Quantum Behavior of a Classical Particle Subject to a Random Force
We give a partial answer to the question whether the Schrödinger equation can be derived from the Newtonian mechanics of a particle in a potential subject to a random force. We show that the fluctuations around the classical motion of a one dimensional harmonic oscillator subject to a random force c...
Saved in:
Published in | Foundations of physics Vol. 51; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We give a partial answer to the question whether the Schrödinger equation can be derived from the Newtonian mechanics of a particle in a potential subject to a random force. We show that the fluctuations around the classical motion of a one dimensional harmonic oscillator subject to a random force can be described by the Schrödinger equation for a period of time depending on the frequency and the energy of the oscillator. We achieve this by deriving the postulates of Nelson’s stochastic formulation of quantum mechanics for a random force depending on a small parameter. We show that the same result applies to small potential perturbations around the harmonic oscillator. We also show that the noise spectrum can be chosen to obtain the result for all oscillator frequencies for fixed mass. We discuss heuristics to generalize the result for a particle in one dimension in a potential where the motion can be described using action-angle variables. The main motivation of this paper is to provide a step for constructing a Newtonian theory which would approximately reproduce quantum mechanics both in unitary evolution and measurement regimes. |
---|---|
AbstractList | We give a partial answer to the question whether the Schrödinger equation can be derived from the Newtonian mechanics of a particle in a potential subject to a random force. We show that the fluctuations around the classical motion of a one dimensional harmonic oscillator subject to a random force can be described by the Schrödinger equation for a period of time depending on the frequency and the energy of the oscillator. We achieve this by deriving the postulates of Nelson’s stochastic formulation of quantum mechanics for a random force depending on a small parameter. We show that the same result applies to small potential perturbations around the harmonic oscillator. We also show that the noise spectrum can be chosen to obtain the result for all oscillator frequencies for fixed mass. We discuss heuristics to generalize the result for a particle in one dimension in a potential where the motion can be described using action-angle variables. The main motivation of this paper is to provide a step for constructing a Newtonian theory which would approximately reproduce quantum mechanics both in unitary evolution and measurement regimes. |
ArticleNumber | 10 |
Author | Gokler, Can |
Author_xml | – sequence: 1 givenname: Can surname: Gokler fullname: Gokler, Can email: gokler@fas.harvard.edu organization: Harvard University |
BookMark | eNp9kE1LxDAQhoOs4O7qH_AU8FydtEnTHN3FVWHB73NI00S7dJs1SQX_vdEKgoc9hIHM-8wMzwxNetcbhE4JnBMAfhEIcCAZ5OkBzfOsOEBTwnieCUbKCZoCEJYJINURmoWwAQDBSzpFi4dB9XHY4oV5Ux-t89hZrPCyUyG0WnX4XvnY6s7gp6HeGB1xdKn_qPrGbfHKeW2O0aFVXTAnv3WOXlZXz8ubbH13fbu8XGe6ICJmWlGuoeSk0kAaBk3DS6tLsLXlVNdADWtyk34MtRXoQlujBTU1FQ0VrKmLOTob5-68ex9MiHLjBt-nlTKnFQPCGRMpVY0p7V0I3lip26hi6_roVdtJAvLbmByNyWRM_hiTRULzf-jOt1vlP_dDxQiFFO5fjf-7ag_1Bbn-f0k |
CitedBy_id | crossref_primary_10_1088_2399_6528_ac1abf |
Cites_doi | 10.1103/PhysRev.150.1079 10.1007/978-1-4757-2063-1 10.1007/978-3-642-25847-3 10.1016/0020-7462(86)90025-9 10.1137/1111038 10.1515/9780691218021 10.1515/9780691219615 10.1111/j.1749-6632.1986.tb12456.x 10.1016/0370-1573(81)90078-8 10.1007/BFb0086184 10.1007/978-3-319-07893-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10701-021-00422-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Astronomy & Astrophysics Physics |
EISSN | 1572-9516 |
ExternalDocumentID | 10_1007_s10701_021_00422_3 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29H 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ3 GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QF4 QM9 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 XJT YLTOR YYP Z45 Z7R Z7X Z7Y Z83 Z88 Z8R Z8W Z92 ZKB ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AETEA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-ca47c06718c01d50dd76fc60fbf74cb04e5d2efc6e4f80c3cfec94eb49d495db3 |
IEDL.DBID | U2A |
ISSN | 0015-9018 |
IngestDate | Sun Jul 13 05:09:36 EDT 2025 Tue Jul 01 01:20:28 EDT 2025 Thu Apr 24 23:06:42 EDT 2025 Fri Feb 21 02:49:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Brownian motion Method of stochastic averaging Quantum mechanics Stochastic mechanics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ca47c06718c01d50dd76fc60fbf74cb04e5d2efc6e4f80c3cfec94eb49d495db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2485017559 |
PQPubID | 2043555 |
ParticipantIDs | proquest_journals_2485017559 crossref_citationtrail_10_1007_s10701_021_00422_3 crossref_primary_10_1007_s10701_021_00422_3 springer_journals_10_1007_s10701_021_00422_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal Devoted to the Conceptual Bases and Fundamental Theories of Modern Physics |
PublicationTitle | Foundations of physics |
PublicationTitleAbbrev | Found Phys |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Roberts, Spanos (CR16) 1986; 21 CR2 CR3 CR5 CR8 Pavliotis, Stuart (CR17) 2008 Arnold (CR19) 1989 CR7 Sanders, Verhulst, Murdock (CR18) 2007 Nelson (CR4) 1986; 480 Khas’minskii (CR13) 1966; 11 Freidlin, Wentzell (CR15) 2012 Nelson (CR11) 1967 CR14 Friedman (CR9) 1975 Nelson (CR1) 1966; 150 Arnold (CR10) 1974 Guerra (CR12) 1981; 77 Nelson (CR6) 1985 F Guerra (422_CR12) 1981; 77 JA Sanders (422_CR18) 2007 E Nelson (422_CR11) 1967 L Arnold (422_CR10) 1974 RZ Khas’minskii (422_CR13) 1966; 11 VI Arnold (422_CR19) 1989 JB Roberts (422_CR16) 1986; 21 422_CR5 MI Freidlin (422_CR15) 2012 E Nelson (422_CR1) 1966; 150 422_CR3 422_CR2 E Nelson (422_CR6) 1985 A Friedman (422_CR9) 1975 422_CR14 E Nelson (422_CR4) 1986; 480 422_CR8 422_CR7 GA Pavliotis (422_CR17) 2008 |
References_xml | – volume: 150 start-page: 1079 year: 1966 end-page: 1085 ident: CR1 article-title: Derivation of the Schrödinger equation from Newtonian mechanics publication-title: Phys. Rev. doi: 10.1103/PhysRev.150.1079 – year: 1975 ident: CR9 publication-title: Stochastic differential equations and applications – year: 1989 ident: CR19 publication-title: Mathematical Methods of Classical Mechanics doi: 10.1007/978-1-4757-2063-1 – year: 2012 ident: CR15 publication-title: Random perturbations of dynamical systems doi: 10.1007/978-3-642-25847-3 – volume: 21 start-page: 11 year: 1986 end-page: 134 ident: CR16 article-title: Stochastic averaging: An approximate method of solving random vibration problems publication-title: International Journal of Non-Linear Mechanics doi: 10.1016/0020-7462(86)90025-9 – ident: CR3 – ident: CR14 – ident: CR2 – year: 1974 ident: CR10 publication-title: Stochastic differential equations: theory and applications – volume: 11 start-page: 390 year: 1966 end-page: 406 ident: CR13 article-title: A limit theorem for the solutions of differential equations with random right-hand sides publication-title: Theory Probab. Appl. doi: 10.1137/1111038 – year: 1985 ident: CR6 publication-title: Quantum fluctuations doi: 10.1515/9780691218021 – ident: CR5 – year: 1967 ident: CR11 publication-title: Dynamical Theories of Brownian Motion doi: 10.1515/9780691219615 – year: 2007 ident: CR18 publication-title: Averaging methods in nonlinear dynamical systems – ident: CR7 – ident: CR8 – volume: 480 start-page: 533 year: 1986 end-page: 538 ident: CR4 article-title: The locality problem in stochastic mechanics publication-title: Annals of the New York Academy of Sciences doi: 10.1111/j.1749-6632.1986.tb12456.x – volume: 77 start-page: 263 year: 1981 end-page: 312 ident: CR12 article-title: Structural aspects of stochastic mechanics and stochastic field theory publication-title: Physics Reports doi: 10.1016/0370-1573(81)90078-8 – year: 2008 ident: CR17 publication-title: Multiscale methods: averaging and homogenization – ident: 422_CR5 doi: 10.1007/BFb0086184 – volume: 150 start-page: 1079 year: 1966 ident: 422_CR1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.150.1079 – ident: 422_CR14 – volume-title: Random perturbations of dynamical systems year: 2012 ident: 422_CR15 doi: 10.1007/978-3-642-25847-3 – volume-title: Quantum fluctuations year: 1985 ident: 422_CR6 doi: 10.1515/9780691218021 – ident: 422_CR7 – ident: 422_CR8 doi: 10.1007/978-3-319-07893-9 – volume-title: Averaging methods in nonlinear dynamical systems year: 2007 ident: 422_CR18 – ident: 422_CR3 – ident: 422_CR2 – volume: 11 start-page: 390 year: 1966 ident: 422_CR13 publication-title: Theory Probab. Appl. doi: 10.1137/1111038 – volume-title: Dynamical Theories of Brownian Motion year: 1967 ident: 422_CR11 doi: 10.1515/9780691219615 – volume-title: Multiscale methods: averaging and homogenization year: 2008 ident: 422_CR17 – volume: 21 start-page: 11 year: 1986 ident: 422_CR16 publication-title: International Journal of Non-Linear Mechanics doi: 10.1016/0020-7462(86)90025-9 – volume-title: Stochastic differential equations and applications year: 1975 ident: 422_CR9 – volume-title: Mathematical Methods of Classical Mechanics year: 1989 ident: 422_CR19 doi: 10.1007/978-1-4757-2063-1 – volume: 480 start-page: 533 year: 1986 ident: 422_CR4 publication-title: Annals of the New York Academy of Sciences doi: 10.1111/j.1749-6632.1986.tb12456.x – volume-title: Stochastic differential equations: theory and applications year: 1974 ident: 422_CR10 – volume: 77 start-page: 263 year: 1981 ident: 422_CR12 publication-title: Physics Reports doi: 10.1016/0370-1573(81)90078-8 |
SSID | ssj0009764 |
Score | 2.2436993 |
Snippet | We give a partial answer to the question whether the Schrödinger equation can be derived from the Newtonian mechanics of a particle in a potential subject to a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Classical and Quantum Gravitation Classical Mechanics Harmonic oscillators History and Philosophical Foundations of Physics Philosophy of Science Physics Physics and Astronomy Quantum mechanics Quantum Physics Relativity Theory Schrodinger equation Statistical Physics and Dynamical Systems |
Title | Quantum Behavior of a Classical Particle Subject to a Random Force |
URI | https://link.springer.com/article/10.1007/s10701-021-00422-3 https://www.proquest.com/docview/2485017559 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RfQiWpVWa9mDeNHAttk8ekxLY1EsVSzUU0j2cbKJNOnBf-9OHkZFBQ95sK_DzOzOzO7ONwAXPNRmsYhsgzkKX0NuhKbFDImBooKGTCqMRr6f2dMFu11ayzIoLK1uu1dHkvlK_SnYzUHXd6AfBK4yzG1oWui7ayleDLwaatcpQKO0osPLB24ZKvPzGF_VUW1jfjsWzbWNfwD7pZlIvIKvh7Al4xa0vRQ3rpPVG7kk-X-xL5G2YHdcJW5rwc68KD2C0cNGE26zIiUK4pokioQkT4SJzCHzUnCIXj9wQ4Zkia5_DGORrIifrLk8hoU_eRpPjTJpgsH1bMoMHjKHaxXUdzntC4sK4diK21RFymE8okxaYiB1iWTKpdzkSvIhkxEbCu0ricg8gUacxLINxJGWdjiEUjTkTGAeKy6FNKlglmtzaXegX9Eu4CWiOCa2eAlqLGSkd6DpHeT0DswOXH30eS3wNP5s3a1YEpRzKw0QhE2vI9oV6sB1xaa6-vfRTv_X_Az2Brmk4N2VLjSy9Uaeawski3rQ9PzRaIbfm-e7SS8XwHfwe9L2 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BEYIFQQG1UMADYoFIbuI8OpaKqkBbFdRK3azkbE80QW068O-x8yCAAIkhUWQ7Hu5s38N33wFcYqjVYhF5FvOVeXXQCh2XWdIkigoaMqlMNvJo7A1m7GHuzouksFUZ7V5eSWYn9adkN9-YvrZ-DHCV5WzCllYGAhPINbO7FdSun4NGaUFngg-CIlXm5zm-iqNKx_x2LZpJm_4-7BVqIunmfD2ADRnXodFdGcd1sngjVyT7zv0Sqzrs9MrCbXXYnuSth3D7tNaEWy9IgYK4JIkiIckKYRrmkEmxcIg-P4xDhqSJ7n8OY5EsSD9ZojyCWf9u2htYRdEEC_VuSi0MmY9aBLUDpG3hUiF8T6FHVaR8hhFl0hW21C2SqYCig0pih8mIdYS2lUTkHEMtTmLZAOJLVxscQikaIhOmjhVKIR0qmBt4KL0mtEvacSwQxU1hixdeYSEbenNNb57RmztNuP745zXH0_hzdKtkCS_21oobEDZ9jmhTqAk3JZuq7t9nO_nf8AvYGUxHQz68Hz-ewq6drRoTx9KCWrpcyzOtjaTRebb43gHPfNLZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BEY8FQQG1UMADYoEIJ3EeHUshKq-qICp1ixI_JppUbTrw7znnQQsCJIZYke14uLv4HvZ9B3DGIzSLRewazFO6aXMjsh1mSJ0oKmjEpNLZyE99tzdk9yNntJTFn992r44ki5wGjdKUZFcToa6WEt887QZb-GgQK8NehTXcjk0t10Ors4Dd9QoAKVR6-iKCX6bN_LzGV9W0sDe_HZHmmifYge3SZCSdgse7sCKTOjQ6Mx3ETsfv5Jzk70WMYlaHzW5VxK0O64Oidw-un-dIxPmYlIiIU5IqEpG8KKZmFBmUQkRwL9HBGZKlOP4SJSIdkyCdcrkPw-D2tdszygIKBkdSZAaPmMdRHZk-p6ZwqBCeq7hLVaw8xmPKpCMsiT2SKZ9ymyvJ20zGrC3QbxKxfQC1JE1kA4gnHXQ-hFI04kzomlZcCmlTwRzf5dJtglnRLuQlurgucvEWLnCRNb1DpHeY0zu0m3Dx-c2kwNb4c3arYklY_mezUAOy4Z6CblETLis2LYZ_X-3wf9NPYWNwE4SPd_2HI9iycqHRV1paUMumc3mMhkkWn-Sy9wFJmdcV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Behavior+of+a+Classical+Particle+Subject+to+a+Random+Force&rft.jtitle=Foundations+of+physics&rft.au=Gokler%2C+Can&rft.date=2021-02-01&rft.pub=Springer+US&rft.issn=0015-9018&rft.eissn=1572-9516&rft.volume=51&rft.issue=1&rft_id=info:doi/10.1007%2Fs10701-021-00422-3&rft.externalDocID=10_1007_s10701_021_00422_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-9018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-9018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-9018&client=summon |