA Silva (3658_CR35) 2018; 113 K Nabaki (3658_CR28) 2019; 166 |
References_xml | – year: 2000 ident: CR40 publication-title: Metal fatigue in engineering – year: 2003 ident: CR4 publication-title: Topology optimization: theory, methods, and applications – volume: 70 start-page: 1852 issue: 8 year: 2015 end-page: 1877 ident: CR19 article-title: Topology optimization considering fatigue life in the frequency domain publication-title: Comput Math Appl – volume: 12 start-page: 113 issue: 2 year: 2018 end-page: 118 ident: CR27 article-title: Bi-directional evolutionary topology optimization based on critical fatigue constraint publication-title: Internal J Civ Environ Eng – volume: 48 start-page: 1031 issue: 6 year: 2013 end-page: 1055 ident: CR33 article-title: Topology optimization approaches publication-title: Struct Multidisc Optim – volume: 71 start-page: 197 issue: 2 year: 1988 end-page: 224 ident: CR3 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput Methods Appl Mech Engrg – volume: 133 start-page: 42 year: 2017 end-page: 61 ident: CR1 article-title: Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints publication-title: Finite Elem Anal Des – volume: 147 start-page: 106176 year: 2021 ident: CR10 article-title: Innovative formulation for topological fatigue optimisation based on material defects distribution and TopFat algorithm publication-title: Internal. J. Fatigue. – volume: 118 start-page: 371 issue: 3 year: 1996 end-page: 374 ident: CR44 article-title: Life prediction techniques for variable amplitude multiaxial fatigue—part 2: comparison with experimental results publication-title: J Engrg Mater Technol – volume: 61 start-page: 1011 issue: 3 year: 2020 end-page: 1025 ident: CR41 article-title: Topology optimization using a continuous-time high-cycle fatigue model publication-title: Struct Multidisc Optim – volume: 63 start-page: 2065 issue: 4 year: 2021 end-page: 2097 ident: CR11 article-title: PolyStress: a Matlab implementation for local stress-constrained topology optimization using the augmented Lagrangian method publication-title: Struct Multidisc Optim – volume: 268 start-page: 614 year: 2014 end-page: 631 ident: CR15 article-title: Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model publication-title: Comput Methods Appl Mech Engrg – volume: 280 year: 2023 ident: CR25 article-title: A novel design of the offshore wind turbine tripod structure using topology optimization methodology publication-title: Ocean Eng – volume: 56 start-page: 626 year: 2018 end-page: 647 ident: CR17 article-title: Topology optimization considering the fatigue constraint of variable amplitude load based on the equivalent static load approach publication-title: Appl Math Model – volume: 56 start-page: 1045 issue: 5 year: 2017 end-page: 1059 ident: CR29 article-title: Topology optimization with finite-life fatigue constraints publication-title: Struct Multidisc Optim – volume: 313 start-page: 647 year: 2017 end-page: 672 ident: CR34 article-title: Stress-based topology optimization of continuum structures under uncertainties publication-title: Comput Methods Appl Mech Engrg – volume: 89 start-page: 309 issue: 1 year: 1991 end-page: 336 ident: CR52 article-title: The COC algorithm, part II: topological, geometrical and generalized shape optimization publication-title: Comput Methods Appl Mech Eng – volume: 266 year: 2022 ident: CR49 article-title: A topology optimization methodology for the offshore wind turbine jacket structure in the concept phase publication-title: Ocean Eng – volume: 16 start-page: 593 issue: 3 year: 2021 end-page: 606 ident: CR24 article-title: Topology optimization of transient problem with maximum dynamic response constraint using SOAR scheme publication-title: Front Mech Eng – ident: CR50 – volume: 64 start-page: 1041 issue: 3 year: 2021 end-page: 1062 ident: CR30 article-title: Simultaneous optimization of topology and print orientation for transversely isotropic fatigue publication-title: Struct Multidisc Optim – volume: 24 start-page: 359 issue: 2 year: 1987 end-page: 373 ident: CR43 article-title: The method of moving asymptotes—a new method for structural optimization publication-title: Int Journal Numer Methods Eng – volume: 345 start-page: 805 year: 2019 end-page: 825 ident: CR48 article-title: Fatigue-based topology optimization with non-proportional loads publication-title: Comput Methods Appl Mech Eng – volume: 122 start-page: 548 issue: 2 year: 2021 end-page: 578 ident: CR38 article-title: Three-dimensional manufacturing tolerant topology optimization with hundreds of millions of local stress constraints publication-title: Internat J Numer Methods Eng – volume: 122 start-page: 6003 issue: 21 year: 2021 end-page: 6036 ident: CR39 article-title: Local versus global stress constraint strategies in topology optimization: A comparative study publication-title: Internat J Numer Methods Eng – volume: 113 start-page: 153 issue: 1 year: 2018 end-page: 178 ident: CR35 article-title: Topology optimization of continuum structures with stress constraints and uncertainties in loading publication-title: Internat J Numer Methods Eng – volume: 43 start-page: 767 issue: 6 year: 2011 end-page: 784 ident: CR45 article-title: On projection methods, convergence and robust formulations in topology optimization publication-title: Struct Multidisc Optim – volume: 198 start-page: 23 year: 2018 end-page: 39 ident: CR47 article-title: Stress-constrained topology optimization based on maximum stress measures publication-title: Comput Struct – volume: 36 start-page: 125 issue: 2 year: 2008 end-page: 141 ident: CR5 article-title: On an alternative approach to stress constraints relaxation in topology optimization publication-title: Struct Multidisc Optim – volume: 62 start-page: 1639 issue: 4 year: 2020 end-page: 1668 ident: CR32 article-title: Topology optimization with local stress constraints: a stress aggregation-free approach publication-title: Struct Multidisc Optim – volume: 12 start-page: 159 issue: 3 year: 1945 end-page: 164 ident: CR26 article-title: Cumulative damage in fatigue publication-title: J Appl Mech – volume: 58 start-page: 1589 issue: 4 year: 2018 end-page: 1618 ident: CR20 article-title: Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model publication-title: Struct Multidisc Optim – volume: 59 start-page: 1747 year: 2019 end-page: 1759 ident: CR22 article-title: Stress-constrained topology optimization of continuum structures subject to harmonic force excitation using sequential quadratic programming publication-title: Struct Multidisc Optim – volume: 166 year: 2019 ident: CR28 article-title: Evolutionary topology optimization of continuum structures considering fatigue failure publication-title: Mater Des – year: 2022 ident: CR31 article-title: An augmented Lagrangian method for multiple nodal displacement-constrained topology optimization publication-title: Eng Optim doi: 10.1080/0305215X.2022.21296281-15 – volume: 55 start-page: 839 issue: 3 year: 2017 end-page: 855 ident: CR8 article-title: Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance publication-title: Struct Multidisc Optim – volume: 396 year: 2022 ident: CR13 article-title: Stress-based bi-directional evolutionary structural topology optimization considering nonlinear continuum damage publication-title: Comput Methods Appl Mech Engrg – volume: 344 start-page: 512 year: 2019 end-page: 537 ident: CR37 article-title: Stress-constrained topology optimization considering uniform manufacturing uncertainties publication-title: Comput Methods Appl Mech Eng – volume: 244 year: 2021 ident: CR46 article-title: Topology optimization for minimum stress design with embedded movable holes publication-title: Comput Struct – volume: 39 start-page: 1137 issue: 3 year: 2015 end-page: 1162 ident: CR16 article-title: Fatigue and static failure considerations using a topology optimization method publication-title: Appl Math Model – volume: 50 start-page: 207 issue: 2 year: 2014 end-page: 219 ident: CR14 article-title: Fatigue constrained topology optimization publication-title: Struct Multidisc Optim – volume: 342 start-page: 625 year: 2018 end-page: 652 ident: CR21 article-title: Isogeometric analysis based topology optimization design with global stress constraint publication-title: Comput Methods Appl Mech Eng – volume: 1 start-page: 193 issue: 4 year: 1989 end-page: 202 ident: CR2 article-title: Optimal shape design as a material distribution problem publication-title: Struct Optim – volume: 150 year: 2020 ident: CR6 article-title: Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage publication-title: Adv Eng Softw – volume: 13 start-page: 258 issue: 4 year: 1997 end-page: 266 ident: CR7 article-title: ε-relaxed approach in structural topology optimization publication-title: Struct Multidisc Optim – volume: 49 start-page: 1 issue: 1 year: 2014 end-page: 38 ident: CR9 article-title: A survey of structural and multidisciplinary continuum topology optimization: post 2000 publication-title: Struct Multidisc Optim – volume: 64 start-page: 3287 issue: 6 year: 2021 end-page: 3309 ident: CR12 article-title: Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach publication-title: Struct Multidisc Optim – volume: 354 start-page: 397 year: 2019 end-page: 421 ident: CR36 article-title: Topology optimization of compliant mechanisms with stress constraints and manufacturing error robustness publication-title: Comput Methods Appl Mech Eng – volume: 41 start-page: 605 issue: 4 year: 2010 end-page: 620 ident: CR18 article-title: Stress-based topology optimization for continua publication-title: Struct Multidisc Optim – volume: 63 start-page: 161 issue: 1 year: 2021 end-page: 172 ident: CR42 article-title: Topology optimization for transversely isotropic materials with high-cycle fatigue as a constraint publication-title: Struct Multidisc Optim – volume: 205 year: 2020 ident: CR51 article-title: Structural topological optimization with dynamic fatigue constraints subject to dynamic random loads publication-title: Engrg Struct – volume: 14 start-page: 5726 issue: 19 year: 2021 ident: CR23 article-title: An aggregation-free local volume fraction formulation for topological design of porous structure publication-title: Materials – volume: 122 start-page: 548 issue: 2 year: 2021 ident: 3658_CR38 publication-title: Internat J Numer Methods Eng doi: 10.1002/nme.6548 – volume: 268 start-page: 614 year: 2014 ident: 3658_CR15 publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2013.10.022 – volume: 71 start-page: 197 issue: 2 year: 1988 ident: 3658_CR3 publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/0045-7825(88)90086-2 – volume: 64 start-page: 3287 issue: 6 year: 2021 ident: 3658_CR12 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-021-02954-8 – volume: 113 start-page: 153 issue: 1 year: 2018 ident: 3658_CR35 publication-title: Internat J Numer Methods Eng doi: 10.1002/nme.5607 – volume: 89 start-page: 309 issue: 1 year: 1991 ident: 3658_CR52 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(91)90046-9 – volume: 55 start-page: 839 issue: 3 year: 2017 ident: 3658_CR8 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-016-1510-6 – volume: 122 start-page: 6003 issue: 21 year: 2021 ident: 3658_CR39 publication-title: Internat J Numer Methods Eng doi: 10.1002/nme.6781 – volume: 39 start-page: 1137 issue: 3 year: 2015 ident: 3658_CR16 publication-title: Appl Math Model doi: 10.1016/j.apm.2014.07.020 – volume: 147 start-page: 106176 year: 2021 ident: 3658_CR10 publication-title: Internal. J. Fatigue. doi: 10.1016/j.ijfatigue.2021.106176 – volume: 64 start-page: 1041 issue: 3 year: 2021 ident: 3658_CR30 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-021-02995-z – volume: 1 start-page: 193 issue: 4 year: 1989 ident: 3658_CR2 publication-title: Struct Optim doi: 10.1007/BF01650949 – volume: 70 start-page: 1852 issue: 8 year: 2015 ident: 3658_CR19 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2015.08.006 – volume: 49 start-page: 1 issue: 1 year: 2014 ident: 3658_CR9 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-013-0956-z – volume: 133 start-page: 42 year: 2017 ident: 3658_CR1 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2017.05.004 – volume: 150 year: 2020 ident: 3658_CR6 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2020.102924 – volume: 354 start-page: 397 year: 2019 ident: 3658_CR36 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.05.046 – volume: 58 start-page: 1589 issue: 4 year: 2018 ident: 3658_CR20 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-1984-5 – volume: 198 start-page: 23 year: 2018 ident: 3658_CR47 publication-title: Comput Struct doi: 10.1016/j.compstruc.2018.01.008 – volume: 56 start-page: 1045 issue: 5 year: 2017 ident: 3658_CR29 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-017-1701-9 – year: 2022 ident: 3658_CR31 publication-title: Eng Optim doi: 10.1080/0305215X.2022.21296281-15 – volume-title: Metal fatigue in engineering year: 2000 ident: 3658_CR40 – volume: 16 start-page: 593 issue: 3 year: 2021 ident: 3658_CR24 publication-title: Front Mech Eng doi: 10.1007/s11465-021-0636-4 – volume: 280 year: 2023 ident: 3658_CR25 publication-title: Ocean Eng – volume: 43 start-page: 767 issue: 6 year: 2011 ident: 3658_CR45 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-010-0602-y – volume: 166 year: 2019 ident: 3658_CR28 publication-title: Mater Des doi: 10.1016/j.matdes.2019.107586 – volume: 12 start-page: 159 issue: 3 year: 1945 ident: 3658_CR26 publication-title: J Appl Mech doi: 10.1115/1.4009458 – volume: 62 start-page: 1639 issue: 4 year: 2020 ident: 3658_CR32 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02573-9 – volume: 59 start-page: 1747 year: 2019 ident: 3658_CR22 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-2159-0 – volume: 14 start-page: 5726 issue: 19 year: 2021 ident: 3658_CR23 publication-title: Materials doi: 10.3390/ma14195726 – volume: 244 year: 2021 ident: 3658_CR46 publication-title: Comput Struct doi: 10.1016/j.compstruc.2020.106455 – volume: 63 start-page: 2065 issue: 4 year: 2021 ident: 3658_CR11 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02760-8 – volume: 61 start-page: 1011 issue: 3 year: 2020 ident: 3658_CR41 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-019-02400-w – volume: 13 start-page: 258 issue: 4 year: 1997 ident: 3658_CR7 publication-title: Struct Multidisc Optim doi: 10.1007/BF01197454 – ident: 3658_CR50 doi: 10.32604/cmes.2023.029876 – volume: 56 start-page: 626 year: 2018 ident: 3658_CR17 publication-title: Appl Math Model doi: 10.1016/j.apm.2017.12.017 – volume: 63 start-page: 161 issue: 1 year: 2021 ident: 3658_CR42 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02677-2 – volume: 36 start-page: 125 issue: 2 year: 2008 ident: 3658_CR5 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-007-0203-6 – volume: 345 start-page: 805 year: 2019 ident: 3658_CR48 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.11.015 – volume: 344 start-page: 512 year: 2019 ident: 3658_CR37 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.10.020 – volume: 50 start-page: 207 issue: 2 year: 2014 ident: 3658_CR14 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-014-1054-6 – volume: 118 start-page: 371 issue: 3 year: 1996 ident: 3658_CR44 publication-title: J Engrg Mater Technol doi: 10.1115/1.2806822 – volume: 342 start-page: 625 year: 2018 ident: 3658_CR21 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.08.013 – volume: 41 start-page: 605 issue: 4 year: 2010 ident: 3658_CR18 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-009-0440-y – volume: 24 start-page: 359 issue: 2 year: 1987 ident: 3658_CR43 publication-title: Int Journal Numer Methods Eng doi: 10.1002/nme.1620240207 – volume: 12 start-page: 113 issue: 2 year: 2018 ident: 3658_CR27 publication-title: Internal J Civ Environ Eng – volume: 396 year: 2022 ident: 3658_CR13 publication-title: Comput Methods Appl Mech Engrg – volume: 205 year: 2020 ident: 3658_CR51 publication-title: Engrg Struct – volume: 313 start-page: 647 year: 2017 ident: 3658_CR34 publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2016.09.049 – volume: 266 year: 2022 ident: 3658_CR49 publication-title: Ocean Eng – volume: 48 start-page: 1031 issue: 6 year: 2013 ident: 3658_CR33 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-013-0978-6 – volume-title: Topology optimization: theory, methods, and applications year: 2003 ident: 3658_CR4 |
SSID | ssj0008049 |
Score | 2.4630103 |
Snippet | Currently, fatigue-resistance topology optimization has received ever increasing attention, in which most of the literature considers this issue as a simple... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 210 |
SubjectTerms | Asymptotes Computational Mathematics and Numerical Analysis Constraints Damage assessment Engineering Engineering Design Fatigue failure Fatigue strength Nonlinearity Optimization Research Paper Robustness (mathematics) Structural damage Theoretical and Applied Mechanics Topology optimization Wind turbines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aXvQgfmK1Sg7eNGh20zR7kiotRbCIWOht2WSzRajd6m6x_ntndrOtCvYW2I_DTDJ5M5m8R8iFFlpEEusahhsmdKvFtIAshZs40VZqbizWOx4Hsj8UD6PWyBXcMtdWWcXEIlDHqcEa-bWnpCgJpW5n7wxVo_B01UlobJI6hGAFyVf9rjt4el7GYlUCYIQ1jIv2yF2bKS7PIVxQDPYsBlEcRovfW9MKb_45Ii12nt4u2XGQkXZKH--RDTvdJ9s_iAQPSN6hCZh4PLcM0meEhOBLmpcCCF80hbjw5i5cUkSpTrMLxxSb1V-n84hmc41FGfiMjksyajpJozij2Bs_pqglkUzST1rJSxySYa_7ct9nTk-BGVhoOTPmJvClFlZhliSx_xO5b4z0OHiS-yYSUTtIRBIbsE2igiQwEAt9FWkeBdz6R6Q2Taf2mFDjJdqTCunBIJ-0bSU8zxiATwGK3si4QXhlytA4snHUvJiES5rkwvwhmD8szB8uGuRy-c2spNpY-3az8lDoll0WriZJg1xVXls9_v9vJ-v_dkq2vGKiYG9Zk9Tyj7k9AzCS63M3474BSQXdxQ priority: 102 providerName: ProQuest |
Title | A fatigue-resistance topology optimization formulation for continua subject to general loads using rainflow counting |
URI | https://link.springer.com/article/10.1007/s00158-023-03658-x https://www.proquest.com/docview/2864005179 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXvQgPrFaSw7eNGC2aZo9bqUPFIuIhXpaNtlsEequ2C3qv3dmX1VRwdMGNslhJpl8k8x8Q8ipFloEEu81DDdM6E6HaQFeCjdhpK3U3Fi877gZy9FEXE070yIpbFFGu5dPkpmlrpLd8HhXDM4YBlYXWoAc6x303WEVTxyvsr8qB70IZRgX3WmRKvPzHF-PoxXG_PYsmp02g22yVcBE6uV63SFrNt4lm5_IA_dI6tEIxDpbWgYuM8JA0B9N86IH7zQBW_BUJFlSRKZFnS5sUwxQf4yXAV0sNV7EwDA6ywmo6TwJwgXFePgZxfoR0Tx5pWVJiX0yGfTvL0esqKHADGyulBlz4balFlahZyQx5hP5box0OGiPt00ggq4biSg0IJtIuZFrwP61VaB54HLbPiC1OIntIaHGibQjFVKCgQ9pu0o4jjEAmVwsdCPDBuGlKH1TEIxjnYu5X1EjZ-L3Qfx-Jn7_rUHOqjHPOb3Gn72bpYb8YqstfEdJkTONNch5qbXV799nO_pf92Oy4WQLB-PLmqSWviztCQCSVLfIuhoMW6TuDXq9MX6HD9d9-Pb649u7VrY6PwAV2N9i |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOMAe0PIS5ekDnMBCdlzXOaxWiKWU5wmk3kLsOBVSaViaCvhT-xt3Jo8WkODGLVJiS5kZj7-xZ-YD2LXKqljTuYYTjivbbHKrMEoRLkmt11Y4T-cdV9e6c6vOu83uFPyra2EorbL2iYWjTjJHZ-SH0mhVNpT6_fiXE2sU3a7WFBqlWVz412cM2Ya_zv6gfvekbJ_cHHd4xSrAHZpbzp3DIF5b5Q3FCpqyIKkDjNNS4P-IwMUqboWpShOHLjw1YRo69AiBia2IQ-EDnHcaZlUQhLSiTPt07PlNCbcJRHGhWt2qSKco1SNwYjjukBz3DHx6eb8RTtDthwvZYp9r_4SFCqCyo9KiFmHKD5bgx5u2hcuQH7EUFdobeY7BOgFQtByWl3QLryxDL_RQlXcywsQVQxg9M0qNvx-MYjYcWToCwmGsV7a-Zv0sToaMMvF7jJgr0n72zGoyixW4_RY5r8LMIBv4NWBOplZqQ83IMHr1LaOkdA7BWkgUOzppgKhFGbmqtTkxbPSjcVPmQvwRij8qxB-9NGB_POaxbOzx5debtYaiapEPo4lJNuCg1trk9eezrX892w7MdW6uLqPLs-uLDZiXhdFQVtsmzORPI7-FMCi324XtMbj7bmP_DzCuGeY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQfRB_MTp1Dz4pmGmzbL2cajDz-GDg72VJk2GMNvhWtT_3rt-bYoKvhWaBHqX3v0uufsdISdKKBFKPNfQXDOhOh2mBEQpXEdWGam4Nnje8TCQ10NxO-qMFqr482z36kqyqGlAlqY4bU8j264L39DVewz8DQMLDE-AIpfBHHPc10OnV9tirwDACGsYF91RWTbz8xpfXdMcb367Is09T3-DrJeQkfYKHW-SJRNvkbUFIsFtkvaoBRGPM8MgfEZICLqkadEA4YMmYBdeyoJLiii17NmFzxS__DnOQjrLFB7KwDQ6Lsio6SQJoxnF3PgxxV4SdpK80aq9xA4Z9q-eLq5Z2U-BaZBMyrQ-912phPEwSpKY_4ncN1o6HDTJXR2KsOtbYSMNsrGeb30NttD1QsVDnxt3lzTiJDZ7hGrHKkd6SA8G8aTpesJxtAb45GPTGxk1Ca9EGeiSbBx7XkyCmiY5F38A4g9y8QfvTXJaz5kWVBt_jm5VGgrK324WOJ4UBetYk5xVWpu__n21_f8NPyYrj5f94P5mcHdAVp18D2HaWYs00tfMHAJOSdVRvhU_AWPi4QE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fatigue-resistance+topology+optimization+formulation+for+continua+subject+to+general+loads+using+rainflow+counting&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Chen%2C+Zhuo&rft.au=Long%2C+Kai&rft.au=Zhang%2C+Chengwan&rft.au=Yang%2C+Xiaoyu&rft.date=2023-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=66&rft.issue=9&rft_id=info:doi/10.1007%2Fs00158-023-03658-x&rft.externalDocID=10_1007_s00158_023_03658_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |