THREE TYPES OF VARIATIONAL RELATION PROBLEMS
Variational relation problems were introduced by Luc in [1] as a general model for a large class of problems in nonlinear analysis and applied mathematics. Since this manner of approach provides unified results for several mathematical problems it has been used in many recent papers (see [2-9]). In...
Saved in:
Published in | Taiwanese journal of mathematics Vol. 17; no. 1; pp. 47 - 61 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Mathematical Society of the Republic of China
01.02.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Variational relation problems were introduced by Luc in [1] as a general model for a large class of problems in nonlinear analysis and applied mathematics. Since this manner of approach provides unified results for several mathematical problems it has been used in many recent papers (see [2-9]). In this paper we investigate the existence of solutions for three types of variational relation problems which encompass several generalized equilibrium problems, variational inequalities and variational inclusions studied in a long list of papers in the field.
2010Mathematics Subject Classification: 49J53, 54H25.
Key words and phrases: Variational relation problem, Variational inequality, KKM theorem, Fixed point. |
---|---|
AbstractList | Variational relation problems were introduced by Luc in [1] as a general model for a large class of problems in nonlinear analysis and applied mathematics. Since this manner of approach provides unified results for several mathematical problems it has been used in many recent papers (see [2-9]). In this paper we investigate the existence of solutions for three types of variational relation problems which encompass several generalized equilibrium problems, variational inequalities and variational inclusions studied in a long list of papers in the field.
2010Mathematics Subject Classification: 49J53, 54H25.
Key words and phrases: Variational relation problem, Variational inequality, KKM theorem, Fixed point. |
Author | Balaj, Mircea |
Author_xml | – sequence: 1 givenname: Mircea surname: Balaj fullname: Balaj, Mircea |
BookMark | eNp9z01Lw0AQgOFFKthWf4C3nDyZuDOb_cgxltQWoilpFDwt222CCW0jyULx39sP8eDB08xhnoF3RAa7dlcScgs0ABCcPrhmG4AMkAILgHN1QYaIGPpCcRiQIVCUPg-VvCKjvm8oRSVADMl9McuTxCveF8nSy6beW5zP42KevcSplyfpafUWefaYJs_La3JZmU1f3vzMMXmdJsVk5qfZ03wSp75lEDnfSoPMrowVRqxopLASIiojY5W1FaIEYdcojFoD8hUN1TpSTKAoOYas4jRiYyLPf23X9n1XVtrWzri63bnO1BsNVJ-i9SFag9THaH2MPkj4Iz-7emu6r3_N3dk0vWu7X-BMvW-2xn0cr0GHkn0D4WBlmg |
CitedBy_id | crossref_primary_10_1080_00036811_2015_1006204 crossref_primary_10_1007_s10957_021_01927_7 crossref_primary_10_1080_01630563_2015_1136327 crossref_primary_10_1007_s40065_023_00428_x crossref_primary_10_1007_s40840_016_0370_y crossref_primary_10_1080_01630563_2022_2026958 crossref_primary_10_1007_s10287_023_00433_7 crossref_primary_10_1007_s11784_016_0285_0 crossref_primary_10_1002_mana_201900243 crossref_primary_10_1007_s10957_017_1082_7 |
Cites_doi | 10.1007/s12215-008-0005-8 10.1016/j.na.2008.01.030 10.1016/j.na.2004.07.043 10.2140/pjm.1958.8.171 10.1007/s10957-010-9741-y 10.1007/s10898-009-9404-4 10.11650/twjm/1500558302 10.1090/S0002-9939-1987-0877039-9 10.1007/s10957-007-9336-4 10.1007/s10957-008-9371-9 10.1016/j.jmaa.2006.09.059 10.1016/j.jmaa.2009.10.040 10.1007/s10898-011-9676-3 10.1007/s10898-004-2119-7 10.1016/j.na.2007.02.032 10.1016/0022-247X(91)90231-N 10.1007/s10898-004-8273-0 10.1006/jmaa.1996.0376 10.1007/s10957-007-9300-3 10.1007/s001860200208 10.1007/978-1-4684-9231-6 10.1016/j.camwa.2009.07.095 10.1016/j.jmaa.2005.07.001 10.1007/s11228-008-0101-0 10.1016/j.na.2010.03.055 10.1016/j.camwa.2010.09.026 10.1023/A:1022693822102 10.1016/j.na.2009.08.005 10.1007/s10957-010-9659-4 |
ContentType | Journal Article |
Copyright | 2013 Mathematical Society of the Republic of China |
Copyright_xml | – notice: 2013 Mathematical Society of the Republic of China |
DBID | AAYXX CITATION |
DOI | 10.11650/tjm.17.2013.1558 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2224-6851 |
EndPage | 61 |
ExternalDocumentID | 10_11650_tjm_17_2013_1558 taiwjmath.17.1.47 |
GroupedDBID | -~X 123 29Q 2WC AAFWJ AAHSX ABBHK ABXSQ ACHDO ACIPV ACMTB ACTMH ADULT AEHFS AELHJ AENEX AEUPB AFBOV AFFOW AFOWJ AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG E3Z EBS ECEWR EJD IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST OK1 OVT RBV RPE SA0 XSB AAYXX CITATION |
ID | FETCH-LOGICAL-c319t-c7a23cbac6a6b0982f669e9ac8ccf22716cd26a8d125b048d983626e5243f5093 |
ISSN | 1027-5487 |
IngestDate | Thu Apr 24 23:05:07 EDT 2025 Tue Jul 01 02:33:53 EDT 2025 Thu Jul 03 21:19:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-c7a23cbac6a6b0982f669e9ac8ccf22716cd26a8d125b048d983626e5243f5093 |
OpenAccessLink | https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-1/THREE-TYPES-OF-VARIATIONAL-RELATION-PROBLEMS/10.11650/tjm.17.2013.1558.pdf |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_11650_tjm_17_2013_1558 crossref_primary_10_11650_tjm_17_2013_1558 jstor_primary_taiwjmath_17_1_47 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-01 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Taiwanese journal of mathematics |
PublicationYear | 2013 |
Publisher | Mathematical Society of the Republic of China |
Publisher_xml | – name: Mathematical Society of the Republic of China |
References | 22 23 24 25 26 27 28 29 30 31 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 17 doi: 10.1007/s12215-008-0005-8 – ident: 22 doi: 10.1016/j.na.2008.01.030 – ident: 14 doi: 10.1016/j.na.2004.07.043 – ident: 29 doi: 10.2140/pjm.1958.8.171 – ident: 7 doi: 10.1007/s10957-010-9741-y – ident: 12 doi: 10.1007/s10898-009-9404-4 – ident: 19 doi: 10.11650/twjm/1500558302 – ident: 27 doi: 10.1090/S0002-9939-1987-0877039-9 – ident: 15 doi: 10.1007/s10957-007-9336-4 – ident: 1 doi: 10.1007/s10957-008-9371-9 – ident: 20 doi: 10.1016/j.jmaa.2006.09.059 – ident: 5 doi: 10.1016/j.jmaa.2009.10.040 – ident: 10 doi: 10.1007/s10898-011-9676-3 – ident: 21 doi: 10.1007/s10898-004-2119-7 – ident: 11 doi: 10.1016/j.na.2007.02.032 – ident: 9 – ident: 24 doi: 10.1016/0022-247X(91)90231-N – ident: 26 – ident: 23 doi: 10.1007/s10898-004-8273-0 – ident: 31 doi: 10.1006/jmaa.1996.0376 – ident: 13 doi: 10.1007/s10957-007-9300-3 – ident: 18 doi: 10.1007/s001860200208 – ident: 30 doi: 10.1007/978-1-4684-9231-6 – ident: 3 doi: 10.1016/j.camwa.2009.07.095 – ident: 25 doi: 10.1016/j.jmaa.2005.07.001 – ident: 2 doi: 10.1007/s11228-008-0101-0 – ident: 6 doi: 10.1016/j.na.2010.03.055 – ident: 8 doi: 10.1016/j.camwa.2010.09.026 – ident: 28 doi: 10.1023/A:1022693822102 – ident: 4 doi: 10.1016/j.na.2009.08.005 – ident: 16 doi: 10.1007/s10957-010-9659-4 |
SSID | ssj0028616 |
Score | 2.0319617 |
Snippet | Variational relation problems were introduced by Luc in [1] as a general model for a large class of problems in nonlinear analysis and applied mathematics.... |
SourceID | crossref jstor |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 47 |
SubjectTerms | Existence theorems Index sets Mathematical inequalities Mathematical relations Mathematical theorems Mathematical vectors Topological spaces Topological theorems Topological vector spaces Variational inequalities |
Title | THREE TYPES OF VARIATIONAL RELATION PROBLEMS |
URI | https://www.jstor.org/stable/taiwjmath.17.1.47 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYGu2wHxH5psDFy2GmbsyR1HOcIKKibxlpFadWdIttxJKpSEAtC2l_Ps-O4KaCxcYkq6yVp35c8v-c-fx9CH4NQMaFIiKXiBBOqKOa8kpiwigScp3FkkD75SYcT8n0WzzrNdru7pBG-_HPvvpLHoApjgKveJfsfyLqLwgB8BnzhCAjD8d8wHuZZ9rn4Nc6MAvn0IP_WkdtqKQwjqDPOR4c_Mrv0bLPQgp9ecy092SeOOHMErquVc77grfDx6SV4ub9CoNUa1rotTtzpml_E9oLaBoRcWTbttvejFey2oRAKVqzrmXamMGOQTBBMmaWI7eJncuc5aYMhSXrTaku5fjdgQ4YIbm7mZ36Y6E67gQ8ZDlvNTq5nsAHXzLUrtGHok2QDPY2gNtCyFfnh1FXZjBq9W_f17V_Z-kZfb99mLRnp96Oa7KLYRlu2LPAOWoxfoCdq-RI9X_n09yv0xaDtGbS90bHXQ9vr0PY6tF-jyXFWHA2x1brAEoJgg2XCo4EUXFJORZCyqKY0VSmXTMo6iqCqlVVEOasgIRUQdauUaSIhFUdkUEPSN3iDNpfnS_UWeaGCIlHUKqwrQWIlGE3gvQtimTIoTqjYQUH3o0tpieC1HsmiNAUh-KkEP5VhUmo_ldpPO-iTO-WiZUH5m_G-8aSzdMhps7Akye6DFu_Qs9WT_B5tNpdXag-yv0Z8MGjfAO6nUw8 |
linkProvider | Project Euclid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THREE+TYPES+OF+VARIATIONAL+RELATION+PROBLEMS&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Balaj%2C+Mircea&rft.date=2013-02-01&rft.pub=Mathematical+Society+of+the+Republic+of+China&rft.issn=1027-5487&rft.eissn=2224-6851&rft.volume=17&rft.issue=1&rft.spage=47&rft.epage=61&rft_id=info:doi/10.11650%2Ftjm.17.2013.1558&rft.externalDocID=taiwjmath.17.1.47 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon |