Development of ZnO/AlFeO3 composite via hydrothermal method as supercapacitor electrode
The conversion and preservation of energy have been the subject of extensive research because of the increasing need for renewable and pollution-free energy sources. With an extended lifespan, excellent charge-discharge properties, and substantial power density, electrochemical supercapacitors are a...
Saved in:
Published in | Journal of sol-gel science and technology Vol. 111; no. 2; pp. 309 - 323 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The conversion and preservation of energy have been the subject of extensive research because of the increasing need for renewable and pollution-free energy sources. With an extended lifespan, excellent charge-discharge properties, and substantial power density, electrochemical supercapacitors are a special class of potential energy storage systems that find use in various processes. Much effort has been put into improving the electrode material’s composition to boost supercapacitors’ performance. In this work, hydrothermally generated ZnO/AlFeO
3
composite was analyzed by several physical and chemical characterizations to be an effective and high-performing electrode material. According to evaluated data, the ZnO/AlFeO
3
composite exhibited a pure crystalline phase, increased surface area, and heightened electrochemical efficiency showing a specific capacitance of 1232 F/g at 1 A/g with 52 Wh/kg of specific energy and 276 W/kg of specific power along with favorable CV stability after 5000th cycles. Better electrical characteristics were displayed by the ZnO/AlFeO
3
composite, as evidenced by the composite’s reduced solution resistance and lower charge transfer resistance in the impedance outcomes. The ZnO/AlFeO
3
composite demonstrated extraordinary efficiency by displaying enhanced ion mobility, better electrical conductivity, and a quick charge-storing technique, indicating the potential of the ZnO/AlFeO
3
composite for the upcoming era of power storage.
Graphical Abstract
Highlights
Hydrothermally developed ZnO/AlFeO
3
composite was utilized as a supercapacitor electrode.
Composite demonstrated remarkable physical features assessed via various physical characterizations.
An enriched specific capacitance of 1232 F/g at 1 A/g was observed through the GCD results.
EIS results depicted the improvement in resistive properties of ZnO/AlFeO
3
composite. |
---|---|
AbstractList | The conversion and preservation of energy have been the subject of extensive research because of the increasing need for renewable and pollution-free energy sources. With an extended lifespan, excellent charge-discharge properties, and substantial power density, electrochemical supercapacitors are a special class of potential energy storage systems that find use in various processes. Much effort has been put into improving the electrode material’s composition to boost supercapacitors’ performance. In this work, hydrothermally generated ZnO/AlFeO
3
composite was analyzed by several physical and chemical characterizations to be an effective and high-performing electrode material. According to evaluated data, the ZnO/AlFeO
3
composite exhibited a pure crystalline phase, increased surface area, and heightened electrochemical efficiency showing a specific capacitance of 1232 F/g at 1 A/g with 52 Wh/kg of specific energy and 276 W/kg of specific power along with favorable CV stability after 5000th cycles. Better electrical characteristics were displayed by the ZnO/AlFeO
3
composite, as evidenced by the composite’s reduced solution resistance and lower charge transfer resistance in the impedance outcomes. The ZnO/AlFeO
3
composite demonstrated extraordinary efficiency by displaying enhanced ion mobility, better electrical conductivity, and a quick charge-storing technique, indicating the potential of the ZnO/AlFeO
3
composite for the upcoming era of power storage.
Graphical Abstract
Highlights
Hydrothermally developed ZnO/AlFeO
3
composite was utilized as a supercapacitor electrode.
Composite demonstrated remarkable physical features assessed via various physical characterizations.
An enriched specific capacitance of 1232 F/g at 1 A/g was observed through the GCD results.
EIS results depicted the improvement in resistive properties of ZnO/AlFeO
3
composite. The conversion and preservation of energy have been the subject of extensive research because of the increasing need for renewable and pollution-free energy sources. With an extended lifespan, excellent charge-discharge properties, and substantial power density, electrochemical supercapacitors are a special class of potential energy storage systems that find use in various processes. Much effort has been put into improving the electrode material’s composition to boost supercapacitors’ performance. In this work, hydrothermally generated ZnO/AlFeO3 composite was analyzed by several physical and chemical characterizations to be an effective and high-performing electrode material. According to evaluated data, the ZnO/AlFeO3 composite exhibited a pure crystalline phase, increased surface area, and heightened electrochemical efficiency showing a specific capacitance of 1232 F/g at 1 A/g with 52 Wh/kg of specific energy and 276 W/kg of specific power along with favorable CV stability after 5000th cycles. Better electrical characteristics were displayed by the ZnO/AlFeO3 composite, as evidenced by the composite’s reduced solution resistance and lower charge transfer resistance in the impedance outcomes. The ZnO/AlFeO3 composite demonstrated extraordinary efficiency by displaying enhanced ion mobility, better electrical conductivity, and a quick charge-storing technique, indicating the potential of the ZnO/AlFeO3 composite for the upcoming era of power storage.HighlightsHydrothermally developed ZnO/AlFeO3 composite was utilized as a supercapacitor electrode.Composite demonstrated remarkable physical features assessed via various physical characterizations.An enriched specific capacitance of 1232 F/g at 1 A/g was observed through the GCD results.EIS results depicted the improvement in resistive properties of ZnO/AlFeO3 composite. |
Author | Ahmad, Tamoor Dahshan, A. Henaish, A. M. A. Ahmad, Khursheed Alrowaily, Albandari. W. Alyousef, Haifa A. Alotaibi, B. M. |
Author_xml | – sequence: 1 givenname: Tamoor surname: Ahmad fullname: Ahmad, Tamoor organization: Department of Chemistry, Government Graduate College Taunsa Sharif – sequence: 2 givenname: B. M. surname: Alotaibi fullname: Alotaibi, B. M. email: bmalotaibi@pnu.edu.sa organization: Department of Physics, College of Science, Princess Nourah bint Abdulrahman University – sequence: 3 givenname: Albandari. W. surname: Alrowaily fullname: Alrowaily, Albandari. W. organization: Department of Physics, College of Science, Princess Nourah bint Abdulrahman University – sequence: 4 givenname: Haifa A. surname: Alyousef fullname: Alyousef, Haifa A. organization: Department of Physics, College of Science, Princess Nourah bint Abdulrahman University – sequence: 5 givenname: A. surname: Dahshan fullname: Dahshan, A. organization: Physics Department, College of Science, King Khalid University – sequence: 6 givenname: A. M. A. surname: Henaish fullname: Henaish, A. M. A. organization: Physics Department, Faculty of Science, Tanta University, NANOTECH Center, Ural Federal University – sequence: 7 givenname: Khursheed surname: Ahmad fullname: Ahmad, Khursheed email: khursheed@yu.ac.kr organization: School of Materials Science and Engineering, Yeungnam University |
BookMark | eNp9kE1LAzEQhoMo2Fb_gKeA57WTZDfZHMVvKPSiCF5Cmp21W3Y3a5IW_PeuVhA89DSX95l35pmS4973SMgFgysGoOaRgVYsA55nIHOhMn5EJqxQIsvLXB6TCWheZqBAnZJpjBsAKHKmJuT1FnfY-qHDPlFf07d-Ob9u73EpqPPd4GOTkO4aS9efVfBpjaGzLe0wrX1FbaRxO2BwdrCuST5QbNGl4Cs8Iye1bSOe_84Zebm_e755zBbLh6eb60XmBNMpc7lkpWR17VayqgQvc8ekRuBylSttrSusK1dWAJTMCqFVUagCGWdacis1iBm53O8dgv_YYkxm47ehHyuNGH_WUkkhxxTfp1zwMQaszRCazoZPw8B8CzR7gWYUaH4EGj5C5T9o_NGmxvcp2KY9jIo9Gsee_h3D31UHqC9tRYad |
CitedBy_id | crossref_primary_10_1016_j_inoche_2024_113681 crossref_primary_10_1016_j_jpcs_2025_112616 crossref_primary_10_1016_j_est_2024_113987 |
Cites_doi | 10.1002/AENM.201502588 10.1016/S0378-7753(00)00682-0 10.1016/J.EST.2023.109968 10.1016/J.EST.2023.106687 10.1016/J.EST.2023.109005 10.1039/C0JM03175E/ 10.1016/J.JALLCOM.2014.07.047 10.1007/S10854-021-07464-3/FIGURES/9 10.1016/J.ADDMA.2020.101240 10.1016/J.FLATC.2019.100111 10.1016/J.ELECTACTA.2021.138976 10.1007/S10853-018-2742-1/METRICS 10.1016/J.JMATPROTEC.2017.03.022 10.1016/J.CJPH.2022.08.020 10.1039/B904100A 10.1002/ADFM.202003653 10.1016/J.CERAMINT.2022.08.266 10.1016/J.FUEL.2022.127066 10.1039/C3TA12736B 10.1038/s41557-018-0045-4 10.1016/J.SURFIN.2023.103555 10.1021/NN401818T/SUPPL_FILE/NN401818T_SI_001.PDF 10.1021/ACS.ENERGYFUELS.3C03380 10.1021/ACS.ENERGYFUELS.2C03279/ASSET/IMAGES/MEDIUM/EF2C03279_0012.GIF 10.3390/MA16216916 10.1016/J.ELECTACTA.2016.11.120 10.1016/J.ELECTACTA.2023.143020 10.1039/D0CC07970G 10.1016/J.JELECHEM.2018.05.037 10.1016/J.PHYSB.2010.02.028 10.1016/J.JALLCOM.2022.168657 10.1007/S10008-022-05165-3/METRICS 10.1016/J.CERAMINT.2023.06.051 10.1016/J.APSUSC.2015.08.077 10.1038/srep25793 10.1021/ACSAMI.8B07082/ASSET/IMAGES/LARGE/AM-2018-07082Q_0003.JPEG 10.1007/S10971-022-05888-9/TABLES/1 10.1016/J.COLSURFA.2023.132541 10.1016/J.ELECTACTA.2023.142729 10.1016/J.MSSP.2018.03.028 10.1016/J.CERAMINT.2023.06.025 10.1021/ACSAMI.5B04452/SUPPL_FILE/AM5B04452_SI_001.PDF 10.1007/S10854-022-09584-W/FIGURES/4 10.1039/D1RA08413E 10.1016/J.COMPOSITESA.2014.10.010 10.1039/D3DT02547K 10.1021/ACSAELM.3C00451/SUPPL_FILE/EL3C00451_SI_001.PDF 10.1021/ACSAMI.3C05154/SUPPL_FILE/AM3C05154_SI_001.PDF 10.1016/S0921-5093(03)00415-5 10.1016/J.EST.2020.101843 10.1002/ANIE.202403775 10.1016/J.JPOWSOUR.2007.06.220 10.1002/SLCT.201903426 10.1016/0010-938X(92)90023-V 10.1039/C9TA08227A 10.1039/C2DT31916K 10.1002/ADFM.202403166 10.1021/ACS.EST.8B01728/SUPPL_FILE/ES8B01728_SI_001.PDF 10.1002/ER.6885 10.1063/1.3089666/351495 10.1021/ACS.JPCC.7B11643/SUPPL_FILE/JP7B11643_SI_001.PDF 10.1016/J.MATDES.2019.108199 10.1016/J.CERAMINT.2019.10.119 10.1007/S10971-023-06035-8/FIGURES/3 10.1038/nmat4000 10.1007/S10971-022-05953-3/TABLES/1 10.1016/J.CARBON.2012.08.003 10.1016/J.IJHYDENE.2010.02.026 10.1021/ACSAMI.6B08082/ASSET/IMAGES/AM-2016-08082V_M013.GIF 10.1007/S43207-023-00289-2/FIGURES/5 10.1007/S10008-022-05154-6/FIGURES/7 10.1016/J.CERAMINT.2022.10.131 10.1002/ANIE.202104167 10.1016/J.MATERRESBULL.2014.05.044 10.1016/J.SURFIN.2023.103519 10.1016/J.ELECTACTA.2023.143070 10.1016/J.CERAMINT.2018.02.013 10.1016/J.JALLCOM.2023.171076 10.1016/J.JSSC.2024.124717 10.1016/J.SURFIN.2023.103267 10.1016/J.MATCHEMPHYS.2020.s123289 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s10971-024-06437-2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1573-4846 |
EndPage | 323 |
ExternalDocumentID | 10_1007_s10971_024_06437_2 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF- PT4 PT5 PTHSS QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8S Z8W Z8Z Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c319t-c461861ffcb6dd3284c169e026b479aac5ac8ba30081a33975575e121962a6903 |
IEDL.DBID | U2A |
ISSN | 0928-0707 |
IngestDate | Sat Aug 23 14:25:50 EDT 2025 Tue Jul 01 00:24:53 EDT 2025 Thu Apr 24 23:07:47 EDT 2025 Fri Feb 21 02:38:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Supercapacitors Transition metal oxide Hydrothermal composite Three-electrode system ZnO/AlFeO |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-c461861ffcb6dd3284c169e026b479aac5ac8ba30081a33975575e121962a6903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3092967636 |
PQPubID | 2043844 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3092967636 crossref_primary_10_1007_s10971_024_06437_2 crossref_citationtrail_10_1007_s10971_024_06437_2 springer_journals_10_1007_s10971_024_06437_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240800 2024-08-00 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of sol-gel science and technology |
PublicationTitleAbbrev | J Sol-Gel Sci Technol |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Mohd AbdahMAAAzmanNHNKulandaivaluSSulaimanYReview of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitorsMater Des20201861:CAS:528:DC%2BC1MXit1art7jO10.1016/J.MATDES.2019.108199 DiSGongLZhouBPrecipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitorsMater Chem Phys20202531232891:CAS:528:DC%2BB3cXhtFGht7bI10.1016/J.MATCHEMPHYS.2020.s123289 BoopathiGKarthikeyanGGJaimohanSMDopant effects of Gd3+ on the electrochemical pseudocapacitive characteristics of electroactive mesoporous NiO electrodes for supercapacitorsJ Phys Chem C2018122925792741:CAS:528:DC%2BC1cXntVCmu7g%3D10.1021/ACS.JPCC.7B11643/SUPPL_FILE/JP7B11643_SI_001.PDF ZhangXTangYZhangFA novel aluminum–graphite dual-ion batteryAdv Energy Mater2016610.1002/AENM.201502588 AhmadSGouadriaSJabbourKIron doped Gd2Zr2O7 hierarchical nanoflakes arrays as robust electrodes materials for energy storage applicationJ Energy Storage20236010.1016/J.EST.2023.106687 YewaleMAKumarVKadamRAWrapped nanochain microstructures of Ni3V2O8 nanoparticles for supercapacitor applications using the hydrothermal methodJ Energy Storage20237310.1016/J.EST.2023.109005 Luo S, Shang J, Xu Y, et al. (2024) Stabilizing NiS2 on conductive component via electrostatic self-assembly and covalent bond strategy for promoting sodium storage. Adv Funct Mater 2403166. https://doi.org/10.1002/ADFM.202403166 JadhavarAAShelkeNTYewaleMAHydrothermal synthesis of cobalt vanadium oxide (Co3V2O8) hexagonal disc for high-performance supercapacitorsSurf Interfaces2023431:CAS:528:DC%2BB3sXit1Giu7bO10.1016/J.SURFIN.2023.103519 SinghAChandraAEnhancing specific energy and power in asymmetric supercapacitors—a synergetic strategy based on the use of redox additive electrolytesSci Rep.20166161131:CAS:528:DC%2BC28Xot1Ggu70%3D10.1038/srep25793 BaQaisAAminMAAmanSTailoring of electrochemical properties on Nd-doped Ni3S2 electrode via doping strategy for supercapacitor applicationElectrochim Acta20234671:CAS:528:DC%2BB3sXhvVahs7vL10.1016/J.ELECTACTA.2023.143070 MeffordJTHardinWGDaiSAnion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodesNat Mater2014137137267321:CAS:528:DC%2BC2cXovFCmurY%3D10.1038/nmat4000 AmanSAlahmariSDKhanSAHydrothermal development of bimetallic sulfide nanostructures as an electrode material for supercapacitor applicationEnergy Fuels20233717473174831:CAS:528:DC%2BB3sXit1ers7fF10.1021/ACS.ENERGYFUELS.3C03380 AnsariMNGouadriaSKhosaRYNanospheres type morphology for regulating the electrochemical property of CeO2 nanostructures for energy storage systemJ Sol Gel Sci Technol20231061211301:CAS:528:DC%2BB3sXhs1ygsr0%3D10.1007/S10971-023-06035-8/FIGURES/3 XuXShenJLiNYeMMicrowave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performanceJ Alloy Compd201461658651:CAS:528:DC%2BC2cXhtlarsbvK10.1016/J.JALLCOM.2014.07.047 SasmalAMaitySArockiarajanASenSElectroactive properties and piezo-tribo hybrid energy harvesting performances of PVDF-AlFeO3 composites: role of crystal symmetry and agglomeration of fillersDalton Trans20235214837148511:CAS:528:DC%2BB3sXitVGhs73F10.1039/D3DT02547K37791868 MisnonIIAzizRAZainNKMHigh performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytesMater Res Bull2014572212301:CAS:528:DC%2BC2cXhtFGqurfI10.1016/J.MATERRESBULL.2014.05.044 YewaleMAKadamRANakateUTSphere-shaped CuCo2O4 nanostructures battery type electrode for supercapacitor via hydrothermal synthesis approachColloids Surf A Physicochem Eng Asp20236791:CAS:528:DC%2BB3sXitFGqu7bF10.1016/J.COLSURFA.2023.132541 BanikSMahajanARayATemperature control synthesis of platinum nanoparticle-decorated reduced graphene oxide of different functionalities for anode-catalytic oxidation of methanolFlatChem2019161:CAS:528:DC%2BC1MXhtFOrs7nJ10.1016/J.FLATC.2019.100111 ShelkeNTYewaleMAKadamRAFacile hydrothermal synthesis and fabrication of nickel cobalt oxide as an advanced electrode for electrochemical capacitorsSurf Interfaces2023431:CAS:528:DC%2BB3sXitlejtr3K10.1016/J.SURFIN.2023.103555 JavedMSLeiHShahHUAchieving high rate and high energy density in an all-solid-state flexible asymmetric pseudocapacitor through the synergistic design of binder-free 3D ZnCo2O4 nano polyhedra and 2D layered Ti3C2Tx-MXenesJ Mater Chem A2019724543245561:CAS:528:DC%2BC1MXhvVCkur3L10.1039/C9TA08227A TianLYHuangPBLvJQMetal-organic frameworks based on ternary transition metal ions for high-performance lithium ion batteriesJ Solid State Chem20243351:CAS:528:DC%2BB2cXosVOksrg%3D10.1016/J.JSSC.2024.124717 ShiWZhuJSimDHAchieving high specific charge capacitances in Fe3O 4/reduced graphene oxide nanocompositesJ Mater Chem201121342234271:CAS:528:DC%2BC3MXit1ymsrg%3D10.1039/C0JM03175E LiCHHuangZLinJExcellent-moisture-resistance fluorinated polyimide composite film and self-powered acoustic sensingACS Appl Mater Interfaces20231535459354681:CAS:528:DC%2BB3sXhsVeksrzF10.1021/ACSAMI.3C05154/SUPPL_FILE/AM3C05154_SI_001.PDF37432932 OjedaLOlivaJReyes-MonteroASynergistic effect between the graphene electrodes and the BiFeO3-BaTiO3 composite to overcome the limit of capacitance in eco-friendly supercapacitors made with a seawater electrolyteJ Alloy Compd20239381:CAS:528:DC%2BB3sXjvVOntA%3D%3D10.1016/J.JALLCOM.2022.168657 GuiZZhuHGilletteENatural cellulose fiber as substrate for supercapacitorACS Nano20137603760461:CAS:528:DC%2BC3sXpsFGltb0%3D10.1021/NN401818T/SUPPL_FILE/NN401818T_SI_001.PDF23777461 AlthubitiNAAmanSTahaTAMSynthesis of MnFe2O4/MXene/NF nanosized composite for supercapacitor applicationCeram Int20234927496275051:CAS:528:DC%2BB3sXht1ShurjO10.1016/J.CERAMINT.2023.06.025 FanYHuHLiuHEnhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configurationJ Power Sources20071713483541:CAS:528:DC%2BD2sXhtVSrs7jK10.1016/J.JPOWSOUR.2007.06.220 RoyARayASahaSInfluence of electrochemical active surface area on the oxygen evolution reaction and energy storage performance of MnO2-multiwalled carbon nanotube compositeInt J Energy Res20214516908169211:CAS:528:DC%2BB3MXhtFGksL7P10.1002/ER.6885 SimCKMajidSRMahmoodNZSynthesis of highly porous carbon/ZnSnO3 composite and its electrochemical propertiesJ Energy Storage20203210.1016/J.EST.2020.101843 Sharma S, Hegde MS (2009) Pt metal—CeO2 interaction: direct observation of redox coupling between Pt0 / Pt2+ / Pt4+ and Ce4+ / Ce3+ states in Ce0.98 Pt0.02 O 2-δ catalyst by a combined electrochemical and x-ray photoelectron spectroscopy study. J Chem Phys 130. https://doi.org/10.1063/1.3089666/351495 ZhuQChenJGouGAmeliorated longitudinal critically refracted—Attenuation velocity method for welding residual stress measurementJ Mater Process Technol201724626727510.1016/J.JMATPROTEC.2017.03.022 KhedrMGALashienAMSThe role of metal cations in the corrosion and corrosion inhibition of aluminium in aqueous solutionsCorros Sci1992331371511:CAS:528:DyaK38XisF2isw%3D%3D10.1016/0010-938X(92)90023-V Hayat M, Ali B, Yunis M, et al. (2023) CeSe nanocube anchored on the nanosheet of reduced graphene oxide (rGO) as a binder free electrode for energy conversion system. J Korean Ceram Soc 1–11. https://doi.org/10.1007/S43207-023-00289-2/FIGURES/5 AlharbiFFAmanSAhmadNRational design of a BiFeWO6 nanostructure for supercapacitor applicationsJ Solid State Electrochem202226125112581:CAS:528:DC%2BB38XptVShtbw%3D10.1007/S10008-022-05154-6/FIGURES/7 PangHMaYLiGFacile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materialsDalton Trans20124113284132911:CAS:528:DC%2BC38XhsFSqurzF10.1039/C2DT31916K23023820 ZhouQGongYLinJLow temperature synthesis of sponge-like NiV2O6/C composite by calcining Ni-V-based coordination polymer for supercapacitor applicationJ Electroanal Chem201882380911:CAS:528:DC%2BC1cXhtVOksr%2FK10.1016/J.JELECHEM.2018.05.037 ManzoorSAlburaihHANisaMUA novel porous rod with nanosphere CuS2/NiFe2O4nanocomposite for low-cost high-performance energy storage systemJ Mater Sci Mater Electron20233411710.1007/S10854-022-09584-W/FIGURES/4 MohamedIMAYasinASLiuCSynthesis, surface characterization and electrochemical performance of ZnO @ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytesCeram Int202046391239201:CAS:528:DC%2BC1MXitVakt7zK10.1016/J.CERAMINT.2019.10.119 PellWGConwayBEAnalysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc chargeJ Power Sources20019657671:CAS:528:DC%2BD3MXkt1Knsbc%3D10.1016/S0378-7753(00)00682-0 SaranyaPESelladuraiSFacile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor deviceJ Mater Sci20185316022160461:CAS:528:DC%2BC1cXhsVejt7%2FL10.1007/S10853-018-2742-1/METRICS NasreenFAnwarAWMajeedAHigh performance and remarkable cyclic stability of a nanostructured RGO–CNT-WO 3 supercapacitor electrodeRSC Adv20221211293113021:CAS:528:DC%2BB38XpsVSisL4%3D10.1039/D1RA08413E354250348996255 SinghAKSarkarDKhanGGMandalKUnique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitorsJ Mater Chem A2013112759127671:CAS:528:DC%2BC3sXhsFGgtL7I10.1039/C3TA12736B BloomPDBaikerikarKGAndereggJWShearesVVFabrication and wear resistance of Al–Cu–Fe quasicrystal-epoxy composite materialsMater Sci Eng A200336046571:CAS:528:DC%2BD3sXnt1Cmsrw%3D10.1016/S0921-5093(03)00415-5 RanaUAmanSAshiqMNOutstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applicationsJ Sol Gel Sci Technol20221037047121:CAS:528:DC%2BB38XhvVShur3E10.1007/S10971-022-05888-9/TABLES/1 SelvakumarMKrishna BhatDManish AggarwalANano ZnO-activated carbon composite electrodes for supercapacitorsPhys B Condens Matter2010405228622891:CAS:528:DC%2BC3cXkt1Ogs7c%3D10.1016/J.PHYSB.2010.02.028 MengSWangNCaoXBuil AK Vats (6437_CR80) 2022; 33 IMA Mohamed (6437_CR36) 2020; 46 M Wang (6437_CR20) 2018; 106 L Ojeda (6437_CR47) 2023; 938 Q Zhou (6437_CR79) 2018; 823 FF Alharbi (6437_CR12) 2022; 26 A Singh (6437_CR70) 2016; 61 W Shi (6437_CR67) 2011; 21 AG Abid (6437_CR2) 2023; 336 S Ahmad (6437_CR25) 2023; 49 MP Harikrishnan (6437_CR46) 2023; 462 MN Ansari (6437_CR10) 2023; 106 CH Li (6437_CR19) 2023; 15 J Yang (6437_CR52) 2013; 51 Y Fan (6437_CR71) 2007; 171 H Wang (6437_CR13) 2023; 5 T Wang (6437_CR57) 2021; 392 M Gao (6437_CR44) 2018; 10 AV Radhamani (6437_CR45) 2016; 8 LY Tian (6437_CR14) 2024; 335 RA De Souza (6437_CR42) 2009; 11 NA Althubiti (6437_CR6) 2023; 49 A Fadavi Boostani (6437_CR51) 2015; 68 M Abdullah (6437_CR26) 2023; 466 X Xu (6437_CR54) 2014; 616 J Wang (6437_CR38) 2018; 44 Y Zhou (6437_CR61) 2018; 52 PE Saranya (6437_CR81) 2018; 53 W Chen (6437_CR34) 2016; 222 S Ahmad (6437_CR16) 2023; 60 MA Yewale (6437_CR18) 2023; 73 L Zhang (6437_CR41) 2020; 30 RA Kadam (6437_CR29) 2023; 41 H Pang (6437_CR77) 2012; 41 M Abdullah (6437_CR73) 2023; 37 AK Singh (6437_CR65) 2013; 1 J Zhang (6437_CR72) 2015; 7 S Manzoor (6437_CR24) 2022; 48 A BaQais (6437_CR27) 2023; 467 G Boopathi (6437_CR62) 2018; 122 M Li (6437_CR64) 2010; 35 M Abdullah (6437_CR28) 2023; 49 M Selvakumar (6437_CR32) 2010; 405 S Meng (6437_CR31) 2023; 16 S Di (6437_CR75) 2020; 253 J Wang (6437_CR21) 2020; 34 6437_CR23 MA Yewale (6437_CR33) 2023; 679 A Sasmal (6437_CR50) 2023; 52 X Zhang (6437_CR56) 2016; 6 II Misnon (6437_CR69) 2014; 57 V Viswanath N (6437_CR39) 2024; 78 WG Pell (6437_CR68) 2001; 96 J Li (6437_CR74) 2022; 26 CK Sim (6437_CR76) 2020; 32 Y Cao (6437_CR40) 2021; 57 Z Gui (6437_CR59) 2013; 7 NT Shelke (6437_CR37) 2023; 43 S Banik (6437_CR7) 2019; 16 S Manzoor (6437_CR3) 2023; 34 MS Javed (6437_CR66) 2019; 7 NA Althubiti (6437_CR5) 2023; 962 PD Bloom (6437_CR43) 2003; 360 AA Jadhavar (6437_CR35) 2023; 43 T Wang (6437_CR48) 2015; 356 F Nasreen (6437_CR60) 2022; 12 Q Hu (6437_CR78) 2019; 4 Q Zhu (6437_CR22) 2017; 246 6437_CR9 A Saranya (6437_CR49) 2019; 92 X Pu (6437_CR55) 2021; 60 MGA Khedr (6437_CR63) 1992; 33 6437_CR8 6437_CR11 S Aman (6437_CR17) 2023; 37 6437_CR53 JT Mefford (6437_CR58) 2014; 137 MAA Mohd Abdah (6437_CR30) 2020; 186 6437_CR1 A Roy (6437_CR4) 2021; 45 U Rana (6437_CR15) 2022; 103 |
References_xml | – reference: Sharma S, Hegde MS (2009) Pt metal—CeO2 interaction: direct observation of redox coupling between Pt0 / Pt2+ / Pt4+ and Ce4+ / Ce3+ states in Ce0.98 Pt0.02 O 2-δ catalyst by a combined electrochemical and x-ray photoelectron spectroscopy study. J Chem Phys 130. https://doi.org/10.1063/1.3089666/351495 – reference: Luo S, Shang J, Xu Y, et al. (2024) Stabilizing NiS2 on conductive component via electrostatic self-assembly and covalent bond strategy for promoting sodium storage. Adv Funct Mater 2403166. https://doi.org/10.1002/ADFM.202403166 – reference: PellWGConwayBEAnalysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc chargeJ Power Sources20019657671:CAS:528:DC%2BD3MXkt1Knsbc%3D10.1016/S0378-7753(00)00682-0 – reference: AlharbiFFAmanSAhmadNRational design of a BiFeWO6 nanostructure for supercapacitor applicationsJ Solid State Electrochem202226125112581:CAS:528:DC%2BB38XptVShtbw%3D10.1007/S10008-022-05154-6/FIGURES/7 – reference: PangHMaYLiGFacile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materialsDalton Trans20124113284132911:CAS:528:DC%2BC38XhsFSqurzF10.1039/C2DT31916K23023820 – reference: VatsAKKumarARajputPKumarAEngineered perovskite LaCoO3/rGO nanocomposites for asymmetrical electrochemical supercapacitor applicationJ Mater Sci Mater Electron202233259026061:CAS:528:DC%2BB38XhslKltg%3D%3D10.1007/S10854-021-07464-3/FIGURES/9 – reference: TianLYHuangPBLvJQMetal-organic frameworks based on ternary transition metal ions for high-performance lithium ion batteriesJ Solid State Chem20243351:CAS:528:DC%2BB2cXosVOksrg%3D10.1016/J.JSSC.2024.124717 – reference: LiJLuoWWangXPreparation and research of high-performance LaFeO3/RGO supercapacitorJ Solid State Electrochem202226129113011:CAS:528:DC%2BB38XpsFWqs7w%3D10.1007/S10008-022-05165-3/METRICS – reference: HuQYueBYangFFacile synthesis and electrochemical properties of perovskite-type CeMnO3 nanofibersChemistrySelect2019411903119121:CAS:528:DC%2BC1MXitVyht7rP10.1002/SLCT.201903426 – reference: AnsariMNGouadriaSKhosaRYNanospheres type morphology for regulating the electrochemical property of CeO2 nanostructures for energy storage systemJ Sol Gel Sci Technol20231061211301:CAS:528:DC%2BB3sXhs1ygsr0%3D10.1007/S10971-023-06035-8/FIGURES/3 – reference: LiMZhaoLGuoLPreparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysisInt J Hydrog Energy201035712771331:CAS:528:DC%2BC3cXos1ygs78%3D10.1016/J.IJHYDENE.2010.02.026 – reference: SaranyaPESelladuraiSFacile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor deviceJ Mater Sci20185316022160461:CAS:528:DC%2BC1cXhsVejt7%2FL10.1007/S10853-018-2742-1/METRICS – reference: ZhuQChenJGouGAmeliorated longitudinal critically refracted—Attenuation velocity method for welding residual stress measurementJ Mater Process Technol201724626727510.1016/J.JMATPROTEC.2017.03.022 – reference: SasmalAMaitySArockiarajanASenSElectroactive properties and piezo-tribo hybrid energy harvesting performances of PVDF-AlFeO3 composites: role of crystal symmetry and agglomeration of fillersDalton Trans20235214837148511:CAS:528:DC%2BB3sXitVGhs73F10.1039/D3DT02547K37791868 – reference: AhmadSJabbourKRafeeqMEffect on physiochemical assets of Dy added spinel ZnSm2O4 for energy storage applicationsCeram Int20234928036280471:CAS:528:DC%2BB3sXht1egtL%2FJ10.1016/J.CERAMINT.2023.06.051 – reference: ZhouYJiQLiuHQuJPore structure-dependent mass transport in flow-through electrodes for water remediationEnviron Sci Technol201852747774851:CAS:528:DC%2BC1cXhtFSrtLrE10.1021/ACS.EST.8B01728/SUPPL_FILE/ES8B01728_SI_001.PDF29883543 – reference: AbdullahMKhanSJabbourKDevelopment of binder-free MoTe2/rGO electrode via hydrothermal route for supercapacitor applicationElectrochim Acta20234661:CAS:528:DC%2BB3sXhslKgsb7E10.1016/J.ELECTACTA.2023.143020 – reference: JavedMSLeiHShahHUAchieving high rate and high energy density in an all-solid-state flexible asymmetric pseudocapacitor through the synergistic design of binder-free 3D ZnCo2O4 nano polyhedra and 2D layered Ti3C2Tx-MXenesJ Mater Chem A2019724543245561:CAS:528:DC%2BC1MXhvVCkur3L10.1039/C9TA08227A – reference: WangJChenRXiangLKomarneniSSynthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A reviewCeram Int201844735773771:CAS:528:DC%2BC1cXit12ru7k%3D10.1016/J.CERAMINT.2018.02.013 – reference: SinghAKSarkarDKhanGGMandalKUnique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitorsJ Mater Chem A2013112759127671:CAS:528:DC%2BC3sXhsFGgtL7I10.1039/C3TA12736B – reference: ShelkeNTYewaleMAKadamRAFacile hydrothermal synthesis and fabrication of nickel cobalt oxide as an advanced electrode for electrochemical capacitorsSurf Interfaces2023431:CAS:528:DC%2BB3sXitlejtr3K10.1016/J.SURFIN.2023.103555 – reference: RadhamaniAVShareefKMRaoMSRZnO@MnO2 core-shell nanofiber cathodes for high performance asymmetric supercapacitorsACS Appl Mater Interfaces2016830531305421:CAS:528:DC%2BC28Xhs1Ggur7I10.1021/ACSAMI.6B08082/ASSET/IMAGES/AM-2016-08082V_M013.GIF27726336 – reference: Mohd AbdahMAAAzmanNHNKulandaivaluSSulaimanYReview of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitorsMater Des20201861:CAS:528:DC%2BC1MXit1art7jO10.1016/J.MATDES.2019.108199 – reference: AhmadSGouadriaSJabbourKIron doped Gd2Zr2O7 hierarchical nanoflakes arrays as robust electrodes materials for energy storage applicationJ Energy Storage20236010.1016/J.EST.2023.106687 – reference: AlthubitiNAAmanSAhmadNEngineering in the morphology of Ni3S2 via doping of Ce with different concentration to improve the capacitive propertiesJ Alloy Compd20239621:CAS:528:DC%2BB3sXhtlGntbbP10.1016/J.JALLCOM.2023.171076 – reference: HarikrishnanMPNaveenaPBaskaranNBoseACFabrication of cerium nickel oxide (CeNiO3) nanoparticle on vanadium tetra sulphide (VS4) nanosheet composite materials as an enhanced electrode for supercapacitor applicationsElectrochim Acta20234621:CAS:528:DC%2BB3sXht1egtbrF10.1016/J.ELECTACTA.2023.142729 – reference: MisnonIIAzizRAZainNKMHigh performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytesMater Res Bull2014572212301:CAS:528:DC%2BC2cXhtFGqurfI10.1016/J.MATERRESBULL.2014.05.044 – reference: GaoMWangWKRongQPorous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor materialACS Appl Mater Interfaces20181023163231731:CAS:528:DC%2BC1cXhtFKlsbzL10.1021/ACSAMI.8B07082/ASSET/IMAGES/LARGE/AM-2018-07082Q_0003.JPEG29923396 – reference: ManzoorSAbidAGAmanSFacile synthesis of CoFePO4 on eggshell membrane for oxygen evolution reaction and supercapacitor applicationsCeram Int20224836975369821:CAS:528:DC%2BB38XitlGksrfF10.1016/J.CERAMINT.2022.08.266 – reference: NasreenFAnwarAWMajeedAHigh performance and remarkable cyclic stability of a nanostructured RGO–CNT-WO 3 supercapacitor electrodeRSC Adv20221211293113021:CAS:528:DC%2BB38XpsVSisL4%3D10.1039/D1RA08413E354250348996255 – reference: YangJGunasekaranSElectrochemically reduced graphene oxide sheets for use in high performance supercapacitorsCarbon N. Y20135136441:CAS:528:DC%2BC38Xht12iu7jO10.1016/J.CARBON.2012.08.003 – reference: XuXShenJLiNYeMMicrowave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performanceJ Alloy Compd201461658651:CAS:528:DC%2BC2cXhtlarsbvK10.1016/J.JALLCOM.2014.07.047 – reference: ZhangXTangYZhangFA novel aluminum–graphite dual-ion batteryAdv Energy Mater2016610.1002/AENM.201502588 – reference: De SouzaRAThe formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3Phys Chem Chem Phys2009119939996910.1039/B904100A19865746 – reference: WangTZhangXChenDPreparation of a hybrid core–shell structured BaTiO3@PEDOT nanocomposite and its applications in dielectric and electrode materialsAppl Surf Sci20153562322391:CAS:528:DC%2BC2MXhtleksrbK10.1016/J.APSUSC.2015.08.077 – reference: PuXZhaoDFuCUnderstanding and calibration of charge storage mechanism in cyclic voltammetry curvesAngew Chem Int Ed20216021310213181:CAS:528:DC%2BB3MXhvVOktb3I10.1002/ANIE.202104167 – reference: Hayat M, Ali B, Yunis M, et al. (2023) CeSe nanocube anchored on the nanosheet of reduced graphene oxide (rGO) as a binder free electrode for energy conversion system. J Korean Ceram Soc 1–11. https://doi.org/10.1007/S43207-023-00289-2/FIGURES/5 – reference: MengSWangNCaoXBuilt-in piezoelectric nanogenerators promote sustainable and flexible supercapacitors: a reviewMater20231669161:CAS:528:DC%2BB3sXitlCks7jK10.3390/MA16216916 – reference: SinghAChandraAEnhancing specific energy and power in asymmetric supercapacitors—a synergetic strategy based on the use of redox additive electrolytesSci Rep.20166161131:CAS:528:DC%2BC28Xot1Ggu70%3D10.1038/srep25793 – reference: FanYHuHLiuHEnhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configurationJ Power Sources20071713483541:CAS:528:DC%2BD2sXhtVSrs7jK10.1016/J.JPOWSOUR.2007.06.220 – reference: RanaUAmanSAshiqMNOutstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applicationsJ Sol Gel Sci Technol20221037047121:CAS:528:DC%2BB38XhvVShur3E10.1007/S10971-022-05888-9/TABLES/1 – reference: YewaleMAKumarVKadamRAWrapped nanochain microstructures of Ni3V2O8 nanoparticles for supercapacitor applications using the hydrothermal methodJ Energy Storage20237310.1016/J.EST.2023.109005 – reference: BoopathiGKarthikeyanGGJaimohanSMDopant effects of Gd3+ on the electrochemical pseudocapacitive characteristics of electroactive mesoporous NiO electrodes for supercapacitorsJ Phys Chem C2018122925792741:CAS:528:DC%2BC1cXntVCmu7g%3D10.1021/ACS.JPCC.7B11643/SUPPL_FILE/JP7B11643_SI_001.PDF – reference: GuiZZhuHGilletteENatural cellulose fiber as substrate for supercapacitorACS Nano20137603760461:CAS:528:DC%2BC3sXpsFGltb0%3D10.1021/NN401818T/SUPPL_FILE/NN401818T_SI_001.PDF23777461 – reference: LiCHHuangZLinJExcellent-moisture-resistance fluorinated polyimide composite film and self-powered acoustic sensingACS Appl Mater Interfaces20231535459354681:CAS:528:DC%2BB3sXhsVeksrzF10.1021/ACSAMI.3C05154/SUPPL_FILE/AM3C05154_SI_001.PDF37432932 – reference: KadamRAYewaleMATeliAMBimetallic Co3V2O8 microstructure: a versatile bifunctional electrode for supercapacitor and electrocatalysis applicationsSurf Interfaces2023411:CAS:528:DC%2BB3sXhsl2qs7nK10.1016/J.SURFIN.2023.103267 – reference: BanikSMahajanARayATemperature control synthesis of platinum nanoparticle-decorated reduced graphene oxide of different functionalities for anode-catalytic oxidation of methanolFlatChem2019161:CAS:528:DC%2BC1MXhtFOrs7nJ10.1016/J.FLATC.2019.100111 – reference: YewaleMAKadamRANakateUTSphere-shaped CuCo2O4 nanostructures battery type electrode for supercapacitor via hydrothermal synthesis approachColloids Surf A Physicochem Eng Asp20236791:CAS:528:DC%2BB3sXitFGqu7bF10.1016/J.COLSURFA.2023.132541 – reference: ManzoorSAlburaihHANisaMUA novel porous rod with nanosphere CuS2/NiFe2O4nanocomposite for low-cost high-performance energy storage systemJ Mater Sci Mater Electron20233411710.1007/S10854-022-09584-W/FIGURES/4 – reference: SelvakumarMKrishna BhatDManish AggarwalANano ZnO-activated carbon composite electrodes for supercapacitorsPhys B Condens Matter2010405228622891:CAS:528:DC%2BC3cXkt1Ogs7c%3D10.1016/J.PHYSB.2010.02.028 – reference: AbidAGGouadriaSManzoorSUniformly dispersed flowery EuZrSe3 derived from the europium-based metal–organic framework for energy storage devicesFuel20233361:CAS:528:DC%2BB38XjtFSktr%2FL10.1016/J.FUEL.2022.127066 – reference: SaranyaADevasenaTSivaramHJayavelRRole of hexamine in ZnO morphologies at different growth temperature with potential application in dye sensitized solar cellMater Sci Semicond Process2019921081151:CAS:528:DC%2BC1cXmvVGrur4%3D10.1016/J.MSSP.2018.03.028 – reference: BloomPDBaikerikarKGAndereggJWShearesVVFabrication and wear resistance of Al–Cu–Fe quasicrystal-epoxy composite materialsMater Sci Eng A200336046571:CAS:528:DC%2BD3sXnt1Cmsrw%3D10.1016/S0921-5093(03)00415-5 – reference: Su Y, Shang J, Liu X, et al. (2024) Constructing π–π superposition effect of Tetralithium Naphthalenetetracarboxylate with electron delocalization for Robust dual-ion batteries. Angew Chemie Int Ed e202403775. https://doi.org/10.1002/ANIE.202403775 – reference: Fadavi BoostaniATahamtanSJiangZYEnhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticlesCompos Part A Appl Sci Manuf2015681551631:CAS:528:DC%2BC2cXhslOkur3I10.1016/J.COMPOSITESA.2014.10.010 – reference: MeffordJTHardinWGDaiSAnion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodesNat Mater2014137137267321:CAS:528:DC%2BC2cXovFCmurY%3D10.1038/nmat4000 – reference: Viswanath NVYesurajJRameshMFundamental aspects of perovskite oxides as an emerging material for supercapacitor applications and its anion intercalation mechanism—reviewJ Energy Storage20247810.1016/J.EST.2023.109968 – reference: DiSGongLZhouBPrecipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitorsMater Chem Phys20202531232891:CAS:528:DC%2BB3cXhtFGht7bI10.1016/J.MATCHEMPHYS.2020.s123289 – reference: AbdullahMAnsariMZAhamdZAg2Se/SnTe nanorod as potential candidate for energy conversion system developed via hydrothermal routeCeram Int202349678067891:CAS:528:DC%2BB38Xis1Oqu77E10.1016/J.CERAMINT.2022.10.131 – reference: Aman S, Tahir MB, Ahmad Z, et al. (2022) Rational design of novel dysprosium manganite sandwich layered morphology for supercapacitor applications. Chin J Phys. https://doi.org/10.1016/J.CJPH.2022.08.020 – reference: KhedrMGALashienAMSThe role of metal cations in the corrosion and corrosion inhibition of aluminium in aqueous solutionsCorros Sci1992331371511:CAS:528:DyaK38XisF2isw%3D%3D10.1016/0010-938X(92)90023-V – reference: ZhouQGongYLinJLow temperature synthesis of sponge-like NiV2O6/C composite by calcining Ni-V-based coordination polymer for supercapacitor applicationJ Electroanal Chem201882380911:CAS:528:DC%2BC1cXhtVOksr%2FK10.1016/J.JELECHEM.2018.05.037 – reference: RoyARayASahaSInfluence of electrochemical active surface area on the oxygen evolution reaction and energy storage performance of MnO2-multiwalled carbon nanotube compositeInt J Energy Res20214516908169211:CAS:528:DC%2BB3MXhtFGksL7P10.1002/ER.6885 – reference: ZhangLMiaoJLiJLiQHalide perovskite materials for energy storage applicationsAdv Funct Mater2020301:CAS:528:DC%2BB3cXhsFGhur7K10.1002/ADFM.202003653 – reference: BaQaisAAminMAAmanSTailoring of electrochemical properties on Nd-doped Ni3S2 electrode via doping strategy for supercapacitor applicationElectrochim Acta20234671:CAS:528:DC%2BB3sXhvVahs7vL10.1016/J.ELECTACTA.2023.143070 – reference: OjedaLOlivaJReyes-MonteroASynergistic effect between the graphene electrodes and the BiFeO3-BaTiO3 composite to overcome the limit of capacitance in eco-friendly supercapacitors made with a seawater electrolyteJ Alloy Compd20239381:CAS:528:DC%2BB3sXjvVOntA%3D%3D10.1016/J.JALLCOM.2022.168657 – reference: AbdullahMAlwadaiNAl HuwayzMEffect of Ag content on the electrochemical performance of Ag2Te nanostructures synthesized by hydrothermal route for supercapacitor applicationsEnergy Fuels202337129713091:CAS:528:DC%2BB3sXht12jsA%3D%3D10.1021/ACS.ENERGYFUELS.2C03279/ASSET/IMAGES/MEDIUM/EF2C03279_0012.GIF – reference: ChenWGuiDLiuJNickel oxide/graphene aerogel nanocomposite as a supercapacitor electrode material with extremely wide working potential windowElectrochim Acta2016222142414291:CAS:528:DC%2BC28XhvFGjtb3F10.1016/J.ELECTACTA.2016.11.120 – reference: AmanSAlahmariSDKhanSAHydrothermal development of bimetallic sulfide nanostructures as an electrode material for supercapacitor applicationEnergy Fuels20233717473174831:CAS:528:DC%2BB3sXit1ers7fF10.1021/ACS.ENERGYFUELS.3C03380 – reference: WangJPanZWangYEvolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloyAddit Manuf2020341:CAS:528:DC%2BB3cXhsFajsrbP10.1016/J.ADDMA.2020.101240 – reference: WangHHuangZZengXEnhanced anticarbonization and electrical performance of epoxy resin via densified spherical boron nitride networksACS Appl Electron Mater20235372637321:CAS:528:DC%2BB3sXhsVKhtb%2FM10.1021/ACSAELM.3C00451/SUPPL_FILE/EL3C00451_SI_001.PDF – reference: WangMJiangCZhangSReversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltageNat Chem2018106106676721:CAS:528:DC%2BC1cXos1Smt7k%3D10.1038/s41557-018-0045-4 – reference: ShiWZhuJSimDHAchieving high specific charge capacitances in Fe3O 4/reduced graphene oxide nanocompositesJ Mater Chem201121342234271:CAS:528:DC%2BC3MXit1ymsrg%3D10.1039/C0JM03175E/ – reference: WangTLiuJMaYP-N heterojunction NiO/ZnO electrode with high electrochemical performance for supercapacitor applicationsElectrochim Acta20213921:CAS:528:DC%2BB3MXhslCjtLzF10.1016/J.ELECTACTA.2021.138976 – reference: ZhangJFengHYangJSolvothermal synthesis of three-dimensional hierarchical cus microspheres from a cu-based ionic liquid precursor for high-performance asymmetric supercapacitorsACS Appl Mater Interfaces2015721735217441:CAS:528:DC%2BC2MXhsFSitrbO10.1021/ACSAMI.5B04452/SUPPL_FILE/AM5B04452_SI_001.PDF26371955 – reference: SimCKMajidSRMahmoodNZSynthesis of highly porous carbon/ZnSnO3 composite and its electrochemical propertiesJ Energy Storage20203210.1016/J.EST.2020.101843 – reference: AlthubitiNAAmanSTahaTAMSynthesis of MnFe2O4/MXene/NF nanosized composite for supercapacitor applicationCeram Int20234927496275051:CAS:528:DC%2BB3sXht1ShurjO10.1016/J.CERAMINT.2023.06.025 – reference: JadhavarAAShelkeNTYewaleMAHydrothermal synthesis of cobalt vanadium oxide (Co3V2O8) hexagonal disc for high-performance supercapacitorsSurf Interfaces2023431:CAS:528:DC%2BB3sXit1Giu7bO10.1016/J.SURFIN.2023.103519 – reference: MohamedIMAYasinASLiuCSynthesis, surface characterization and electrochemical performance of ZnO @ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytesCeram Int202046391239201:CAS:528:DC%2BC1MXitVakt7zK10.1016/J.CERAMINT.2019.10.119 – reference: CaoYLiangJLiXRecent advances in perovskite oxides as electrode materials for supercapacitorsChem Commun202157234323551:CAS:528:DC%2BB3MXis1Ojur0%3D10.1039/D0CC07970G – reference: Alhashmialameer D, Aman S, Abdullah M, et al. (2022) Facile hydrothermal synthesis of Dy-doped NiMnO3 nanoflakes as a highly stable electrode for energy conversion system. J Sol-Gel Sci Technol 1–13. https://doi.org/10.1007/S10971-022-05953-3/TABLES/1 – volume: 6 year: 2016 ident: 6437_CR56 publication-title: Adv Energy Mater doi: 10.1002/AENM.201502588 – volume: 96 start-page: 57 year: 2001 ident: 6437_CR68 publication-title: J Power Sources doi: 10.1016/S0378-7753(00)00682-0 – volume: 78 year: 2024 ident: 6437_CR39 publication-title: J Energy Storage doi: 10.1016/J.EST.2023.109968 – volume: 60 year: 2023 ident: 6437_CR16 publication-title: J Energy Storage doi: 10.1016/J.EST.2023.106687 – volume: 73 year: 2023 ident: 6437_CR18 publication-title: J Energy Storage doi: 10.1016/J.EST.2023.109005 – volume: 21 start-page: 3422 year: 2011 ident: 6437_CR67 publication-title: J Mater Chem doi: 10.1039/C0JM03175E/ – volume: 616 start-page: 58 year: 2014 ident: 6437_CR54 publication-title: J Alloy Compd doi: 10.1016/J.JALLCOM.2014.07.047 – volume: 33 start-page: 2590 year: 2022 ident: 6437_CR80 publication-title: J Mater Sci Mater Electron doi: 10.1007/S10854-021-07464-3/FIGURES/9 – volume: 34 year: 2020 ident: 6437_CR21 publication-title: Addit Manuf doi: 10.1016/J.ADDMA.2020.101240 – volume: 16 year: 2019 ident: 6437_CR7 publication-title: FlatChem doi: 10.1016/J.FLATC.2019.100111 – volume: 392 year: 2021 ident: 6437_CR57 publication-title: Electrochim Acta doi: 10.1016/J.ELECTACTA.2021.138976 – volume: 53 start-page: 16022 year: 2018 ident: 6437_CR81 publication-title: J Mater Sci doi: 10.1007/S10853-018-2742-1/METRICS – volume: 246 start-page: 267 year: 2017 ident: 6437_CR22 publication-title: J Mater Process Technol doi: 10.1016/J.JMATPROTEC.2017.03.022 – ident: 6437_CR11 doi: 10.1016/J.CJPH.2022.08.020 – volume: 11 start-page: 9939 year: 2009 ident: 6437_CR42 publication-title: Phys Chem Chem Phys doi: 10.1039/B904100A – volume: 30 year: 2020 ident: 6437_CR41 publication-title: Adv Funct Mater doi: 10.1002/ADFM.202003653 – volume: 48 start-page: 36975 year: 2022 ident: 6437_CR24 publication-title: Ceram Int doi: 10.1016/J.CERAMINT.2022.08.266 – volume: 336 year: 2023 ident: 6437_CR2 publication-title: Fuel doi: 10.1016/J.FUEL.2022.127066 – volume: 1 start-page: 12759 year: 2013 ident: 6437_CR65 publication-title: J Mater Chem A doi: 10.1039/C3TA12736B – volume: 106 start-page: 667 issue: 10 year: 2018 ident: 6437_CR20 publication-title: Nat Chem doi: 10.1038/s41557-018-0045-4 – volume: 43 year: 2023 ident: 6437_CR37 publication-title: Surf Interfaces doi: 10.1016/J.SURFIN.2023.103555 – volume: 7 start-page: 6037 year: 2013 ident: 6437_CR59 publication-title: ACS Nano doi: 10.1021/NN401818T/SUPPL_FILE/NN401818T_SI_001.PDF – volume: 37 start-page: 17473 year: 2023 ident: 6437_CR17 publication-title: Energy Fuels doi: 10.1021/ACS.ENERGYFUELS.3C03380 – volume: 37 start-page: 1297 year: 2023 ident: 6437_CR73 publication-title: Energy Fuels doi: 10.1021/ACS.ENERGYFUELS.2C03279/ASSET/IMAGES/MEDIUM/EF2C03279_0012.GIF – volume: 16 start-page: 6916 year: 2023 ident: 6437_CR31 publication-title: Mater doi: 10.3390/MA16216916 – volume: 222 start-page: 1424 year: 2016 ident: 6437_CR34 publication-title: Electrochim Acta doi: 10.1016/J.ELECTACTA.2016.11.120 – volume: 466 year: 2023 ident: 6437_CR26 publication-title: Electrochim Acta doi: 10.1016/J.ELECTACTA.2023.143020 – volume: 57 start-page: 2343 year: 2021 ident: 6437_CR40 publication-title: Chem Commun doi: 10.1039/D0CC07970G – volume: 823 start-page: 80 year: 2018 ident: 6437_CR79 publication-title: J Electroanal Chem doi: 10.1016/J.JELECHEM.2018.05.037 – volume: 405 start-page: 2286 year: 2010 ident: 6437_CR32 publication-title: Phys B Condens Matter doi: 10.1016/J.PHYSB.2010.02.028 – volume: 938 year: 2023 ident: 6437_CR47 publication-title: J Alloy Compd doi: 10.1016/J.JALLCOM.2022.168657 – volume: 26 start-page: 1291 year: 2022 ident: 6437_CR74 publication-title: J Solid State Electrochem doi: 10.1007/S10008-022-05165-3/METRICS – volume: 49 start-page: 28036 year: 2023 ident: 6437_CR25 publication-title: Ceram Int doi: 10.1016/J.CERAMINT.2023.06.051 – volume: 356 start-page: 232 year: 2015 ident: 6437_CR48 publication-title: Appl Surf Sci doi: 10.1016/J.APSUSC.2015.08.077 – volume: 61 start-page: 1 issue: 6 year: 2016 ident: 6437_CR70 publication-title: Sci Rep. doi: 10.1038/srep25793 – volume: 10 start-page: 23163 year: 2018 ident: 6437_CR44 publication-title: ACS Appl Mater Interfaces doi: 10.1021/ACSAMI.8B07082/ASSET/IMAGES/LARGE/AM-2018-07082Q_0003.JPEG – volume: 103 start-page: 704 year: 2022 ident: 6437_CR15 publication-title: J Sol Gel Sci Technol doi: 10.1007/S10971-022-05888-9/TABLES/1 – volume: 679 year: 2023 ident: 6437_CR33 publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/J.COLSURFA.2023.132541 – volume: 462 year: 2023 ident: 6437_CR46 publication-title: Electrochim Acta doi: 10.1016/J.ELECTACTA.2023.142729 – volume: 92 start-page: 108 year: 2019 ident: 6437_CR49 publication-title: Mater Sci Semicond Process doi: 10.1016/J.MSSP.2018.03.028 – volume: 49 start-page: 27496 year: 2023 ident: 6437_CR6 publication-title: Ceram Int doi: 10.1016/J.CERAMINT.2023.06.025 – volume: 7 start-page: 21735 year: 2015 ident: 6437_CR72 publication-title: ACS Appl Mater Interfaces doi: 10.1021/ACSAMI.5B04452/SUPPL_FILE/AM5B04452_SI_001.PDF – volume: 34 start-page: 1 year: 2023 ident: 6437_CR3 publication-title: J Mater Sci Mater Electron doi: 10.1007/S10854-022-09584-W/FIGURES/4 – volume: 12 start-page: 11293 year: 2022 ident: 6437_CR60 publication-title: RSC Adv doi: 10.1039/D1RA08413E – volume: 68 start-page: 155 year: 2015 ident: 6437_CR51 publication-title: Compos Part A Appl Sci Manuf doi: 10.1016/J.COMPOSITESA.2014.10.010 – volume: 52 start-page: 14837 year: 2023 ident: 6437_CR50 publication-title: Dalton Trans doi: 10.1039/D3DT02547K – volume: 5 start-page: 3726 year: 2023 ident: 6437_CR13 publication-title: ACS Appl Electron Mater doi: 10.1021/ACSAELM.3C00451/SUPPL_FILE/EL3C00451_SI_001.PDF – volume: 15 start-page: 35459 year: 2023 ident: 6437_CR19 publication-title: ACS Appl Mater Interfaces doi: 10.1021/ACSAMI.3C05154/SUPPL_FILE/AM3C05154_SI_001.PDF – volume: 360 start-page: 46 year: 2003 ident: 6437_CR43 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(03)00415-5 – volume: 32 year: 2020 ident: 6437_CR76 publication-title: J Energy Storage doi: 10.1016/J.EST.2020.101843 – ident: 6437_CR9 doi: 10.1002/ANIE.202403775 – volume: 171 start-page: 348 year: 2007 ident: 6437_CR71 publication-title: J Power Sources doi: 10.1016/J.JPOWSOUR.2007.06.220 – volume: 4 start-page: 11903 year: 2019 ident: 6437_CR78 publication-title: ChemistrySelect doi: 10.1002/SLCT.201903426 – volume: 33 start-page: 137 year: 1992 ident: 6437_CR63 publication-title: Corros Sci doi: 10.1016/0010-938X(92)90023-V – volume: 7 start-page: 24543 year: 2019 ident: 6437_CR66 publication-title: J Mater Chem A doi: 10.1039/C9TA08227A – volume: 41 start-page: 13284 year: 2012 ident: 6437_CR77 publication-title: Dalton Trans doi: 10.1039/C2DT31916K – ident: 6437_CR8 doi: 10.1002/ADFM.202403166 – volume: 52 start-page: 7477 year: 2018 ident: 6437_CR61 publication-title: Environ Sci Technol doi: 10.1021/ACS.EST.8B01728/SUPPL_FILE/ES8B01728_SI_001.PDF – volume: 45 start-page: 16908 year: 2021 ident: 6437_CR4 publication-title: Int J Energy Res doi: 10.1002/ER.6885 – ident: 6437_CR53 doi: 10.1063/1.3089666/351495 – volume: 122 start-page: 9257 year: 2018 ident: 6437_CR62 publication-title: J Phys Chem C doi: 10.1021/ACS.JPCC.7B11643/SUPPL_FILE/JP7B11643_SI_001.PDF – volume: 186 year: 2020 ident: 6437_CR30 publication-title: Mater Des doi: 10.1016/J.MATDES.2019.108199 – volume: 46 start-page: 3912 year: 2020 ident: 6437_CR36 publication-title: Ceram Int doi: 10.1016/J.CERAMINT.2019.10.119 – volume: 106 start-page: 121 year: 2023 ident: 6437_CR10 publication-title: J Sol Gel Sci Technol doi: 10.1007/S10971-023-06035-8/FIGURES/3 – volume: 137 start-page: 726 issue: 13 year: 2014 ident: 6437_CR58 publication-title: Nat Mater doi: 10.1038/nmat4000 – ident: 6437_CR23 doi: 10.1007/S10971-022-05953-3/TABLES/1 – volume: 51 start-page: 36 year: 2013 ident: 6437_CR52 publication-title: Carbon N. Y doi: 10.1016/J.CARBON.2012.08.003 – volume: 35 start-page: 7127 year: 2010 ident: 6437_CR64 publication-title: Int J Hydrog Energy doi: 10.1016/J.IJHYDENE.2010.02.026 – volume: 8 start-page: 30531 year: 2016 ident: 6437_CR45 publication-title: ACS Appl Mater Interfaces doi: 10.1021/ACSAMI.6B08082/ASSET/IMAGES/AM-2016-08082V_M013.GIF – ident: 6437_CR1 doi: 10.1007/S43207-023-00289-2/FIGURES/5 – volume: 26 start-page: 1251 year: 2022 ident: 6437_CR12 publication-title: J Solid State Electrochem doi: 10.1007/S10008-022-05154-6/FIGURES/7 – volume: 49 start-page: 6780 year: 2023 ident: 6437_CR28 publication-title: Ceram Int doi: 10.1016/J.CERAMINT.2022.10.131 – volume: 60 start-page: 21310 year: 2021 ident: 6437_CR55 publication-title: Angew Chem Int Ed doi: 10.1002/ANIE.202104167 – volume: 57 start-page: 221 year: 2014 ident: 6437_CR69 publication-title: Mater Res Bull doi: 10.1016/J.MATERRESBULL.2014.05.044 – volume: 43 year: 2023 ident: 6437_CR35 publication-title: Surf Interfaces doi: 10.1016/J.SURFIN.2023.103519 – volume: 467 year: 2023 ident: 6437_CR27 publication-title: Electrochim Acta doi: 10.1016/J.ELECTACTA.2023.143070 – volume: 44 start-page: 7357 year: 2018 ident: 6437_CR38 publication-title: Ceram Int doi: 10.1016/J.CERAMINT.2018.02.013 – volume: 962 year: 2023 ident: 6437_CR5 publication-title: J Alloy Compd doi: 10.1016/J.JALLCOM.2023.171076 – volume: 335 year: 2024 ident: 6437_CR14 publication-title: J Solid State Chem doi: 10.1016/J.JSSC.2024.124717 – volume: 41 year: 2023 ident: 6437_CR29 publication-title: Surf Interfaces doi: 10.1016/J.SURFIN.2023.103267 – volume: 253 start-page: 123289 year: 2020 ident: 6437_CR75 publication-title: Mater Chem Phys doi: 10.1016/J.MATCHEMPHYS.2020.s123289 |
SSID | ssj0005417 |
Score | 2.432405 |
Snippet | The conversion and preservation of energy have been the subject of extensive research because of the increasing need for renewable and pollution-free energy... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 309 |
SubjectTerms | Capacitance Ceramics Charge density Charge efficiency Charge transfer Chemistry and Materials Science Composites Electric charge Electrical resistivity Electrode materials Electrodes Flux density Free energy Glass Inorganic Chemistry Ionic mobility Materials Science Nanotechnology Natural Materials Optical and Electronic Materials Original Paper Pollution sources Potential energy Specific energy Storage systems Supercapacitors Zinc oxide |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66IehBdCpOp-TgTcPaJu3ak0zZGB42EYfDS0mTFIXZzXYT_O99yVI7BT23yeG9vF_Je9-H0IUXcso5dUjI0pQwVwSE04STSPj6yk1GTBm0z2EwGLO7iT-xF26FbassfaJx1HIm9B15mzoQyAOwhuB6_k40a5R-XbUUGpuoDi44hOKrftMb3j9UTR7McO7C2pBoYBs7NmOH56IOlNIeI-b1ing_Q1OVb_56IjWRp7-Hdm3KiLsrHe-jDZU10M4akGADbZlGTlEcoKe1LiA8S_FzNmp3p301olh3j-sWLYU_Xjl--ZS5mb56g71XPNKYF7hYzlUuIIIKMPUcW5YcqQ7RuN97vB0QS55ABFjVggimkfDdNBVJICWFKCTcIFJQciWsE3EufC7CBLQEOQGnkJX4kLgpFxxY4HEomekRqmWzTB0jzN1IOqmTyLTjMOkkkSs16iAPIVvyacSayC3lFguLLK4JLqZxhYmsZR2DrGMj69hrosvvNfMVrsa_f7dKdcTWxoq4OhFNdFWqqPr8924n_-92irY9cyp0l18L1Rb5Up1B5rFIzu3x-gIBzdJ5 priority: 102 providerName: ProQuest |
Title | Development of ZnO/AlFeO3 composite via hydrothermal method as supercapacitor electrode |
URI | https://link.springer.com/article/10.1007/s10971-024-06437-2 https://www.proquest.com/docview/3092967636 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58IOhBfGJ9lBy8aXB3k33k2EpXUagiFh-XJZtkUahVulXw3ztJd20VFTzlsEkOM8k8Nt98A7AfJJJJyTya8KKg3FcRlSyXVKjQ_nLTghvH9tmNTnv87Da8rYrCyhrtXj9JOks9VewmYkx9A07daxNFwzsf2twdT3EvaE2AHdz12fWE5V6Ovbgqlfl5j6_uaBJjfnsWdd4mXYHlKkwkrbFeV2HGDNZgaYo8cA0WHHhTletwM4X8Ic8FuR9cHLX6qblgxCLGLSzLkLdHSR7e9dBVXD3h3uPe0USWpHx9MUOFXlPh9R6SqjOONhvQSzvXx6e0aphAFd6kEVXcst_7RaHySGuGnkf5kTCYZuU8FlKqUKokR81gHCAZRiIhBmvGR6MVBRLTZLYJc4PngdkCIn2hvcLLdRF7XHu58LVlGpQJRkghE7wBfi23TFVs4rapRT-b8CBbWWco68zJOgsacPC55mXMpfHn7N1aHVl1r8qMoVZFhDYxasBhraLJ59932_7f9B1YDNwpsUi_XZgbDV_NHkYfo7wJs0l60oT5Vtpud-14cnfewbHd6V5eNd1R_ACaU9N- |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xEAIGxFMUCniACSyS2EmTASEElPJeQCCW4NiOQCptaQqof4rfyNlNCCDBxuzkZJ3vad99B7DuhYIJwRwa8jSl3JUBFSwRNJK-uXJTEdcW7fMiaFzzk1v_dgjei14YU1ZZ2ERrqFVbmjvybeagIw9QG4LdzjM1U6PM62oxQmMgFqe6_4YpW7ZzfIDnu-F59cOr_QbNpwpQieLWo5IbiHg3TWUSKMXQPEs3iDTmIgmvRUJIX8gwwe2jsxQM3bWPEY12UbMDT2AuyZDuMIxyXDIaFdaPypISbif84k5DamB08iadvFUvqmHi7nFq38qo990RltHtjwdZ6-fq0zCVB6hkbyBRMzCkW7Mw-QW2cBbGbNmozObg5kvNEWmn5K51ub3XrOtLRkytuikI0-T1UZCHvuraXq8npD2YWk1ERrKXju5K9NcSDUuX5DN5lJ6H639h6gKMtNotvQhEuJFyUidRac3hykkiVxmMQxFibOaziFfALfgWyxzH3IzTaMYlArPhdYy8ji2vY68Cm5__dAYoHn9-XS2OI841OotL-avAVnFE5fLv1Jb-prYG442r87P47PjidBkmPCshpr6wCiO97otewZinl6xaQSNw_9-S_QEliAxE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iKHoQnYrTqTl407C2SdvlONQxf7B5cDi8lDRJUZjdWDvB_96XrLNVVPDcNIf3kve-JN_7HkKnXktQIahDWixJCHNlQASNBeHSN1duijNt1T57QXfAbob-sFLFb9nuiyfJeU2DUWlK8-ZEJc1K4RsP4RjsMWJfnggE4RUIx65Z1wOvXZI8mO2563Cjwxw6YVE28_McX1NTiTe_PZHazNPZQpsFZMTtuY-30ZJOa2ijIiRYQ6uWyCmzHfRYYQHhcYKf0n6zPeroPsWGPW4oWhq_vQj8_K6mtvrqFeae95HGIsPZbKKnEjKohK0-xUWXHKV30aBz9XDRJUXzBCLBDDmRzCjhu0ki40ApCllIugHXcOSKWciFkL6QrRi8BJhAUEAlPgA37UIACzwBR2a6h5bTcar3ERYuV07ixCoJHaacmLvKqA6KFqAln3JWR-7CbpEslMVNg4tRVGoiG1tHYOvI2jry6ujs85_JXFfjz9GNhTuiYo9lEQWv8gDiY1BH5wsXlZ9_n-3gf8NP0Nr9ZSe6u-7dHqJ1zy4YQwBsoOV8OtNHAEry-Niuuw9updUd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+ZnO%2FAlFeO3+composite+via+hydrothermal+method+as+supercapacitor+electrode&rft.jtitle=Journal+of+sol-gel+science+and+technology&rft.au=Ahmad%2C+Tamoor&rft.au=Alotaibi%2C+B.+M.&rft.au=Alrowaily%2C+Albandari.+W.&rft.au=Alyousef%2C+Haifa+A.&rft.date=2024-08-01&rft.issn=0928-0707&rft.eissn=1573-4846&rft.volume=111&rft.issue=2&rft.spage=309&rft.epage=323&rft_id=info:doi/10.1007%2Fs10971-024-06437-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10971_024_06437_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0707&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0707&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0707&client=summon |