Optimized Ensemble Classifier Based Network Intrusion Detection System for RPL Based Internet of Things

Internet of Things (IoT) is the powerful latest trend that allows communications and networking of many sources over the internet. The routing protocol for low power and lossy networks (RPL) based IoT may be exposed to many routing attacks due to resource-constrained and open nature of the IoT nodes...

Full description

Saved in:
Bibliographic Details
Published inWireless personal communications Vol. 125; no. 4; pp. 3603 - 3626
Main Authors Prakash, P. Jaya, Lalitha, B.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Internet of Things (IoT) is the powerful latest trend that allows communications and networking of many sources over the internet. The routing protocol for low power and lossy networks (RPL) based IoT may be exposed to many routing attacks due to resource-constrained and open nature of the IoT nodes. Hence, there is a need for network intrusion detection system (NIDS) to protect RPL based IoT networks from routing attacks. The existing techniques for anomaly-based NIDS (ANIDS) subjects to high false alarm rate (FAR). To overcome this issue, a novel bio-inspired voting ensemble classifier with feature selection technique is proposed in this paper to improve the performance of ANIDS for RPL based IoT networks. Initially, the dataset is preprocessed in three steps like cleaning, encoding and normalization. Though the dataset is imbalanced, a common method called SMOTE is applied to balance the dataset. Then feature selection is performed with hybrid approach of simulated annealing and improved Salp Swarm Optimization (SA-ISSA) to minimize the computational complexity by considering only the best features from the entire dataset. The proposed voting classifier is the ensemble of machine learning b a sed classifiers namely decision tree (DT), logistic regression (LR), K-nearest neighbor (KNN), support vector machine (SVM) and a deep learning-based classifier called bidirectional long short-term memory (Bi-LSTM). The weights of all these classifiers are optimized using hybrid approach of Particle Swarm Optimization and improved Salp Swarm Optimization (PSO-ISSA) to achieve higher attack detection rate (ADR). Thus the proposed approach can handle high FAR, imbalanced dataset and high computation cost. The performance of the proposed feature selection and classification approaches are evaluated and compared with existing methods in terms of accuracy, ADR, FAR and so on. The experiments are performed with RPL-NIDDS17 dataset that contains seven types of attack instances. The proposed ensemble classifier shows better performance with higher accuracy (96.4%), ADR (97.7%) and reduced FAR (3.6%).
AbstractList Internet of Things (IoT) is the powerful latest trend that allows communications and networking of many sources over the internet. The routing protocol for low power and lossy networks (RPL) based IoT may be exposed to many routing attacks due to resource-constrained and open nature of the IoT nodes. Hence, there is a need for network intrusion detection system (NIDS) to protect RPL based IoT networks from routing attacks. The existing techniques for anomaly-based NIDS (ANIDS) subjects to high false alarm rate (FAR). To overcome this issue, a novel bio-inspired voting ensemble classifier with feature selection technique is proposed in this paper to improve the performance of ANIDS for RPL based IoT networks. Initially, the dataset is preprocessed in three steps like cleaning, encoding and normalization. Though the dataset is imbalanced, a common method called SMOTE is applied to balance the dataset. Then feature selection is performed with hybrid approach of simulated annealing and improved Salp Swarm Optimization (SA-ISSA) to minimize the computational complexity by considering only the best features from the entire dataset. The proposed voting classifier is the ensemble of machine learning b a sed classifiers namely decision tree (DT), logistic regression (LR), K-nearest neighbor (KNN), support vector machine (SVM) and a deep learning-based classifier called bidirectional long short-term memory (Bi-LSTM). The weights of all these classifiers are optimized using hybrid approach of Particle Swarm Optimization and improved Salp Swarm Optimization (PSO-ISSA) to achieve higher attack detection rate (ADR). Thus the proposed approach can handle high FAR, imbalanced dataset and high computation cost. The performance of the proposed feature selection and classification approaches are evaluated and compared with existing methods in terms of accuracy, ADR, FAR and so on. The experiments are performed with RPL-NIDDS17 dataset that contains seven types of attack instances. The proposed ensemble classifier shows better performance with higher accuracy (96.4%), ADR (97.7%) and reduced FAR (3.6%).
Internet of Things (IoT) is the powerful latest trend that allows communications and networking of many sources over the internet. The routing protocol for low power and lossy networks (RPL) based IoT may be exposed to many routing attacks due to resource-constrained and open nature of the IoT nodes. Hence, there is a need for network intrusion detection system (NIDS) to protect RPL based IoT networks from routing attacks. The existing techniques for anomaly-based NIDS (ANIDS) subjects to high false alarm rate (FAR). To overcome this issue, a novel bio-inspired voting ensemble classifier with feature selection technique is proposed in this paper to improve the performance of ANIDS for RPL based IoT networks. Initially, the dataset is preprocessed in three steps like cleaning, encoding and normalization. Though the dataset is imbalanced, a common method called SMOTE is applied to balance the dataset. Then feature selection is performed with hybrid approach of simulated annealing and improved Salp Swarm Optimization (SA-ISSA) to minimize the computational complexity by considering only the best features from the entire dataset. The proposed voting classifier is the ensemble of machine learning based classifiers namely decision tree (DT), logistic regression (LR), K-nearest neighbor (KNN), support vector machine (SVM) and a deep learning-based classifier called bidirectional long short-term memory (Bi-LSTM). The weights of all these classifiers are optimized using hybrid approach of Particle Swarm Optimization and improved Salp Swarm Optimization (PSO-ISSA) to achieve higher attack detection rate (ADR). Thus the proposed approach can handle high FAR, imbalanced dataset and high computation cost. The performance of the proposed feature selection and classification approaches are evaluated and compared with existing methods in terms of accuracy, ADR, FAR and so on. The experiments are performed with RPL-NIDDS17 dataset that contains seven types of attack instances. The proposed ensemble classifier shows better performance with higher accuracy (96.4%), ADR (97.7%) and reduced FAR (3.6%).
Author Lalitha, B.
Prakash, P. Jaya
Author_xml – sequence: 1
  givenname: P. Jaya
  orcidid: 0000-0002-2131-9454
  surname: Prakash
  fullname: Prakash, P. Jaya
  email: pokalajayaprakash@gmail.com
  organization: Associate Professor, Department of CSE, JNTUA University
– sequence: 2
  givenname: B.
  surname: Lalitha
  fullname: Lalitha, B.
  organization: JNTUA University College of Engineering, JNTUA
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6v52G42R61VC8WKVvAWkt3Zmtpma5Ii9de7awuCh55mYN5nZnh6qONqBwidU3JJCRFXgVImREIYS4gULEvEEerSgWBJztO3DuoSyWSSMcpOUC-EBSENJlkXzafraFf2G0o8cgFWZgl4uNQh2MqCxzc6NJNHiF-1_8BjF_0m2NrhW4hQxLZ72YYIK1zVHj8_TfZAEwTvIOK6wrN36-bhFB1XehngbF_76PVuNBs-JJPp_Xh4PUkKTmVMCpMJk1eyBGHApCAJlJppTbkkDHiWZpwSXpg0LQbMlHlJBOEph1LkA2MKyfvoYrd37evPDYSoFvXGu-akYqIxNaAZE02K7VKFr0PwUKm1tyvtt4oS1QpVO6GqEap-haoWyv9BhY26lRC9tsvDKN-hobnj5uD_vjpA_QBLYY1L
CitedBy_id crossref_primary_10_1007_s10586_024_04598_x
crossref_primary_10_1007_s10207_023_00777_w
crossref_primary_10_1109_ACCESS_2023_3310242
crossref_primary_10_1155_2024_5522431
crossref_primary_10_1016_j_adhoc_2023_103120
crossref_primary_10_1007_s11227_022_04753_4
crossref_primary_10_3390_app12178601
crossref_primary_10_1007_s10586_022_03820_y
crossref_primary_10_1007_s40747_024_01712_9
crossref_primary_10_1016_j_compeleceng_2023_108715
Cites_doi 10.1007/s11277-019-06485-w
10.1016/j.comnet.2020.107247
10.1186/s40537-020-00379-6
10.1109/access.2020.2992249
10.1109/access.2019.2928048
10.1109/JSEN.2021.3068240
10.1007/s12652-020-01919-x
10.1109/access.2020.3026044
10.1016/j.engappai.2020.103770
10.1109/iot-siu.2019.8777504
10.1016/j.future.2020.01.055
10.1007/s11277-019-06986-8
10.1109/access.2020.2976101
10.1109/jsen.2020.2973677
10.1109/jiot.2019.2948149
10.1109/jiot.2020.2971463
10.1007/s11277-019-06789-x
10.1109/ACCESS.2020.3029191
10.1016/j.eswa.2019.113122
10.17487/rfc6550
10.1109/access.2020.3028012
10.1016/j.comcom.2020.12.003
10.2991/ijcis.2018.25905181
10.1109/jstars.2019.2922297
10.1016/j.compeleceng.2020.106742
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s11277-022-09726-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1572-834X
EndPage 3626
ExternalDocumentID 10_1007_s11277_022_09726_7
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FD6
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-cb67b8f9de7beb4e90eda2aa13902e36463103cb44c52bd8d070343ed785bbc93
IEDL.DBID U2A
ISSN 0929-6212
IngestDate Fri Jul 25 23:20:56 EDT 2025
Thu Apr 24 22:54:33 EDT 2025
Tue Jul 01 03:17:33 EDT 2025
Fri Feb 21 02:46:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Voting ensemble classifier
Feature selection
Internet of Things
RPL based IoT
Intrusion detection system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cb67b8f9de7beb4e90eda2aa13902e36463103cb44c52bd8d070343ed785bbc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2131-9454
PQID 2700751627
PQPubID 2043826
PageCount 24
ParticipantIDs proquest_journals_2700751627
crossref_primary_10_1007_s11277_022_09726_7
crossref_citationtrail_10_1007_s11277_022_09726_7
springer_journals_10_1007_s11277_022_09726_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Wireless personal communications
PublicationTitleAbbrev Wireless Pers Commun
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References YangJShengYWangJA GBDT-paralleled quadratic ensemble learning for intrusion detection systemIEEE Access2020817546717548210.1109/access.2020.3026044
ShahrakiAAbbasiMHaugenØBoosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoostEngineering Applications of Artificial Intelligence20209410.1016/j.engappai.2020.103770
YavuzFYÜnalDGülEDeep learning for detection of routing attacks in the Internet of ThingsThe International Journal of Computational Intelligence Systems2018121395810.2991/ijcis.2018.25905181
TubishatMIdrisNShuibLAbushariahMAMMirjaliliSImproved Salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selectionExpert Systems with Applications201910.1016/j.eswa.2019.113122
Al-AbassiAKarimipourHDehghantanhaAPariziRMAn ensemble deep learning-based cyber-attack detection in industrial control systemIEEE Access202010.1109/access.2020.2992249
GothawalDBNagarajSVAnomaly-based intrusion detection system in RPL by applying stochastic and evolutionary game models over IoT environmentWireless Personal Communications20201101323134410.1007/s11277-019-06789-x
Winter, T. (2012). Rpl: Ipv6 routing protocol for low-power and Lossy networks. https://tools.ietf.org/html/rfc6550
Verma, A., & Ranga, V. (2019). ELNIDS: Ensemble Learning based Network Intrusion Detection System for RPL based Internet of Things. In 2019 4th international conference on Internet of Things: Smart innovation and usages (IoT-SIU). https://doi.org/10.1109/iot-siu.2019.8777504
AsadiMJamaliMAJParsaSMajidnezhadVDetecting botnet by using particle swarm optimization algorithm based on voting systemFuture Generation Computer Systems202010.1016/j.future.2020.01.055
PasikhaniAMClarkJAGopePAlshahraniAIntrusion detection systems in RPL-based 6LoWPAN: A systematic literature reviewIEEE Sensors Journal20212111129401296810.1109/JSEN.2021.3068240
BhatiBSRaiCSBalamuruganBAl-TurjmanFAn intrusion detection scheme based on the ensemble of discriminant classifiersComputers & Electrical Engineering20208610.1016/j.compeleceng.2020.106742
El-kenawyE-SMIbrahimAMirjaliliSEidMMHusseinSENovel feature selection and voting classifier algorithms for COVID-19 classification in CT ImagesIEEE Access202010.1109/access.2020.3028012
ZhaoXYangFHanYCuiYAn Opposition-based chaotic Salp swarm algorithm for global optimizationIEEE Access202010.1109/access.2020.2976101
MuraliSJamalipourAA lightweight intrusion detection for Sybil attack under mobile RPL in the Internet of ThingsIEEE Internet of Things Journal201910.1109/jiot.2019.2948149
ZhouYChengGJiangSDaiMBuilding an Efficient Intrusion Detection System Based on Feature Selection and Ensemble ClassifierComputer Networks202010.1016/j.comnet.2020.107247
Verma, A., & Ranga, V. (2018). RPL-NIDDS17—a data set for intrusion detection in RPL based 6LoWPAN networks (Internet of Things). 10.5281/zenodo.1406034
VermaARangaVEvaluation of network intrusion detection systems for RPL based 6LoWPAN networks in IoTWireless Personal Communications20191081571159410.1007/s11277-019-06485-w
TamaBAComuzziMRheeK-HTSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection systemIEEE Access201910.1109/access.2019.2928048
CakirSTokluSYalcinNRPL attack detection and prevention in the Internet of Things networks using a GRU based deep learningIEEE Access2020818367818368910.1109/ACCESS.2020.3029191
KasongoSMSunYPerformance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 datasetJournal of Big Data2020710510.1186/s40537-020-00379-6
KumarPGuptaGPTripathiRAn ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networksComputer Communications202116611012410.1016/j.comcom.2020.12.003
PuCSybil attack in RPL-based Internet of Things: Analysis and defensesIEEE Internet of Things Journal202010.1109/jiot.2020.2971463
DavahliAShamsiMAbaeiGHybridizing genetic algorithm and grey wolf optimizer to advance an intelligent and lightweight intrusion detection system for IoT wireless networksJournal of Ambient Intelligence and Humanized Computing2020115581560910.1007/s12652-020-01919-x
VermaARangaVSecurity of RPL based 6LoWPAN networks in the Internet of Things: A reviewIEEE Sensors Journal202010.1109/jsen.2020.2973677
VermaARangaVMachine learning based intrusion detection systems for IoT applicationsWireless Personal Communications20201112287231010.1007/s11277-019-06986-8
FengWDauphinGHuangWQuanYBaoWWuMLiQDynamic synthetic minority over-sampling technique-based rotation forest for the classification of imbalanced hyperspectral dataIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201910.1109/jstars.2019.2922297
C Pu (9726_CR24) 2020
9726_CR15
Y Zhou (9726_CR21) 2020
M Tubishat (9726_CR17) 2019
A Al-Abassi (9726_CR18) 2020
FY Yavuz (9726_CR9) 2018; 12
SM Kasongo (9726_CR20) 2020; 7
9726_CR1
9726_CR3
W Feng (9726_CR16) 2019
A Verma (9726_CR4) 2019; 108
J Yang (9726_CR10) 2020; 8
A Davahli (9726_CR13) 2020; 11
AM Pasikhani (9726_CR5) 2021; 21
E-SM El-kenawy (9726_CR12) 2020
DB Gothawal (9726_CR26) 2020; 110
BS Bhati (9726_CR11) 2020; 86
A Verma (9726_CR2) 2020
P Kumar (9726_CR23) 2021; 166
S Cakir (9726_CR8) 2020; 8
A Shahraki (9726_CR19) 2020; 94
A Verma (9726_CR6) 2020; 111
X Zhao (9726_CR14) 2020
S Murali (9726_CR25) 2019
BA Tama (9726_CR7) 2019
M Asadi (9726_CR22) 2020
References_xml – reference: El-kenawyE-SMIbrahimAMirjaliliSEidMMHusseinSENovel feature selection and voting classifier algorithms for COVID-19 classification in CT ImagesIEEE Access202010.1109/access.2020.3028012
– reference: ZhouYChengGJiangSDaiMBuilding an Efficient Intrusion Detection System Based on Feature Selection and Ensemble ClassifierComputer Networks202010.1016/j.comnet.2020.107247
– reference: YangJShengYWangJA GBDT-paralleled quadratic ensemble learning for intrusion detection systemIEEE Access2020817546717548210.1109/access.2020.3026044
– reference: KasongoSMSunYPerformance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 datasetJournal of Big Data2020710510.1186/s40537-020-00379-6
– reference: AsadiMJamaliMAJParsaSMajidnezhadVDetecting botnet by using particle swarm optimization algorithm based on voting systemFuture Generation Computer Systems202010.1016/j.future.2020.01.055
– reference: MuraliSJamalipourAA lightweight intrusion detection for Sybil attack under mobile RPL in the Internet of ThingsIEEE Internet of Things Journal201910.1109/jiot.2019.2948149
– reference: VermaARangaVSecurity of RPL based 6LoWPAN networks in the Internet of Things: A reviewIEEE Sensors Journal202010.1109/jsen.2020.2973677
– reference: Winter, T. (2012). Rpl: Ipv6 routing protocol for low-power and Lossy networks. https://tools.ietf.org/html/rfc6550
– reference: Al-AbassiAKarimipourHDehghantanhaAPariziRMAn ensemble deep learning-based cyber-attack detection in industrial control systemIEEE Access202010.1109/access.2020.2992249
– reference: KumarPGuptaGPTripathiRAn ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networksComputer Communications202116611012410.1016/j.comcom.2020.12.003
– reference: VermaARangaVMachine learning based intrusion detection systems for IoT applicationsWireless Personal Communications20201112287231010.1007/s11277-019-06986-8
– reference: PuCSybil attack in RPL-based Internet of Things: Analysis and defensesIEEE Internet of Things Journal202010.1109/jiot.2020.2971463
– reference: TamaBAComuzziMRheeK-HTSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection systemIEEE Access201910.1109/access.2019.2928048
– reference: YavuzFYÜnalDGülEDeep learning for detection of routing attacks in the Internet of ThingsThe International Journal of Computational Intelligence Systems2018121395810.2991/ijcis.2018.25905181
– reference: Verma, A., & Ranga, V. (2019). ELNIDS: Ensemble Learning based Network Intrusion Detection System for RPL based Internet of Things. In 2019 4th international conference on Internet of Things: Smart innovation and usages (IoT-SIU). https://doi.org/10.1109/iot-siu.2019.8777504
– reference: PasikhaniAMClarkJAGopePAlshahraniAIntrusion detection systems in RPL-based 6LoWPAN: A systematic literature reviewIEEE Sensors Journal20212111129401296810.1109/JSEN.2021.3068240
– reference: FengWDauphinGHuangWQuanYBaoWWuMLiQDynamic synthetic minority over-sampling technique-based rotation forest for the classification of imbalanced hyperspectral dataIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201910.1109/jstars.2019.2922297
– reference: TubishatMIdrisNShuibLAbushariahMAMMirjaliliSImproved Salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selectionExpert Systems with Applications201910.1016/j.eswa.2019.113122
– reference: VermaARangaVEvaluation of network intrusion detection systems for RPL based 6LoWPAN networks in IoTWireless Personal Communications20191081571159410.1007/s11277-019-06485-w
– reference: BhatiBSRaiCSBalamuruganBAl-TurjmanFAn intrusion detection scheme based on the ensemble of discriminant classifiersComputers & Electrical Engineering20208610.1016/j.compeleceng.2020.106742
– reference: GothawalDBNagarajSVAnomaly-based intrusion detection system in RPL by applying stochastic and evolutionary game models over IoT environmentWireless Personal Communications20201101323134410.1007/s11277-019-06789-x
– reference: ZhaoXYangFHanYCuiYAn Opposition-based chaotic Salp swarm algorithm for global optimizationIEEE Access202010.1109/access.2020.2976101
– reference: DavahliAShamsiMAbaeiGHybridizing genetic algorithm and grey wolf optimizer to advance an intelligent and lightweight intrusion detection system for IoT wireless networksJournal of Ambient Intelligence and Humanized Computing2020115581560910.1007/s12652-020-01919-x
– reference: Verma, A., & Ranga, V. (2018). RPL-NIDDS17—a data set for intrusion detection in RPL based 6LoWPAN networks (Internet of Things). 10.5281/zenodo.1406034
– reference: ShahrakiAAbbasiMHaugenØBoosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoostEngineering Applications of Artificial Intelligence20209410.1016/j.engappai.2020.103770
– reference: CakirSTokluSYalcinNRPL attack detection and prevention in the Internet of Things networks using a GRU based deep learningIEEE Access2020818367818368910.1109/ACCESS.2020.3029191
– volume: 108
  start-page: 1571
  year: 2019
  ident: 9726_CR4
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-019-06485-w
– year: 2020
  ident: 9726_CR21
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2020.107247
– volume: 7
  start-page: 105
  year: 2020
  ident: 9726_CR20
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-020-00379-6
– year: 2020
  ident: 9726_CR18
  publication-title: IEEE Access
  doi: 10.1109/access.2020.2992249
– ident: 9726_CR15
  doi: 10.1007/s11277-019-06485-w
– year: 2019
  ident: 9726_CR7
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2928048
– volume: 21
  start-page: 12940
  issue: 11
  year: 2021
  ident: 9726_CR5
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3068240
– volume: 11
  start-page: 5581
  year: 2020
  ident: 9726_CR13
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-01919-x
– volume: 8
  start-page: 175467
  year: 2020
  ident: 9726_CR10
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3026044
– volume: 94
  year: 2020
  ident: 9726_CR19
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103770
– ident: 9726_CR1
  doi: 10.1109/iot-siu.2019.8777504
– year: 2020
  ident: 9726_CR22
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.01.055
– volume: 111
  start-page: 2287
  year: 2020
  ident: 9726_CR6
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-019-06986-8
– year: 2020
  ident: 9726_CR14
  publication-title: IEEE Access
  doi: 10.1109/access.2020.2976101
– year: 2020
  ident: 9726_CR2
  publication-title: IEEE Sensors Journal
  doi: 10.1109/jsen.2020.2973677
– year: 2019
  ident: 9726_CR25
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/jiot.2019.2948149
– year: 2020
  ident: 9726_CR24
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/jiot.2020.2971463
– volume: 110
  start-page: 1323
  year: 2020
  ident: 9726_CR26
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-019-06789-x
– volume: 8
  start-page: 183678
  year: 2020
  ident: 9726_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029191
– year: 2019
  ident: 9726_CR17
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113122
– ident: 9726_CR3
  doi: 10.17487/rfc6550
– year: 2020
  ident: 9726_CR12
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3028012
– volume: 166
  start-page: 110
  year: 2021
  ident: 9726_CR23
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2020.12.003
– volume: 12
  start-page: 39
  issue: 1
  year: 2018
  ident: 9726_CR9
  publication-title: The International Journal of Computational Intelligence Systems
  doi: 10.2991/ijcis.2018.25905181
– year: 2019
  ident: 9726_CR16
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/jstars.2019.2922297
– volume: 86
  year: 2020
  ident: 9726_CR11
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2020.106742
SSID ssj0010092
Score 2.3480585
Snippet Internet of Things (IoT) is the powerful latest trend that allows communications and networking of many sources over the internet. The routing protocol for low...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3603
SubjectTerms Classifiers
Communications Engineering
Computer Communication Networks
Datasets
Decision trees
Deep learning
Engineering
Ensemble learning
False alarms
Feature selection
Internet of Things
Intrusion detection systems
Machine learning
Networks
Optimization
Particle swarm optimization
Performance enhancement
Routing (telecommunications)
Signal,Image and Speech Processing
Simulated annealing
Support vector machines
Voting
Title Optimized Ensemble Classifier Based Network Intrusion Detection System for RPL Based Internet of Things
URI https://link.springer.com/article/10.1007/s11277-022-09726-7
https://www.proquest.com/docview/2700751627
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgXWBAUECUlsoDYoFIbeLE8dhCS_kqCFGpTFFsX1ClNkVKJn4953y0FAESU4bYHvLsu3Pu3TtCThnnbabdtqUlFxbuEM_yndCzgOPNzciXCMcUJz-MvOGY3U7cSVEUlpRs9zIlmVnqVbFbx6QbDfvcSM54Ft8kVRfv7obINba7y9yBkRHKFPYMsQMtc1Eq8_Ma6-5oFWN-S4tm3mawS3aKMJF2c1z3yAbENbL9RTywRhrFoGkyp2d0rdAj2Sdvj2gL5tMP0LQfJzCXM6BZA8xphI6Q9tB5aTrKOeD0JjalFziRXkGacbNimkuZU4xp6fPTfTEh_38IKV1ENO_4eUDGg_7L5dAqmipYCk9bainpcelHQgOXIBmINujQDkOMBNs2OB7zTOcxJRlTri21r41NYA5o7rtSKuEckkq8iOGIUOFIBy9EwgdfMS1CP4q0wggt5EI5CsI66ZTfNlCF4rhpfDELVlrJBo8A8QgyPAJeJ-fLOe-53safo5slZEFx9pLApNK52_FsfH1Rwrh6_ftqx_8b3iBbdraTDBuwSSqIFJxghJLKFql2B73eyDyvX-_6rWyDfgJI1t8l
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gHIADggFibEAOiAtU2tq0aY4DNm2wDYQ2iVvVJC6atHVI7Ylfj9OPjSFA4hwnhz7Hdmr7mZBLxnmTabdpacmFhRriWb4TehZwfLkZ-hLhmObk4cjrTdjDq_taNIUlZbV7mZLMLPWq2a1l0o2m-txQzngW3yRbGAz4RpcndnuZOzA0QhnDninsQMtctMr8fMa6O1rFmN_Sopm36e6TvSJMpO0c1wOyAXGV7H4hD6ySeiE0Teb0iq41eiSH5O0JbcF8-gGaduIE5nIGNBuAOY3QEdJbdF6ajvIacNqPTesFbqT3kGa1WTHNqcwpxrT05XlQbMj_H0JKFxHNJ34ekUm3M77rWcVQBUvhbUstJT0u_Uho4BIkA9EEHdphiJFg0wbHY56ZPKYkY8q1pfa1sQnMAc19V0olnGNSiRcxnBAqHOngg0j44CumRehHkVYYoYVcKEdBWCOt8tsGqmAcN4MvZsGKK9ngESAeQYZHwGvkernnPefb-FO6UUIWFHcvCUwqnbstz8blmxLG1fLvp53-T_yCbPfGw0Ew6I8e62THzrTKVAY2SAVRgzOMVlJ5ninnJ_fY3wg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0oJkYPRlEjgroH40UboN12u0cUCCgiMZJwa7q7U0MChYSe_PXOtkXAqInn_Tj0ze7Mdua9IeSacV5j2q1ZWnJhoYV4lu-EngUcX25GvkQ4hpz83Pc6Q_Y4ckdrLP602n2Zksw4DUalKU6qcx1VV8S3ukk9mkp0Iz_jWXyb7DDDBkaLHtqNrzyCkRRK1fZMkQfe0jlt5uc9Nl3TKt78liJNPU_7kBzkISNtZBgfkS2Ii2R_TUiwSMr5pPFiSm_oBuljcUzeX_BemI4_QNNWvICpnABNm2GOI3SK9B4dmab9rB6cdmNDw8CFtAlJWqcV00zWnGJ8S18HvXxB9i8REjqLaNb984QM2623h46VN1iwFJ68xFLS49KPhAYuQTIQNdChHYYYFdZscDzmmS5kSjKmXFtqX5v7gTmgue9KqYRzSgrxLIYzQoUjHXwcCR98xbQI_SjSCqO1kAvlKAhLpL78toHK1cdNE4xJsNJNNngEiEeQ4hHwErn9WjPPtDf-nF1ZQhbk53ARmLQ6d-uejcN3SxhXw7_vdv6_6Vdkd9BsB71u_6lM9uzUqEyRYIUUEDS4wMAlkZepbX4C1yPjOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Ensemble+Classifier+Based+Network+Intrusion+Detection+System+for+RPL+Based+Internet+of+Things&rft.jtitle=Wireless+personal+communications&rft.au=Jaya%2C+Prakash+P&rft.au=Lalitha%2C+B&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=125&rft.issue=4&rft.spage=3603&rft.epage=3626&rft_id=info:doi/10.1007%2Fs11277-022-09726-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon