Infiltration of Erbium ions (Er3+) in Porous Silicon Layer Synthesized by Electrochemical Method: Structural and Optical Properties Studies
Porous silicon (Psi) has recently attracted considerable attention because of its unique optical and structural properties and capacity to be used in various applications. Due to the importance of this material, we have investigated the infiltration of trivalent erbium ions (Er 3+ ) into silicon-gen...
Saved in:
Published in | SILICON Vol. 16; no. 16; pp. 6021 - 6029 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.11.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porous silicon (Psi) has recently attracted considerable attention because of its unique optical and structural properties and capacity to be used in various applications. Due to the importance of this material, we have investigated the infiltration of trivalent erbium ions (Er
3+
) into silicon-generated pores using the electrochemical approach. The infiltration of Er
3+
ions will be done simultaneously with the forming of porous silicon films on
p
-type (100) silicon substrates. Generating the porous layer can improve the evenness and integration of Er inside the material. During infiltration, Er
3
⁺ ions can also undergo reduction or co-deposition with other elements at the cathode. The infiltration studies were conducted while subject to the influence of the current density (15–30 mA/cm
2
). The results showed that the emission of photoluminescence in porous silicon filled with erbium was caused by the presence of Er silicate and Er oxide that developed within the silicon pores during the electrochemical reaction. The reason for introducing rare earth ions is their exceptional optical characteristics, encompassing distinct emission lines and extended lifespan. We comprehensively investigate infiltration and outline the electrochemical etching parameters necessary to create porous silicon. Rare earth ions exhibit exceptional optical luminescence characteristics, displaying a diverse spectrum of optical spectra over the infrared, visible, and ultraviolet regions. |
---|---|
AbstractList | Porous silicon (Psi) has recently attracted considerable attention because of its unique optical and structural properties and capacity to be used in various applications. Due to the importance of this material, we have investigated the infiltration of trivalent erbium ions (Er3+) into silicon-generated pores using the electrochemical approach. The infiltration of Er3+ ions will be done simultaneously with the forming of porous silicon films on p-type (100) silicon substrates. Generating the porous layer can improve the evenness and integration of Er inside the material. During infiltration, Er3⁺ ions can also undergo reduction or co-deposition with other elements at the cathode. The infiltration studies were conducted while subject to the influence of the current density (15–30 mA/cm2). The results showed that the emission of photoluminescence in porous silicon filled with erbium was caused by the presence of Er silicate and Er oxide that developed within the silicon pores during the electrochemical reaction. The reason for introducing rare earth ions is their exceptional optical characteristics, encompassing distinct emission lines and extended lifespan. We comprehensively investigate infiltration and outline the electrochemical etching parameters necessary to create porous silicon. Rare earth ions exhibit exceptional optical luminescence characteristics, displaying a diverse spectrum of optical spectra over the infrared, visible, and ultraviolet regions. Porous silicon (Psi) has recently attracted considerable attention because of its unique optical and structural properties and capacity to be used in various applications. Due to the importance of this material, we have investigated the infiltration of trivalent erbium ions (Er 3+ ) into silicon-generated pores using the electrochemical approach. The infiltration of Er 3+ ions will be done simultaneously with the forming of porous silicon films on p -type (100) silicon substrates. Generating the porous layer can improve the evenness and integration of Er inside the material. During infiltration, Er 3 ⁺ ions can also undergo reduction or co-deposition with other elements at the cathode. The infiltration studies were conducted while subject to the influence of the current density (15–30 mA/cm 2 ). The results showed that the emission of photoluminescence in porous silicon filled with erbium was caused by the presence of Er silicate and Er oxide that developed within the silicon pores during the electrochemical reaction. The reason for introducing rare earth ions is their exceptional optical characteristics, encompassing distinct emission lines and extended lifespan. We comprehensively investigate infiltration and outline the electrochemical etching parameters necessary to create porous silicon. Rare earth ions exhibit exceptional optical luminescence characteristics, displaying a diverse spectrum of optical spectra over the infrared, visible, and ultraviolet regions. |
Author | Rahmouni, Salah Kehil, Djamel mamine, Hadjer Bendjeffal, Hacene Boukhenoufa, Noureddine Nasri, Nihal Djebli, Abdelkrim |
Author_xml | – sequence: 1 givenname: Djamel surname: Kehil fullname: Kehil, Djamel organization: Technological Department, Higher Normal School of Technological Education, ENSET-Skikda, Electronic Laboratory Skikda (LES), University of Skikda – sequence: 2 givenname: Salah surname: Rahmouni fullname: Rahmouni, Salah organization: Technological Department, Higher Normal School of Technological Education, ENSET-Skikda, Laboratory of Physical Chemistry and Biology of Materials, Higher Normal School of Technological Education, ENSET-Skikda – sequence: 3 givenname: Noureddine surname: Boukhenoufa fullname: Boukhenoufa, Noureddine organization: Electronic Department, University of Batna 2 – sequence: 4 givenname: Abdelkrim surname: Djebli fullname: Djebli, Abdelkrim organization: CRAPC – sequence: 5 givenname: Hadjer surname: mamine fullname: mamine, Hadjer organization: Technological Department, Higher Normal School of Technological Education, ENSET-Skikda, Laboratory of Physical Chemistry and Biology of Materials, Higher Normal School of Technological Education, ENSET-Skikda – sequence: 6 givenname: Nihal surname: Nasri fullname: Nasri, Nihal organization: Technological Department, Higher Normal School of Technological Education, ENSET-Skikda, Laboratory of Physical Chemistry and Biology of Materials, Higher Normal School of Technological Education, ENSET-Skikda – sequence: 7 givenname: Hacene orcidid: 0000-0002-5837-5230 surname: Bendjeffal fullname: Bendjeffal, Hacene email: bendjeffal_hacene@enset-skikda.dz organization: Technological Department, Higher Normal School of Technological Education, ENSET-Skikda, Laboratory of Physical Chemistry and Biology of Materials, Higher Normal School of Technological Education, ENSET-Skikda |
BookMark | eNp9kEFvFCEUx4lpE2vtF_BE4kVjRmHYhcGbaVbbZE2bbJt4Iwy8cWlmYX0wh92v4JeW7jaaeCiXx4P_70F-r8hJTBEIecPZR86Y-pR5K4VoWDtrmOBCNvsX5Ix3SjZa8-7k7579eEkucn5gdYlWdVKfkd_XcQhjQVtCijQNdIF9mDa0dpm-W6D48J6GSG8TpinTVRiDq7ml3QHS1S6WNeSwB0_7HV2M4Aomt4ZNcHak36Gsk_9MVwUnVyasRzZ6erMth-tbTFvAEqCOLZOv9TU5HeyY4eKpnpP7r4u7y6tmefPt-vLLsnGC69I4xbzisvWu78VcwFxYLdlcdr6XzA-d6iWA03quZS8UWMaF8sBb1ndWK63EOXl7nLvF9GuCXMxDmjDWJ43gLZ-1MzbTNdUdUw5TzgiDcaEcNFVbYTScmUf75mjfVPvmYN_sK9r-h24xbCzunofEEco1HH8C_vvVM9Qfy76bfw |
CitedBy_id | crossref_primary_10_1007_s12633_025_03242_6 |
Cites_doi | 10.1016/0039-6028(91)90652-9 10.1007/s43207-020-00072-7 10.1016/0038-1098(96)00336-5 10.1063/1.1618351 10.1016/j.jnoncrysol.2014.06.004 10.1186/1556-276X-9-332 10.1016/j.solmat.2006.09.003 10.1016/j.jallcom.2021.162963 10.1038/s41598-017-06567-4 10.1038/nnano.2013.271 10.1016/j.jallcom.2006.09.033 10.1016/j.solmat.2005.09.021 10.1557/PROC-358-375 10.1117/1.3111826 10.1016/j.mseb.2007.07.020 10.1016/0925-3467(95)00063-1 10.1063/1.359403 10.1134/1.1641933 10.1063/1.103561 10.1016/j.jre.2022.01.020 10.1186/1556-276X-8-39 10.1016/S0169-4332(96)00896-3 10.1016/j.mee.2011.04.002 10.1016/S0921-5107(00)00688-7 10.1088/0957-4484/24/11/115202 10.1002/pip.4670020208 10.1116/1.579058 10.1016/j.ceramint.2022.03.001 10.1016/j.jlumin.2007.01.015 10.1364/OE.26.031617 10.1007/s12633-022-02261-x 10.1063/1.337223 10.1002/pssa.200674402 10.1088/2058-9565/ac56c7 10.4028/www.scientific.net/SSP.54.94 10.1016/j.optmat.2005.09.059 10.1063/1.112169 10.1088/0957-4484/19/9/095709 10.1063/1.125515 10.1016/j.tsf.2014.03.084 10.1134/1.1261777 10.1016/S0022-2313(98)00136-7 10.1117/12.382845 10.1039/C5NR01204J 10.1021/acs.jpcb.1c05472 10.1007/s13391-013-3195-y 10.1016/j.jallcom.2016.03.184 10.1016/j.apsusc.2019.144452 10.1063/1.358735 10.1088/0268-1242/20/12/R02 10.1109/JLT.2012.2231050 10.1364/OE.19.019797 10.1021/ja405351s 10.1016/j.jlumin.2018.01.006 10.5402/2012/689023 10.1007/s12633-024-02996-9 10.1533/9780857097156.1.3 10.1107/S0567740878014557 10.1007/s11665-021-06165-6 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12633-024-03136-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1876-9918 |
EndPage | 6029 |
ExternalDocumentID | 10_1007_s12633_024_03136_z |
GroupedDBID | -EM .VR 06C 06D 0R~ 0VY 1N0 203 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 4.4 406 408 40D 5VS 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KB. KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J P9N PDBOC PF0 PT4 QOR QOS R89 R9I RIG ROL RSV S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7V Z7W Z7X Z7Y Z7Z Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ |
ID | FETCH-LOGICAL-c319t-c70d7162dcbb353e53a960568db60df87b6eec99596b37ea0137de120b8a97973 |
IEDL.DBID | U2A |
ISSN | 1876-990X |
IngestDate | Fri Jul 25 10:51:07 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Tue Jul 01 02:09:01 EDT 2025 Fri Feb 21 02:37:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Infiltration ions Er Porous silicon Photoluminescence Electrochemical anodization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-c70d7162dcbb353e53a960568db60df87b6eec99596b37ea0137de120b8a97973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5837-5230 |
PQID | 3121424049 |
PQPubID | 2044170 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3121424049 crossref_citationtrail_10_1007_s12633_024_03136_z crossref_primary_10_1007_s12633_024_03136_z springer_journals_10_1007_s12633_024_03136_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241100 2024-11-00 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | SILICON |
PublicationTitleAbbrev | Silicon |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Kashkarov, Kamenev, Lisachenko (CR32) 2004; 46 Beke, Szekrényes, Czigány (CR51) 2015; 7 Canham (CR46) 1990; 57 Tengattini, Gandolfi, Prtljaga (CR6) 2013; 31 Dorofeev, Gaponenko, Bondarenko (CR20) 1995; 77 Bsiesy, Vial, Gaspard (CR53) 1991; 254 Mula, Loddo, Pinna (CR29) 2014; 9 CR37 Filippov, Kuznetsova, Homenko (CR33) 1998; 80 Thu Huong, Thi Phuong, Thi Vinh (CR27) 2021; 125 Saar (CR52) 2009; 3 Wan, Lin, Xu (CR13) 2008; 19 Koropecki, Arce (CR40) 1986; 60 Talbot, Lardé, Pareige (CR3) 2013; 8 CR2 Fortes, Gonçalves, Pereira, D’Acapito (CR25) 2014; 402 Kelai, Diaf, Boulma (CR57) 2018; 197 CR5 Hu, Ahlefeldt, de Boo (CR26) 2022; 7 CR45 Gaponenko, Malyarevich, Tsyrkunou (CR55) 2006; 28 CR41 Méndez-Ramos, Tikhomirov, Rodriguez, Furniss (CR58) 2007; 440 Filippov, Pershukevich, Homenko (CR56) 1997; 54 Zhao, Komuro, Isshiki (CR54) 1997; 113 Elhouichet, Oueslati (CR34) 2007; 204 Azad, Maqsood (CR44) 2014; 10 Trupke, Shalav, Richards (CR15) 2006; 90 Kenyon (CR28) 2005; 20 Lu, Huang, Cheng, Larsen (CR9) 2016; 676 Lopez, Fauchet (CR35) 1999; 75 Kim, Fisher, Nagashima (CR49) 2022; 48 Lopez, Fauchet (CR36) 2000; 3942 Priolo, Gregorkiewicz, Galli, Krauss (CR8) 2014; 9 Mattsson (CR12) 2011; 19 Grinys, Drunga, Dobrovolskas (CR30) 2020; 505 Sokolov, Rösslhuber, Zhigunov (CR24) 2014; 562 Namavar, Lu, Perry (CR18) 1994; 358 Louie, Bell (CR48) 2013; 135 Xu, Chen, Zhao (CR50) 2022; 897 Namavar, Lu, Perry (CR23) 1995; 77 Bondarenko, Vorozov, Dolgii (CR22) 1997; 23 Strümpel, McCann, Beaucarne (CR14) 2007; 91 Kim, Kim, Park, Ko (CR4) 2021; 58 Zhou, Snow, Russell (CR31) 2001; 81 Rahmouni, Boukhanoufa, Tifouti (CR1) 2023; 15 Hartiti, Schindler, Slaoui (CR21) 1994; 2 Muniz, Zanuto, Gibin (CR16) 2023; 41 Mula, Printemps, Licitra (CR10) 2017; 7 Gaponenko, Kortov, Smirnova (CR17) 2012; 90 González-Díaz, Díaz-Herrera, Guerrero-Lemus (CR59) 2008; 146 Awazu, Kawazoe (CR43) 2003; 94 Snoeks, Kik, Polman (CR11) 1996; 5 Ramírez, Ferrarese Lupi, Berencén (CR7) 2013; 24 Ruiz, Vázquez-López, González-Hernández (CR39) 1994; 12 Zhang, Li, Yan, Yang (CR47) 2007; 127 Kimura, Yokoi, Horiguchi (CR19) 1994; 65 Pong, Chen, Cheah (CR38) 1996; 99 Zhang, Zhang, Wu (CR42) 2018; 26 G Mula (3136_CR29) 2014; 9 F Namavar (3136_CR18) 1994; 358 T Kimura (3136_CR19) 1994; 65 LT Canham (3136_CR46) 1990; 57 S Rahmouni (3136_CR1) 2023; 15 H Xu (3136_CR50) 2022; 897 VP Bondarenko (3136_CR22) 1997; 23 T Thu Huong (3136_CR27) 2021; 125 X Zhao (3136_CR54) 1997; 113 E Talbot (3136_CR3) 2013; 8 E Snoeks (3136_CR11) 1996; 5 T Trupke (3136_CR15) 2006; 90 NV Gaponenko (3136_CR17) 2012; 90 RR Koropecki (3136_CR40) 1986; 60 PK Kashkarov (3136_CR32) 2004; 46 D Beke (3136_CR51) 2015; 7 G Hu (3136_CR26) 2022; 7 VV Filippov (3136_CR33) 1998; 80 MW Louie (3136_CR48) 2013; 135 Y Zhou (3136_CR31) 2001; 81 T Grinys (3136_CR30) 2020; 505 NV Gaponenko (3136_CR55) 2006; 28 SA Sokolov (3136_CR24) 2014; 562 KL Pong (3136_CR38) 1996; 99 JM Ramírez (3136_CR7) 2013; 24 AM Dorofeev (3136_CR20) 1995; 77 S-H Kim (3136_CR49) 2022; 48 3136_CR5 A Saar (3136_CR52) 2009; 3 LM Fortes (3136_CR25) 2014; 402 HA Lopez (3136_CR35) 1999; 75 B González-Díaz (3136_CR59) 2008; 146 3136_CR2 G Mula (3136_CR10) 2017; 7 C Strümpel (3136_CR14) 2007; 91 RF Muniz (3136_CR16) 2023; 41 A Tengattini (3136_CR6) 2013; 31 3136_CR37 R Kelai (3136_CR57) 2018; 197 VV Filippov (3136_CR56) 1997; 54 HJ Zhang (3136_CR47) 2007; 127 K Awazu (3136_CR43) 2003; 94 J Méndez-Ramos (3136_CR58) 2007; 440 AJ Kenyon (3136_CR28) 2005; 20 Y-W Lu (3136_CR9) 2016; 676 N Wan (3136_CR13) 2008; 19 A Bsiesy (3136_CR53) 1991; 254 KE Mattsson (3136_CR12) 2011; 19 P Zhang (3136_CR42) 2018; 26 F Azad (3136_CR44) 2014; 10 F Namavar (3136_CR23) 1995; 77 F Priolo (3136_CR8) 2014; 9 H Elhouichet (3136_CR34) 2007; 204 HA Lopez (3136_CR36) 2000; 3942 3136_CR41 3136_CR45 H-N Kim (3136_CR4) 2021; 58 B Hartiti (3136_CR21) 1994; 2 F Ruiz (3136_CR39) 1994; 12 |
References_xml | – ident: CR45 – volume: 254 start-page: 195 year: 1991 end-page: 200 ident: CR53 article-title: Photoluminescence of high porosity and of electrochemically oxidized porous silicon layers publication-title: Surf Sci doi: 10.1016/0039-6028(91)90652-9 – volume: 58 start-page: 77 year: 2021 end-page: 85 ident: CR4 article-title: Characterization of porous sintered reaction-bonded silicon nitride containing three different rare-earth oxides publication-title: J Korean Ceram Soc doi: 10.1007/s43207-020-00072-7 – volume: 99 start-page: 887 year: 1996 end-page: 890 ident: CR38 article-title: Photoluminescence of laser ablated silicon publication-title: Solid State Commun doi: 10.1016/0038-1098(96)00336-5 – volume: 94 start-page: 6243 year: 2003 end-page: 6262 ident: CR43 article-title: Strained Si–O–Si bonds in amorphous SiO 2 materials: A family member of active centers in radio, photo, and chemical responses publication-title: J Appl Phys doi: 10.1063/1.1618351 – volume: 402 start-page: 244 year: 2014 end-page: 251 ident: CR25 article-title: EXAFS study of Er, Yb doped hollow and dense SiO2 microspheres publication-title: J Non Cryst Solids doi: 10.1016/j.jnoncrysol.2014.06.004 – volume: 9 start-page: 1 year: 2014 end-page: 7 ident: CR29 article-title: Controlling the Er content of porous silicon using the doping current intensity publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-9-332 – volume: 91 start-page: 238 year: 2007 end-page: 249 ident: CR14 article-title: Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2006.09.003 – volume: 897 year: 2022 ident: CR50 article-title: The upconversion luminescence from visible to near-infrared in pyrosilicate C-Er2Si2O7 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2021.162963 – volume: 7 start-page: 5957 year: 2017 ident: CR10 article-title: Doping porous silicon with erbium: pores filling as a method to limit the Er-clustering effects and increasing its light emission publication-title: Sci Rep doi: 10.1038/s41598-017-06567-4 – volume: 9 start-page: 19 year: 2014 end-page: 32 ident: CR8 article-title: Silicon nanostructures for photonics and photovoltaics publication-title: Nat Nanotechnol doi: 10.1038/nnano.2013.271 – volume: 440 start-page: 328 year: 2007 end-page: 332 ident: CR58 article-title: Infrared tuneable up-conversion phosphor based on Er3+-doped nano-glass–ceramics publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2006.09.033 – volume: 90 start-page: 3327 year: 2006 end-page: 3338 ident: CR15 article-title: Efficiency enhancement of solar cells by luminescent up-conversion of sunlight publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2005.09.021 – volume: 358 start-page: 375 year: 1994 ident: CR18 article-title: Er-implanted porous silicon: A novel material for Si-based infrared LEDs publication-title: MRS Online Proc Libr doi: 10.1557/PROC-358-375 – volume: 3 start-page: 32501 year: 2009 ident: CR52 article-title: Photoluminescence from silicon nanostructures: the mutual role of quantum confinement and surface chemistry publication-title: J Nanophotonics doi: 10.1117/1.3111826 – volume: 146 start-page: 171 year: 2008 end-page: 174 ident: CR59 article-title: Erbium doped stain etched porous silicon publication-title: Mater Sci Eng B doi: 10.1016/j.mseb.2007.07.020 – volume: 5 start-page: 159 year: 1996 end-page: 167 ident: CR11 article-title: Concentration quenching in erbium implanted alkali silicate glasses publication-title: Opt Mater (Amst) doi: 10.1016/0925-3467(95)00063-1 – volume: 77 start-page: 4813 year: 1995 end-page: 4815 ident: CR23 article-title: Strong room-temperature infrared emission from Er-implanted porous Si publication-title: J Appl Phys doi: 10.1063/1.359403 – volume: 46 start-page: 104 year: 2004 end-page: 108 ident: CR32 article-title: High-efficiency erbium ion luminescence in silicon nanocrystal systems publication-title: Phys Solid State doi: 10.1134/1.1641933 – volume: 57 start-page: 1046 year: 1990 end-page: 1048 ident: CR46 article-title: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers publication-title: Appl Phys Lett doi: 10.1063/1.103561 – volume: 41 start-page: 342 year: 2023 end-page: 348 ident: CR16 article-title: Down- and up-conversion processes in Nd3+/Yb3+ co-doped sodium calcium silicate glasses with concomitant Yb2+ assessment publication-title: J Rare Earths doi: 10.1016/j.jre.2022.01.020 – volume: 8 start-page: 39 year: 2013 ident: CR3 article-title: Nanoscale evidence of erbium clustering in Er-doped silicon-rich silica publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-8-39 – volume: 113 start-page: 121 year: 1997 end-page: 125 ident: CR54 article-title: Photoluminescence and probe effect of Er-doped nanometer-sized Si materials publication-title: Appl Surf Sci doi: 10.1016/S0169-4332(96)00896-3 – volume: 90 start-page: 131 year: 2012 end-page: 137 ident: CR17 article-title: Sol-gel derived structures for optical design and photocatalytic application publication-title: Microelectron Eng doi: 10.1016/j.mee.2011.04.002 – volume: 81 start-page: 40 year: 2001 end-page: 42 ident: CR31 article-title: Room-temperature photoluminescence from erbium-doped multilayer porous silicon microcavity publication-title: Mater Sci Eng B doi: 10.1016/S0921-5107(00)00688-7 – volume: 24 year: 2013 ident: CR7 article-title: Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip publication-title: Nanotechnology doi: 10.1088/0957-4484/24/11/115202 – volume: 2 start-page: 129 year: 1994 end-page: 142 ident: CR21 article-title: Towards high-eficiency silicon solar cells by rapid thermal processing publication-title: Prog Photovoltaics Res Appl doi: 10.1002/pip.4670020208 – volume: 12 start-page: 2565 year: 1994 end-page: 2571 ident: CR39 article-title: Mesostructure of photoluminescent porous silicon publication-title: J Vac Sci Technol A Vacuum, Surfaces, Film doi: 10.1116/1.579058 – volume: 48 start-page: 17369 year: 2022 end-page: 17375 ident: CR49 article-title: Reaction between environmental barrier coatings material Er2Si2O7 and a calcia-magnesia-alumina-silica melt publication-title: Ceram Int doi: 10.1016/j.ceramint.2022.03.001 – volume: 127 start-page: 316 year: 2007 end-page: 320 ident: CR47 article-title: Synthesis, characterization and luminescence properties of N, N???-bis(2-pyridinecarboxamide-1-N-oxide)-1,2-ethane and corresponding lanthanide(III) complexes publication-title: J Lumin doi: 10.1016/j.jlumin.2007.01.015 – volume: 26 start-page: 31617 year: 2018 end-page: 31625 ident: CR42 article-title: High photoluminescence quantum yields generated from N-Si-O bonding states in amorphous silicon oxynitride films publication-title: Opt Express doi: 10.1364/OE.26.031617 – ident: CR5 – volume: 15 start-page: 3261 year: 2023 end-page: 3268 ident: CR1 article-title: Influence of Etching Current Density on the Structural and Optical Properties of Porous Silicon Films Developed For Photovoltaic Applications publication-title: SILICON doi: 10.1007/s12633-022-02261-x – volume: 60 start-page: 1802 year: 1986 end-page: 1807 ident: CR40 article-title: Infrared study of the kinetics of oxidation in porous amorphous silicon publication-title: J Appl Phys doi: 10.1063/1.337223 – volume: 204 start-page: 1497 year: 2007 end-page: 1501 ident: CR34 article-title: Rare earth ions in porous silicon: optical properties publication-title: Phys status solidi doi: 10.1002/pssa.200674402 – ident: CR2 – volume: 7 start-page: 25019 year: 2022 ident: CR26 article-title: Single site optical spectroscopy of coupled Er3+ ion pairs in silicon publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/ac56c7 – ident: CR37 – volume: 54 start-page: 94 year: 1997 end-page: 100 ident: CR56 article-title: Visible and IR photoluminescence of erbium doped porous silicon films publication-title: Solid State Phenom doi: 10.4028/www.scientific.net/SSP.54.94 – volume: 28 start-page: 688 year: 2006 end-page: 692 ident: CR55 article-title: Optical properties of erbium-doped xerogels embedded in porous anodic alumina publication-title: Opt Mater (Amst) doi: 10.1016/j.optmat.2005.09.059 – volume: 65 start-page: 983 year: 1994 end-page: 985 ident: CR19 article-title: Electrochemical Er doping of porous silicon and its room-temperature luminescence at ∼1.54 μm publication-title: Appl Phys Lett doi: 10.1063/1.112169 – volume: 19 start-page: 95709 year: 2008 ident: CR13 article-title: Preparation and luminescence of nano-sized In2O3 and rare-earth co-doped SiO2 thin films publication-title: Nanotechnology doi: 10.1088/0957-4484/19/9/095709 – volume: 75 start-page: 3989 year: 1999 end-page: 3991 ident: CR35 article-title: Room-temperature electroluminescence from erbium-doped porous silicon publication-title: Appl Phys Lett doi: 10.1063/1.125515 – volume: 562 start-page: 462 year: 2014 end-page: 466 ident: CR24 article-title: Photoluminescence of rare earth ions (Er3+, Yb3+) in a porous silicon matrix publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.03.084 – volume: 23 start-page: 3 year: 1997 end-page: 4 ident: CR22 article-title: Luminescence of erbium-doped porous silicon publication-title: Tech Phys Lett doi: 10.1134/1.1261777 – volume: 80 start-page: 395 year: 1998 end-page: 398 ident: CR33 article-title: Luminescence from porous silicon doped with erbium–ytterbium complexes publication-title: J Lumin doi: 10.1016/S0022-2313(98)00136-7 – volume: 3942 start-page: 87 year: 2000 end-page: 96 ident: CR36 article-title: Room-temperature electroluminescence from erbium-doped porous silicon composites for infrared LED applications publication-title: Rare-Earth-Doped Materials and Devices doi: 10.1117/12.382845 – volume: 7 start-page: 10982 year: 2015 end-page: 10988 ident: CR51 article-title: Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals publication-title: Nanoscale doi: 10.1039/C5NR01204J – volume: 125 start-page: 9768 year: 2021 end-page: 9775 ident: CR27 article-title: Upconversion NaYF4: Yb3+/Er3+@ silica-TPGS bio-nano complexes: synthesis, characterization, and in vitro tests for labeling cancer cells publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.1c05472 – volume: 10 start-page: 557 year: 2014 end-page: 563 ident: CR44 article-title: Fabrication, structural characterization, dielectric and electrical parameters of the synthesized nano-crystalline erbium oxide publication-title: Electron Mater Lett doi: 10.1007/s13391-013-3195-y – volume: 676 start-page: 428 year: 2016 end-page: 431 ident: CR9 article-title: High Er3+ luminescent efficiency in Er-doped SiOx films containing amorphous Si nanodots publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.03.184 – volume: 505 year: 2020 ident: CR30 article-title: Wet etching mechanism of Er2O3 grown on Si by molecular beam epitaxy publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.144452 – volume: 77 start-page: 2679 year: 1995 end-page: 2683 ident: CR20 article-title: Erbium luminescence in porous silicon doped from spin-on films publication-title: J Appl Phys doi: 10.1063/1.358735 – volume: 20 start-page: R65 year: 2005 ident: CR28 article-title: Erbium in silicon publication-title: Semicond Sci Technol doi: 10.1088/0268-1242/20/12/R02 – volume: 31 start-page: 391 year: 2013 end-page: 397 ident: CR6 article-title: Toward a 1.54 \&\#181;m Electrically Driven Erbium-Doped Silicon Slot Waveguide and Optical Amplifier publication-title: J Light Technol doi: 10.1109/JLT.2012.2231050 – ident: CR41 – volume: 19 start-page: 19797 year: 2011 end-page: 19812 ident: CR12 article-title: Photo darkening of rare earth doped silica publication-title: Opt Express doi: 10.1364/OE.19.019797 – volume: 135 start-page: 12329 year: 2013 end-page: 12337 ident: CR48 article-title: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen publication-title: J Am Chem Soc doi: 10.1021/ja405351s – volume: 197 start-page: 310 year: 2018 end-page: 316 ident: CR57 article-title: Optical properties of Er3+-Yb3+ codoped Cd. 7Sr. 3F2 mixed single crystals publication-title: J Lumin doi: 10.1016/j.jlumin.2018.01.006 – volume: 8 start-page: 39 year: 2013 ident: 3136_CR3 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-8-39 – volume: 99 start-page: 887 year: 1996 ident: 3136_CR38 publication-title: Solid State Commun doi: 10.1016/0038-1098(96)00336-5 – volume: 48 start-page: 17369 year: 2022 ident: 3136_CR49 publication-title: Ceram Int doi: 10.1016/j.ceramint.2022.03.001 – volume: 54 start-page: 94 year: 1997 ident: 3136_CR56 publication-title: Solid State Phenom doi: 10.4028/www.scientific.net/SSP.54.94 – volume: 60 start-page: 1802 year: 1986 ident: 3136_CR40 publication-title: J Appl Phys doi: 10.1063/1.337223 – volume: 28 start-page: 688 year: 2006 ident: 3136_CR55 publication-title: Opt Mater (Amst) doi: 10.1016/j.optmat.2005.09.059 – volume: 897 year: 2022 ident: 3136_CR50 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2021.162963 – volume: 94 start-page: 6243 year: 2003 ident: 3136_CR43 publication-title: J Appl Phys doi: 10.1063/1.1618351 – volume: 562 start-page: 462 year: 2014 ident: 3136_CR24 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.03.084 – volume: 402 start-page: 244 year: 2014 ident: 3136_CR25 publication-title: J Non Cryst Solids doi: 10.1016/j.jnoncrysol.2014.06.004 – volume: 146 start-page: 171 year: 2008 ident: 3136_CR59 publication-title: Mater Sci Eng B doi: 10.1016/j.mseb.2007.07.020 – volume: 7 start-page: 10982 year: 2015 ident: 3136_CR51 publication-title: Nanoscale doi: 10.1039/C5NR01204J – volume: 58 start-page: 77 year: 2021 ident: 3136_CR4 publication-title: J Korean Ceram Soc doi: 10.1007/s43207-020-00072-7 – volume: 7 start-page: 25019 year: 2022 ident: 3136_CR26 publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/ac56c7 – volume: 125 start-page: 9768 year: 2021 ident: 3136_CR27 publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.1c05472 – volume: 57 start-page: 1046 year: 1990 ident: 3136_CR46 publication-title: Appl Phys Lett doi: 10.1063/1.103561 – volume: 81 start-page: 40 year: 2001 ident: 3136_CR31 publication-title: Mater Sci Eng B doi: 10.1016/S0921-5107(00)00688-7 – ident: 3136_CR37 doi: 10.5402/2012/689023 – volume: 12 start-page: 2565 year: 1994 ident: 3136_CR39 publication-title: J Vac Sci Technol A Vacuum, Surfaces, Film doi: 10.1116/1.579058 – volume: 9 start-page: 19 year: 2014 ident: 3136_CR8 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2013.271 – volume: 90 start-page: 3327 year: 2006 ident: 3136_CR15 publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2005.09.021 – ident: 3136_CR2 doi: 10.1007/s12633-024-02996-9 – ident: 3136_CR45 doi: 10.1533/9780857097156.1.3 – volume: 113 start-page: 121 year: 1997 ident: 3136_CR54 publication-title: Appl Surf Sci doi: 10.1016/S0169-4332(96)00896-3 – volume: 46 start-page: 104 year: 2004 ident: 3136_CR32 publication-title: Phys Solid State doi: 10.1134/1.1641933 – volume: 440 start-page: 328 year: 2007 ident: 3136_CR58 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2006.09.033 – volume: 15 start-page: 3261 year: 2023 ident: 3136_CR1 publication-title: SILICON doi: 10.1007/s12633-022-02261-x – volume: 90 start-page: 131 year: 2012 ident: 3136_CR17 publication-title: Microelectron Eng doi: 10.1016/j.mee.2011.04.002 – volume: 65 start-page: 983 year: 1994 ident: 3136_CR19 publication-title: Appl Phys Lett doi: 10.1063/1.112169 – volume: 75 start-page: 3989 year: 1999 ident: 3136_CR35 publication-title: Appl Phys Lett doi: 10.1063/1.125515 – volume: 20 start-page: R65 year: 2005 ident: 3136_CR28 publication-title: Semicond Sci Technol doi: 10.1088/0268-1242/20/12/R02 – ident: 3136_CR41 doi: 10.1107/S0567740878014557 – volume: 676 start-page: 428 year: 2016 ident: 3136_CR9 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.03.184 – volume: 24 year: 2013 ident: 3136_CR7 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/11/115202 – volume: 135 start-page: 12329 year: 2013 ident: 3136_CR48 publication-title: J Am Chem Soc doi: 10.1021/ja405351s – volume: 127 start-page: 316 year: 2007 ident: 3136_CR47 publication-title: J Lumin doi: 10.1016/j.jlumin.2007.01.015 – volume: 91 start-page: 238 year: 2007 ident: 3136_CR14 publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2006.09.003 – volume: 9 start-page: 1 year: 2014 ident: 3136_CR29 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-9-332 – volume: 26 start-page: 31617 year: 2018 ident: 3136_CR42 publication-title: Opt Express doi: 10.1364/OE.26.031617 – volume: 5 start-page: 159 year: 1996 ident: 3136_CR11 publication-title: Opt Mater (Amst) doi: 10.1016/0925-3467(95)00063-1 – volume: 7 start-page: 5957 year: 2017 ident: 3136_CR10 publication-title: Sci Rep doi: 10.1038/s41598-017-06567-4 – volume: 23 start-page: 3 year: 1997 ident: 3136_CR22 publication-title: Tech Phys Lett doi: 10.1134/1.1261777 – volume: 10 start-page: 557 year: 2014 ident: 3136_CR44 publication-title: Electron Mater Lett doi: 10.1007/s13391-013-3195-y – volume: 80 start-page: 395 year: 1998 ident: 3136_CR33 publication-title: J Lumin doi: 10.1016/S0022-2313(98)00136-7 – volume: 204 start-page: 1497 year: 2007 ident: 3136_CR34 publication-title: Phys status solidi doi: 10.1002/pssa.200674402 – volume: 19 start-page: 19797 year: 2011 ident: 3136_CR12 publication-title: Opt Express doi: 10.1364/OE.19.019797 – volume: 254 start-page: 195 year: 1991 ident: 3136_CR53 publication-title: Surf Sci doi: 10.1016/0039-6028(91)90652-9 – volume: 505 year: 2020 ident: 3136_CR30 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.144452 – volume: 3 start-page: 32501 year: 2009 ident: 3136_CR52 publication-title: J Nanophotonics doi: 10.1117/1.3111826 – volume: 358 start-page: 375 year: 1994 ident: 3136_CR18 publication-title: MRS Online Proc Libr doi: 10.1557/PROC-358-375 – volume: 41 start-page: 342 year: 2023 ident: 3136_CR16 publication-title: J Rare Earths doi: 10.1016/j.jre.2022.01.020 – ident: 3136_CR5 doi: 10.1007/s11665-021-06165-6 – volume: 77 start-page: 2679 year: 1995 ident: 3136_CR20 publication-title: J Appl Phys doi: 10.1063/1.358735 – volume: 2 start-page: 129 year: 1994 ident: 3136_CR21 publication-title: Prog Photovoltaics Res Appl doi: 10.1002/pip.4670020208 – volume: 3942 start-page: 87 year: 2000 ident: 3136_CR36 publication-title: Rare-Earth-Doped Materials and Devices doi: 10.1117/12.382845 – volume: 77 start-page: 4813 year: 1995 ident: 3136_CR23 publication-title: J Appl Phys doi: 10.1063/1.359403 – volume: 197 start-page: 310 year: 2018 ident: 3136_CR57 publication-title: J Lumin doi: 10.1016/j.jlumin.2018.01.006 – volume: 31 start-page: 391 year: 2013 ident: 3136_CR6 publication-title: J Light Technol doi: 10.1109/JLT.2012.2231050 – volume: 19 start-page: 95709 year: 2008 ident: 3136_CR13 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/9/095709 |
SSID | ssj0000327869 |
Score | 2.3158646 |
Snippet | Porous silicon (Psi) has recently attracted considerable attention because of its unique optical and structural properties and capacity to be used in various... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6021 |
SubjectTerms | Chemical synthesis Chemistry Chemistry and Materials Science Electrochemical etching Emission analysis Emission spectra Environmental Chemistry Erbium Infiltration Infrared spectra Inorganic Chemistry Lasers Line spectra Materials Science Optical Devices Optical properties Optics Photoluminescence Photonics Polymer Sciences Porous materials Porous silicon Silicon Silicon films Silicon substrates Ultraviolet spectra |
Title | Infiltration of Erbium ions (Er3+) in Porous Silicon Layer Synthesized by Electrochemical Method: Structural and Optical Properties Studies |
URI | https://link.springer.com/article/10.1007/s12633-024-03136-z https://www.proquest.com/docview/3121424049 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9swGLb4OIzLNNgQ3Rh6DztsYpYS23HS3QpKYR8wpK5Sd4ryxo4UqUtRyw70L-xPz6_rUDExJE45xPEhjz_ez-dh7J0Rqu5bW3OLKuKkh8SxyhRHkSXOGbMqQQroX1zq87H6MkkmoSls0VW7dylJf1Kvm92ElpRzVJz4BjVfbrLtxPnuVMg1FoO7yEokRZp5LbvYbXXujttJ6JZ5eJr7N9LazPwnM-ovnOEL9jxYijBYQbvLNmy7x56ddgJtL9mfz23dTAPtLcxqyOfY_P4FtJDgfT6Xxx-gaeFqNnfePYyaqQO9hW-lM7JhdNs6y2_RLK0BvIV8JYZTBfYAuPC60p9g5NlliZkDytbA92sf-YYriuDPiYoVQh3iKzYe5j9Oz3nQVuCV23Q3vEojQ-RRpkKUibSJLJ0vk-jMoI5MnaWora2IjEyjTG1JzITGxiLCrOyn_VTus6121toDBoi1RlJW0IlQJsVMSimkzvpxpUQk0x6Lu_9bVIF4nPQvpsWaMpkwKRwmhcekWPbY8d031yvajUdHH3awFWELLgoZE5ucch5Qj33soFy__v9sr582_A3bEbSafH_iIdtywNi3zlC5wSO2PRienFzS8-zn1_zIr9O_bQziRQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELWgHMoF8SkCLcyBA6hY2rW9XodbVaVKISmV0ki5rXbWXmmldFMl5dD8hf7pehxvo6JSifN6ffCbsWfGnvcY-2KFqvvO1dyhSjjpIXGsjOIoTOaTMacypIL--FQPp-rnLJvFprBV99q9u5IMO_W22U1oSXeOihPfoObrp-yZDwYM2fJUHN5VVhIpchO07FLv6txvt7PYLfPwNPdPpG2Y-dfNaDhwjl-yFzFShMMNtK_YE9e-ZrtHnUDbG3Zz0tbNPNLewqKGwRKbPxdAhgRfB0t58A2aFs4WS5_dw6SZe9BbGJU-yIbJdesjv1WzdhbwGgYbMZwqsgfAOOhK_4BJYJclZg4oWwu_L0PlG86ogr8kKlaI7xDfsunx4PxoyKO2Aq-8013xKk8skUfZClFm0mWy9LlMpo1Fndja5Kidq4iMTKPMXUnMhNalIkFT9vN-Lt-xnXbRuvcMEGuNpKygM6FsjkZKKaQ2_bRSIpF5j6Xd-hZVJB4n_Yt5saVMJkwKj0kRMCnWPXZw98_lhnbj0dF7HWxFdMFVIVNik1M-A-qx7x2U28__nu3D_w3_zHaH5-NRMTo5_fWRPRdkWaFXcY_teJDcvg9arvBTsNFbEAziKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fb9MwEMctGBLsBcHYtI4B98DD0LCW2I6T7m0arTbYj0qlUt-iXOxIkTq36srD-i_wT8_nJutAgMRzHD_kzvHd2ff5MvbRCFV1ra24RRVx0kPiWGaKo8gSn4xZlSAV9C-v9NlIfR0n40dd_OG2e3skueppIEqTWxzNTHW0bnwTWtL5o-LEHtR8-ZQ9U9QN7D16JE4eqiyRFGkWdO1iv-y5__WOm86ZP0_z6-60Djl_OyUNm0__FXvZRI1wsjLza_bEui324rQVa3vDfp67qp40CFyYVtCbY_3jBsip4KA3l4efoHYwmM59pg_DeuIdwMFF4QNuGN45HwXe1ktrAO-gtxLGKRuSAFwGjeljGAbSLFE6oHAGrmehCg4DqubPCcsKzZ3EbTbq976fnvFGZ4GXfgEueJlGhkBSpkSUibSJLHxek-jMoI5MlaWorS0JTKZRprYgSqGxsYgwK7ppN5U7bMNNnd1lgFhpJJUFnQhlUsyklELqrBuXSkQy7bC4_b552UDISQtjkq_xyWST3NskDzbJlx12-PDObIXg-Ofo_dZsebMcb3MZE1lO-Wyowz63plw__vtse_83_AN7PvjSzy_Or769ZZuCHCu0Le6zDW8j-87HLwt8H1z0HhRQ5ls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infiltration+of+Erbium+ions+%28Er3%2B%29+in+Porous+Silicon+Layer+Synthesized+by+Electrochemical+Method%3A+Structural+and+Optical+Properties+Studies&rft.jtitle=SILICON&rft.au=Kehil%2C+Djamel&rft.au=Rahmouni%2C+Salah&rft.au=Boukhenoufa%2C+Noureddine&rft.au=Djebli%2C+Abdelkrim&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1876-990X&rft.eissn=1876-9918&rft.volume=16&rft.issue=16&rft.spage=6021&rft.epage=6029&rft_id=info:doi/10.1007%2Fs12633-024-03136-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1876-990X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1876-990X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1876-990X&client=summon |