THREE TYPES OF VARIATIONAL RELATION PROBLEMS

Variational relation problems were introduced by Luc in [1] as a general model for a large class of problems in nonlinear analysis and applied mathematics. Since this manner of approach provides unified results for several mathematical problems it has been used in many recent papers (see [2-9]). In...

Full description

Saved in:
Bibliographic Details
Published inTaiwanese journal of mathematics Vol. 17; no. 1; pp. 47 - 61
Main Author Balaj, Mircea
Format Journal Article
LanguageEnglish
Published Mathematical Society of the Republic of China 01.02.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Variational relation problems were introduced by Luc in [1] as a general model for a large class of problems in nonlinear analysis and applied mathematics. Since this manner of approach provides unified results for several mathematical problems it has been used in many recent papers (see [2-9]). In this paper we investigate the existence of solutions for three types of variational relation problems which encompass several generalized equilibrium problems, variational inequalities and variational inclusions studied in a long list of papers in the field. 2010Mathematics Subject Classification: 49J53, 54H25. Key words and phrases: Variational relation problem, Variational inequality, KKM theorem, Fixed point.
AbstractList Variational relation problems were introduced by Luc in [1] as a general model for a large class of problems in nonlinear analysis and applied mathematics. Since this manner of approach provides unified results for several mathematical problems it has been used in many recent papers (see [2-9]). In this paper we investigate the existence of solutions for three types of variational relation problems which encompass several generalized equilibrium problems, variational inequalities and variational inclusions studied in a long list of papers in the field. 2010Mathematics Subject Classification: 49J53, 54H25. Key words and phrases: Variational relation problem, Variational inequality, KKM theorem, Fixed point.
Author Balaj, Mircea
Author_xml – sequence: 1
  givenname: Mircea
  surname: Balaj
  fullname: Balaj, Mircea
BookMark eNp9z01Lw0AQgOFFKthWf4C3nDyZuDOb_cgxltQWoilpFDwt222CCW0jyULx39sP8eDB08xhnoF3RAa7dlcScgs0ABCcPrhmG4AMkAILgHN1QYaIGPpCcRiQIVCUPg-VvCKjvm8oRSVADMl9McuTxCveF8nSy6beW5zP42KevcSplyfpafUWefaYJs_La3JZmU1f3vzMMXmdJsVk5qfZ03wSp75lEDnfSoPMrowVRqxopLASIiojY5W1FaIEYdcojFoD8hUN1TpSTKAoOYas4jRiYyLPf23X9n1XVtrWzri63bnO1BsNVJ-i9SFag9THaH2MPkj4Iz-7emu6r3_N3dk0vWu7X-BMvW-2xn0cr0GHkn0D4WBlmg
CitedBy_id crossref_primary_10_1080_00036811_2015_1006204
crossref_primary_10_1007_s10957_021_01927_7
crossref_primary_10_1080_01630563_2015_1136327
crossref_primary_10_1007_s40065_023_00428_x
crossref_primary_10_1007_s40840_016_0370_y
crossref_primary_10_1080_01630563_2022_2026958
crossref_primary_10_1007_s10287_023_00433_7
crossref_primary_10_1007_s11784_016_0285_0
crossref_primary_10_1002_mana_201900243
crossref_primary_10_1007_s10957_017_1082_7
Cites_doi 10.1007/s12215-008-0005-8
10.1016/j.na.2008.01.030
10.1016/j.na.2004.07.043
10.2140/pjm.1958.8.171
10.1007/s10957-010-9741-y
10.1007/s10898-009-9404-4
10.11650/twjm/1500558302
10.1090/S0002-9939-1987-0877039-9
10.1007/s10957-007-9336-4
10.1007/s10957-008-9371-9
10.1016/j.jmaa.2006.09.059
10.1016/j.jmaa.2009.10.040
10.1007/s10898-011-9676-3
10.1007/s10898-004-2119-7
10.1016/j.na.2007.02.032
10.1016/0022-247X(91)90231-N
10.1007/s10898-004-8273-0
10.1006/jmaa.1996.0376
10.1007/s10957-007-9300-3
10.1007/s001860200208
10.1007/978-1-4684-9231-6
10.1016/j.camwa.2009.07.095
10.1016/j.jmaa.2005.07.001
10.1007/s11228-008-0101-0
10.1016/j.na.2010.03.055
10.1016/j.camwa.2010.09.026
10.1023/A:1022693822102
10.1016/j.na.2009.08.005
10.1007/s10957-010-9659-4
ContentType Journal Article
Copyright 2013 Mathematical Society of the Republic of China
Copyright_xml – notice: 2013 Mathematical Society of the Republic of China
DBID AAYXX
CITATION
DOI 10.11650/tjm.17.2013.1558
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2224-6851
EndPage 61
ExternalDocumentID 10_11650_tjm_17_2013_1558
taiwjmath.17.1.47
GroupedDBID -~X
123
29Q
2WC
AAFWJ
AAHSX
ABBHK
ABXSQ
ACHDO
ACIPV
ACMTB
ACTMH
ADULT
AEHFS
AELHJ
AENEX
AEUPB
AFBOV
AFFOW
AFOWJ
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
E3Z
EBS
ECEWR
EJD
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
OK1
OVT
RBV
RPE
SA0
XSB
AAYXX
CITATION
ID FETCH-LOGICAL-c319t-c7a23cbac6a6b0982f669e9ac8ccf22716cd26a8d125b048d983626e5243f5093
ISSN 1027-5487
IngestDate Thu Apr 24 23:05:07 EDT 2025
Tue Jul 01 02:33:53 EDT 2025
Thu Jul 03 21:19:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-c7a23cbac6a6b0982f669e9ac8ccf22716cd26a8d125b048d983626e5243f5093
OpenAccessLink https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-1/THREE-TYPES-OF-VARIATIONAL-RELATION-PROBLEMS/10.11650/tjm.17.2013.1558.pdf
PageCount 15
ParticipantIDs crossref_citationtrail_10_11650_tjm_17_2013_1558
crossref_primary_10_11650_tjm_17_2013_1558
jstor_primary_taiwjmath_17_1_47
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Taiwanese journal of mathematics
PublicationYear 2013
Publisher Mathematical Society of the Republic of China
Publisher_xml – name: Mathematical Society of the Republic of China
References 22
23
24
25
26
27
28
29
30
31
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 17
  doi: 10.1007/s12215-008-0005-8
– ident: 22
  doi: 10.1016/j.na.2008.01.030
– ident: 14
  doi: 10.1016/j.na.2004.07.043
– ident: 29
  doi: 10.2140/pjm.1958.8.171
– ident: 7
  doi: 10.1007/s10957-010-9741-y
– ident: 12
  doi: 10.1007/s10898-009-9404-4
– ident: 19
  doi: 10.11650/twjm/1500558302
– ident: 27
  doi: 10.1090/S0002-9939-1987-0877039-9
– ident: 15
  doi: 10.1007/s10957-007-9336-4
– ident: 1
  doi: 10.1007/s10957-008-9371-9
– ident: 20
  doi: 10.1016/j.jmaa.2006.09.059
– ident: 5
  doi: 10.1016/j.jmaa.2009.10.040
– ident: 10
  doi: 10.1007/s10898-011-9676-3
– ident: 21
  doi: 10.1007/s10898-004-2119-7
– ident: 11
  doi: 10.1016/j.na.2007.02.032
– ident: 9
– ident: 24
  doi: 10.1016/0022-247X(91)90231-N
– ident: 26
– ident: 23
  doi: 10.1007/s10898-004-8273-0
– ident: 31
  doi: 10.1006/jmaa.1996.0376
– ident: 13
  doi: 10.1007/s10957-007-9300-3
– ident: 18
  doi: 10.1007/s001860200208
– ident: 30
  doi: 10.1007/978-1-4684-9231-6
– ident: 3
  doi: 10.1016/j.camwa.2009.07.095
– ident: 25
  doi: 10.1016/j.jmaa.2005.07.001
– ident: 2
  doi: 10.1007/s11228-008-0101-0
– ident: 6
  doi: 10.1016/j.na.2010.03.055
– ident: 8
  doi: 10.1016/j.camwa.2010.09.026
– ident: 28
  doi: 10.1023/A:1022693822102
– ident: 4
  doi: 10.1016/j.na.2009.08.005
– ident: 16
  doi: 10.1007/s10957-010-9659-4
SSID ssj0028616
Score 2.0319617
Snippet Variational relation problems were introduced by Luc in [1] as a general model for a large class of problems in nonlinear analysis and applied mathematics....
SourceID crossref
jstor
SourceType Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms Existence theorems
Index sets
Mathematical inequalities
Mathematical relations
Mathematical theorems
Mathematical vectors
Topological spaces
Topological theorems
Topological vector spaces
Variational inequalities
Title THREE TYPES OF VARIATIONAL RELATION PROBLEMS
URI https://www.jstor.org/stable/taiwjmath.17.1.47
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYGu2wHxH5psDFy2GmbsyR1HOcIKKibxlpFadWdIttxJKpSEAtC2l_Ps-O4KaCxcYkq6yVp35c8v-c-fx9CH4NQMaFIiKXiBBOqKOa8kpiwigScp3FkkD75SYcT8n0WzzrNdru7pBG-_HPvvpLHoApjgKveJfsfyLqLwgB8BnzhCAjD8d8wHuZZ9rn4Nc6MAvn0IP_WkdtqKQwjqDPOR4c_Mrv0bLPQgp9ecy092SeOOHMErquVc77grfDx6SV4ub9CoNUa1rotTtzpml_E9oLaBoRcWTbttvejFey2oRAKVqzrmXamMGOQTBBMmaWI7eJncuc5aYMhSXrTaku5fjdgQ4YIbm7mZ36Y6E67gQ8ZDlvNTq5nsAHXzLUrtGHok2QDPY2gNtCyFfnh1FXZjBq9W_f17V_Z-kZfb99mLRnp96Oa7KLYRlu2LPAOWoxfoCdq-RI9X_n09yv0xaDtGbS90bHXQ9vr0PY6tF-jyXFWHA2x1brAEoJgg2XCo4EUXFJORZCyqKY0VSmXTMo6iqCqlVVEOasgIRUQdauUaSIhFUdkUEPSN3iDNpfnS_UWeaGCIlHUKqwrQWIlGE3gvQtimTIoTqjYQUH3o0tpieC1HsmiNAUh-KkEP5VhUmo_ldpPO-iTO-WiZUH5m_G-8aSzdMhps7Akye6DFu_Qs9WT_B5tNpdXag-yv0Z8MGjfAO6nUw8
linkProvider Project Euclid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THREE+TYPES+OF+VARIATIONAL+RELATION+PROBLEMS&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Balaj%2C+Mircea&rft.date=2013-02-01&rft.pub=Mathematical+Society+of+the+Republic+of+China&rft.issn=1027-5487&rft.eissn=2224-6851&rft.volume=17&rft.issue=1&rft.spage=47&rft.epage=61&rft_id=info:doi/10.11650%2Ftjm.17.2013.1558&rft.externalDocID=taiwjmath.17.1.47
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon