Solving Mathematical Programs with Complementarity Constraints Arising in Nonsmooth Optimal Control

This paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control problems (OCPs) subject to nonsmooth dynamical systems. The MPCC theory and stationarity concepts are reviewed and summarized. The focus is...

Full description

Saved in:
Bibliographic Details
Published inVietnam journal of mathematics Vol. 53; no. 3; pp. 659 - 697
Main Authors Nurkanović, Armin, Pozharskiy, Anton, Diehl, Moritz
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.07.2025
Subjects
Online AccessGet full text
ISSN2305-221X
2305-2228
DOI10.1007/s10013-024-00704-z

Cover

Loading…
Abstract This paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control problems (OCPs) subject to nonsmooth dynamical systems. The MPCC theory and stationarity concepts are reviewed and summarized. The focus is on relaxation-based methods for MPCCs, which solve a (finite) sequence of more regular nonlinear programs (NLP), where a regularization/homotopy parameter is driven to zero. Such methods perform reasonably well on currently available benchmarks. However, these results do not always generalize to MPCCs obtained from nonsmooth OCPs. To provide a more complete picture, this paper introduces a novel benchmark collection of such problems, which we call . The problem set includes 603 different MPCCs and we split it into a few representative subsets to accelerate the testing. We compare different relaxation-based methods, NLP solvers, homotopy parameter update and relaxation parameter steering strategies. Moreover, we check whether the obtained stationary points allow first-order descent directions, which may be the case for some of the weaker MPCC stationarity concepts. In the best case, the Scholtes’ relaxation (SIAM J. Optim. 11 , 918–936, 2001) with  (Math. Program. 106 , 25–57, 2006) as NLP solver manages to solve 73.8% of the problems. This highlights the need for further improvements in algorithms and software for MPCCs.
AbstractList This paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control problems (OCPs) subject to nonsmooth dynamical systems. The MPCC theory and stationarity concepts are reviewed and summarized. The focus is on relaxation-based methods for MPCCs, which solve a (finite) sequence of more regular nonlinear programs (NLP), where a regularization/homotopy parameter is driven to zero. Such methods perform reasonably well on currently available benchmarks. However, these results do not always generalize to MPCCs obtained from nonsmooth OCPs. To provide a more complete picture, this paper introduces a novel benchmark collection of such problems, which we call NOSBENCH. The problem set includes 603 different MPCCs and we split it into a few representative subsets to accelerate the testing. We compare different relaxation-based methods, NLP solvers, homotopy parameter update and relaxation parameter steering strategies. Moreover, we check whether the obtained stationary points allow first-order descent directions, which may be the case for some of the weaker MPCC stationarity concepts. In the best case, the Scholtes’ relaxation (SIAM J. Optim. 11, 918–936, 2001) with IPOPT (Math. Program. 106, 25–57, 2006) as NLP solver manages to solve 73.8% of the problems. This highlights the need for further improvements in algorithms and software for MPCCs.
This paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control problems (OCPs) subject to nonsmooth dynamical systems. The MPCC theory and stationarity concepts are reviewed and summarized. The focus is on relaxation-based methods for MPCCs, which solve a (finite) sequence of more regular nonlinear programs (NLP), where a regularization/homotopy parameter is driven to zero. Such methods perform reasonably well on currently available benchmarks. However, these results do not always generalize to MPCCs obtained from nonsmooth OCPs. To provide a more complete picture, this paper introduces a novel benchmark collection of such problems, which we call . The problem set includes 603 different MPCCs and we split it into a few representative subsets to accelerate the testing. We compare different relaxation-based methods, NLP solvers, homotopy parameter update and relaxation parameter steering strategies. Moreover, we check whether the obtained stationary points allow first-order descent directions, which may be the case for some of the weaker MPCC stationarity concepts. In the best case, the Scholtes’ relaxation (SIAM J. Optim. 11 , 918–936, 2001) with  (Math. Program. 106 , 25–57, 2006) as NLP solver manages to solve 73.8% of the problems. This highlights the need for further improvements in algorithms and software for MPCCs.
Author Diehl, Moritz
Nurkanović, Armin
Pozharskiy, Anton
Author_xml – sequence: 1
  givenname: Armin
  orcidid: 0000-0002-9796-4302
  surname: Nurkanović
  fullname: Nurkanović, Armin
– sequence: 2
  givenname: Anton
  surname: Pozharskiy
  fullname: Pozharskiy, Anton
– sequence: 3
  givenname: Moritz
  surname: Diehl
  fullname: Diehl, Moritz
BookMark eNp9kEtPAyEUhYmpiW31D7iaxPUor5mhy6bxlVRroibuCDBMSzMDI1BN--ul1rhw4Qa45Hzn3ntGYGCd1QCcI3iJIKyuQjoRySGmeSohzXdHYIgJLHKMMRv8vtHbCRiFsIYQlqyshkA9u_bD2GX2IOJKdyIaJdrsybulF13IPk1cZTPX9a3utI3Cm7hNtQ3RC2NjyKbehD1ubPaYvjvnErDoo-mSTRJG79pTcNyINuizn3sMXm-uX2Z3-Xxxez-bznNF0CTmqpSYlDWWuCplqYgQsGGykDUltGlqQWWNFJW0qklJMSUFqZlSRUGU1EizgozBxcG39-59o0Pka7fxNrXkBGNaMDohNKnYQaW8C8HrhisT0977WYVpOYJ8Hyk_RMpTpPw7Ur5LKP6D9j4t6rf_QV_vNH4S
CitedBy_id crossref_primary_10_1007_s00211_024_01412_z
crossref_primary_10_1016_j_automatica_2025_112130
crossref_primary_10_1109_LCSYS_2024_3521556
crossref_primary_10_1016_j_nahs_2024_101518
Cites_doi 10.1007/s10107-006-0005-4
10.1016/j.automatica.2023.111295
10.1287/moor.24.3.627
10.1145/1356052.1356054
10.1007/978-3-030-52119-6_12
10.1007/0-387-34221-4_6
10.1137/S1052623499361233
10.1007/s10107-004-0559-y
10.1007/978-3-319-04247-3
10.1137/0307016
10.1016/j.nahs.2024.101518
10.1016/j.ifacol.2020.12.1798
10.1287/moor.2021.1165
10.1007/s10589-010-9341-7
10.1109/LCSYS.2022.3181888
10.1016/S0167-6377(00)00042-0
10.1007/s12532-014-0075-x
10.1023/A:1018359900133
10.1080/02331930500342591
10.1007/s12532-018-0139-4
10.1007/978-3-8348-8202-8
10.1137/S1052623403429081
10.1016/j.jmaa.2004.10.032
10.1007/s10107-006-0083-3
10.1109/CDC49753.2023.10383937
10.1109/LCSYS.2021.3083467
10.1109/LRA.2020.2974653
10.1109/CDC51059.2022.9992908
10.1007/s12532-024-00272-w
10.1137/0911017
10.1007/b97544
10.1016/0022-0396(77)90085-7
10.1007/s10107-010-0408-0
10.1007/s101070100263
10.1007/s10107990015a
10.1109/LCSYS.2020.3003419
10.1109/LCSYS.2022.3181800
10.1109/CDC45484.2021.9683506
10.1007/s101070100244
10.1016/j.jprocont.2009.02.006
10.1109/TAC.2002.802770
10.1287/moor.25.1.1.15213
10.1137/18M1234795
10.1137/090748883
10.1007/s10957-004-5154-0
10.1007/PL00011375
10.1109/ICKS.2004.1313426
10.1007/s10589-005-3908-8
10.1016/j.compchemeng.2008.02.010
10.1016/j.nahs.2023.101460
10.1137/040606855
10.1137/100802487
10.23919/ECC51009.2020.9143593
10.1007/s00211-009-0262-2
10.1080/10556780410001709439
10.1109/LRA.2022.3152696
10.1137/120868359
10.1137/040621065
10.1007/0-387-34221-4_9
10.1016/S0045-7825(98)00280-1
10.1016/j.cma.2014.07.025
10.1023/A:1008656806889
10.1287/moor.2014.0667
10.1007/s10107-006-0020-5
10.1007/s10957-004-1176-x
10.1137/20M1370501
10.1007/s10107-011-0488-5
10.1007/s10479-004-5024-z
10.1080/10556780410001654241
10.1007/978-3-642-38189-8_16
10.1137/S1052623402407382
10.1017/CBO9780511983658
10.1007/s00211-024-01412-z
10.1137/070705490
10.1137/S0036144504446096
10.1007/BF01385627
10.1007/s10107-010-0345-y
10.1109/CDC.2008.4739025
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10013-024-00704-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2305-2228
EndPage 697
ExternalDocumentID 10_1007_s10013_024_00704_z
GroupedDBID 06D
0R~
123
203
29Q
2LR
4.4
406
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMFV
ACMLO
ACOKC
ACPIV
ACREN
ACSTC
ACZOJ
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
ANMIH
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
BAPOH
BGNMA
CITATION
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KWQ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
RIG
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
ABRTQ
ID FETCH-LOGICAL-c319t-c6b236d2b276b6c3aa0f8b5bd434ffda4bd1c4b47d36424353d8cc553cbe1e853
ISSN 2305-221X
IngestDate Fri Jul 25 08:57:11 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Thu Jul 03 08:26:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-c6b236d2b276b6c3aa0f8b5bd434ffda4bd1c4b47d36424353d8cc553cbe1e853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9796-4302
OpenAccessLink https://doi.org/10.1007/s10013-024-00704-z
PQID 3224584934
PQPubID 2043694
PageCount 39
ParticipantIDs proquest_journals_3224584934
crossref_citationtrail_10_1007_s10013_024_00704_z
crossref_primary_10_1007_s10013_024_00704_z
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Vietnam journal of mathematics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References A Nurkanović (704_CR76) 2021; 5
C Büskens (704_CR12) 2013
ED Dolan (704_CR19) 2002; 91
S Steffensen (704_CR96) 2010; 20
A Nurkanović (704_CR78) 2022; 6
704_CR62
PT Piiroinen (704_CR87) 2008; 34
704_CR60
704_CR65
704_CR63
R Fletcher (704_CR28) 2002; 91
704_CR64
704_CR69
704_CR67
AU Raghunathan (704_CR89) 2005; 15
D Stewart (704_CR98) 1990; 58
TA Howell (704_CR48) 2022; 7
JJ Ye (704_CR104) 2005; 307
M Fukushima (704_CR33) 1998; 10
O Stein (704_CR97) 2012; 131
MN Jung (704_CR55) 2013
JF Bard (704_CR6) 1990; 11
RH Byrd (704_CR13) 2012; 133
J Carius (704_CR15) 2020; 5
JAE Andersson (704_CR2) 2019; 11
DE Stewart (704_CR99) 1996; 37
R Fletcher (704_CR29) 2004; 19
704_CR80
W Achtziger (704_CR1) 2008; 114
704_CR82
704_CR88
L Guo (704_CR40) 2022; 47
B Brogliato (704_CR10) 2020; 62
Y Kim (704_CR59) 2020
PE Gill (704_CR38) 2015; 7
ML Flegel (704_CR25) 2005; 54
DE Stewart (704_CR100) 2010; 114
J Nocedal (704_CR73) 2006
T Hoheisel (704_CR47) 2013; 137
704_CR74
704_CR75
JV Outrata (704_CR85) 1999; 24
704_CR79
D Thierry (704_CR101) 2020; 53
G Giallombardo (704_CR36) 2008; 112
A Kadrani (704_CR56) 2009; 20
M Anitescu (704_CR5) 2007; 110
HY Benson (704_CR9) 2006; 34
J-S Pang (704_CR86) 1999; 13
XM Hu (704_CR50) 2004; 123
C Kanzow (704_CR58) 2015; 40
JB Rawlings (704_CR91) 2017
704_CR3
BT Baumrucker (704_CR8) 2009; 19
B Chen (704_CR16) 2000; 88
704_CR22
BT Baumrucker (704_CR7) 2008; 32
704_CR20
F Facchinei (704_CR21) 1999; 85
A Wächter (704_CR103) 2006; 106
M Calvo (704_CR14) 2016; 43
S Leyffer (704_CR66) 2006; 17
704_CR27
A Nurkanović (704_CR84) 2024; 52
J Hall (704_CR43) 2022; 6
704_CR94
AF Izmailov (704_CR53) 2014
704_CR95
G-H Lin (704_CR68) 2005; 133
MC Ferris (704_CR23) 1999; 174
A Nurkanović (704_CR83) 2024; 156
AF Izmailov (704_CR52) 2012; 22
ML Flegel (704_CR26) 2006
M Anitescu (704_CR4) 2005; 16
R Fletcher (704_CR31) 2006; 17
704_CR18
704_CR17
A Nurkanović (704_CR81) 2023; 158
704_CR102
Z-Q Luo (704_CR71) 1996
WPMH Heemels (704_CR46) 2000; 27
ML Flegel (704_CR24) 2005; 124
D Ralph (704_CR90) 2004; 19
A Nurkanović (704_CR77) 2022; 6
704_CR44
704_CR41
O Brüls (704_CR11) 2014; 281
704_CR42
704_CR45
704_CR49
H Scheel (704_CR92) 2000; 25
X Liu (704_CR70) 2004; 101
P Gill (704_CR37) 2005; 47
M Guignard (704_CR39) 1969; 7
JJ Moreau (704_CR72) 1977; 26
704_CR32
AF Izmailov (704_CR51) 2012; 51
C Kirches (704_CR61) 2022; 32
704_CR30
KH Johansson (704_CR54) 2002; 47
704_CR34
704_CR35
C Kanzow (704_CR57) 2013; 23
S Scholtes (704_CR93) 2001; 11
References_xml – volume: 110
  start-page: 337
  year: 2007
  ident: 704_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0005-4
– volume: 158
  start-page: 111295
  year: 2023
  ident: 704_CR81
  publication-title: Automatica
  doi: 10.1016/j.automatica.2023.111295
– volume: 24
  start-page: 627
  year: 1999
  ident: 704_CR85
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.24.3.627
– ident: 704_CR3
– volume: 34
  start-page: 13
  year: 2008
  ident: 704_CR87
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/1356052.1356054
– start-page: 335
  volume-title: Bilevel Optimization
  year: 2020
  ident: 704_CR59
  doi: 10.1007/978-3-030-52119-6_12
– start-page: 111
  volume-title: Optimization with Multivalued Mappings
  year: 2006
  ident: 704_CR26
  doi: 10.1007/0-387-34221-4_6
– volume: 11
  start-page: 918
  year: 2001
  ident: 704_CR93
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499361233
– volume: 106
  start-page: 25
  year: 2006
  ident: 704_CR103
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– volume-title: Newton-Type Methods for Optimization and Variational Problems
  year: 2014
  ident: 704_CR53
  doi: 10.1007/978-3-319-04247-3
– ident: 704_CR63
– volume: 7
  start-page: 232
  year: 1969
  ident: 704_CR39
  publication-title: SIAM J. Control
  doi: 10.1137/0307016
– ident: 704_CR80
  doi: 10.1016/j.nahs.2024.101518
– volume: 53
  start-page: 6496
  year: 2020
  ident: 704_CR101
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2020.12.1798
– volume: 101
  start-page: 231
  year: 2004
  ident: 704_CR70
  publication-title: Math. Program.
– volume: 37
  start-page: 288
  year: 1996
  ident: 704_CR99
  publication-title: The ANZIAM Journal
– ident: 704_CR74
– volume: 47
  start-page: 1229
  year: 2022
  ident: 704_CR40
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2021.1165
– volume: 51
  start-page: 199
  year: 2012
  ident: 704_CR51
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-010-9341-7
– ident: 704_CR95
– volume: 6
  start-page: 3182
  year: 2022
  ident: 704_CR77
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2022.3181888
– volume: 27
  start-page: 83
  year: 2000
  ident: 704_CR46
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(00)00042-0
– volume: 7
  start-page: 71
  year: 2015
  ident: 704_CR38
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-014-0075-x
– volume: 10
  start-page: 5
  year: 1998
  ident: 704_CR33
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1018359900133
– volume: 54
  start-page: 517
  year: 2005
  ident: 704_CR25
  publication-title: Optimization
  doi: 10.1080/02331930500342591
– volume: 11
  start-page: 1
  year: 2019
  ident: 704_CR2
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-018-0139-4
– ident: 704_CR60
  doi: 10.1007/978-3-8348-8202-8
– volume: 15
  start-page: 720
  year: 2005
  ident: 704_CR89
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403429081
– volume: 307
  start-page: 350
  year: 2005
  ident: 704_CR104
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.10.032
– volume: 114
  start-page: 69
  year: 2008
  ident: 704_CR1
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-006-0083-3
– ident: 704_CR79
  doi: 10.1109/CDC49753.2023.10383937
– volume: 6
  start-page: 536
  year: 2022
  ident: 704_CR43
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2021.3083467
– volume: 5
  start-page: 2897
  year: 2020
  ident: 704_CR15
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2974653
– volume: 43
  start-page: 25
  year: 2016
  ident: 704_CR14
  publication-title: ACM Trans. Math. Softw. (TOMS)
– ident: 704_CR69
  doi: 10.1109/CDC51059.2022.9992908
– ident: 704_CR44
  doi: 10.1007/s12532-024-00272-w
– volume: 11
  start-page: 281
  year: 1990
  ident: 704_CR6
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0911017
– ident: 704_CR22
  doi: 10.1007/b97544
– ident: 704_CR42
– volume: 26
  start-page: 347
  year: 1977
  ident: 704_CR72
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(77)90085-7
– volume: 133
  start-page: 39
  year: 2012
  ident: 704_CR13
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0408-0
– volume: 91
  start-page: 201
  year: 2002
  ident: 704_CR19
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 85
  start-page: 107
  year: 1999
  ident: 704_CR21
  publication-title: Math. Program.
  doi: 10.1007/s10107990015a
– volume: 5
  start-page: 439
  year: 2021
  ident: 704_CR76
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2020.3003419
– volume: 6
  start-page: 3110
  year: 2022
  ident: 704_CR78
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2022.3181800
– ident: 704_CR62
  doi: 10.1109/CDC45484.2021.9683506
– volume: 91
  start-page: 239
  year: 2002
  ident: 704_CR28
  publication-title: Math. Program.
  doi: 10.1007/s101070100244
– ident: 704_CR20
– volume: 19
  start-page: 1248
  year: 2009
  ident: 704_CR8
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.02.006
– ident: 704_CR45
– volume: 47
  start-page: 1414
  year: 2002
  ident: 704_CR54
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2002.802770
– volume: 25
  start-page: 1
  year: 2000
  ident: 704_CR92
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.25.1.1.15213
– volume: 62
  start-page: 3
  year: 2020
  ident: 704_CR10
  publication-title: SIAM Rev.
  doi: 10.1137/18M1234795
– ident: 704_CR35
– volume: 20
  start-page: 2504
  year: 2010
  ident: 704_CR96
  publication-title: SIAM J. Optim.
  doi: 10.1137/090748883
– volume-title: Model Predictive Control: Theory, Computation, and Design
  year: 2017
  ident: 704_CR91
– volume: 123
  start-page: 365
  year: 2004
  ident: 704_CR50
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-004-5154-0
– volume: 88
  start-page: 211
  year: 2000
  ident: 704_CR16
  publication-title: Math. Program.
  doi: 10.1007/PL00011375
– ident: 704_CR34
  doi: 10.1109/ICKS.2004.1313426
– ident: 704_CR67
– volume: 34
  start-page: 155
  year: 2006
  ident: 704_CR9
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-005-3908-8
– volume: 32
  start-page: 2903
  year: 2008
  ident: 704_CR7
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.02.010
– volume: 52
  start-page: 101460
  year: 2024
  ident: 704_CR84
  publication-title: Nonlinear Anal. Hybrid Syst.
  doi: 10.1016/j.nahs.2023.101460
– volume: 16
  start-page: 120
  year: 2005
  ident: 704_CR4
  publication-title: SIAM J. Optim.
  doi: 10.1137/040606855
– volume: 23
  start-page: 770
  year: 2013
  ident: 704_CR57
  publication-title: SIAM J. Optim.
  doi: 10.1137/100802487
– ident: 704_CR75
  doi: 10.23919/ECC51009.2020.9143593
– volume: 114
  start-page: 653
  year: 2010
  ident: 704_CR100
  publication-title: Numer. Math.
  doi: 10.1007/s00211-009-0262-2
– ident: 704_CR82
– volume: 19
  start-page: 527
  year: 2004
  ident: 704_CR90
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780410001709439
– volume: 7
  start-page: 6750
  year: 2022
  ident: 704_CR48
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3152696
– ident: 704_CR32
– volume: 22
  start-page: 1579
  year: 2012
  ident: 704_CR52
  publication-title: SIAM J. Optim.
  doi: 10.1137/120868359
– volume: 17
  start-page: 52
  year: 2006
  ident: 704_CR66
  publication-title: SIAM J. Optim.
  doi: 10.1137/040621065
– start-page: 85
  volume-title: Modeling and Optimization in Space Engineering
  year: 2013
  ident: 704_CR12
– ident: 704_CR65
  doi: 10.1007/0-387-34221-4_9
– volume: 174
  start-page: 108
  year: 1999
  ident: 704_CR23
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00280-1
– ident: 704_CR64
– volume: 281
  start-page: 131
  year: 2014
  ident: 704_CR11
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.07.025
– volume: 13
  start-page: 111
  year: 1999
  ident: 704_CR86
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1008656806889
– volume: 40
  start-page: 253
  year: 2015
  ident: 704_CR58
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2014.0667
– volume: 112
  start-page: 335
  year: 2008
  ident: 704_CR36
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0020-5
– ident: 704_CR27
– volume: 124
  start-page: 595
  year: 2005
  ident: 704_CR24
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-004-1176-x
– ident: 704_CR94
– volume: 32
  start-page: 75
  year: 2022
  ident: 704_CR61
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1370501
– volume: 137
  start-page: 257
  year: 2013
  ident: 704_CR47
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0488-5
– volume: 133
  start-page: 63
  year: 2005
  ident: 704_CR68
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-004-5024-z
– volume: 19
  start-page: 15
  year: 2004
  ident: 704_CR29
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780410001654241
– start-page: 387
  volume-title: Facets of Combinatorial Optimization - Festschrift for Martin Grötschel
  year: 2013
  ident: 704_CR55
  doi: 10.1007/978-3-642-38189-8_16
– ident: 704_CR88
– volume: 17
  start-page: 259
  year: 2006
  ident: 704_CR31
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623402407382
– volume-title: Numerical Optimization
  year: 2006
  ident: 704_CR73
– ident: 704_CR30
– volume-title: Mathematical Programs with Equilibrium Constraints
  year: 1996
  ident: 704_CR71
  doi: 10.1017/CBO9780511983658
– volume: 156
  start-page: 1115
  year: 2024
  ident: 704_CR83
  publication-title: Numer. Math.
  doi: 10.1007/s00211-024-01412-z
– volume: 20
  start-page: 78
  year: 2009
  ident: 704_CR56
  publication-title: SIAM J. Optim.
  doi: 10.1137/070705490
– ident: 704_CR18
– volume: 47
  start-page: 99
  year: 2005
  ident: 704_CR37
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144504446096
– volume: 58
  start-page: 299
  year: 1990
  ident: 704_CR98
  publication-title: Numer. Math.
  doi: 10.1007/BF01385627
– volume: 131
  start-page: 71
  year: 2012
  ident: 704_CR97
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0345-y
– ident: 704_CR17
  doi: 10.1109/CDC.2008.4739025
– ident: 704_CR41
– ident: 704_CR49
– ident: 704_CR102
SSID ssj0006867
Score 2.3119404
SecondaryResourceType review_article
Snippet This paper examines solution methods for mathematical programs with complementarity constraints (MPCC) obtained from the time-discretization of optimal control...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 659
SubjectTerms Benchmarks
Constraints
Mathematical programming
Mathematics
Nonlinear programming
Optimal control
Parameters
Regularization
Solvers
Title Solving Mathematical Programs with Complementarity Constraints Arising in Nonsmooth Optimal Control
URI https://www.proquest.com/docview/3224584934
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELY2eNke0MY2DcaQH3irjBLbcdLHaipDDMqktVP3ZMVOIiHRFNHw0r9-Z-fipgyhbS9R5Py-z7k72_fdEXLCTWTBEc9YLsqSSZvFbMhjwUwR8aGq8nzog8evJup8Ji_mybyrZo_sksac2vWTvJL_QRXaAFfHkv0HZMNNoQH2AV_YAsKw_SuMfyxv_XzAVci9CgL_3kZcIW3N_e8YIe7K1PkCnb4sRLMajOAHR0rLBJoXS0BtcA06ZOFnFHwMe995_XlTNnW-6GebWIQnb80f8CTEmm7PH7rgaLdkEfgtTgXB-CRhnPuiNmAt-m1I6UYd2ib8xb4iegpRYb7v1raqNhb3D7UddTRmX2uCS-ayEEm23hipbmF-cq3PZpeXejqeT1-SXZ6mbnF-d_T117dxsMAq85WDw9sjWQopk4-ese2QbNtj72RM35A9HB3QUQv1W_KirPfJ6w28q3fEIui0DzrtQKcOdPoIdNoDnSLo9KamAXSKoFME_T2ZnY2nX84ZVspgFlRow6wyXKiCG54qo6zI86jKTGIKKWRVFbk0RWylkWkhYLwJHrIoMmuTRFhTxiV4bB_ITr2sy4-EiirNCu4Y3aoCVxsuSgwMUW0uYmGqODogcScubTGNvPuCW71JgO1ErEHE2otYrw_IIFxz1yZRefbsow4FjR16pcHuuBX9oZCHzx_-RF5tevkR2WnuH8rP4Dc25hi7yW-Iq3B0
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Mathematical+Programs+with+Complementarity+Constraints+Arising+in+Nonsmooth+Optimal+Control&rft.jtitle=Vietnam+journal+of+mathematics&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=2305-221X&rft.eissn=2305-2228&rft.volume=53&rft.issue=3&rft.spage=659&rft.epage=697&rft_id=info:doi/10.1007%2Fs10013-024-00704-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-221X&client=summon