Quantum Behavior of a Classical Particle Subject to a Random Force

We give a partial answer to the question whether the Schrödinger equation can be derived from the Newtonian mechanics of a particle in a potential subject to a random force. We show that the fluctuations around the classical motion of a one dimensional harmonic oscillator subject to a random force c...

Full description

Saved in:
Bibliographic Details
Published inFoundations of physics Vol. 51; no. 1
Main Author Gokler, Can
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We give a partial answer to the question whether the Schrödinger equation can be derived from the Newtonian mechanics of a particle in a potential subject to a random force. We show that the fluctuations around the classical motion of a one dimensional harmonic oscillator subject to a random force can be described by the Schrödinger equation for a period of time depending on the frequency and the energy of the oscillator. We achieve this by deriving the postulates of Nelson’s stochastic formulation of quantum mechanics for a random force depending on a small parameter. We show that the same result applies to small potential perturbations around the harmonic oscillator. We also show that the noise spectrum can be chosen to obtain the result for all oscillator frequencies for fixed mass. We discuss heuristics to generalize the result for a particle in one dimension in a potential where the motion can be described using action-angle variables. The main motivation of this paper is to provide a step for constructing a Newtonian theory which would approximately reproduce quantum mechanics both in unitary evolution and measurement regimes.
AbstractList We give a partial answer to the question whether the Schrödinger equation can be derived from the Newtonian mechanics of a particle in a potential subject to a random force. We show that the fluctuations around the classical motion of a one dimensional harmonic oscillator subject to a random force can be described by the Schrödinger equation for a period of time depending on the frequency and the energy of the oscillator. We achieve this by deriving the postulates of Nelson’s stochastic formulation of quantum mechanics for a random force depending on a small parameter. We show that the same result applies to small potential perturbations around the harmonic oscillator. We also show that the noise spectrum can be chosen to obtain the result for all oscillator frequencies for fixed mass. We discuss heuristics to generalize the result for a particle in one dimension in a potential where the motion can be described using action-angle variables. The main motivation of this paper is to provide a step for constructing a Newtonian theory which would approximately reproduce quantum mechanics both in unitary evolution and measurement regimes.
ArticleNumber 10
Author Gokler, Can
Author_xml – sequence: 1
  givenname: Can
  surname: Gokler
  fullname: Gokler, Can
  email: gokler@fas.harvard.edu
  organization: Harvard University
BookMark eNp9kE1LxDAQhoOs4O7qH_AU8FydtEnTHN3FVWHB73NI00S7dJs1SQX_vdEKgoc9hIHM-8wMzwxNetcbhE4JnBMAfhEIcCAZ5OkBzfOsOEBTwnieCUbKCZoCEJYJINURmoWwAQDBSzpFi4dB9XHY4oV5Ux-t89hZrPCyUyG0WnX4XvnY6s7gp6HeGB1xdKn_qPrGbfHKeW2O0aFVXTAnv3WOXlZXz8ubbH13fbu8XGe6ICJmWlGuoeSk0kAaBk3DS6tLsLXlVNdADWtyk34MtRXoQlujBTU1FQ0VrKmLOTob5-68ex9MiHLjBt-nlTKnFQPCGRMpVY0p7V0I3lip26hi6_roVdtJAvLbmByNyWRM_hiTRULzf-jOt1vlP_dDxQiFFO5fjf-7ag_1Bbn-f0k
CitedBy_id crossref_primary_10_1088_2399_6528_ac1abf
Cites_doi 10.1103/PhysRev.150.1079
10.1007/978-1-4757-2063-1
10.1007/978-3-642-25847-3
10.1016/0020-7462(86)90025-9
10.1137/1111038
10.1515/9780691218021
10.1515/9780691219615
10.1111/j.1749-6632.1986.tb12456.x
10.1016/0370-1573(81)90078-8
10.1007/BFb0086184
10.1007/978-3-319-07893-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s10701-021-00422-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Astronomy & Astrophysics
Physics
EISSN 1572-9516
ExternalDocumentID 10_1007_s10701_021_00422_3
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29H
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ3
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QF4
QM9
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
XJT
YLTOR
YYP
Z45
Z7R
Z7X
Z7Y
Z83
Z88
Z8R
Z8W
Z92
ZKB
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-ca47c06718c01d50dd76fc60fbf74cb04e5d2efc6e4f80c3cfec94eb49d495db3
IEDL.DBID U2A
ISSN 0015-9018
IngestDate Sun Jul 13 05:09:36 EDT 2025
Tue Jul 01 01:20:28 EDT 2025
Thu Apr 24 23:06:42 EDT 2025
Fri Feb 21 02:49:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Brownian motion
Method of stochastic averaging
Quantum mechanics
Stochastic mechanics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ca47c06718c01d50dd76fc60fbf74cb04e5d2efc6e4f80c3cfec94eb49d495db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2485017559
PQPubID 2043555
ParticipantIDs proquest_journals_2485017559
crossref_citationtrail_10_1007_s10701_021_00422_3
crossref_primary_10_1007_s10701_021_00422_3
springer_journals_10_1007_s10701_021_00422_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal Devoted to the Conceptual Bases and Fundamental Theories of Modern Physics
PublicationTitle Foundations of physics
PublicationTitleAbbrev Found Phys
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Roberts, Spanos (CR16) 1986; 21
CR2
CR3
CR5
CR8
Pavliotis, Stuart (CR17) 2008
Arnold (CR19) 1989
CR7
Sanders, Verhulst, Murdock (CR18) 2007
Nelson (CR4) 1986; 480
Khas’minskii (CR13) 1966; 11
Freidlin, Wentzell (CR15) 2012
Nelson (CR11) 1967
CR14
Friedman (CR9) 1975
Nelson (CR1) 1966; 150
Arnold (CR10) 1974
Guerra (CR12) 1981; 77
Nelson (CR6) 1985
F Guerra (422_CR12) 1981; 77
JA Sanders (422_CR18) 2007
E Nelson (422_CR11) 1967
L Arnold (422_CR10) 1974
RZ Khas’minskii (422_CR13) 1966; 11
VI Arnold (422_CR19) 1989
JB Roberts (422_CR16) 1986; 21
422_CR5
MI Freidlin (422_CR15) 2012
E Nelson (422_CR1) 1966; 150
422_CR3
422_CR2
E Nelson (422_CR6) 1985
A Friedman (422_CR9) 1975
422_CR14
E Nelson (422_CR4) 1986; 480
422_CR8
422_CR7
GA Pavliotis (422_CR17) 2008
References_xml – volume: 150
  start-page: 1079
  year: 1966
  end-page: 1085
  ident: CR1
  article-title: Derivation of the Schrödinger equation from Newtonian mechanics
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.150.1079
– year: 1975
  ident: CR9
  publication-title: Stochastic differential equations and applications
– year: 1989
  ident: CR19
  publication-title: Mathematical Methods of Classical Mechanics
  doi: 10.1007/978-1-4757-2063-1
– year: 2012
  ident: CR15
  publication-title: Random perturbations of dynamical systems
  doi: 10.1007/978-3-642-25847-3
– volume: 21
  start-page: 11
  year: 1986
  end-page: 134
  ident: CR16
  article-title: Stochastic averaging: An approximate method of solving random vibration problems
  publication-title: International Journal of Non-Linear Mechanics
  doi: 10.1016/0020-7462(86)90025-9
– ident: CR3
– ident: CR14
– ident: CR2
– year: 1974
  ident: CR10
  publication-title: Stochastic differential equations: theory and applications
– volume: 11
  start-page: 390
  year: 1966
  end-page: 406
  ident: CR13
  article-title: A limit theorem for the solutions of differential equations with random right-hand sides
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1111038
– year: 1985
  ident: CR6
  publication-title: Quantum fluctuations
  doi: 10.1515/9780691218021
– ident: CR5
– year: 1967
  ident: CR11
  publication-title: Dynamical Theories of Brownian Motion
  doi: 10.1515/9780691219615
– year: 2007
  ident: CR18
  publication-title: Averaging methods in nonlinear dynamical systems
– ident: CR7
– ident: CR8
– volume: 480
  start-page: 533
  year: 1986
  end-page: 538
  ident: CR4
  article-title: The locality problem in stochastic mechanics
  publication-title: Annals of the New York Academy of Sciences
  doi: 10.1111/j.1749-6632.1986.tb12456.x
– volume: 77
  start-page: 263
  year: 1981
  end-page: 312
  ident: CR12
  article-title: Structural aspects of stochastic mechanics and stochastic field theory
  publication-title: Physics Reports
  doi: 10.1016/0370-1573(81)90078-8
– year: 2008
  ident: CR17
  publication-title: Multiscale methods: averaging and homogenization
– ident: 422_CR5
  doi: 10.1007/BFb0086184
– volume: 150
  start-page: 1079
  year: 1966
  ident: 422_CR1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.150.1079
– ident: 422_CR14
– volume-title: Random perturbations of dynamical systems
  year: 2012
  ident: 422_CR15
  doi: 10.1007/978-3-642-25847-3
– volume-title: Quantum fluctuations
  year: 1985
  ident: 422_CR6
  doi: 10.1515/9780691218021
– ident: 422_CR7
– ident: 422_CR8
  doi: 10.1007/978-3-319-07893-9
– volume-title: Averaging methods in nonlinear dynamical systems
  year: 2007
  ident: 422_CR18
– ident: 422_CR3
– ident: 422_CR2
– volume: 11
  start-page: 390
  year: 1966
  ident: 422_CR13
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1111038
– volume-title: Dynamical Theories of Brownian Motion
  year: 1967
  ident: 422_CR11
  doi: 10.1515/9780691219615
– volume-title: Multiscale methods: averaging and homogenization
  year: 2008
  ident: 422_CR17
– volume: 21
  start-page: 11
  year: 1986
  ident: 422_CR16
  publication-title: International Journal of Non-Linear Mechanics
  doi: 10.1016/0020-7462(86)90025-9
– volume-title: Stochastic differential equations and applications
  year: 1975
  ident: 422_CR9
– volume-title: Mathematical Methods of Classical Mechanics
  year: 1989
  ident: 422_CR19
  doi: 10.1007/978-1-4757-2063-1
– volume: 480
  start-page: 533
  year: 1986
  ident: 422_CR4
  publication-title: Annals of the New York Academy of Sciences
  doi: 10.1111/j.1749-6632.1986.tb12456.x
– volume-title: Stochastic differential equations: theory and applications
  year: 1974
  ident: 422_CR10
– volume: 77
  start-page: 263
  year: 1981
  ident: 422_CR12
  publication-title: Physics Reports
  doi: 10.1016/0370-1573(81)90078-8
SSID ssj0009764
Score 2.2436993
Snippet We give a partial answer to the question whether the Schrödinger equation can be derived from the Newtonian mechanics of a particle in a potential subject to a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Classical and Quantum Gravitation
Classical Mechanics
Harmonic oscillators
History and Philosophical Foundations of Physics
Philosophy of Science
Physics
Physics and Astronomy
Quantum mechanics
Quantum Physics
Relativity Theory
Schrodinger equation
Statistical Physics and Dynamical Systems
Title Quantum Behavior of a Classical Particle Subject to a Random Force
URI https://link.springer.com/article/10.1007/s10701-021-00422-3
https://www.proquest.com/docview/2485017559
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RfQiWpVWa9mDeNHAttk8ekxLY1EsVSzUU0j2cbKJNOnBf-9OHkZFBQ95sK_DzOzOzO7ONwAXPNRmsYhsgzkKX0NuhKbFDImBooKGTCqMRr6f2dMFu11ayzIoLK1uu1dHkvlK_SnYzUHXd6AfBK4yzG1oWui7ayleDLwaatcpQKO0osPLB24ZKvPzGF_VUW1jfjsWzbWNfwD7pZlIvIKvh7Al4xa0vRQ3rpPVG7kk-X-xL5G2YHdcJW5rwc68KD2C0cNGE26zIiUK4pokioQkT4SJzCHzUnCIXj9wQ4Zkia5_DGORrIifrLk8hoU_eRpPjTJpgsH1bMoMHjKHaxXUdzntC4sK4diK21RFymE8okxaYiB1iWTKpdzkSvIhkxEbCu0ricg8gUacxLINxJGWdjiEUjTkTGAeKy6FNKlglmtzaXegX9Eu4CWiOCa2eAlqLGSkd6DpHeT0DswOXH30eS3wNP5s3a1YEpRzKw0QhE2vI9oV6sB1xaa6-vfRTv_X_Az2Brmk4N2VLjSy9Uaeawski3rQ9PzRaIbfm-e7SS8XwHfwe9L2
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BEYIFQQG1UMADYoFIbuI8OpaKqkBbFdRK3azkbE80QW068O-x8yCAAIkhUWQ7Hu5s38N33wFcYqjVYhF5FvOVeXXQCh2XWdIkigoaMqlMNvJo7A1m7GHuzouksFUZ7V5eSWYn9adkN9-YvrZ-DHCV5WzCllYGAhPINbO7FdSun4NGaUFngg-CIlXm5zm-iqNKx_x2LZpJm_4-7BVqIunmfD2ADRnXodFdGcd1sngjVyT7zv0Sqzrs9MrCbXXYnuSth3D7tNaEWy9IgYK4JIkiIckKYRrmkEmxcIg-P4xDhqSJ7n8OY5EsSD9ZojyCWf9u2htYRdEEC_VuSi0MmY9aBLUDpG3hUiF8T6FHVaR8hhFl0hW21C2SqYCig0pih8mIdYS2lUTkHEMtTmLZAOJLVxscQikaIhOmjhVKIR0qmBt4KL0mtEvacSwQxU1hixdeYSEbenNNb57RmztNuP745zXH0_hzdKtkCS_21oobEDZ9jmhTqAk3JZuq7t9nO_nf8AvYGUxHQz68Hz-ewq6drRoTx9KCWrpcyzOtjaTRebb43gHPfNLZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BEY8FQQG1UMADYoEIJ3EeHUshKq-qICp1ixI_JppUbTrw7znnQQsCJIZYke14uLv4HvZ9B3DGIzSLRewazFO6aXMjsh1mSJ0oKmjEpNLZyE99tzdk9yNntJTFn992r44ki5wGjdKUZFcToa6WEt887QZb-GgQK8NehTXcjk0t10Ors4Dd9QoAKVR6-iKCX6bN_LzGV9W0sDe_HZHmmifYge3SZCSdgse7sCKTOjQ6Mx3ETsfv5Jzk70WMYlaHzW5VxK0O64Oidw-un-dIxPmYlIiIU5IqEpG8KKZmFBmUQkRwL9HBGZKlOP4SJSIdkyCdcrkPw-D2tdszygIKBkdSZAaPmMdRHZk-p6ZwqBCeq7hLVaw8xmPKpCMsiT2SKZ9ymyvJ20zGrC3QbxKxfQC1JE1kA4gnHXQ-hFI04kzomlZcCmlTwRzf5dJtglnRLuQlurgucvEWLnCRNb1DpHeY0zu0m3Dx-c2kwNb4c3arYklY_mezUAOy4Z6CblETLis2LYZ_X-3wf9NPYWNwE4SPd_2HI9iycqHRV1paUMumc3mMhkkWn-Sy9wFJmdcV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Behavior+of+a+Classical+Particle+Subject+to+a+Random+Force&rft.jtitle=Foundations+of+physics&rft.au=Gokler%2C+Can&rft.date=2021-02-01&rft.pub=Springer+US&rft.issn=0015-9018&rft.eissn=1572-9516&rft.volume=51&rft.issue=1&rft_id=info:doi/10.1007%2Fs10701-021-00422-3&rft.externalDocID=10_1007_s10701_021_00422_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-9018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-9018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-9018&client=summon