Solving Mathematical Programs with Complementarity Constraints Arising in Nonsmooth Optimal Control
This paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control problems (OCPs) subject to nonsmooth dynamical systems. The MPCC theory and stationarity concepts are reviewed and summarized. The focus is...
Saved in:
Published in | Vietnam journal of mathematics Vol. 53; no. 3; pp. 659 - 697 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2305-221X 2305-2228 |
DOI | 10.1007/s10013-024-00704-z |
Cover
Loading…
Abstract | This paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control problems (OCPs) subject to nonsmooth dynamical systems. The MPCC theory and stationarity concepts are reviewed and summarized. The focus is on relaxation-based methods for MPCCs, which solve a (finite) sequence of more regular nonlinear programs (NLP), where a regularization/homotopy parameter is driven to zero. Such methods perform reasonably well on currently available benchmarks. However, these results do not always generalize to MPCCs obtained from nonsmooth OCPs. To provide a more complete picture, this paper introduces a novel benchmark collection of such problems, which we call . The problem set includes 603 different MPCCs and we split it into a few representative subsets to accelerate the testing. We compare different relaxation-based methods, NLP solvers, homotopy parameter update and relaxation parameter steering strategies. Moreover, we check whether the obtained stationary points allow first-order descent directions, which may be the case for some of the weaker MPCC stationarity concepts. In the best case, the Scholtes’ relaxation (SIAM J. Optim. 11 , 918–936, 2001) with (Math. Program. 106 , 25–57, 2006) as NLP solver manages to solve 73.8% of the problems. This highlights the need for further improvements in algorithms and software for MPCCs. |
---|---|
AbstractList | This paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control problems (OCPs) subject to nonsmooth dynamical systems. The MPCC theory and stationarity concepts are reviewed and summarized. The focus is on relaxation-based methods for MPCCs, which solve a (finite) sequence of more regular nonlinear programs (NLP), where a regularization/homotopy parameter is driven to zero. Such methods perform reasonably well on currently available benchmarks. However, these results do not always generalize to MPCCs obtained from nonsmooth OCPs. To provide a more complete picture, this paper introduces a novel benchmark collection of such problems, which we call NOSBENCH. The problem set includes 603 different MPCCs and we split it into a few representative subsets to accelerate the testing. We compare different relaxation-based methods, NLP solvers, homotopy parameter update and relaxation parameter steering strategies. Moreover, we check whether the obtained stationary points allow first-order descent directions, which may be the case for some of the weaker MPCC stationarity concepts. In the best case, the Scholtes’ relaxation (SIAM J. Optim. 11, 918–936, 2001) with IPOPT (Math. Program. 106, 25–57, 2006) as NLP solver manages to solve 73.8% of the problems. This highlights the need for further improvements in algorithms and software for MPCCs. This paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control problems (OCPs) subject to nonsmooth dynamical systems. The MPCC theory and stationarity concepts are reviewed and summarized. The focus is on relaxation-based methods for MPCCs, which solve a (finite) sequence of more regular nonlinear programs (NLP), where a regularization/homotopy parameter is driven to zero. Such methods perform reasonably well on currently available benchmarks. However, these results do not always generalize to MPCCs obtained from nonsmooth OCPs. To provide a more complete picture, this paper introduces a novel benchmark collection of such problems, which we call . The problem set includes 603 different MPCCs and we split it into a few representative subsets to accelerate the testing. We compare different relaxation-based methods, NLP solvers, homotopy parameter update and relaxation parameter steering strategies. Moreover, we check whether the obtained stationary points allow first-order descent directions, which may be the case for some of the weaker MPCC stationarity concepts. In the best case, the Scholtes’ relaxation (SIAM J. Optim. 11 , 918–936, 2001) with (Math. Program. 106 , 25–57, 2006) as NLP solver manages to solve 73.8% of the problems. This highlights the need for further improvements in algorithms and software for MPCCs. |
Author | Diehl, Moritz Nurkanović, Armin Pozharskiy, Anton |
Author_xml | – sequence: 1 givenname: Armin orcidid: 0000-0002-9796-4302 surname: Nurkanović fullname: Nurkanović, Armin – sequence: 2 givenname: Anton surname: Pozharskiy fullname: Pozharskiy, Anton – sequence: 3 givenname: Moritz surname: Diehl fullname: Diehl, Moritz |
BookMark | eNp9kEtPAyEUhYmpiW31D7iaxPUor5mhy6bxlVRroibuCDBMSzMDI1BN--ul1rhw4Qa45Hzn3ntGYGCd1QCcI3iJIKyuQjoRySGmeSohzXdHYIgJLHKMMRv8vtHbCRiFsIYQlqyshkA9u_bD2GX2IOJKdyIaJdrsybulF13IPk1cZTPX9a3utI3Cm7hNtQ3RC2NjyKbehD1ubPaYvjvnErDoo-mSTRJG79pTcNyINuizn3sMXm-uX2Z3-Xxxez-bznNF0CTmqpSYlDWWuCplqYgQsGGykDUltGlqQWWNFJW0qklJMSUFqZlSRUGU1EizgozBxcG39-59o0Pka7fxNrXkBGNaMDohNKnYQaW8C8HrhisT0977WYVpOYJ8Hyk_RMpTpPw7Ur5LKP6D9j4t6rf_QV_vNH4S |
CitedBy_id | crossref_primary_10_1007_s00211_024_01412_z crossref_primary_10_1016_j_automatica_2025_112130 crossref_primary_10_1109_LCSYS_2024_3521556 crossref_primary_10_1016_j_nahs_2024_101518 |
Cites_doi | 10.1007/s10107-006-0005-4 10.1016/j.automatica.2023.111295 10.1287/moor.24.3.627 10.1145/1356052.1356054 10.1007/978-3-030-52119-6_12 10.1007/0-387-34221-4_6 10.1137/S1052623499361233 10.1007/s10107-004-0559-y 10.1007/978-3-319-04247-3 10.1137/0307016 10.1016/j.nahs.2024.101518 10.1016/j.ifacol.2020.12.1798 10.1287/moor.2021.1165 10.1007/s10589-010-9341-7 10.1109/LCSYS.2022.3181888 10.1016/S0167-6377(00)00042-0 10.1007/s12532-014-0075-x 10.1023/A:1018359900133 10.1080/02331930500342591 10.1007/s12532-018-0139-4 10.1007/978-3-8348-8202-8 10.1137/S1052623403429081 10.1016/j.jmaa.2004.10.032 10.1007/s10107-006-0083-3 10.1109/CDC49753.2023.10383937 10.1109/LCSYS.2021.3083467 10.1109/LRA.2020.2974653 10.1109/CDC51059.2022.9992908 10.1007/s12532-024-00272-w 10.1137/0911017 10.1007/b97544 10.1016/0022-0396(77)90085-7 10.1007/s10107-010-0408-0 10.1007/s101070100263 10.1007/s10107990015a 10.1109/LCSYS.2020.3003419 10.1109/LCSYS.2022.3181800 10.1109/CDC45484.2021.9683506 10.1007/s101070100244 10.1016/j.jprocont.2009.02.006 10.1109/TAC.2002.802770 10.1287/moor.25.1.1.15213 10.1137/18M1234795 10.1137/090748883 10.1007/s10957-004-5154-0 10.1007/PL00011375 10.1109/ICKS.2004.1313426 10.1007/s10589-005-3908-8 10.1016/j.compchemeng.2008.02.010 10.1016/j.nahs.2023.101460 10.1137/040606855 10.1137/100802487 10.23919/ECC51009.2020.9143593 10.1007/s00211-009-0262-2 10.1080/10556780410001709439 10.1109/LRA.2022.3152696 10.1137/120868359 10.1137/040621065 10.1007/0-387-34221-4_9 10.1016/S0045-7825(98)00280-1 10.1016/j.cma.2014.07.025 10.1023/A:1008656806889 10.1287/moor.2014.0667 10.1007/s10107-006-0020-5 10.1007/s10957-004-1176-x 10.1137/20M1370501 10.1007/s10107-011-0488-5 10.1007/s10479-004-5024-z 10.1080/10556780410001654241 10.1007/978-3-642-38189-8_16 10.1137/S1052623402407382 10.1017/CBO9780511983658 10.1007/s00211-024-01412-z 10.1137/070705490 10.1137/S0036144504446096 10.1007/BF01385627 10.1007/s10107-010-0345-y 10.1109/CDC.2008.4739025 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10013-024-00704-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2305-2228 |
EndPage | 697 |
ExternalDocumentID | 10_1007_s10013_024_00704_z |
GroupedDBID | 06D 0R~ 123 203 29Q 2LR 4.4 406 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMFV ACMLO ACOKC ACPIV ACREN ACSTC ACZOJ ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF ANMIH ASPBG ATHPR AUKKA AVWKF AXYYD AYFIA AYJHY BAPOH BGNMA CITATION CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HMJXF HRMNR HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV KWQ LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9G O9J PT4 RIG ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR ABRTQ |
ID | FETCH-LOGICAL-c319t-c6b236d2b276b6c3aa0f8b5bd434ffda4bd1c4b47d36424353d8cc553cbe1e853 |
ISSN | 2305-221X |
IngestDate | Fri Jul 25 08:57:11 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Thu Jul 03 08:26:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-c6b236d2b276b6c3aa0f8b5bd434ffda4bd1c4b47d36424353d8cc553cbe1e853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9796-4302 |
OpenAccessLink | https://doi.org/10.1007/s10013-024-00704-z |
PQID | 3224584934 |
PQPubID | 2043694 |
PageCount | 39 |
ParticipantIDs | proquest_journals_3224584934 crossref_citationtrail_10_1007_s10013_024_00704_z crossref_primary_10_1007_s10013_024_00704_z |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Vietnam journal of mathematics |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | A Nurkanović (704_CR76) 2021; 5 C Büskens (704_CR12) 2013 ED Dolan (704_CR19) 2002; 91 S Steffensen (704_CR96) 2010; 20 A Nurkanović (704_CR78) 2022; 6 704_CR62 PT Piiroinen (704_CR87) 2008; 34 704_CR60 704_CR65 704_CR63 R Fletcher (704_CR28) 2002; 91 704_CR64 704_CR69 704_CR67 AU Raghunathan (704_CR89) 2005; 15 D Stewart (704_CR98) 1990; 58 TA Howell (704_CR48) 2022; 7 JJ Ye (704_CR104) 2005; 307 M Fukushima (704_CR33) 1998; 10 O Stein (704_CR97) 2012; 131 MN Jung (704_CR55) 2013 JF Bard (704_CR6) 1990; 11 RH Byrd (704_CR13) 2012; 133 J Carius (704_CR15) 2020; 5 JAE Andersson (704_CR2) 2019; 11 DE Stewart (704_CR99) 1996; 37 R Fletcher (704_CR29) 2004; 19 704_CR80 W Achtziger (704_CR1) 2008; 114 704_CR82 704_CR88 L Guo (704_CR40) 2022; 47 B Brogliato (704_CR10) 2020; 62 Y Kim (704_CR59) 2020 PE Gill (704_CR38) 2015; 7 ML Flegel (704_CR25) 2005; 54 DE Stewart (704_CR100) 2010; 114 J Nocedal (704_CR73) 2006 T Hoheisel (704_CR47) 2013; 137 704_CR74 704_CR75 JV Outrata (704_CR85) 1999; 24 704_CR79 D Thierry (704_CR101) 2020; 53 G Giallombardo (704_CR36) 2008; 112 A Kadrani (704_CR56) 2009; 20 M Anitescu (704_CR5) 2007; 110 HY Benson (704_CR9) 2006; 34 J-S Pang (704_CR86) 1999; 13 XM Hu (704_CR50) 2004; 123 C Kanzow (704_CR58) 2015; 40 JB Rawlings (704_CR91) 2017 704_CR3 BT Baumrucker (704_CR8) 2009; 19 B Chen (704_CR16) 2000; 88 704_CR22 BT Baumrucker (704_CR7) 2008; 32 704_CR20 F Facchinei (704_CR21) 1999; 85 A Wächter (704_CR103) 2006; 106 M Calvo (704_CR14) 2016; 43 S Leyffer (704_CR66) 2006; 17 704_CR27 A Nurkanović (704_CR84) 2024; 52 J Hall (704_CR43) 2022; 6 704_CR94 AF Izmailov (704_CR53) 2014 704_CR95 G-H Lin (704_CR68) 2005; 133 MC Ferris (704_CR23) 1999; 174 A Nurkanović (704_CR83) 2024; 156 AF Izmailov (704_CR52) 2012; 22 ML Flegel (704_CR26) 2006 M Anitescu (704_CR4) 2005; 16 R Fletcher (704_CR31) 2006; 17 704_CR18 704_CR17 A Nurkanović (704_CR81) 2023; 158 704_CR102 Z-Q Luo (704_CR71) 1996 WPMH Heemels (704_CR46) 2000; 27 ML Flegel (704_CR24) 2005; 124 D Ralph (704_CR90) 2004; 19 A Nurkanović (704_CR77) 2022; 6 704_CR44 704_CR41 O Brüls (704_CR11) 2014; 281 704_CR42 704_CR45 704_CR49 H Scheel (704_CR92) 2000; 25 X Liu (704_CR70) 2004; 101 P Gill (704_CR37) 2005; 47 M Guignard (704_CR39) 1969; 7 JJ Moreau (704_CR72) 1977; 26 704_CR32 AF Izmailov (704_CR51) 2012; 51 C Kirches (704_CR61) 2022; 32 704_CR30 KH Johansson (704_CR54) 2002; 47 704_CR34 704_CR35 C Kanzow (704_CR57) 2013; 23 S Scholtes (704_CR93) 2001; 11 |
References_xml | – volume: 110 start-page: 337 year: 2007 ident: 704_CR5 publication-title: Math. Program. doi: 10.1007/s10107-006-0005-4 – volume: 158 start-page: 111295 year: 2023 ident: 704_CR81 publication-title: Automatica doi: 10.1016/j.automatica.2023.111295 – volume: 24 start-page: 627 year: 1999 ident: 704_CR85 publication-title: Math. Oper. Res. doi: 10.1287/moor.24.3.627 – ident: 704_CR3 – volume: 34 start-page: 13 year: 2008 ident: 704_CR87 publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/1356052.1356054 – start-page: 335 volume-title: Bilevel Optimization year: 2020 ident: 704_CR59 doi: 10.1007/978-3-030-52119-6_12 – start-page: 111 volume-title: Optimization with Multivalued Mappings year: 2006 ident: 704_CR26 doi: 10.1007/0-387-34221-4_6 – volume: 11 start-page: 918 year: 2001 ident: 704_CR93 publication-title: SIAM J. Optim. doi: 10.1137/S1052623499361233 – volume: 106 start-page: 25 year: 2006 ident: 704_CR103 publication-title: Math. Program. doi: 10.1007/s10107-004-0559-y – volume-title: Newton-Type Methods for Optimization and Variational Problems year: 2014 ident: 704_CR53 doi: 10.1007/978-3-319-04247-3 – ident: 704_CR63 – volume: 7 start-page: 232 year: 1969 ident: 704_CR39 publication-title: SIAM J. Control doi: 10.1137/0307016 – ident: 704_CR80 doi: 10.1016/j.nahs.2024.101518 – volume: 53 start-page: 6496 year: 2020 ident: 704_CR101 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2020.12.1798 – volume: 101 start-page: 231 year: 2004 ident: 704_CR70 publication-title: Math. Program. – volume: 37 start-page: 288 year: 1996 ident: 704_CR99 publication-title: The ANZIAM Journal – ident: 704_CR74 – volume: 47 start-page: 1229 year: 2022 ident: 704_CR40 publication-title: Math. Oper. Res. doi: 10.1287/moor.2021.1165 – volume: 51 start-page: 199 year: 2012 ident: 704_CR51 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-010-9341-7 – ident: 704_CR95 – volume: 6 start-page: 3182 year: 2022 ident: 704_CR77 publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2022.3181888 – volume: 27 start-page: 83 year: 2000 ident: 704_CR46 publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(00)00042-0 – volume: 7 start-page: 71 year: 2015 ident: 704_CR38 publication-title: Math. Program. Comput. doi: 10.1007/s12532-014-0075-x – volume: 10 start-page: 5 year: 1998 ident: 704_CR33 publication-title: Comput. Optim. Appl. doi: 10.1023/A:1018359900133 – volume: 54 start-page: 517 year: 2005 ident: 704_CR25 publication-title: Optimization doi: 10.1080/02331930500342591 – volume: 11 start-page: 1 year: 2019 ident: 704_CR2 publication-title: Math. Program. Comput. doi: 10.1007/s12532-018-0139-4 – ident: 704_CR60 doi: 10.1007/978-3-8348-8202-8 – volume: 15 start-page: 720 year: 2005 ident: 704_CR89 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403429081 – volume: 307 start-page: 350 year: 2005 ident: 704_CR104 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2004.10.032 – volume: 114 start-page: 69 year: 2008 ident: 704_CR1 publication-title: Math. Program. Ser. A doi: 10.1007/s10107-006-0083-3 – ident: 704_CR79 doi: 10.1109/CDC49753.2023.10383937 – volume: 6 start-page: 536 year: 2022 ident: 704_CR43 publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2021.3083467 – volume: 5 start-page: 2897 year: 2020 ident: 704_CR15 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2974653 – volume: 43 start-page: 25 year: 2016 ident: 704_CR14 publication-title: ACM Trans. Math. Softw. (TOMS) – ident: 704_CR69 doi: 10.1109/CDC51059.2022.9992908 – ident: 704_CR44 doi: 10.1007/s12532-024-00272-w – volume: 11 start-page: 281 year: 1990 ident: 704_CR6 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0911017 – ident: 704_CR22 doi: 10.1007/b97544 – ident: 704_CR42 – volume: 26 start-page: 347 year: 1977 ident: 704_CR72 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(77)90085-7 – volume: 133 start-page: 39 year: 2012 ident: 704_CR13 publication-title: Math. Program. doi: 10.1007/s10107-010-0408-0 – volume: 91 start-page: 201 year: 2002 ident: 704_CR19 publication-title: Math. Program. doi: 10.1007/s101070100263 – volume: 85 start-page: 107 year: 1999 ident: 704_CR21 publication-title: Math. Program. doi: 10.1007/s10107990015a – volume: 5 start-page: 439 year: 2021 ident: 704_CR76 publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2020.3003419 – volume: 6 start-page: 3110 year: 2022 ident: 704_CR78 publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2022.3181800 – ident: 704_CR62 doi: 10.1109/CDC45484.2021.9683506 – volume: 91 start-page: 239 year: 2002 ident: 704_CR28 publication-title: Math. Program. doi: 10.1007/s101070100244 – ident: 704_CR20 – volume: 19 start-page: 1248 year: 2009 ident: 704_CR8 publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.02.006 – ident: 704_CR45 – volume: 47 start-page: 1414 year: 2002 ident: 704_CR54 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2002.802770 – volume: 25 start-page: 1 year: 2000 ident: 704_CR92 publication-title: Math. Oper. Res. doi: 10.1287/moor.25.1.1.15213 – volume: 62 start-page: 3 year: 2020 ident: 704_CR10 publication-title: SIAM Rev. doi: 10.1137/18M1234795 – ident: 704_CR35 – volume: 20 start-page: 2504 year: 2010 ident: 704_CR96 publication-title: SIAM J. Optim. doi: 10.1137/090748883 – volume-title: Model Predictive Control: Theory, Computation, and Design year: 2017 ident: 704_CR91 – volume: 123 start-page: 365 year: 2004 ident: 704_CR50 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-004-5154-0 – volume: 88 start-page: 211 year: 2000 ident: 704_CR16 publication-title: Math. Program. doi: 10.1007/PL00011375 – ident: 704_CR34 doi: 10.1109/ICKS.2004.1313426 – ident: 704_CR67 – volume: 34 start-page: 155 year: 2006 ident: 704_CR9 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-005-3908-8 – volume: 32 start-page: 2903 year: 2008 ident: 704_CR7 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.02.010 – volume: 52 start-page: 101460 year: 2024 ident: 704_CR84 publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2023.101460 – volume: 16 start-page: 120 year: 2005 ident: 704_CR4 publication-title: SIAM J. Optim. doi: 10.1137/040606855 – volume: 23 start-page: 770 year: 2013 ident: 704_CR57 publication-title: SIAM J. Optim. doi: 10.1137/100802487 – ident: 704_CR75 doi: 10.23919/ECC51009.2020.9143593 – volume: 114 start-page: 653 year: 2010 ident: 704_CR100 publication-title: Numer. Math. doi: 10.1007/s00211-009-0262-2 – ident: 704_CR82 – volume: 19 start-page: 527 year: 2004 ident: 704_CR90 publication-title: Optim. Methods Softw. doi: 10.1080/10556780410001709439 – volume: 7 start-page: 6750 year: 2022 ident: 704_CR48 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3152696 – ident: 704_CR32 – volume: 22 start-page: 1579 year: 2012 ident: 704_CR52 publication-title: SIAM J. Optim. doi: 10.1137/120868359 – volume: 17 start-page: 52 year: 2006 ident: 704_CR66 publication-title: SIAM J. Optim. doi: 10.1137/040621065 – start-page: 85 volume-title: Modeling and Optimization in Space Engineering year: 2013 ident: 704_CR12 – ident: 704_CR65 doi: 10.1007/0-387-34221-4_9 – volume: 174 start-page: 108 year: 1999 ident: 704_CR23 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00280-1 – ident: 704_CR64 – volume: 281 start-page: 131 year: 2014 ident: 704_CR11 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.07.025 – volume: 13 start-page: 111 year: 1999 ident: 704_CR86 publication-title: Comput. Optim. Appl. doi: 10.1023/A:1008656806889 – volume: 40 start-page: 253 year: 2015 ident: 704_CR58 publication-title: Math. Oper. Res. doi: 10.1287/moor.2014.0667 – volume: 112 start-page: 335 year: 2008 ident: 704_CR36 publication-title: Math. Program. doi: 10.1007/s10107-006-0020-5 – ident: 704_CR27 – volume: 124 start-page: 595 year: 2005 ident: 704_CR24 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-004-1176-x – ident: 704_CR94 – volume: 32 start-page: 75 year: 2022 ident: 704_CR61 publication-title: SIAM J. Optim. doi: 10.1137/20M1370501 – volume: 137 start-page: 257 year: 2013 ident: 704_CR47 publication-title: Math. Program. doi: 10.1007/s10107-011-0488-5 – volume: 133 start-page: 63 year: 2005 ident: 704_CR68 publication-title: Ann. Oper. Res. doi: 10.1007/s10479-004-5024-z – volume: 19 start-page: 15 year: 2004 ident: 704_CR29 publication-title: Optim. Methods Softw. doi: 10.1080/10556780410001654241 – start-page: 387 volume-title: Facets of Combinatorial Optimization - Festschrift for Martin Grötschel year: 2013 ident: 704_CR55 doi: 10.1007/978-3-642-38189-8_16 – ident: 704_CR88 – volume: 17 start-page: 259 year: 2006 ident: 704_CR31 publication-title: SIAM J. Optim. doi: 10.1137/S1052623402407382 – volume-title: Numerical Optimization year: 2006 ident: 704_CR73 – ident: 704_CR30 – volume-title: Mathematical Programs with Equilibrium Constraints year: 1996 ident: 704_CR71 doi: 10.1017/CBO9780511983658 – volume: 156 start-page: 1115 year: 2024 ident: 704_CR83 publication-title: Numer. Math. doi: 10.1007/s00211-024-01412-z – volume: 20 start-page: 78 year: 2009 ident: 704_CR56 publication-title: SIAM J. Optim. doi: 10.1137/070705490 – ident: 704_CR18 – volume: 47 start-page: 99 year: 2005 ident: 704_CR37 publication-title: SIAM Rev. doi: 10.1137/S0036144504446096 – volume: 58 start-page: 299 year: 1990 ident: 704_CR98 publication-title: Numer. Math. doi: 10.1007/BF01385627 – volume: 131 start-page: 71 year: 2012 ident: 704_CR97 publication-title: Math. Program. doi: 10.1007/s10107-010-0345-y – ident: 704_CR17 doi: 10.1109/CDC.2008.4739025 – ident: 704_CR41 – ident: 704_CR49 – ident: 704_CR102 |
SSID | ssj0006867 |
Score | 2.3119404 |
SecondaryResourceType | review_article |
Snippet | This paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 659 |
SubjectTerms | Benchmarks Constraints Mathematical programming Mathematics Nonlinear programming Optimal control Parameters Regularization Solvers |
Title | Solving Mathematical Programs with Complementarity Constraints Arising in Nonsmooth Optimal Control |
URI | https://www.proquest.com/docview/3224584934 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELY2eNke0MY2DcaQH3irjBLbcdLHaipDDMqktVP3ZMVOIiHRFNHw0r9-Z-fipgyhbS9R5Py-z7k72_fdEXLCTWTBEc9YLsqSSZvFbMhjwUwR8aGq8nzog8evJup8Ji_mybyrZo_sksac2vWTvJL_QRXaAFfHkv0HZMNNoQH2AV_YAsKw_SuMfyxv_XzAVci9CgL_3kZcIW3N_e8YIe7K1PkCnb4sRLMajOAHR0rLBJoXS0BtcA06ZOFnFHwMe995_XlTNnW-6GebWIQnb80f8CTEmm7PH7rgaLdkEfgtTgXB-CRhnPuiNmAt-m1I6UYd2ib8xb4iegpRYb7v1raqNhb3D7UddTRmX2uCS-ayEEm23hipbmF-cq3PZpeXejqeT1-SXZ6mbnF-d_T117dxsMAq85WDw9sjWQopk4-ese2QbNtj72RM35A9HB3QUQv1W_KirPfJ6w28q3fEIui0DzrtQKcOdPoIdNoDnSLo9KamAXSKoFME_T2ZnY2nX84ZVspgFlRow6wyXKiCG54qo6zI86jKTGIKKWRVFbk0RWylkWkhYLwJHrIoMmuTRFhTxiV4bB_ITr2sy4-EiirNCu4Y3aoCVxsuSgwMUW0uYmGqODogcScubTGNvPuCW71JgO1ErEHE2otYrw_IIFxz1yZRefbsow4FjR16pcHuuBX9oZCHzx_-RF5tevkR2WnuH8rP4Dc25hi7yW-Iq3B0 |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Mathematical+Programs+with+Complementarity+Constraints+Arising+in+Nonsmooth+Optimal+Control&rft.jtitle=Vietnam+journal+of+mathematics&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=2305-221X&rft.eissn=2305-2228&rft.volume=53&rft.issue=3&rft.spage=659&rft.epage=697&rft_id=info:doi/10.1007%2Fs10013-024-00704-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-221X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-221X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-221X&client=summon |