Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition
The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. Under a coupled monotonicity condition in a domain D ⊂ R d , d ∈ N , we propose a novel approach to achieve upper mea...
Saved in:
Published in | BIT Vol. 60; no. 3; pp. 759 - 790 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3835 1572-9125 |
DOI | 10.1007/s10543-019-00793-0 |
Cover
Loading…
Abstract | The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. Under a coupled monotonicity condition in a domain
D
⊂
R
d
,
d
∈
N
, we propose a novel approach to achieve upper mean-square error bounds for STMs with the method parameters
θ
∈
[
1
2
,
1
]
, which only get involved with the exact solution processes. This enables us to easily recover mean-square convergence rates of the considered schemes, without requiring a priori high-order moment estimates of numerical approximations. As applications of the error bounds, we derive mean-square convergence rates of STMs for SDEs driven by three kinds of noises under further globally polynomial growth condition. In particular, the error bounds are utilized to analyze approximation of SDEs with small noise. It is shown that the stochastic trapezoid formula gives better convergence performance than the other STMs. Furthermore, we apply STMs to the Ait-Sahalia-type interest rate model taking values in the domain
D
=
(
0
,
∞
)
, and successfully identify a convergence rate of order one-half for STMs with
θ
∈
[
1
2
,
1
]
, even in a general critical case. This fills the gap left by Szpruch et al. (BIT Numer Math 51(2):405–425, 2011), where strong convergence of the backward Euler method was proved, without revealing a rate of convergence, for the model in a non-critical case. |
---|---|
AbstractList | The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. Under a coupled monotonicity condition in a domain
D
⊂
R
d
,
d
∈
N
, we propose a novel approach to achieve upper mean-square error bounds for STMs with the method parameters
θ
∈
[
1
2
,
1
]
, which only get involved with the exact solution processes. This enables us to easily recover mean-square convergence rates of the considered schemes, without requiring a priori high-order moment estimates of numerical approximations. As applications of the error bounds, we derive mean-square convergence rates of STMs for SDEs driven by three kinds of noises under further globally polynomial growth condition. In particular, the error bounds are utilized to analyze approximation of SDEs with small noise. It is shown that the stochastic trapezoid formula gives better convergence performance than the other STMs. Furthermore, we apply STMs to the Ait-Sahalia-type interest rate model taking values in the domain
D
=
(
0
,
∞
)
, and successfully identify a convergence rate of order one-half for STMs with
θ
∈
[
1
2
,
1
]
, even in a general critical case. This fills the gap left by Szpruch et al. (BIT Numer Math 51(2):405–425, 2011), where strong convergence of the backward Euler method was proved, without revealing a rate of convergence, for the model in a non-critical case. The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. Under a coupled monotonicity condition in a domain D⊂Rd,d∈N, we propose a novel approach to achieve upper mean-square error bounds for STMs with the method parameters θ∈[12,1], which only get involved with the exact solution processes. This enables us to easily recover mean-square convergence rates of the considered schemes, without requiring a priori high-order moment estimates of numerical approximations. As applications of the error bounds, we derive mean-square convergence rates of STMs for SDEs driven by three kinds of noises under further globally polynomial growth condition. In particular, the error bounds are utilized to analyze approximation of SDEs with small noise. It is shown that the stochastic trapezoid formula gives better convergence performance than the other STMs. Furthermore, we apply STMs to the Ait-Sahalia-type interest rate model taking values in the domain D=(0,∞), and successfully identify a convergence rate of order one-half for STMs with θ∈[12,1], even in a general critical case. This fills the gap left by Szpruch et al. (BIT Numer Math 51(2):405–425, 2011), where strong convergence of the backward Euler method was proved, without revealing a rate of convergence, for the model in a non-critical case. |
Author | Wu, Jiayi Dong, Bozhang Wang, Xiaojie |
Author_xml | – sequence: 1 givenname: Xiaojie surname: Wang fullname: Wang, Xiaojie email: x.j.wang7@csu.edu.cn, x.j.wang7@gmail.com organization: School of Mathematics and Statistics, Central South University – sequence: 2 givenname: Jiayi surname: Wu fullname: Wu, Jiayi organization: School of Mathematics and Statistics, Central South University – sequence: 3 givenname: Bozhang surname: Dong fullname: Dong, Bozhang organization: School of Mathematics, Shandong University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6v52M-j1PoBFQ_qOWSzkzalTdokK_Tfm7qC4KGnycA8k3eeCRpZZwGha0puKSHVXaCkyHlGaJOltkmvMzSmRcWyhrJihMaEkDLjNS8u0CSENSGsKSkfI_MK0mZh30sPWDn7BX4JVgH2MkLATuMQnVrJEI3CcQVR4i3ElesC1s7j94d5wL3twGOZ8H63gQ5vnXXRWaNMPBx3diYaZy_RuZabAFe_dYo-H-cfs-ds8fb0MrtfZIrTJmZKFlWpVFvrjqkqr_O8KnRDGIG2hbxJd9RaNSVnNZOyA6W7Nle6go6SnFdFy6foZti7827fQ4hi7Xpv05eC5TzZ4CxdPkX1MKW8C8GDFimtPOaMXpqNoEQcxYpBrEhixY9YQRLK_qE7b7bSH05DfIBCGrZL8H-pTlDfxU-O6g |
CitedBy_id | crossref_primary_10_1016_j_cam_2020_113077 crossref_primary_10_1007_s10444_023_10034_2 crossref_primary_10_1016_j_apnum_2021_10_017 crossref_primary_10_1007_s11075_020_01009_1 crossref_primary_10_1007_s10543_022_00923_1 crossref_primary_10_1080_15326349_2024_2305344 crossref_primary_10_1016_j_jco_2024_101842 crossref_primary_10_3390_math8122195 crossref_primary_10_1016_j_cnsns_2023_107258 crossref_primary_10_1515_cmam_2022_0143 crossref_primary_10_3934_math_2024585 crossref_primary_10_1007_s10092_024_00606_z crossref_primary_10_1007_s11075_024_01810_2 crossref_primary_10_1007_s10543_023_01000_x crossref_primary_10_1007_s11075_024_01892_y crossref_primary_10_1016_j_apnum_2022_09_017 crossref_primary_10_1007_s12190_020_01443_3 crossref_primary_10_1016_j_cam_2021_113482 crossref_primary_10_1016_j_apnum_2019_11_014 crossref_primary_10_1090_mcom_4014 crossref_primary_10_3934_dcdsb_2025018 crossref_primary_10_1016_j_chaos_2020_110172 crossref_primary_10_3934_math_2024137 crossref_primary_10_33993_jnaat532_1433 crossref_primary_10_1016_j_cam_2021_113817 crossref_primary_10_1016_j_cnsns_2024_108372 crossref_primary_10_1016_j_spa_2024_104467 crossref_primary_10_1007_s10915_024_02758_0 crossref_primary_10_1007_s10092_023_00521_9 crossref_primary_10_1007_s10092_023_00524_6 crossref_primary_10_1007_s11075_024_01861_5 crossref_primary_10_1007_s11075_024_01862_4 crossref_primary_10_1016_j_amc_2021_125959 crossref_primary_10_1016_j_apnum_2022_05_004 crossref_primary_10_1016_j_jcp_2025_113754 |
Cites_doi | 10.1093/imanum/dry015 10.1137/090763275 10.1007/s10543-016-0624-y 10.1214/11-AAP803 10.1137/030601429 10.1090/mcom/3146 10.1016/j.spl.2012.10.034 10.1214/15-AAP1140 10.1137/120902318 10.1016/j.cam.2012.08.015 10.1007/978-3-662-12616-5 10.1137/15M1017788 10.1137/S1064827594278575 10.1080/10236198.2012.656617 10.1023/A:1023659813269 10.1137/S003614299834736X 10.1093/imanum/drx036 10.1016/j.cam.2013.07.007 10.1093/rfs/9.2.385 10.1137/040602857 10.1080/17442508.2011.651213 10.1016/j.apnum.2016.09.013 10.1137/S0036142901389530 10.1090/mcom/3219 10.1112/S1461157000000462 10.1007/s10915-015-0114-4 10.1007/s00211-014-0606-4 10.1016/j.cam.2015.09.035 10.1016/j.cam.2012.03.005 10.1016/j.cam.2015.06.002 10.1137/15M1024664 10.1007/s10543-010-0288-y |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10543-019-00793-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1572-9125 |
EndPage | 790 |
ExternalDocumentID | 10_1007_s10543_019_00793_0 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11671405; 11571373 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 91630312 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -52 -BR -~X 1N0 23N 40D 40E 95- 95. 95~ ABDPE ABMNI ACIWK AGWIL ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BBWZM CAG COF CS3 H~9 KOW N2Q RHV SDD SOJ TN5 WH7 ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c319t-ca576ccb8fd2c7484475f9020ebbe490008fc963282aadecfdb4cf7ed104375b3 |
IEDL.DBID | U2A |
ISSN | 0006-3835 |
IngestDate | Mon Jun 30 09:06:51 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Tue Jul 01 02:03:19 EDT 2025 Fri Feb 21 02:34:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Additive noise Stochastic theta methods Stochastic differential equations Multiplicative noise 65C30 Small noise Mean-square convergence rates 60H15 Ait-Sahalia model 60H35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ca576ccb8fd2c7484475f9020ebbe490008fc963282aadecfdb4cf7ed104375b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2431253261 |
PQPubID | 2043657 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2431253261 crossref_citationtrail_10_1007_s10543_019_00793_0 crossref_primary_10_1007_s10543_019_00793_0 springer_journals_10_1007_s10543_019_00793_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | BIT |
PublicationTitleAbbrev | Bit Numer Math |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Kelly, Lord (CR20) 2017; 38 Szpruch, Zhang (CR35) 2018; 87 Buckwar, Rößler, Winkler (CR8) 2010; 32 Li, Mao, Yin (CR23) 2019; 39 Hutzenthaler, Jentzen (CR16) 2015; 236 Hutzenthaler, Jentzen, Kloeden (CR18) 2012; 22 Mao (CR24) 2015; 290 Beyn, Isaak, Kruse (CR5) 2016; 67 Wang, Gan (CR37) 2013; 19 Bryden, Higham (CR7) 2003; 43 CR38 CR11 Neuenkirch, Szpruch (CR30) 2014; 128 Buckwar, Winkler (CR9) 2006; 44 Mao, Szpruch (CR27) 2013; 85 Sabanis (CR32) 2013; 18 Milstein, Tretyakov (CR29) 2013 Milstein, Tretyakov (CR28) 1997; 18 Tretyakov, Zhang (CR36) 2013; 51 Higham, Mao, Stuart (CR13) 2002; 40 Szpruch, Mao, Higham, Pan (CR34) 2011; 51 Higham (CR12) 2000; 38 Hutzenthaler, Jentzen, Kloeden (CR17) 2011; 467 Mao (CR25) 2016; 296 Mao, Szpruch (CR26) 2013; 238 Beyn, Kruse (CR6) 2010; 14 Ait-Sahalia (CR1) 1996; 9 Zong, Wu (CR40) 2014; 255 Hutzenthaler, Jentzen, Wang (CR19) 2018; 87 Anderson, Higham, Sun (CR3) 2016; 54 Chassagneux, Jacquier, Mihaylov (CR10) 2016; 7 Zhang, Ma (CR39) 2017; 112 Li, Abdulle (CR22) 2008; 3 Andersson, Kruse (CR4) 2017; 57 Kloeden, Platen (CR21) 1992 Higham, Mao, Stuart (CR14) 2003; 6 Sabanis (CR33) 2016; 26 Alfonsi (CR2) 2013; 83 Huang (CR15) 2012; 236 Römisch, Winkler (CR31) 2006; 28 X Mao (793_CR25) 2016; 296 X Wang (793_CR37) 2013; 19 E Buckwar (793_CR8) 2010; 32 J Chassagneux (793_CR10) 2016; 7 A Andersson (793_CR4) 2017; 57 DJ Higham (793_CR14) 2003; 6 793_CR38 T Li (793_CR22) 2008; 3 S Sabanis (793_CR32) 2013; 18 DF Anderson (793_CR3) 2016; 54 G Milstein (793_CR28) 1997; 18 GN Milstein (793_CR29) 2013 MV Tretyakov (793_CR36) 2013; 51 A Alfonsi (793_CR2) 2013; 83 PE Kloeden (793_CR21) 1992 DJ Higham (793_CR12) 2000; 38 X Mao (793_CR27) 2013; 85 A Neuenkirch (793_CR30) 2014; 128 M Hutzenthaler (793_CR16) 2015; 236 Y Ait-Sahalia (793_CR1) 1996; 9 M Hutzenthaler (793_CR19) 2018; 87 A Bryden (793_CR7) 2003; 43 W-J Beyn (793_CR6) 2010; 14 Z Zhang (793_CR39) 2017; 112 M Hutzenthaler (793_CR18) 2012; 22 L Szpruch (793_CR34) 2011; 51 W Römisch (793_CR31) 2006; 28 L Szpruch (793_CR35) 2018; 87 X Li (793_CR23) 2019; 39 X Zong (793_CR40) 2014; 255 793_CR11 X Mao (793_CR26) 2013; 238 S Sabanis (793_CR33) 2016; 26 E Buckwar (793_CR9) 2006; 44 M Hutzenthaler (793_CR17) 2011; 467 C Kelly (793_CR20) 2017; 38 W-J Beyn (793_CR5) 2016; 67 C Huang (793_CR15) 2012; 236 DJ Higham (793_CR13) 2002; 40 X Mao (793_CR24) 2015; 290 |
References_xml | – volume: 14 start-page: 389 issue: 2 year: 2010 end-page: 407 ident: CR6 article-title: Two-sided error estimates for the stochastic theta method publication-title: Discret. Contin. Dyn. Syst. Ser. B – volume: 38 start-page: 753 issue: 3 year: 2000 end-page: 769 ident: CR12 article-title: Mean-square and asymptotic stability of the stochastic theta method publication-title: SIAM J. Numer. Anal. – volume: 18 start-page: 1067 issue: 4 year: 1997 end-page: 1087 ident: CR28 article-title: Mean-square numerical methods for stochastic differential equations with small noises publication-title: SIAM J. Sci. Comput. – volume: 19 start-page: 466 issue: 3 year: 2013 end-page: 490 ident: CR37 article-title: The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients publication-title: J. Differ. Equ. Appl. – volume: 67 start-page: 955 issue: 3 year: 2016 end-page: 987 ident: CR5 article-title: Stochastic C-stability and B-consistency of explicit and implicit Euler-type schemes publication-title: J. Sci. Comput. – volume: 44 start-page: 779 issue: 2 year: 2006 end-page: 803 ident: CR9 article-title: Multistep methods for SDEs and their application to problems with small noise publication-title: SIAM J. Numer. Anal. – year: 1992 ident: CR21 publication-title: Numerical Solution of Stochastic Differential Equations – volume: 57 start-page: 21 issue: 1 year: 2017 end-page: 53 ident: CR4 article-title: Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition publication-title: BIT Numer. Math. – volume: 38 start-page: 1523 issue: 3 year: 2017 end-page: 1549 ident: CR20 article-title: Adaptive time-stepping strategies for nonlinear stochastic systems publication-title: IMA J. Numer. Anal. – volume: 87 start-page: 1353 issue: 311 year: 2018 end-page: 1413 ident: CR19 article-title: Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations publication-title: Math. Comput. – volume: 18 start-page: 1 issue: 47 year: 2013 end-page: 10 ident: CR32 article-title: A note on tamed Euler approximations publication-title: Electron. Commun. Probab. – volume: 39 start-page: 847 year: 2019 end-page: 892 ident: CR23 article-title: Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in pth moment and stability publication-title: IMA J. Numer. Anal. – volume: 236 start-page: 1112 year: 2015 ident: CR16 article-title: Numerical approximation of stochastic differential equations with non-globally Lipschitz continuous coefficients publication-title: Mem. Am. Math. Soc. – volume: 112 start-page: 1 year: 2017 end-page: 16 ident: CR39 article-title: Order-preserving strong schemes for SDEs with locally Lipschitz coefficients publication-title: Appl. Numer. Math. – volume: 40 start-page: 1041 issue: 3 year: 2002 end-page: 1063 ident: CR13 article-title: Strong convergence of Euler-type methods for nonlinear stochastic differential equations publication-title: SIAM J. Numer. Anal. – volume: 3 start-page: 295 year: 2008 end-page: 307 ident: CR22 article-title: Effectiveness of implicit methods for stiff stochastic differential equations publication-title: Commun. Comput. Phys. – volume: 28 start-page: 604 issue: 2 year: 2006 end-page: 625 ident: CR31 article-title: Stepsize control for mean-square numerical methods for stochastic differential equations with small noise publication-title: SIAM J. Sci. Comput. – volume: 32 start-page: 1789 issue: 4 year: 2010 end-page: 1808 ident: CR8 article-title: Stochastic Runge–Kutta methods for itô SODEs with small noise publication-title: SIAM J. Sci. Comput. – year: 2013 ident: CR29 publication-title: Stochastic Numerics for Mathematical Physics – volume: 83 start-page: 602 issue: 2 year: 2013 end-page: 607 ident: CR2 article-title: Strong order one convergence of a drift implicit Euler scheme: application to the cir process publication-title: Stat. Probab. Lett. – volume: 467 start-page: 1563 issue: 2130 year: 2011 end-page: 1576 ident: CR17 article-title: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. – volume: 236 start-page: 4016 issue: 16 year: 2012 end-page: 4026 ident: CR15 article-title: Exponential mean square stability of numerical methods for systems of stochastic differential equations publication-title: J. Comput. Appl. Math. – ident: CR38 – volume: 43 start-page: 1 issue: 1 year: 2003 end-page: 6 ident: CR7 article-title: On the boundedness of asymptotic stability regions for the stochastic theta method publication-title: BIT Numer. Math. – volume: 9 start-page: 385 issue: 2 year: 1996 end-page: 426 ident: CR1 article-title: Testing continuous-time models of the spot interest rate publication-title: Rev. Financ. Stud. – volume: 26 start-page: 2083 issue: 4 year: 2016 end-page: 2105 ident: CR33 article-title: Euler approximations with varying coefficients: the case of super-linearly growing diffusion coefficients publication-title: Ann. Appl. Probab. – volume: 7 start-page: 993 issue: 1 year: 2016 end-page: 1021 ident: CR10 article-title: An explicit Euler scheme with strong rate of convergence for financial SDEs with non-lipschitz coefficients publication-title: SIAM J. Financ. Math. – volume: 238 start-page: 14 year: 2013 end-page: 28 ident: CR26 article-title: Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients publication-title: J. Comput. Appl. Math. – ident: CR11 – volume: 290 start-page: 370 year: 2015 end-page: 384 ident: CR24 article-title: The truncated Euler-Maruyama method for stochastic differential equations publication-title: J. Comput. Appl. Math. – volume: 51 start-page: 3135 issue: 6 year: 2013 end-page: 3162 ident: CR36 article-title: A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications publication-title: SIAM J. Numer. Anal. – volume: 296 start-page: 362 year: 2016 end-page: 375 ident: CR25 article-title: Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations publication-title: J. Comput. Appl. Math. – volume: 6 start-page: 297 year: 2003 end-page: 313 ident: CR14 article-title: Exponential mean-square stability of numerical solutions to stochastic differential equations publication-title: LMS J. Comput. Math. – volume: 255 start-page: 837 year: 2014 end-page: 847 ident: CR40 article-title: Choice of and mean-square exponential stability in the stochastic theta method of stochastic differential equations publication-title: J. Comput. Appl. Math. – volume: 54 start-page: 505 issue: 2 year: 2016 end-page: 529 ident: CR3 article-title: Multilevel Monte Carlo for stochastic differential equations with small noise publication-title: SIAM J. Numer. Anal. – volume: 85 start-page: 144 issue: 1 year: 2013 end-page: 171 ident: CR27 article-title: Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients publication-title: Stoch. Int. J. Probab. Stoch. Process. – volume: 51 start-page: 405 issue: 2 year: 2011 end-page: 425 ident: CR34 article-title: Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model publication-title: BIT Numer. Math. – volume: 87 start-page: 755 issue: 310 year: 2018 end-page: 783 ident: CR35 article-title: V-integrability, asymptotic stability and comparison property of explicit numerical schemes for non-linear SDEs publication-title: Math. Comput. – volume: 22 start-page: 1611 issue: 4 year: 2012 end-page: 1641 ident: CR18 article-title: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz coefficients publication-title: Ann. Appl. Probab. – volume: 128 start-page: 103 issue: 1 year: 2014 end-page: 136 ident: CR30 article-title: First order strong approximations of scalar sdes defined in a domain publication-title: Numerische Mathematik – volume: 39 start-page: 847 year: 2019 ident: 793_CR23 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/dry015 – volume: 32 start-page: 1789 issue: 4 year: 2010 ident: 793_CR8 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090763275 – volume: 3 start-page: 295 year: 2008 ident: 793_CR22 publication-title: Commun. Comput. Phys. – volume: 57 start-page: 21 issue: 1 year: 2017 ident: 793_CR4 publication-title: BIT Numer. Math. doi: 10.1007/s10543-016-0624-y – volume: 22 start-page: 1611 issue: 4 year: 2012 ident: 793_CR18 publication-title: Ann. Appl. Probab. doi: 10.1214/11-AAP803 – volume: 28 start-page: 604 issue: 2 year: 2006 ident: 793_CR31 publication-title: SIAM J. Sci. Comput. doi: 10.1137/030601429 – volume: 87 start-page: 1353 issue: 311 year: 2018 ident: 793_CR19 publication-title: Math. Comput. doi: 10.1090/mcom/3146 – volume: 83 start-page: 602 issue: 2 year: 2013 ident: 793_CR2 publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2012.10.034 – volume: 26 start-page: 2083 issue: 4 year: 2016 ident: 793_CR33 publication-title: Ann. Appl. Probab. doi: 10.1214/15-AAP1140 – volume: 51 start-page: 3135 issue: 6 year: 2013 ident: 793_CR36 publication-title: SIAM J. Numer. Anal. doi: 10.1137/120902318 – volume: 238 start-page: 14 year: 2013 ident: 793_CR26 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.08.015 – volume: 18 start-page: 1 issue: 47 year: 2013 ident: 793_CR32 publication-title: Electron. Commun. Probab. – volume-title: Numerical Solution of Stochastic Differential Equations year: 1992 ident: 793_CR21 doi: 10.1007/978-3-662-12616-5 – volume: 7 start-page: 993 issue: 1 year: 2016 ident: 793_CR10 publication-title: SIAM J. Financ. Math. doi: 10.1137/15M1017788 – volume: 18 start-page: 1067 issue: 4 year: 1997 ident: 793_CR28 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827594278575 – volume: 467 start-page: 1563 issue: 2130 year: 2011 ident: 793_CR17 publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. – volume: 19 start-page: 466 issue: 3 year: 2013 ident: 793_CR37 publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236198.2012.656617 – ident: 793_CR11 – volume: 43 start-page: 1 issue: 1 year: 2003 ident: 793_CR7 publication-title: BIT Numer. Math. doi: 10.1023/A:1023659813269 – volume: 38 start-page: 753 issue: 3 year: 2000 ident: 793_CR12 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S003614299834736X – volume: 38 start-page: 1523 issue: 3 year: 2017 ident: 793_CR20 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drx036 – volume: 255 start-page: 837 year: 2014 ident: 793_CR40 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.07.007 – volume: 9 start-page: 385 issue: 2 year: 1996 ident: 793_CR1 publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/9.2.385 – volume: 44 start-page: 779 issue: 2 year: 2006 ident: 793_CR9 publication-title: SIAM J. Numer. Anal. doi: 10.1137/040602857 – volume: 85 start-page: 144 issue: 1 year: 2013 ident: 793_CR27 publication-title: Stoch. Int. J. Probab. Stoch. Process. doi: 10.1080/17442508.2011.651213 – volume-title: Stochastic Numerics for Mathematical Physics year: 2013 ident: 793_CR29 – volume: 112 start-page: 1 year: 2017 ident: 793_CR39 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2016.09.013 – volume: 14 start-page: 389 issue: 2 year: 2010 ident: 793_CR6 publication-title: Discret. Contin. Dyn. Syst. Ser. B – volume: 40 start-page: 1041 issue: 3 year: 2002 ident: 793_CR13 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901389530 – volume: 87 start-page: 755 issue: 310 year: 2018 ident: 793_CR35 publication-title: Math. Comput. doi: 10.1090/mcom/3219 – volume: 6 start-page: 297 year: 2003 ident: 793_CR14 publication-title: LMS J. Comput. Math. doi: 10.1112/S1461157000000462 – volume: 67 start-page: 955 issue: 3 year: 2016 ident: 793_CR5 publication-title: J. Sci. Comput. doi: 10.1007/s10915-015-0114-4 – volume: 128 start-page: 103 issue: 1 year: 2014 ident: 793_CR30 publication-title: Numerische Mathematik doi: 10.1007/s00211-014-0606-4 – volume: 296 start-page: 362 year: 2016 ident: 793_CR25 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.09.035 – volume: 236 start-page: 1112 year: 2015 ident: 793_CR16 publication-title: Mem. Am. Math. Soc. – volume: 236 start-page: 4016 issue: 16 year: 2012 ident: 793_CR15 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.03.005 – volume: 290 start-page: 370 year: 2015 ident: 793_CR24 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.06.002 – ident: 793_CR38 – volume: 54 start-page: 505 issue: 2 year: 2016 ident: 793_CR3 publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1024664 – volume: 51 start-page: 405 issue: 2 year: 2011 ident: 793_CR34 publication-title: BIT Numer. Math. doi: 10.1007/s10543-010-0288-y |
SSID | ssj0029613 ssj0014816 ssj0000615 |
Score | 2.4183276 |
Snippet | The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 759 |
SubjectTerms | Computational Mathematics and Numerical Analysis Convergence Differential equations Domains Error analysis Exact solutions Mathematics Mathematics and Statistics Numeric Computing Polynomials |
Title | Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition |
URI | https://link.springer.com/article/10.1007/s10543-019-00793-0 https://www.proquest.com/docview/2431253261 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MXPTgD9SIounBmzZhZd2PIyhINHBREjwtbddGEwLIxv_ve6MDNGriaUnXdsnea_d963vfI-RacpMayVMUugWCwrVksQgtk8Y2jdU-IH78NTAYBv2R_zgWY5cUlpXR7uWRZLFTbyW7CR9jf2LWRFU3BkS9KoC7o1-PeHtr__XWCBjAPsIfR8DiwHOV1QIGzEy4JJqfZ__6odqgz28HpsV3qHdI9h2ApO2VxY_IjpnWyIEDk9Qt1QyaynoNZVuN7A3WGq3ZMXkfGDll2Qf4iKFF8HmRh2koikdkdGYp4EL9JlHImcK4XNJVuemMAtClz_fdjGIG2oJKGL6cT-Dx4NOzHMV2AdvjnGkREHZCRr3uy12fucILTMOKzJmWwEK0VpFNuUaxUT8UNgZgaZQyPpYZjayGlQt0TcrUaJsqX9vQpB4qJQnVOiWV6Wxqzgjlfqp4IAFkmNAPdBi1IhsJoZSnvKZu2TrxyrecaKdKjsUxJslGTxktk4BlksIySbNObtZj5itNjj97N0rjJW59ZgkH3MQFQFevTm5Lg25u_z7b-f-6X5BdjgS9CEprkEq-WJpLQDG5uiLVdq_TGeL14fWpe1U48Sf97ejS |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMgADb0R5emADo8a1k3RE0FIe7UIrlSmyHVsgUAskXfj1nFOnBQRIrI7tyI87f2fffQdwJJlJjWSpI7pFA4VpSRsislQaWzNWc0T87mqg0w3bfX49EAMfFJaV3u7lk2ShqT8FuwnufH8atOZY3Sga6vMcbXBRgfmzy_ub5icNHEwxMMJ9B4C8CdYIA59bLaRomwkfRvNz_1-Pqhn-_PZkWpxErRXol2OYOKA8nY5zdarfv9E7_neQq7DsoSk5m-ylNZgzw3VY8TCVeCWQYVGZCaIsW4elzpT9NduAx46RQ5q94u4zpHBrLyI8DXG0FBkZWYKIUz9IRxFNsF0uySSRdUYQQpO7i2ZGXGzbG5HYfPzyjL9HaRnljsYXrQbXZ1q4mm1Cv9XsnbepT-lANcp6TrVE-0ZrFduUaUdjyiNhGwhZjVKGuwSmsdWoE9AQlDI12qaKaxuZNHAcTELVt6AyHA3NNhDGU8VCifDFRDzUUVyPbSyEUoEKarpuqxCUq5doz3fu0m48JzOmZjfZCU52Ukx2UqvC8bTNy4Tt48_ae-WmSLzkZwlDRMYEguKgCiflGs8-_97bzv-qH8JCu9e5TW6vuje7sMjcNUDh-rYHlfxtbPYRK-XqwIvGBz7BBbY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iIPrgXZxOzYNvGlyzpu0eh9vwNhF0sLeSKwrSTdv9f8_p0m2KCr6mSQo9Ocn3Ned8h5Azya2xkhsUugWCwrVkLRE7Jq1rWKdDQPz4a6D_EF0PwtuhGC5k8ZfR7tWV5DSnAVWasuJybNzlQuKbCDEOqMUaqPDGgLSvwHYcYFDXgLcX9uJghoYB-CMU8mSsFQW-ylrEgKUJn1Dz8-xfD605Ev12eVqeSb0tsuHBJG1Prb9Nlmy2QzY9sKTebXNoqmo3VG07ZL0_02vNd8lr38qM5e-wXiwtA9HLnExLUUgipyNHASPqF4mizhTGFZJOS0_nFEAvfep0c4rZaB9UwvDJ-A1eD-t7VKDwLuB8nNOUwWF7ZNDrPl9dM1-EgWnwzoJpCYxEa5U4wzUKj4axcC0AmVYpG2LJ0cRp8GKgblIaq51RoXaxNQGqJgnV3CfL2SizB4Ty0CgeSQAcNg4jHSfNxCVCKBWooKGbrkaC6iun2iuUY6GMt3SurYyWScEyaWmZtFEj57Mx46k-x5-965XxUu-recoBQ3EBMDaokYvKoPPHv892-L_up2T1sdNL728e7o7IGkfeXsaq1cly8TGxxwBuCnVSrt9PKNDs8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mean-square+convergence+rates+of+stochastic+theta+methods+for+SDEs+under+a+coupled+monotonicity+condition&rft.jtitle=BIT+Numerical+Mathematics&rft.au=Wang%2C+Xiaojie&rft.au=Wu%2C+Jiayi&rft.au=Dong%2C+Bozhang&rft.date=2020-09-01&rft.issn=0006-3835&rft.eissn=1572-9125&rft.volume=60&rft.issue=3&rft.spage=759&rft.epage=790&rft_id=info:doi/10.1007%2Fs10543-019-00793-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10543_019_00793_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3835&client=summon |