Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition

The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. Under a coupled monotonicity condition in a domain D ⊂ R d , d ∈ N , we propose a novel approach to achieve upper mea...

Full description

Saved in:
Bibliographic Details
Published inBIT Vol. 60; no. 3; pp. 759 - 790
Main Authors Wang, Xiaojie, Wu, Jiayi, Dong, Bozhang
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0006-3835
1572-9125
DOI10.1007/s10543-019-00793-0

Cover

Loading…
Abstract The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. Under a coupled monotonicity condition in a domain D ⊂ R d , d ∈ N , we propose a novel approach to achieve upper mean-square error bounds for STMs with the method parameters θ ∈ [ 1 2 , 1 ] , which only get involved with the exact solution processes. This enables us to easily recover mean-square convergence rates of the considered schemes, without requiring a priori high-order moment estimates of numerical approximations. As applications of the error bounds, we derive mean-square convergence rates of STMs for SDEs driven by three kinds of noises under further globally polynomial growth condition. In particular, the error bounds are utilized to analyze approximation of SDEs with small noise. It is shown that the stochastic trapezoid formula gives better convergence performance than the other STMs. Furthermore, we apply STMs to the Ait-Sahalia-type interest rate model taking values in the domain D = ( 0 , ∞ ) , and successfully identify a convergence rate of order one-half for STMs with θ ∈ [ 1 2 , 1 ] , even in a general critical case. This fills the gap left by Szpruch et al. (BIT Numer Math 51(2):405–425, 2011), where strong convergence of the backward Euler method was proved, without revealing a rate of convergence, for the model in a non-critical case.
AbstractList The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. Under a coupled monotonicity condition in a domain D ⊂ R d , d ∈ N , we propose a novel approach to achieve upper mean-square error bounds for STMs with the method parameters θ ∈ [ 1 2 , 1 ] , which only get involved with the exact solution processes. This enables us to easily recover mean-square convergence rates of the considered schemes, without requiring a priori high-order moment estimates of numerical approximations. As applications of the error bounds, we derive mean-square convergence rates of STMs for SDEs driven by three kinds of noises under further globally polynomial growth condition. In particular, the error bounds are utilized to analyze approximation of SDEs with small noise. It is shown that the stochastic trapezoid formula gives better convergence performance than the other STMs. Furthermore, we apply STMs to the Ait-Sahalia-type interest rate model taking values in the domain D = ( 0 , ∞ ) , and successfully identify a convergence rate of order one-half for STMs with θ ∈ [ 1 2 , 1 ] , even in a general critical case. This fills the gap left by Szpruch et al. (BIT Numer Math 51(2):405–425, 2011), where strong convergence of the backward Euler method was proved, without revealing a rate of convergence, for the model in a non-critical case.
The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. Under a coupled monotonicity condition in a domain D⊂Rd,d∈N, we propose a novel approach to achieve upper mean-square error bounds for STMs with the method parameters θ∈[12,1], which only get involved with the exact solution processes. This enables us to easily recover mean-square convergence rates of the considered schemes, without requiring a priori high-order moment estimates of numerical approximations. As applications of the error bounds, we derive mean-square convergence rates of STMs for SDEs driven by three kinds of noises under further globally polynomial growth condition. In particular, the error bounds are utilized to analyze approximation of SDEs with small noise. It is shown that the stochastic trapezoid formula gives better convergence performance than the other STMs. Furthermore, we apply STMs to the Ait-Sahalia-type interest rate model taking values in the domain D=(0,∞), and successfully identify a convergence rate of order one-half for STMs with θ∈[12,1], even in a general critical case. This fills the gap left by Szpruch et al. (BIT Numer Math 51(2):405–425, 2011), where strong convergence of the backward Euler method was proved, without revealing a rate of convergence, for the model in a non-critical case.
Author Wu, Jiayi
Dong, Bozhang
Wang, Xiaojie
Author_xml – sequence: 1
  givenname: Xiaojie
  surname: Wang
  fullname: Wang, Xiaojie
  email: x.j.wang7@csu.edu.cn, x.j.wang7@gmail.com
  organization: School of Mathematics and Statistics, Central South University
– sequence: 2
  givenname: Jiayi
  surname: Wu
  fullname: Wu, Jiayi
  organization: School of Mathematics and Statistics, Central South University
– sequence: 3
  givenname: Bozhang
  surname: Dong
  fullname: Dong, Bozhang
  organization: School of Mathematics, Shandong University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6v52M-j1PoBFQ_qOWSzkzalTdokK_Tfm7qC4KGnycA8k3eeCRpZZwGha0puKSHVXaCkyHlGaJOltkmvMzSmRcWyhrJihMaEkDLjNS8u0CSENSGsKSkfI_MK0mZh30sPWDn7BX4JVgH2MkLATuMQnVrJEI3CcQVR4i3ElesC1s7j94d5wL3twGOZ8H63gQ5vnXXRWaNMPBx3diYaZy_RuZabAFe_dYo-H-cfs-ds8fb0MrtfZIrTJmZKFlWpVFvrjqkqr_O8KnRDGIG2hbxJd9RaNSVnNZOyA6W7Nle6go6SnFdFy6foZti7827fQ4hi7Xpv05eC5TzZ4CxdPkX1MKW8C8GDFimtPOaMXpqNoEQcxYpBrEhixY9YQRLK_qE7b7bSH05DfIBCGrZL8H-pTlDfxU-O6g
CitedBy_id crossref_primary_10_1016_j_cam_2020_113077
crossref_primary_10_1007_s10444_023_10034_2
crossref_primary_10_1016_j_apnum_2021_10_017
crossref_primary_10_1007_s11075_020_01009_1
crossref_primary_10_1007_s10543_022_00923_1
crossref_primary_10_1080_15326349_2024_2305344
crossref_primary_10_1016_j_jco_2024_101842
crossref_primary_10_3390_math8122195
crossref_primary_10_1016_j_cnsns_2023_107258
crossref_primary_10_1515_cmam_2022_0143
crossref_primary_10_3934_math_2024585
crossref_primary_10_1007_s10092_024_00606_z
crossref_primary_10_1007_s11075_024_01810_2
crossref_primary_10_1007_s10543_023_01000_x
crossref_primary_10_1007_s11075_024_01892_y
crossref_primary_10_1016_j_apnum_2022_09_017
crossref_primary_10_1007_s12190_020_01443_3
crossref_primary_10_1016_j_cam_2021_113482
crossref_primary_10_1016_j_apnum_2019_11_014
crossref_primary_10_1090_mcom_4014
crossref_primary_10_3934_dcdsb_2025018
crossref_primary_10_1016_j_chaos_2020_110172
crossref_primary_10_3934_math_2024137
crossref_primary_10_33993_jnaat532_1433
crossref_primary_10_1016_j_cam_2021_113817
crossref_primary_10_1016_j_cnsns_2024_108372
crossref_primary_10_1016_j_spa_2024_104467
crossref_primary_10_1007_s10915_024_02758_0
crossref_primary_10_1007_s10092_023_00521_9
crossref_primary_10_1007_s10092_023_00524_6
crossref_primary_10_1007_s11075_024_01861_5
crossref_primary_10_1007_s11075_024_01862_4
crossref_primary_10_1016_j_amc_2021_125959
crossref_primary_10_1016_j_apnum_2022_05_004
crossref_primary_10_1016_j_jcp_2025_113754
Cites_doi 10.1093/imanum/dry015
10.1137/090763275
10.1007/s10543-016-0624-y
10.1214/11-AAP803
10.1137/030601429
10.1090/mcom/3146
10.1016/j.spl.2012.10.034
10.1214/15-AAP1140
10.1137/120902318
10.1016/j.cam.2012.08.015
10.1007/978-3-662-12616-5
10.1137/15M1017788
10.1137/S1064827594278575
10.1080/10236198.2012.656617
10.1023/A:1023659813269
10.1137/S003614299834736X
10.1093/imanum/drx036
10.1016/j.cam.2013.07.007
10.1093/rfs/9.2.385
10.1137/040602857
10.1080/17442508.2011.651213
10.1016/j.apnum.2016.09.013
10.1137/S0036142901389530
10.1090/mcom/3219
10.1112/S1461157000000462
10.1007/s10915-015-0114-4
10.1007/s00211-014-0606-4
10.1016/j.cam.2015.09.035
10.1016/j.cam.2012.03.005
10.1016/j.cam.2015.06.002
10.1137/15M1024664
10.1007/s10543-010-0288-y
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10543-019-00793-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9125
EndPage 790
ExternalDocumentID 10_1007_s10543_019_00793_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11671405; 11571373
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 91630312
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-BR
-~X
1N0
23N
40D
40E
95-
95.
95~
ABDPE
ABMNI
ACIWK
AGWIL
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BBWZM
CAG
COF
CS3
H~9
KOW
N2Q
RHV
SDD
SOJ
TN5
WH7
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c319t-ca576ccb8fd2c7484475f9020ebbe490008fc963282aadecfdb4cf7ed104375b3
IEDL.DBID U2A
ISSN 0006-3835
IngestDate Mon Jun 30 09:06:51 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Tue Jul 01 02:03:19 EDT 2025
Fri Feb 21 02:34:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Additive noise
Stochastic theta methods
Stochastic differential equations
Multiplicative noise
65C30
Small noise
Mean-square convergence rates
60H15
Ait-Sahalia model
60H35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ca576ccb8fd2c7484475f9020ebbe490008fc963282aadecfdb4cf7ed104375b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2431253261
PQPubID 2043657
PageCount 32
ParticipantIDs proquest_journals_2431253261
crossref_citationtrail_10_1007_s10543_019_00793_0
crossref_primary_10_1007_s10543_019_00793_0
springer_journals_10_1007_s10543_019_00793_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle BIT
PublicationTitleAbbrev Bit Numer Math
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Kelly, Lord (CR20) 2017; 38
Szpruch, Zhang (CR35) 2018; 87
Buckwar, Rößler, Winkler (CR8) 2010; 32
Li, Mao, Yin (CR23) 2019; 39
Hutzenthaler, Jentzen (CR16) 2015; 236
Hutzenthaler, Jentzen, Kloeden (CR18) 2012; 22
Mao (CR24) 2015; 290
Beyn, Isaak, Kruse (CR5) 2016; 67
Wang, Gan (CR37) 2013; 19
Bryden, Higham (CR7) 2003; 43
CR38
CR11
Neuenkirch, Szpruch (CR30) 2014; 128
Buckwar, Winkler (CR9) 2006; 44
Mao, Szpruch (CR27) 2013; 85
Sabanis (CR32) 2013; 18
Milstein, Tretyakov (CR29) 2013
Milstein, Tretyakov (CR28) 1997; 18
Tretyakov, Zhang (CR36) 2013; 51
Higham, Mao, Stuart (CR13) 2002; 40
Szpruch, Mao, Higham, Pan (CR34) 2011; 51
Higham (CR12) 2000; 38
Hutzenthaler, Jentzen, Kloeden (CR17) 2011; 467
Mao (CR25) 2016; 296
Mao, Szpruch (CR26) 2013; 238
Beyn, Kruse (CR6) 2010; 14
Ait-Sahalia (CR1) 1996; 9
Zong, Wu (CR40) 2014; 255
Hutzenthaler, Jentzen, Wang (CR19) 2018; 87
Anderson, Higham, Sun (CR3) 2016; 54
Chassagneux, Jacquier, Mihaylov (CR10) 2016; 7
Zhang, Ma (CR39) 2017; 112
Li, Abdulle (CR22) 2008; 3
Andersson, Kruse (CR4) 2017; 57
Kloeden, Platen (CR21) 1992
Higham, Mao, Stuart (CR14) 2003; 6
Sabanis (CR33) 2016; 26
Alfonsi (CR2) 2013; 83
Huang (CR15) 2012; 236
Römisch, Winkler (CR31) 2006; 28
X Mao (793_CR25) 2016; 296
X Wang (793_CR37) 2013; 19
E Buckwar (793_CR8) 2010; 32
J Chassagneux (793_CR10) 2016; 7
A Andersson (793_CR4) 2017; 57
DJ Higham (793_CR14) 2003; 6
793_CR38
T Li (793_CR22) 2008; 3
S Sabanis (793_CR32) 2013; 18
DF Anderson (793_CR3) 2016; 54
G Milstein (793_CR28) 1997; 18
GN Milstein (793_CR29) 2013
MV Tretyakov (793_CR36) 2013; 51
A Alfonsi (793_CR2) 2013; 83
PE Kloeden (793_CR21) 1992
DJ Higham (793_CR12) 2000; 38
X Mao (793_CR27) 2013; 85
A Neuenkirch (793_CR30) 2014; 128
M Hutzenthaler (793_CR16) 2015; 236
Y Ait-Sahalia (793_CR1) 1996; 9
M Hutzenthaler (793_CR19) 2018; 87
A Bryden (793_CR7) 2003; 43
W-J Beyn (793_CR6) 2010; 14
Z Zhang (793_CR39) 2017; 112
M Hutzenthaler (793_CR18) 2012; 22
L Szpruch (793_CR34) 2011; 51
W Römisch (793_CR31) 2006; 28
L Szpruch (793_CR35) 2018; 87
X Li (793_CR23) 2019; 39
X Zong (793_CR40) 2014; 255
793_CR11
X Mao (793_CR26) 2013; 238
S Sabanis (793_CR33) 2016; 26
E Buckwar (793_CR9) 2006; 44
M Hutzenthaler (793_CR17) 2011; 467
C Kelly (793_CR20) 2017; 38
W-J Beyn (793_CR5) 2016; 67
C Huang (793_CR15) 2012; 236
DJ Higham (793_CR13) 2002; 40
X Mao (793_CR24) 2015; 290
References_xml – volume: 14
  start-page: 389
  issue: 2
  year: 2010
  end-page: 407
  ident: CR6
  article-title: Two-sided error estimates for the stochastic theta method
  publication-title: Discret. Contin. Dyn. Syst. Ser. B
– volume: 38
  start-page: 753
  issue: 3
  year: 2000
  end-page: 769
  ident: CR12
  article-title: Mean-square and asymptotic stability of the stochastic theta method
  publication-title: SIAM J. Numer. Anal.
– volume: 18
  start-page: 1067
  issue: 4
  year: 1997
  end-page: 1087
  ident: CR28
  article-title: Mean-square numerical methods for stochastic differential equations with small noises
  publication-title: SIAM J. Sci. Comput.
– volume: 19
  start-page: 466
  issue: 3
  year: 2013
  end-page: 490
  ident: CR37
  article-title: The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients
  publication-title: J. Differ. Equ. Appl.
– volume: 67
  start-page: 955
  issue: 3
  year: 2016
  end-page: 987
  ident: CR5
  article-title: Stochastic C-stability and B-consistency of explicit and implicit Euler-type schemes
  publication-title: J. Sci. Comput.
– volume: 44
  start-page: 779
  issue: 2
  year: 2006
  end-page: 803
  ident: CR9
  article-title: Multistep methods for SDEs and their application to problems with small noise
  publication-title: SIAM J. Numer. Anal.
– year: 1992
  ident: CR21
  publication-title: Numerical Solution of Stochastic Differential Equations
– volume: 57
  start-page: 21
  issue: 1
  year: 2017
  end-page: 53
  ident: CR4
  article-title: Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition
  publication-title: BIT Numer. Math.
– volume: 38
  start-page: 1523
  issue: 3
  year: 2017
  end-page: 1549
  ident: CR20
  article-title: Adaptive time-stepping strategies for nonlinear stochastic systems
  publication-title: IMA J. Numer. Anal.
– volume: 87
  start-page: 1353
  issue: 311
  year: 2018
  end-page: 1413
  ident: CR19
  article-title: Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations
  publication-title: Math. Comput.
– volume: 18
  start-page: 1
  issue: 47
  year: 2013
  end-page: 10
  ident: CR32
  article-title: A note on tamed Euler approximations
  publication-title: Electron. Commun. Probab.
– volume: 39
  start-page: 847
  year: 2019
  end-page: 892
  ident: CR23
  article-title: Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in pth moment and stability
  publication-title: IMA J. Numer. Anal.
– volume: 236
  start-page: 1112
  year: 2015
  ident: CR16
  article-title: Numerical approximation of stochastic differential equations with non-globally Lipschitz continuous coefficients
  publication-title: Mem. Am. Math. Soc.
– volume: 112
  start-page: 1
  year: 2017
  end-page: 16
  ident: CR39
  article-title: Order-preserving strong schemes for SDEs with locally Lipschitz coefficients
  publication-title: Appl. Numer. Math.
– volume: 40
  start-page: 1041
  issue: 3
  year: 2002
  end-page: 1063
  ident: CR13
  article-title: Strong convergence of Euler-type methods for nonlinear stochastic differential equations
  publication-title: SIAM J. Numer. Anal.
– volume: 3
  start-page: 295
  year: 2008
  end-page: 307
  ident: CR22
  article-title: Effectiveness of implicit methods for stiff stochastic differential equations
  publication-title: Commun. Comput. Phys.
– volume: 28
  start-page: 604
  issue: 2
  year: 2006
  end-page: 625
  ident: CR31
  article-title: Stepsize control for mean-square numerical methods for stochastic differential equations with small noise
  publication-title: SIAM J. Sci. Comput.
– volume: 32
  start-page: 1789
  issue: 4
  year: 2010
  end-page: 1808
  ident: CR8
  article-title: Stochastic Runge–Kutta methods for itô SODEs with small noise
  publication-title: SIAM J. Sci. Comput.
– year: 2013
  ident: CR29
  publication-title: Stochastic Numerics for Mathematical Physics
– volume: 83
  start-page: 602
  issue: 2
  year: 2013
  end-page: 607
  ident: CR2
  article-title: Strong order one convergence of a drift implicit Euler scheme: application to the cir process
  publication-title: Stat. Probab. Lett.
– volume: 467
  start-page: 1563
  issue: 2130
  year: 2011
  end-page: 1576
  ident: CR17
  article-title: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients
  publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.
– volume: 236
  start-page: 4016
  issue: 16
  year: 2012
  end-page: 4026
  ident: CR15
  article-title: Exponential mean square stability of numerical methods for systems of stochastic differential equations
  publication-title: J. Comput. Appl. Math.
– ident: CR38
– volume: 43
  start-page: 1
  issue: 1
  year: 2003
  end-page: 6
  ident: CR7
  article-title: On the boundedness of asymptotic stability regions for the stochastic theta method
  publication-title: BIT Numer. Math.
– volume: 9
  start-page: 385
  issue: 2
  year: 1996
  end-page: 426
  ident: CR1
  article-title: Testing continuous-time models of the spot interest rate
  publication-title: Rev. Financ. Stud.
– volume: 26
  start-page: 2083
  issue: 4
  year: 2016
  end-page: 2105
  ident: CR33
  article-title: Euler approximations with varying coefficients: the case of super-linearly growing diffusion coefficients
  publication-title: Ann. Appl. Probab.
– volume: 7
  start-page: 993
  issue: 1
  year: 2016
  end-page: 1021
  ident: CR10
  article-title: An explicit Euler scheme with strong rate of convergence for financial SDEs with non-lipschitz coefficients
  publication-title: SIAM J. Financ. Math.
– volume: 238
  start-page: 14
  year: 2013
  end-page: 28
  ident: CR26
  article-title: Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients
  publication-title: J. Comput. Appl. Math.
– ident: CR11
– volume: 290
  start-page: 370
  year: 2015
  end-page: 384
  ident: CR24
  article-title: The truncated Euler-Maruyama method for stochastic differential equations
  publication-title: J. Comput. Appl. Math.
– volume: 51
  start-page: 3135
  issue: 6
  year: 2013
  end-page: 3162
  ident: CR36
  article-title: A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications
  publication-title: SIAM J. Numer. Anal.
– volume: 296
  start-page: 362
  year: 2016
  end-page: 375
  ident: CR25
  article-title: Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations
  publication-title: J. Comput. Appl. Math.
– volume: 6
  start-page: 297
  year: 2003
  end-page: 313
  ident: CR14
  article-title: Exponential mean-square stability of numerical solutions to stochastic differential equations
  publication-title: LMS J. Comput. Math.
– volume: 255
  start-page: 837
  year: 2014
  end-page: 847
  ident: CR40
  article-title: Choice of and mean-square exponential stability in the stochastic theta method of stochastic differential equations
  publication-title: J. Comput. Appl. Math.
– volume: 54
  start-page: 505
  issue: 2
  year: 2016
  end-page: 529
  ident: CR3
  article-title: Multilevel Monte Carlo for stochastic differential equations with small noise
  publication-title: SIAM J. Numer. Anal.
– volume: 85
  start-page: 144
  issue: 1
  year: 2013
  end-page: 171
  ident: CR27
  article-title: Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients
  publication-title: Stoch. Int. J. Probab. Stoch. Process.
– volume: 51
  start-page: 405
  issue: 2
  year: 2011
  end-page: 425
  ident: CR34
  article-title: Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model
  publication-title: BIT Numer. Math.
– volume: 87
  start-page: 755
  issue: 310
  year: 2018
  end-page: 783
  ident: CR35
  article-title: V-integrability, asymptotic stability and comparison property of explicit numerical schemes for non-linear SDEs
  publication-title: Math. Comput.
– volume: 22
  start-page: 1611
  issue: 4
  year: 2012
  end-page: 1641
  ident: CR18
  article-title: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz coefficients
  publication-title: Ann. Appl. Probab.
– volume: 128
  start-page: 103
  issue: 1
  year: 2014
  end-page: 136
  ident: CR30
  article-title: First order strong approximations of scalar sdes defined in a domain
  publication-title: Numerische Mathematik
– volume: 39
  start-page: 847
  year: 2019
  ident: 793_CR23
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/dry015
– volume: 32
  start-page: 1789
  issue: 4
  year: 2010
  ident: 793_CR8
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090763275
– volume: 3
  start-page: 295
  year: 2008
  ident: 793_CR22
  publication-title: Commun. Comput. Phys.
– volume: 57
  start-page: 21
  issue: 1
  year: 2017
  ident: 793_CR4
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-016-0624-y
– volume: 22
  start-page: 1611
  issue: 4
  year: 2012
  ident: 793_CR18
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/11-AAP803
– volume: 28
  start-page: 604
  issue: 2
  year: 2006
  ident: 793_CR31
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/030601429
– volume: 87
  start-page: 1353
  issue: 311
  year: 2018
  ident: 793_CR19
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3146
– volume: 83
  start-page: 602
  issue: 2
  year: 2013
  ident: 793_CR2
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2012.10.034
– volume: 26
  start-page: 2083
  issue: 4
  year: 2016
  ident: 793_CR33
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/15-AAP1140
– volume: 51
  start-page: 3135
  issue: 6
  year: 2013
  ident: 793_CR36
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120902318
– volume: 238
  start-page: 14
  year: 2013
  ident: 793_CR26
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.08.015
– volume: 18
  start-page: 1
  issue: 47
  year: 2013
  ident: 793_CR32
  publication-title: Electron. Commun. Probab.
– volume-title: Numerical Solution of Stochastic Differential Equations
  year: 1992
  ident: 793_CR21
  doi: 10.1007/978-3-662-12616-5
– volume: 7
  start-page: 993
  issue: 1
  year: 2016
  ident: 793_CR10
  publication-title: SIAM J. Financ. Math.
  doi: 10.1137/15M1017788
– volume: 18
  start-page: 1067
  issue: 4
  year: 1997
  ident: 793_CR28
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827594278575
– volume: 467
  start-page: 1563
  issue: 2130
  year: 2011
  ident: 793_CR17
  publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.
– volume: 19
  start-page: 466
  issue: 3
  year: 2013
  ident: 793_CR37
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236198.2012.656617
– ident: 793_CR11
– volume: 43
  start-page: 1
  issue: 1
  year: 2003
  ident: 793_CR7
  publication-title: BIT Numer. Math.
  doi: 10.1023/A:1023659813269
– volume: 38
  start-page: 753
  issue: 3
  year: 2000
  ident: 793_CR12
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614299834736X
– volume: 38
  start-page: 1523
  issue: 3
  year: 2017
  ident: 793_CR20
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drx036
– volume: 255
  start-page: 837
  year: 2014
  ident: 793_CR40
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.07.007
– volume: 9
  start-page: 385
  issue: 2
  year: 1996
  ident: 793_CR1
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/9.2.385
– volume: 44
  start-page: 779
  issue: 2
  year: 2006
  ident: 793_CR9
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/040602857
– volume: 85
  start-page: 144
  issue: 1
  year: 2013
  ident: 793_CR27
  publication-title: Stoch. Int. J. Probab. Stoch. Process.
  doi: 10.1080/17442508.2011.651213
– volume-title: Stochastic Numerics for Mathematical Physics
  year: 2013
  ident: 793_CR29
– volume: 112
  start-page: 1
  year: 2017
  ident: 793_CR39
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2016.09.013
– volume: 14
  start-page: 389
  issue: 2
  year: 2010
  ident: 793_CR6
  publication-title: Discret. Contin. Dyn. Syst. Ser. B
– volume: 40
  start-page: 1041
  issue: 3
  year: 2002
  ident: 793_CR13
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901389530
– volume: 87
  start-page: 755
  issue: 310
  year: 2018
  ident: 793_CR35
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3219
– volume: 6
  start-page: 297
  year: 2003
  ident: 793_CR14
  publication-title: LMS J. Comput. Math.
  doi: 10.1112/S1461157000000462
– volume: 67
  start-page: 955
  issue: 3
  year: 2016
  ident: 793_CR5
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0114-4
– volume: 128
  start-page: 103
  issue: 1
  year: 2014
  ident: 793_CR30
  publication-title: Numerische Mathematik
  doi: 10.1007/s00211-014-0606-4
– volume: 296
  start-page: 362
  year: 2016
  ident: 793_CR25
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.09.035
– volume: 236
  start-page: 1112
  year: 2015
  ident: 793_CR16
  publication-title: Mem. Am. Math. Soc.
– volume: 236
  start-page: 4016
  issue: 16
  year: 2012
  ident: 793_CR15
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.03.005
– volume: 290
  start-page: 370
  year: 2015
  ident: 793_CR24
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.06.002
– ident: 793_CR38
– volume: 54
  start-page: 505
  issue: 2
  year: 2016
  ident: 793_CR3
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1024664
– volume: 51
  start-page: 405
  issue: 2
  year: 2011
  ident: 793_CR34
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-010-0288-y
SSID ssj0029613
ssj0014816
ssj0000615
Score 2.4183276
Snippet The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 759
SubjectTerms Computational Mathematics and Numerical Analysis
Convergence
Differential equations
Domains
Error analysis
Exact solutions
Mathematics
Mathematics and Statistics
Numeric Computing
Polynomials
Title Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition
URI https://link.springer.com/article/10.1007/s10543-019-00793-0
https://www.proquest.com/docview/2431253261
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MXPTgD9SIounBmzZhZd2PIyhINHBREjwtbddGEwLIxv_ve6MDNGriaUnXdsnea_d963vfI-RacpMayVMUugWCwrVksQgtk8Y2jdU-IH78NTAYBv2R_zgWY5cUlpXR7uWRZLFTbyW7CR9jf2LWRFU3BkS9KoC7o1-PeHtr__XWCBjAPsIfR8DiwHOV1QIGzEy4JJqfZ__6odqgz28HpsV3qHdI9h2ApO2VxY_IjpnWyIEDk9Qt1QyaynoNZVuN7A3WGq3ZMXkfGDll2Qf4iKFF8HmRh2koikdkdGYp4EL9JlHImcK4XNJVuemMAtClz_fdjGIG2oJKGL6cT-Dx4NOzHMV2AdvjnGkREHZCRr3uy12fucILTMOKzJmWwEK0VpFNuUaxUT8UNgZgaZQyPpYZjayGlQt0TcrUaJsqX9vQpB4qJQnVOiWV6Wxqzgjlfqp4IAFkmNAPdBi1IhsJoZSnvKZu2TrxyrecaKdKjsUxJslGTxktk4BlksIySbNObtZj5itNjj97N0rjJW59ZgkH3MQFQFevTm5Lg25u_z7b-f-6X5BdjgS9CEprkEq-WJpLQDG5uiLVdq_TGeL14fWpe1U48Sf97ejS
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMgADb0R5emADo8a1k3RE0FIe7UIrlSmyHVsgUAskXfj1nFOnBQRIrI7tyI87f2fffQdwJJlJjWSpI7pFA4VpSRsislQaWzNWc0T87mqg0w3bfX49EAMfFJaV3u7lk2ShqT8FuwnufH8atOZY3Sga6vMcbXBRgfmzy_ub5icNHEwxMMJ9B4C8CdYIA59bLaRomwkfRvNz_1-Pqhn-_PZkWpxErRXol2OYOKA8nY5zdarfv9E7_neQq7DsoSk5m-ylNZgzw3VY8TCVeCWQYVGZCaIsW4elzpT9NduAx46RQ5q94u4zpHBrLyI8DXG0FBkZWYKIUz9IRxFNsF0uySSRdUYQQpO7i2ZGXGzbG5HYfPzyjL9HaRnljsYXrQbXZ1q4mm1Cv9XsnbepT-lANcp6TrVE-0ZrFduUaUdjyiNhGwhZjVKGuwSmsdWoE9AQlDI12qaKaxuZNHAcTELVt6AyHA3NNhDGU8VCifDFRDzUUVyPbSyEUoEKarpuqxCUq5doz3fu0m48JzOmZjfZCU52Ukx2UqvC8bTNy4Tt48_ae-WmSLzkZwlDRMYEguKgCiflGs8-_97bzv-qH8JCu9e5TW6vuje7sMjcNUDh-rYHlfxtbPYRK-XqwIvGBz7BBbY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iIPrgXZxOzYNvGlyzpu0eh9vwNhF0sLeSKwrSTdv9f8_p0m2KCr6mSQo9Ocn3Ned8h5Azya2xkhsUugWCwrVkLRE7Jq1rWKdDQPz4a6D_EF0PwtuhGC5k8ZfR7tWV5DSnAVWasuJybNzlQuKbCDEOqMUaqPDGgLSvwHYcYFDXgLcX9uJghoYB-CMU8mSsFQW-ylrEgKUJn1Dz8-xfD605Ev12eVqeSb0tsuHBJG1Prb9Nlmy2QzY9sKTebXNoqmo3VG07ZL0_02vNd8lr38qM5e-wXiwtA9HLnExLUUgipyNHASPqF4mizhTGFZJOS0_nFEAvfep0c4rZaB9UwvDJ-A1eD-t7VKDwLuB8nNOUwWF7ZNDrPl9dM1-EgWnwzoJpCYxEa5U4wzUKj4axcC0AmVYpG2LJ0cRp8GKgblIaq51RoXaxNQGqJgnV3CfL2SizB4Ty0CgeSQAcNg4jHSfNxCVCKBWooKGbrkaC6iun2iuUY6GMt3SurYyWScEyaWmZtFEj57Mx46k-x5-965XxUu-recoBQ3EBMDaokYvKoPPHv892-L_up2T1sdNL728e7o7IGkfeXsaq1cly8TGxxwBuCnVSrt9PKNDs8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mean-square+convergence+rates+of+stochastic+theta+methods+for+SDEs+under+a+coupled+monotonicity+condition&rft.jtitle=BIT+Numerical+Mathematics&rft.au=Wang%2C+Xiaojie&rft.au=Wu%2C+Jiayi&rft.au=Dong%2C+Bozhang&rft.date=2020-09-01&rft.issn=0006-3835&rft.eissn=1572-9125&rft.volume=60&rft.issue=3&rft.spage=759&rft.epage=790&rft_id=info:doi/10.1007%2Fs10543-019-00793-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10543_019_00793_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3835&client=summon