Development of ZnO/AlFeO3 composite via hydrothermal method as supercapacitor electrode

The conversion and preservation of energy have been the subject of extensive research because of the increasing need for renewable and pollution-free energy sources. With an extended lifespan, excellent charge-discharge properties, and substantial power density, electrochemical supercapacitors are a...

Full description

Saved in:
Bibliographic Details
Published inJournal of sol-gel science and technology Vol. 111; no. 2; pp. 309 - 323
Main Authors Ahmad, Tamoor, Alotaibi, B. M., Alrowaily, Albandari. W., Alyousef, Haifa A., Dahshan, A., Henaish, A. M. A., Ahmad, Khursheed
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The conversion and preservation of energy have been the subject of extensive research because of the increasing need for renewable and pollution-free energy sources. With an extended lifespan, excellent charge-discharge properties, and substantial power density, electrochemical supercapacitors are a special class of potential energy storage systems that find use in various processes. Much effort has been put into improving the electrode material’s composition to boost supercapacitors’ performance. In this work, hydrothermally generated ZnO/AlFeO 3 composite was analyzed by several physical and chemical characterizations to be an effective and high-performing electrode material. According to evaluated data, the ZnO/AlFeO 3 composite exhibited a pure crystalline phase, increased surface area, and heightened electrochemical efficiency showing a specific capacitance of 1232 F/g at 1 A/g with 52 Wh/kg of specific energy and 276 W/kg of specific power along with favorable CV stability after 5000th cycles. Better electrical characteristics were displayed by the ZnO/AlFeO 3 composite, as evidenced by the composite’s reduced solution resistance and lower charge transfer resistance in the impedance outcomes. The ZnO/AlFeO 3 composite demonstrated extraordinary efficiency by displaying enhanced ion mobility, better electrical conductivity, and a quick charge-storing technique, indicating the potential of the ZnO/AlFeO 3 composite for the upcoming era of power storage. Graphical Abstract Highlights Hydrothermally developed ZnO/AlFeO 3 composite was utilized as a supercapacitor electrode. Composite demonstrated remarkable physical features assessed via various physical characterizations. An enriched specific capacitance of 1232 F/g at 1 A/g was observed through the GCD results. EIS results depicted the improvement in resistive properties of ZnO/AlFeO 3 composite.
AbstractList The conversion and preservation of energy have been the subject of extensive research because of the increasing need for renewable and pollution-free energy sources. With an extended lifespan, excellent charge-discharge properties, and substantial power density, electrochemical supercapacitors are a special class of potential energy storage systems that find use in various processes. Much effort has been put into improving the electrode material’s composition to boost supercapacitors’ performance. In this work, hydrothermally generated ZnO/AlFeO 3 composite was analyzed by several physical and chemical characterizations to be an effective and high-performing electrode material. According to evaluated data, the ZnO/AlFeO 3 composite exhibited a pure crystalline phase, increased surface area, and heightened electrochemical efficiency showing a specific capacitance of 1232 F/g at 1 A/g with 52 Wh/kg of specific energy and 276 W/kg of specific power along with favorable CV stability after 5000th cycles. Better electrical characteristics were displayed by the ZnO/AlFeO 3 composite, as evidenced by the composite’s reduced solution resistance and lower charge transfer resistance in the impedance outcomes. The ZnO/AlFeO 3 composite demonstrated extraordinary efficiency by displaying enhanced ion mobility, better electrical conductivity, and a quick charge-storing technique, indicating the potential of the ZnO/AlFeO 3 composite for the upcoming era of power storage. Graphical Abstract Highlights Hydrothermally developed ZnO/AlFeO 3 composite was utilized as a supercapacitor electrode. Composite demonstrated remarkable physical features assessed via various physical characterizations. An enriched specific capacitance of 1232 F/g at 1 A/g was observed through the GCD results. EIS results depicted the improvement in resistive properties of ZnO/AlFeO 3 composite.
The conversion and preservation of energy have been the subject of extensive research because of the increasing need for renewable and pollution-free energy sources. With an extended lifespan, excellent charge-discharge properties, and substantial power density, electrochemical supercapacitors are a special class of potential energy storage systems that find use in various processes. Much effort has been put into improving the electrode material’s composition to boost supercapacitors’ performance. In this work, hydrothermally generated ZnO/AlFeO3 composite was analyzed by several physical and chemical characterizations to be an effective and high-performing electrode material. According to evaluated data, the ZnO/AlFeO3 composite exhibited a pure crystalline phase, increased surface area, and heightened electrochemical efficiency showing a specific capacitance of 1232 F/g at 1 A/g with 52 Wh/kg of specific energy and 276 W/kg of specific power along with favorable CV stability after 5000th cycles. Better electrical characteristics were displayed by the ZnO/AlFeO3 composite, as evidenced by the composite’s reduced solution resistance and lower charge transfer resistance in the impedance outcomes. The ZnO/AlFeO3 composite demonstrated extraordinary efficiency by displaying enhanced ion mobility, better electrical conductivity, and a quick charge-storing technique, indicating the potential of the ZnO/AlFeO3 composite for the upcoming era of power storage.HighlightsHydrothermally developed ZnO/AlFeO3 composite was utilized as a supercapacitor electrode.Composite demonstrated remarkable physical features assessed via various physical characterizations.An enriched specific capacitance of 1232 F/g at 1 A/g was observed through the GCD results.EIS results depicted the improvement in resistive properties of ZnO/AlFeO3 composite.
Author Ahmad, Tamoor
Dahshan, A.
Henaish, A. M. A.
Ahmad, Khursheed
Alrowaily, Albandari. W.
Alyousef, Haifa A.
Alotaibi, B. M.
Author_xml – sequence: 1
  givenname: Tamoor
  surname: Ahmad
  fullname: Ahmad, Tamoor
  organization: Department of Chemistry, Government Graduate College Taunsa Sharif
– sequence: 2
  givenname: B. M.
  surname: Alotaibi
  fullname: Alotaibi, B. M.
  email: bmalotaibi@pnu.edu.sa
  organization: Department of Physics, College of Science, Princess Nourah bint Abdulrahman University
– sequence: 3
  givenname: Albandari. W.
  surname: Alrowaily
  fullname: Alrowaily, Albandari. W.
  organization: Department of Physics, College of Science, Princess Nourah bint Abdulrahman University
– sequence: 4
  givenname: Haifa A.
  surname: Alyousef
  fullname: Alyousef, Haifa A.
  organization: Department of Physics, College of Science, Princess Nourah bint Abdulrahman University
– sequence: 5
  givenname: A.
  surname: Dahshan
  fullname: Dahshan, A.
  organization: Physics Department, College of Science, King Khalid University
– sequence: 6
  givenname: A. M. A.
  surname: Henaish
  fullname: Henaish, A. M. A.
  organization: Physics Department, Faculty of Science, Tanta University, NANOTECH Center, Ural Federal University
– sequence: 7
  givenname: Khursheed
  surname: Ahmad
  fullname: Ahmad, Khursheed
  email: khursheed@yu.ac.kr
  organization: School of Materials Science and Engineering, Yeungnam University
BookMark eNp9kE1LAzEQhoMo2Fb_gKeA57WTZDfZHMVvKPSiCF5Cmp21W3Y3a5IW_PeuVhA89DSX95l35pmS4973SMgFgysGoOaRgVYsA55nIHOhMn5EJqxQIsvLXB6TCWheZqBAnZJpjBsAKHKmJuT1FnfY-qHDPlFf07d-Ob9u73EpqPPd4GOTkO4aS9efVfBpjaGzLe0wrX1FbaRxO2BwdrCuST5QbNGl4Cs8Iye1bSOe_84Zebm_e755zBbLh6eb60XmBNMpc7lkpWR17VayqgQvc8ekRuBylSttrSusK1dWAJTMCqFVUagCGWdacis1iBm53O8dgv_YYkxm47ehHyuNGH_WUkkhxxTfp1zwMQaszRCazoZPw8B8CzR7gWYUaH4EGj5C5T9o_NGmxvcp2KY9jIo9Gsee_h3D31UHqC9tRYad
CitedBy_id crossref_primary_10_1016_j_inoche_2024_113681
crossref_primary_10_1016_j_jpcs_2025_112616
crossref_primary_10_1016_j_est_2024_113987
Cites_doi 10.1002/AENM.201502588
10.1016/S0378-7753(00)00682-0
10.1016/J.EST.2023.109968
10.1016/J.EST.2023.106687
10.1016/J.EST.2023.109005
10.1039/C0JM03175E/
10.1016/J.JALLCOM.2014.07.047
10.1007/S10854-021-07464-3/FIGURES/9
10.1016/J.ADDMA.2020.101240
10.1016/J.FLATC.2019.100111
10.1016/J.ELECTACTA.2021.138976
10.1007/S10853-018-2742-1/METRICS
10.1016/J.JMATPROTEC.2017.03.022
10.1016/J.CJPH.2022.08.020
10.1039/B904100A
10.1002/ADFM.202003653
10.1016/J.CERAMINT.2022.08.266
10.1016/J.FUEL.2022.127066
10.1039/C3TA12736B
10.1038/s41557-018-0045-4
10.1016/J.SURFIN.2023.103555
10.1021/NN401818T/SUPPL_FILE/NN401818T_SI_001.PDF
10.1021/ACS.ENERGYFUELS.3C03380
10.1021/ACS.ENERGYFUELS.2C03279/ASSET/IMAGES/MEDIUM/EF2C03279_0012.GIF
10.3390/MA16216916
10.1016/J.ELECTACTA.2016.11.120
10.1016/J.ELECTACTA.2023.143020
10.1039/D0CC07970G
10.1016/J.JELECHEM.2018.05.037
10.1016/J.PHYSB.2010.02.028
10.1016/J.JALLCOM.2022.168657
10.1007/S10008-022-05165-3/METRICS
10.1016/J.CERAMINT.2023.06.051
10.1016/J.APSUSC.2015.08.077
10.1038/srep25793
10.1021/ACSAMI.8B07082/ASSET/IMAGES/LARGE/AM-2018-07082Q_0003.JPEG
10.1007/S10971-022-05888-9/TABLES/1
10.1016/J.COLSURFA.2023.132541
10.1016/J.ELECTACTA.2023.142729
10.1016/J.MSSP.2018.03.028
10.1016/J.CERAMINT.2023.06.025
10.1021/ACSAMI.5B04452/SUPPL_FILE/AM5B04452_SI_001.PDF
10.1007/S10854-022-09584-W/FIGURES/4
10.1039/D1RA08413E
10.1016/J.COMPOSITESA.2014.10.010
10.1039/D3DT02547K
10.1021/ACSAELM.3C00451/SUPPL_FILE/EL3C00451_SI_001.PDF
10.1021/ACSAMI.3C05154/SUPPL_FILE/AM3C05154_SI_001.PDF
10.1016/S0921-5093(03)00415-5
10.1016/J.EST.2020.101843
10.1002/ANIE.202403775
10.1016/J.JPOWSOUR.2007.06.220
10.1002/SLCT.201903426
10.1016/0010-938X(92)90023-V
10.1039/C9TA08227A
10.1039/C2DT31916K
10.1002/ADFM.202403166
10.1021/ACS.EST.8B01728/SUPPL_FILE/ES8B01728_SI_001.PDF
10.1002/ER.6885
10.1063/1.3089666/351495
10.1021/ACS.JPCC.7B11643/SUPPL_FILE/JP7B11643_SI_001.PDF
10.1016/J.MATDES.2019.108199
10.1016/J.CERAMINT.2019.10.119
10.1007/S10971-023-06035-8/FIGURES/3
10.1038/nmat4000
10.1007/S10971-022-05953-3/TABLES/1
10.1016/J.CARBON.2012.08.003
10.1016/J.IJHYDENE.2010.02.026
10.1021/ACSAMI.6B08082/ASSET/IMAGES/AM-2016-08082V_M013.GIF
10.1007/S43207-023-00289-2/FIGURES/5
10.1007/S10008-022-05154-6/FIGURES/7
10.1016/J.CERAMINT.2022.10.131
10.1002/ANIE.202104167
10.1016/J.MATERRESBULL.2014.05.044
10.1016/J.SURFIN.2023.103519
10.1016/J.ELECTACTA.2023.143070
10.1016/J.CERAMINT.2018.02.013
10.1016/J.JALLCOM.2023.171076
10.1016/J.JSSC.2024.124717
10.1016/J.SURFIN.2023.103267
10.1016/J.MATCHEMPHYS.2020.s123289
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10971-024-06437-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
ProQuest Materials Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-4846
EndPage 323
ExternalDocumentID 10_1007_s10971_024_06437_2
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF-
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8S
Z8W
Z8Z
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c319t-c461861ffcb6dd3284c169e026b479aac5ac8ba30081a33975575e121962a6903
IEDL.DBID U2A
ISSN 0928-0707
IngestDate Sat Aug 23 14:25:50 EDT 2025
Tue Jul 01 00:24:53 EDT 2025
Thu Apr 24 23:07:47 EDT 2025
Fri Feb 21 02:38:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Supercapacitors
Transition metal oxide
Hydrothermal
composite
Three-electrode system
ZnO/AlFeO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c461861ffcb6dd3284c169e026b479aac5ac8ba30081a33975575e121962a6903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3092967636
PQPubID 2043844
PageCount 15
ParticipantIDs proquest_journals_3092967636
crossref_primary_10_1007_s10971_024_06437_2
crossref_citationtrail_10_1007_s10971_024_06437_2
springer_journals_10_1007_s10971_024_06437_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of sol-gel science and technology
PublicationTitleAbbrev J Sol-Gel Sci Technol
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Mohd AbdahMAAAzmanNHNKulandaivaluSSulaimanYReview of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitorsMater Des20201861:CAS:528:DC%2BC1MXit1art7jO10.1016/J.MATDES.2019.108199
DiSGongLZhouBPrecipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitorsMater Chem Phys20202531232891:CAS:528:DC%2BB3cXhtFGht7bI10.1016/J.MATCHEMPHYS.2020.s123289
BoopathiGKarthikeyanGGJaimohanSMDopant effects of Gd3+ on the electrochemical pseudocapacitive characteristics of electroactive mesoporous NiO electrodes for supercapacitorsJ Phys Chem C2018122925792741:CAS:528:DC%2BC1cXntVCmu7g%3D10.1021/ACS.JPCC.7B11643/SUPPL_FILE/JP7B11643_SI_001.PDF
ZhangXTangYZhangFA novel aluminum–graphite dual-ion batteryAdv Energy Mater2016610.1002/AENM.201502588
AhmadSGouadriaSJabbourKIron doped Gd2Zr2O7 hierarchical nanoflakes arrays as robust electrodes materials for energy storage applicationJ Energy Storage20236010.1016/J.EST.2023.106687
YewaleMAKumarVKadamRAWrapped nanochain microstructures of Ni3V2O8 nanoparticles for supercapacitor applications using the hydrothermal methodJ Energy Storage20237310.1016/J.EST.2023.109005
Luo S, Shang J, Xu Y, et al. (2024) Stabilizing NiS2 on conductive component via electrostatic self-assembly and covalent bond strategy for promoting sodium storage. Adv Funct Mater 2403166. https://doi.org/10.1002/ADFM.202403166
JadhavarAAShelkeNTYewaleMAHydrothermal synthesis of cobalt vanadium oxide (Co3V2O8) hexagonal disc for high-performance supercapacitorsSurf Interfaces2023431:CAS:528:DC%2BB3sXit1Giu7bO10.1016/J.SURFIN.2023.103519
SinghAChandraAEnhancing specific energy and power in asymmetric supercapacitors—a synergetic strategy based on the use of redox additive electrolytesSci Rep.20166161131:CAS:528:DC%2BC28Xot1Ggu70%3D10.1038/srep25793
BaQaisAAminMAAmanSTailoring of electrochemical properties on Nd-doped Ni3S2 electrode via doping strategy for supercapacitor applicationElectrochim Acta20234671:CAS:528:DC%2BB3sXhvVahs7vL10.1016/J.ELECTACTA.2023.143070
MeffordJTHardinWGDaiSAnion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodesNat Mater2014137137267321:CAS:528:DC%2BC2cXovFCmurY%3D10.1038/nmat4000
AmanSAlahmariSDKhanSAHydrothermal development of bimetallic sulfide nanostructures as an electrode material for supercapacitor applicationEnergy Fuels20233717473174831:CAS:528:DC%2BB3sXit1ers7fF10.1021/ACS.ENERGYFUELS.3C03380
AnsariMNGouadriaSKhosaRYNanospheres type morphology for regulating the electrochemical property of CeO2 nanostructures for energy storage systemJ Sol Gel Sci Technol20231061211301:CAS:528:DC%2BB3sXhs1ygsr0%3D10.1007/S10971-023-06035-8/FIGURES/3
XuXShenJLiNYeMMicrowave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performanceJ Alloy Compd201461658651:CAS:528:DC%2BC2cXhtlarsbvK10.1016/J.JALLCOM.2014.07.047
SasmalAMaitySArockiarajanASenSElectroactive properties and piezo-tribo hybrid energy harvesting performances of PVDF-AlFeO3 composites: role of crystal symmetry and agglomeration of fillersDalton Trans20235214837148511:CAS:528:DC%2BB3sXitVGhs73F10.1039/D3DT02547K37791868
MisnonIIAzizRAZainNKMHigh performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytesMater Res Bull2014572212301:CAS:528:DC%2BC2cXhtFGqurfI10.1016/J.MATERRESBULL.2014.05.044
YewaleMAKadamRANakateUTSphere-shaped CuCo2O4 nanostructures battery type electrode for supercapacitor via hydrothermal synthesis approachColloids Surf A Physicochem Eng Asp20236791:CAS:528:DC%2BB3sXitFGqu7bF10.1016/J.COLSURFA.2023.132541
BanikSMahajanARayATemperature control synthesis of platinum nanoparticle-decorated reduced graphene oxide of different functionalities for anode-catalytic oxidation of methanolFlatChem2019161:CAS:528:DC%2BC1MXhtFOrs7nJ10.1016/J.FLATC.2019.100111
ShelkeNTYewaleMAKadamRAFacile hydrothermal synthesis and fabrication of nickel cobalt oxide as an advanced electrode for electrochemical capacitorsSurf Interfaces2023431:CAS:528:DC%2BB3sXitlejtr3K10.1016/J.SURFIN.2023.103555
JavedMSLeiHShahHUAchieving high rate and high energy density in an all-solid-state flexible asymmetric pseudocapacitor through the synergistic design of binder-free 3D ZnCo2O4 nano polyhedra and 2D layered Ti3C2Tx-MXenesJ Mater Chem A2019724543245561:CAS:528:DC%2BC1MXhvVCkur3L10.1039/C9TA08227A
TianLYHuangPBLvJQMetal-organic frameworks based on ternary transition metal ions for high-performance lithium ion batteriesJ Solid State Chem20243351:CAS:528:DC%2BB2cXosVOksrg%3D10.1016/J.JSSC.2024.124717
ShiWZhuJSimDHAchieving high specific charge capacitances in Fe3O 4/reduced graphene oxide nanocompositesJ Mater Chem201121342234271:CAS:528:DC%2BC3MXit1ymsrg%3D10.1039/C0JM03175E
LiCHHuangZLinJExcellent-moisture-resistance fluorinated polyimide composite film and self-powered acoustic sensingACS Appl Mater Interfaces20231535459354681:CAS:528:DC%2BB3sXhsVeksrzF10.1021/ACSAMI.3C05154/SUPPL_FILE/AM3C05154_SI_001.PDF37432932
OjedaLOlivaJReyes-MonteroASynergistic effect between the graphene electrodes and the BiFeO3-BaTiO3 composite to overcome the limit of capacitance in eco-friendly supercapacitors made with a seawater electrolyteJ Alloy Compd20239381:CAS:528:DC%2BB3sXjvVOntA%3D%3D10.1016/J.JALLCOM.2022.168657
GuiZZhuHGilletteENatural cellulose fiber as substrate for supercapacitorACS Nano20137603760461:CAS:528:DC%2BC3sXpsFGltb0%3D10.1021/NN401818T/SUPPL_FILE/NN401818T_SI_001.PDF23777461
AlthubitiNAAmanSTahaTAMSynthesis of MnFe2O4/MXene/NF nanosized composite for supercapacitor applicationCeram Int20234927496275051:CAS:528:DC%2BB3sXht1ShurjO10.1016/J.CERAMINT.2023.06.025
FanYHuHLiuHEnhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configurationJ Power Sources20071713483541:CAS:528:DC%2BD2sXhtVSrs7jK10.1016/J.JPOWSOUR.2007.06.220
RoyARayASahaSInfluence of electrochemical active surface area on the oxygen evolution reaction and energy storage performance of MnO2-multiwalled carbon nanotube compositeInt J Energy Res20214516908169211:CAS:528:DC%2BB3MXhtFGksL7P10.1002/ER.6885
SimCKMajidSRMahmoodNZSynthesis of highly porous carbon/ZnSnO3 composite and its electrochemical propertiesJ Energy Storage20203210.1016/J.EST.2020.101843
Sharma S, Hegde MS (2009) Pt metal—CeO2 interaction: direct observation of redox coupling between Pt0 / Pt2+ / Pt4+ and Ce4+ / Ce3+ states in Ce0.98 Pt0.02 O 2-δ catalyst by a combined electrochemical and x-ray photoelectron spectroscopy study. J Chem Phys 130. https://doi.org/10.1063/1.3089666/351495
ZhuQChenJGouGAmeliorated longitudinal critically refracted—Attenuation velocity method for welding residual stress measurementJ Mater Process Technol201724626727510.1016/J.JMATPROTEC.2017.03.022
KhedrMGALashienAMSThe role of metal cations in the corrosion and corrosion inhibition of aluminium in aqueous solutionsCorros Sci1992331371511:CAS:528:DyaK38XisF2isw%3D%3D10.1016/0010-938X(92)90023-V
Hayat M, Ali B, Yunis M, et al. (2023) CeSe nanocube anchored on the nanosheet of reduced graphene oxide (rGO) as a binder free electrode for energy conversion system. J Korean Ceram Soc 1–11. https://doi.org/10.1007/S43207-023-00289-2/FIGURES/5
AlharbiFFAmanSAhmadNRational design of a BiFeWO6 nanostructure for supercapacitor applicationsJ Solid State Electrochem202226125112581:CAS:528:DC%2BB38XptVShtbw%3D10.1007/S10008-022-05154-6/FIGURES/7
PangHMaYLiGFacile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materialsDalton Trans20124113284132911:CAS:528:DC%2BC38XhsFSqurzF10.1039/C2DT31916K23023820
ZhouQGongYLinJLow temperature synthesis of sponge-like NiV2O6/C composite by calcining Ni-V-based coordination polymer for supercapacitor applicationJ Electroanal Chem201882380911:CAS:528:DC%2BC1cXhtVOksr%2FK10.1016/J.JELECHEM.2018.05.037
ManzoorSAlburaihHANisaMUA novel porous rod with nanosphere CuS2/NiFe2O4nanocomposite for low-cost high-performance energy storage systemJ Mater Sci Mater Electron20233411710.1007/S10854-022-09584-W/FIGURES/4
MohamedIMAYasinASLiuCSynthesis, surface characterization and electrochemical performance of ZnO @ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytesCeram Int202046391239201:CAS:528:DC%2BC1MXitVakt7zK10.1016/J.CERAMINT.2019.10.119
PellWGConwayBEAnalysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc chargeJ Power Sources20019657671:CAS:528:DC%2BD3MXkt1Knsbc%3D10.1016/S0378-7753(00)00682-0
SaranyaPESelladuraiSFacile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor deviceJ Mater Sci20185316022160461:CAS:528:DC%2BC1cXhsVejt7%2FL10.1007/S10853-018-2742-1/METRICS
NasreenFAnwarAWMajeedAHigh performance and remarkable cyclic stability of a nanostructured RGO–CNT-WO 3 supercapacitor electrodeRSC Adv20221211293113021:CAS:528:DC%2BB38XpsVSisL4%3D10.1039/D1RA08413E354250348996255
SinghAKSarkarDKhanGGMandalKUnique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitorsJ Mater Chem A2013112759127671:CAS:528:DC%2BC3sXhsFGgtL7I10.1039/C3TA12736B
BloomPDBaikerikarKGAndereggJWShearesVVFabrication and wear resistance of Al–Cu–Fe quasicrystal-epoxy composite materialsMater Sci Eng A200336046571:CAS:528:DC%2BD3sXnt1Cmsrw%3D10.1016/S0921-5093(03)00415-5
RanaUAmanSAshiqMNOutstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applicationsJ Sol Gel Sci Technol20221037047121:CAS:528:DC%2BB38XhvVShur3E10.1007/S10971-022-05888-9/TABLES/1
SelvakumarMKrishna BhatDManish AggarwalANano ZnO-activated carbon composite electrodes for supercapacitorsPhys B Condens Matter2010405228622891:CAS:528:DC%2BC3cXkt1Ogs7c%3D10.1016/J.PHYSB.2010.02.028
MengSWangNCaoXBuil
AK Vats (6437_CR80) 2022; 33
IMA Mohamed (6437_CR36) 2020; 46
M Wang (6437_CR20) 2018; 106
L Ojeda (6437_CR47) 2023; 938
Q Zhou (6437_CR79) 2018; 823
FF Alharbi (6437_CR12) 2022; 26
A Singh (6437_CR70) 2016; 61
W Shi (6437_CR67) 2011; 21
AG Abid (6437_CR2) 2023; 336
S Ahmad (6437_CR25) 2023; 49
MP Harikrishnan (6437_CR46) 2023; 462
MN Ansari (6437_CR10) 2023; 106
CH Li (6437_CR19) 2023; 15
J Yang (6437_CR52) 2013; 51
Y Fan (6437_CR71) 2007; 171
H Wang (6437_CR13) 2023; 5
T Wang (6437_CR57) 2021; 392
M Gao (6437_CR44) 2018; 10
AV Radhamani (6437_CR45) 2016; 8
LY Tian (6437_CR14) 2024; 335
RA De Souza (6437_CR42) 2009; 11
NA Althubiti (6437_CR6) 2023; 49
A Fadavi Boostani (6437_CR51) 2015; 68
M Abdullah (6437_CR26) 2023; 466
X Xu (6437_CR54) 2014; 616
J Wang (6437_CR38) 2018; 44
Y Zhou (6437_CR61) 2018; 52
PE Saranya (6437_CR81) 2018; 53
W Chen (6437_CR34) 2016; 222
S Ahmad (6437_CR16) 2023; 60
MA Yewale (6437_CR18) 2023; 73
L Zhang (6437_CR41) 2020; 30
RA Kadam (6437_CR29) 2023; 41
H Pang (6437_CR77) 2012; 41
M Abdullah (6437_CR73) 2023; 37
AK Singh (6437_CR65) 2013; 1
J Zhang (6437_CR72) 2015; 7
S Manzoor (6437_CR24) 2022; 48
A BaQais (6437_CR27) 2023; 467
G Boopathi (6437_CR62) 2018; 122
M Li (6437_CR64) 2010; 35
M Abdullah (6437_CR28) 2023; 49
M Selvakumar (6437_CR32) 2010; 405
S Meng (6437_CR31) 2023; 16
S Di (6437_CR75) 2020; 253
J Wang (6437_CR21) 2020; 34
6437_CR23
MA Yewale (6437_CR33) 2023; 679
A Sasmal (6437_CR50) 2023; 52
X Zhang (6437_CR56) 2016; 6
II Misnon (6437_CR69) 2014; 57
V Viswanath N (6437_CR39) 2024; 78
WG Pell (6437_CR68) 2001; 96
J Li (6437_CR74) 2022; 26
CK Sim (6437_CR76) 2020; 32
Y Cao (6437_CR40) 2021; 57
Z Gui (6437_CR59) 2013; 7
NT Shelke (6437_CR37) 2023; 43
S Banik (6437_CR7) 2019; 16
S Manzoor (6437_CR3) 2023; 34
MS Javed (6437_CR66) 2019; 7
NA Althubiti (6437_CR5) 2023; 962
PD Bloom (6437_CR43) 2003; 360
AA Jadhavar (6437_CR35) 2023; 43
T Wang (6437_CR48) 2015; 356
F Nasreen (6437_CR60) 2022; 12
Q Hu (6437_CR78) 2019; 4
Q Zhu (6437_CR22) 2017; 246
6437_CR9
A Saranya (6437_CR49) 2019; 92
X Pu (6437_CR55) 2021; 60
MGA Khedr (6437_CR63) 1992; 33
6437_CR8
6437_CR11
S Aman (6437_CR17) 2023; 37
6437_CR53
JT Mefford (6437_CR58) 2014; 137
MAA Mohd Abdah (6437_CR30) 2020; 186
6437_CR1
A Roy (6437_CR4) 2021; 45
U Rana (6437_CR15) 2022; 103
References_xml – reference: Sharma S, Hegde MS (2009) Pt metal—CeO2 interaction: direct observation of redox coupling between Pt0 / Pt2+ / Pt4+ and Ce4+ / Ce3+ states in Ce0.98 Pt0.02 O 2-δ catalyst by a combined electrochemical and x-ray photoelectron spectroscopy study. J Chem Phys 130. https://doi.org/10.1063/1.3089666/351495
– reference: Luo S, Shang J, Xu Y, et al. (2024) Stabilizing NiS2 on conductive component via electrostatic self-assembly and covalent bond strategy for promoting sodium storage. Adv Funct Mater 2403166. https://doi.org/10.1002/ADFM.202403166
– reference: PellWGConwayBEAnalysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc chargeJ Power Sources20019657671:CAS:528:DC%2BD3MXkt1Knsbc%3D10.1016/S0378-7753(00)00682-0
– reference: AlharbiFFAmanSAhmadNRational design of a BiFeWO6 nanostructure for supercapacitor applicationsJ Solid State Electrochem202226125112581:CAS:528:DC%2BB38XptVShtbw%3D10.1007/S10008-022-05154-6/FIGURES/7
– reference: PangHMaYLiGFacile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materialsDalton Trans20124113284132911:CAS:528:DC%2BC38XhsFSqurzF10.1039/C2DT31916K23023820
– reference: VatsAKKumarARajputPKumarAEngineered perovskite LaCoO3/rGO nanocomposites for asymmetrical electrochemical supercapacitor applicationJ Mater Sci Mater Electron202233259026061:CAS:528:DC%2BB38XhslKltg%3D%3D10.1007/S10854-021-07464-3/FIGURES/9
– reference: TianLYHuangPBLvJQMetal-organic frameworks based on ternary transition metal ions for high-performance lithium ion batteriesJ Solid State Chem20243351:CAS:528:DC%2BB2cXosVOksrg%3D10.1016/J.JSSC.2024.124717
– reference: LiJLuoWWangXPreparation and research of high-performance LaFeO3/RGO supercapacitorJ Solid State Electrochem202226129113011:CAS:528:DC%2BB38XpsFWqs7w%3D10.1007/S10008-022-05165-3/METRICS
– reference: HuQYueBYangFFacile synthesis and electrochemical properties of perovskite-type CeMnO3 nanofibersChemistrySelect2019411903119121:CAS:528:DC%2BC1MXitVyht7rP10.1002/SLCT.201903426
– reference: AnsariMNGouadriaSKhosaRYNanospheres type morphology for regulating the electrochemical property of CeO2 nanostructures for energy storage systemJ Sol Gel Sci Technol20231061211301:CAS:528:DC%2BB3sXhs1ygsr0%3D10.1007/S10971-023-06035-8/FIGURES/3
– reference: LiMZhaoLGuoLPreparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysisInt J Hydrog Energy201035712771331:CAS:528:DC%2BC3cXos1ygs78%3D10.1016/J.IJHYDENE.2010.02.026
– reference: SaranyaPESelladuraiSFacile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor deviceJ Mater Sci20185316022160461:CAS:528:DC%2BC1cXhsVejt7%2FL10.1007/S10853-018-2742-1/METRICS
– reference: ZhuQChenJGouGAmeliorated longitudinal critically refracted—Attenuation velocity method for welding residual stress measurementJ Mater Process Technol201724626727510.1016/J.JMATPROTEC.2017.03.022
– reference: SasmalAMaitySArockiarajanASenSElectroactive properties and piezo-tribo hybrid energy harvesting performances of PVDF-AlFeO3 composites: role of crystal symmetry and agglomeration of fillersDalton Trans20235214837148511:CAS:528:DC%2BB3sXitVGhs73F10.1039/D3DT02547K37791868
– reference: AhmadSJabbourKRafeeqMEffect on physiochemical assets of Dy added spinel ZnSm2O4 for energy storage applicationsCeram Int20234928036280471:CAS:528:DC%2BB3sXht1egtL%2FJ10.1016/J.CERAMINT.2023.06.051
– reference: ZhouYJiQLiuHQuJPore structure-dependent mass transport in flow-through electrodes for water remediationEnviron Sci Technol201852747774851:CAS:528:DC%2BC1cXhtFSrtLrE10.1021/ACS.EST.8B01728/SUPPL_FILE/ES8B01728_SI_001.PDF29883543
– reference: AbdullahMKhanSJabbourKDevelopment of binder-free MoTe2/rGO electrode via hydrothermal route for supercapacitor applicationElectrochim Acta20234661:CAS:528:DC%2BB3sXhslKgsb7E10.1016/J.ELECTACTA.2023.143020
– reference: JavedMSLeiHShahHUAchieving high rate and high energy density in an all-solid-state flexible asymmetric pseudocapacitor through the synergistic design of binder-free 3D ZnCo2O4 nano polyhedra and 2D layered Ti3C2Tx-MXenesJ Mater Chem A2019724543245561:CAS:528:DC%2BC1MXhvVCkur3L10.1039/C9TA08227A
– reference: WangJChenRXiangLKomarneniSSynthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A reviewCeram Int201844735773771:CAS:528:DC%2BC1cXit12ru7k%3D10.1016/J.CERAMINT.2018.02.013
– reference: SinghAKSarkarDKhanGGMandalKUnique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitorsJ Mater Chem A2013112759127671:CAS:528:DC%2BC3sXhsFGgtL7I10.1039/C3TA12736B
– reference: ShelkeNTYewaleMAKadamRAFacile hydrothermal synthesis and fabrication of nickel cobalt oxide as an advanced electrode for electrochemical capacitorsSurf Interfaces2023431:CAS:528:DC%2BB3sXitlejtr3K10.1016/J.SURFIN.2023.103555
– reference: RadhamaniAVShareefKMRaoMSRZnO@MnO2 core-shell nanofiber cathodes for high performance asymmetric supercapacitorsACS Appl Mater Interfaces2016830531305421:CAS:528:DC%2BC28Xhs1Ggur7I10.1021/ACSAMI.6B08082/ASSET/IMAGES/AM-2016-08082V_M013.GIF27726336
– reference: Mohd AbdahMAAAzmanNHNKulandaivaluSSulaimanYReview of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitorsMater Des20201861:CAS:528:DC%2BC1MXit1art7jO10.1016/J.MATDES.2019.108199
– reference: AhmadSGouadriaSJabbourKIron doped Gd2Zr2O7 hierarchical nanoflakes arrays as robust electrodes materials for energy storage applicationJ Energy Storage20236010.1016/J.EST.2023.106687
– reference: AlthubitiNAAmanSAhmadNEngineering in the morphology of Ni3S2 via doping of Ce with different concentration to improve the capacitive propertiesJ Alloy Compd20239621:CAS:528:DC%2BB3sXhtlGntbbP10.1016/J.JALLCOM.2023.171076
– reference: HarikrishnanMPNaveenaPBaskaranNBoseACFabrication of cerium nickel oxide (CeNiO3) nanoparticle on vanadium tetra sulphide (VS4) nanosheet composite materials as an enhanced electrode for supercapacitor applicationsElectrochim Acta20234621:CAS:528:DC%2BB3sXht1egtbrF10.1016/J.ELECTACTA.2023.142729
– reference: MisnonIIAzizRAZainNKMHigh performance MnO2 nanoflower electrode and the relationship between solvated ion size and specific capacitance in highly conductive electrolytesMater Res Bull2014572212301:CAS:528:DC%2BC2cXhtFGqurfI10.1016/J.MATERRESBULL.2014.05.044
– reference: GaoMWangWKRongQPorous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor materialACS Appl Mater Interfaces20181023163231731:CAS:528:DC%2BC1cXhtFKlsbzL10.1021/ACSAMI.8B07082/ASSET/IMAGES/LARGE/AM-2018-07082Q_0003.JPEG29923396
– reference: ManzoorSAbidAGAmanSFacile synthesis of CoFePO4 on eggshell membrane for oxygen evolution reaction and supercapacitor applicationsCeram Int20224836975369821:CAS:528:DC%2BB38XitlGksrfF10.1016/J.CERAMINT.2022.08.266
– reference: NasreenFAnwarAWMajeedAHigh performance and remarkable cyclic stability of a nanostructured RGO–CNT-WO 3 supercapacitor electrodeRSC Adv20221211293113021:CAS:528:DC%2BB38XpsVSisL4%3D10.1039/D1RA08413E354250348996255
– reference: YangJGunasekaranSElectrochemically reduced graphene oxide sheets for use in high performance supercapacitorsCarbon N. Y20135136441:CAS:528:DC%2BC38Xht12iu7jO10.1016/J.CARBON.2012.08.003
– reference: XuXShenJLiNYeMMicrowave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performanceJ Alloy Compd201461658651:CAS:528:DC%2BC2cXhtlarsbvK10.1016/J.JALLCOM.2014.07.047
– reference: ZhangXTangYZhangFA novel aluminum–graphite dual-ion batteryAdv Energy Mater2016610.1002/AENM.201502588
– reference: De SouzaRAThe formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3Phys Chem Chem Phys2009119939996910.1039/B904100A19865746
– reference: WangTZhangXChenDPreparation of a hybrid core–shell structured BaTiO3@PEDOT nanocomposite and its applications in dielectric and electrode materialsAppl Surf Sci20153562322391:CAS:528:DC%2BC2MXhtleksrbK10.1016/J.APSUSC.2015.08.077
– reference: PuXZhaoDFuCUnderstanding and calibration of charge storage mechanism in cyclic voltammetry curvesAngew Chem Int Ed20216021310213181:CAS:528:DC%2BB3MXhvVOktb3I10.1002/ANIE.202104167
– reference: Hayat M, Ali B, Yunis M, et al. (2023) CeSe nanocube anchored on the nanosheet of reduced graphene oxide (rGO) as a binder free electrode for energy conversion system. J Korean Ceram Soc 1–11. https://doi.org/10.1007/S43207-023-00289-2/FIGURES/5
– reference: MengSWangNCaoXBuilt-in piezoelectric nanogenerators promote sustainable and flexible supercapacitors: a reviewMater20231669161:CAS:528:DC%2BB3sXitlCks7jK10.3390/MA16216916
– reference: SinghAChandraAEnhancing specific energy and power in asymmetric supercapacitors—a synergetic strategy based on the use of redox additive electrolytesSci Rep.20166161131:CAS:528:DC%2BC28Xot1Ggu70%3D10.1038/srep25793
– reference: FanYHuHLiuHEnhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configurationJ Power Sources20071713483541:CAS:528:DC%2BD2sXhtVSrs7jK10.1016/J.JPOWSOUR.2007.06.220
– reference: RanaUAmanSAshiqMNOutstanding electrochemical behavior of reduced graphene oxide wrapped chromium sulfide nanoplates directly grown on nickel foam for supercapacitor applicationsJ Sol Gel Sci Technol20221037047121:CAS:528:DC%2BB38XhvVShur3E10.1007/S10971-022-05888-9/TABLES/1
– reference: YewaleMAKumarVKadamRAWrapped nanochain microstructures of Ni3V2O8 nanoparticles for supercapacitor applications using the hydrothermal methodJ Energy Storage20237310.1016/J.EST.2023.109005
– reference: BoopathiGKarthikeyanGGJaimohanSMDopant effects of Gd3+ on the electrochemical pseudocapacitive characteristics of electroactive mesoporous NiO electrodes for supercapacitorsJ Phys Chem C2018122925792741:CAS:528:DC%2BC1cXntVCmu7g%3D10.1021/ACS.JPCC.7B11643/SUPPL_FILE/JP7B11643_SI_001.PDF
– reference: GuiZZhuHGilletteENatural cellulose fiber as substrate for supercapacitorACS Nano20137603760461:CAS:528:DC%2BC3sXpsFGltb0%3D10.1021/NN401818T/SUPPL_FILE/NN401818T_SI_001.PDF23777461
– reference: LiCHHuangZLinJExcellent-moisture-resistance fluorinated polyimide composite film and self-powered acoustic sensingACS Appl Mater Interfaces20231535459354681:CAS:528:DC%2BB3sXhsVeksrzF10.1021/ACSAMI.3C05154/SUPPL_FILE/AM3C05154_SI_001.PDF37432932
– reference: KadamRAYewaleMATeliAMBimetallic Co3V2O8 microstructure: a versatile bifunctional electrode for supercapacitor and electrocatalysis applicationsSurf Interfaces2023411:CAS:528:DC%2BB3sXhsl2qs7nK10.1016/J.SURFIN.2023.103267
– reference: BanikSMahajanARayATemperature control synthesis of platinum nanoparticle-decorated reduced graphene oxide of different functionalities for anode-catalytic oxidation of methanolFlatChem2019161:CAS:528:DC%2BC1MXhtFOrs7nJ10.1016/J.FLATC.2019.100111
– reference: YewaleMAKadamRANakateUTSphere-shaped CuCo2O4 nanostructures battery type electrode for supercapacitor via hydrothermal synthesis approachColloids Surf A Physicochem Eng Asp20236791:CAS:528:DC%2BB3sXitFGqu7bF10.1016/J.COLSURFA.2023.132541
– reference: ManzoorSAlburaihHANisaMUA novel porous rod with nanosphere CuS2/NiFe2O4nanocomposite for low-cost high-performance energy storage systemJ Mater Sci Mater Electron20233411710.1007/S10854-022-09584-W/FIGURES/4
– reference: SelvakumarMKrishna BhatDManish AggarwalANano ZnO-activated carbon composite electrodes for supercapacitorsPhys B Condens Matter2010405228622891:CAS:528:DC%2BC3cXkt1Ogs7c%3D10.1016/J.PHYSB.2010.02.028
– reference: AbidAGGouadriaSManzoorSUniformly dispersed flowery EuZrSe3 derived from the europium-based metal–organic framework for energy storage devicesFuel20233361:CAS:528:DC%2BB38XjtFSktr%2FL10.1016/J.FUEL.2022.127066
– reference: SaranyaADevasenaTSivaramHJayavelRRole of hexamine in ZnO morphologies at different growth temperature with potential application in dye sensitized solar cellMater Sci Semicond Process2019921081151:CAS:528:DC%2BC1cXmvVGrur4%3D10.1016/J.MSSP.2018.03.028
– reference: BloomPDBaikerikarKGAndereggJWShearesVVFabrication and wear resistance of Al–Cu–Fe quasicrystal-epoxy composite materialsMater Sci Eng A200336046571:CAS:528:DC%2BD3sXnt1Cmsrw%3D10.1016/S0921-5093(03)00415-5
– reference: Su Y, Shang J, Liu X, et al. (2024) Constructing π–π superposition effect of Tetralithium Naphthalenetetracarboxylate with electron delocalization for Robust dual-ion batteries. Angew Chemie Int Ed e202403775. https://doi.org/10.1002/ANIE.202403775
– reference: Fadavi BoostaniATahamtanSJiangZYEnhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticlesCompos Part A Appl Sci Manuf2015681551631:CAS:528:DC%2BC2cXhslOkur3I10.1016/J.COMPOSITESA.2014.10.010
– reference: MeffordJTHardinWGDaiSAnion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodesNat Mater2014137137267321:CAS:528:DC%2BC2cXovFCmurY%3D10.1038/nmat4000
– reference: Viswanath NVYesurajJRameshMFundamental aspects of perovskite oxides as an emerging material for supercapacitor applications and its anion intercalation mechanism—reviewJ Energy Storage20247810.1016/J.EST.2023.109968
– reference: DiSGongLZhouBPrecipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitorsMater Chem Phys20202531232891:CAS:528:DC%2BB3cXhtFGht7bI10.1016/J.MATCHEMPHYS.2020.s123289
– reference: AbdullahMAnsariMZAhamdZAg2Se/SnTe nanorod as potential candidate for energy conversion system developed via hydrothermal routeCeram Int202349678067891:CAS:528:DC%2BB38Xis1Oqu77E10.1016/J.CERAMINT.2022.10.131
– reference: Aman S, Tahir MB, Ahmad Z, et al. (2022) Rational design of novel dysprosium manganite sandwich layered morphology for supercapacitor applications. Chin J Phys. https://doi.org/10.1016/J.CJPH.2022.08.020
– reference: KhedrMGALashienAMSThe role of metal cations in the corrosion and corrosion inhibition of aluminium in aqueous solutionsCorros Sci1992331371511:CAS:528:DyaK38XisF2isw%3D%3D10.1016/0010-938X(92)90023-V
– reference: ZhouQGongYLinJLow temperature synthesis of sponge-like NiV2O6/C composite by calcining Ni-V-based coordination polymer for supercapacitor applicationJ Electroanal Chem201882380911:CAS:528:DC%2BC1cXhtVOksr%2FK10.1016/J.JELECHEM.2018.05.037
– reference: RoyARayASahaSInfluence of electrochemical active surface area on the oxygen evolution reaction and energy storage performance of MnO2-multiwalled carbon nanotube compositeInt J Energy Res20214516908169211:CAS:528:DC%2BB3MXhtFGksL7P10.1002/ER.6885
– reference: ZhangLMiaoJLiJLiQHalide perovskite materials for energy storage applicationsAdv Funct Mater2020301:CAS:528:DC%2BB3cXhsFGhur7K10.1002/ADFM.202003653
– reference: BaQaisAAminMAAmanSTailoring of electrochemical properties on Nd-doped Ni3S2 electrode via doping strategy for supercapacitor applicationElectrochim Acta20234671:CAS:528:DC%2BB3sXhvVahs7vL10.1016/J.ELECTACTA.2023.143070
– reference: OjedaLOlivaJReyes-MonteroASynergistic effect between the graphene electrodes and the BiFeO3-BaTiO3 composite to overcome the limit of capacitance in eco-friendly supercapacitors made with a seawater electrolyteJ Alloy Compd20239381:CAS:528:DC%2BB3sXjvVOntA%3D%3D10.1016/J.JALLCOM.2022.168657
– reference: AbdullahMAlwadaiNAl HuwayzMEffect of Ag content on the electrochemical performance of Ag2Te nanostructures synthesized by hydrothermal route for supercapacitor applicationsEnergy Fuels202337129713091:CAS:528:DC%2BB3sXht12jsA%3D%3D10.1021/ACS.ENERGYFUELS.2C03279/ASSET/IMAGES/MEDIUM/EF2C03279_0012.GIF
– reference: ChenWGuiDLiuJNickel oxide/graphene aerogel nanocomposite as a supercapacitor electrode material with extremely wide working potential windowElectrochim Acta2016222142414291:CAS:528:DC%2BC28XhvFGjtb3F10.1016/J.ELECTACTA.2016.11.120
– reference: AmanSAlahmariSDKhanSAHydrothermal development of bimetallic sulfide nanostructures as an electrode material for supercapacitor applicationEnergy Fuels20233717473174831:CAS:528:DC%2BB3sXit1ers7fF10.1021/ACS.ENERGYFUELS.3C03380
– reference: WangJPanZWangYEvolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloyAddit Manuf2020341:CAS:528:DC%2BB3cXhsFajsrbP10.1016/J.ADDMA.2020.101240
– reference: WangHHuangZZengXEnhanced anticarbonization and electrical performance of epoxy resin via densified spherical boron nitride networksACS Appl Electron Mater20235372637321:CAS:528:DC%2BB3sXhsVKhtb%2FM10.1021/ACSAELM.3C00451/SUPPL_FILE/EL3C00451_SI_001.PDF
– reference: WangMJiangCZhangSReversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltageNat Chem2018106106676721:CAS:528:DC%2BC1cXos1Smt7k%3D10.1038/s41557-018-0045-4
– reference: ShiWZhuJSimDHAchieving high specific charge capacitances in Fe3O 4/reduced graphene oxide nanocompositesJ Mater Chem201121342234271:CAS:528:DC%2BC3MXit1ymsrg%3D10.1039/C0JM03175E/
– reference: WangTLiuJMaYP-N heterojunction NiO/ZnO electrode with high electrochemical performance for supercapacitor applicationsElectrochim Acta20213921:CAS:528:DC%2BB3MXhslCjtLzF10.1016/J.ELECTACTA.2021.138976
– reference: ZhangJFengHYangJSolvothermal synthesis of three-dimensional hierarchical cus microspheres from a cu-based ionic liquid precursor for high-performance asymmetric supercapacitorsACS Appl Mater Interfaces2015721735217441:CAS:528:DC%2BC2MXhsFSitrbO10.1021/ACSAMI.5B04452/SUPPL_FILE/AM5B04452_SI_001.PDF26371955
– reference: SimCKMajidSRMahmoodNZSynthesis of highly porous carbon/ZnSnO3 composite and its electrochemical propertiesJ Energy Storage20203210.1016/J.EST.2020.101843
– reference: AlthubitiNAAmanSTahaTAMSynthesis of MnFe2O4/MXene/NF nanosized composite for supercapacitor applicationCeram Int20234927496275051:CAS:528:DC%2BB3sXht1ShurjO10.1016/J.CERAMINT.2023.06.025
– reference: JadhavarAAShelkeNTYewaleMAHydrothermal synthesis of cobalt vanadium oxide (Co3V2O8) hexagonal disc for high-performance supercapacitorsSurf Interfaces2023431:CAS:528:DC%2BB3sXit1Giu7bO10.1016/J.SURFIN.2023.103519
– reference: MohamedIMAYasinASLiuCSynthesis, surface characterization and electrochemical performance of ZnO @ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytesCeram Int202046391239201:CAS:528:DC%2BC1MXitVakt7zK10.1016/J.CERAMINT.2019.10.119
– reference: CaoYLiangJLiXRecent advances in perovskite oxides as electrode materials for supercapacitorsChem Commun202157234323551:CAS:528:DC%2BB3MXis1Ojur0%3D10.1039/D0CC07970G
– reference: Alhashmialameer D, Aman S, Abdullah M, et al. (2022) Facile hydrothermal synthesis of Dy-doped NiMnO3 nanoflakes as a highly stable electrode for energy conversion system. J Sol-Gel Sci Technol 1–13. https://doi.org/10.1007/S10971-022-05953-3/TABLES/1
– volume: 6
  year: 2016
  ident: 6437_CR56
  publication-title: Adv Energy Mater
  doi: 10.1002/AENM.201502588
– volume: 96
  start-page: 57
  year: 2001
  ident: 6437_CR68
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(00)00682-0
– volume: 78
  year: 2024
  ident: 6437_CR39
  publication-title: J Energy Storage
  doi: 10.1016/J.EST.2023.109968
– volume: 60
  year: 2023
  ident: 6437_CR16
  publication-title: J Energy Storage
  doi: 10.1016/J.EST.2023.106687
– volume: 73
  year: 2023
  ident: 6437_CR18
  publication-title: J Energy Storage
  doi: 10.1016/J.EST.2023.109005
– volume: 21
  start-page: 3422
  year: 2011
  ident: 6437_CR67
  publication-title: J Mater Chem
  doi: 10.1039/C0JM03175E/
– volume: 616
  start-page: 58
  year: 2014
  ident: 6437_CR54
  publication-title: J Alloy Compd
  doi: 10.1016/J.JALLCOM.2014.07.047
– volume: 33
  start-page: 2590
  year: 2022
  ident: 6437_CR80
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/S10854-021-07464-3/FIGURES/9
– volume: 34
  year: 2020
  ident: 6437_CR21
  publication-title: Addit Manuf
  doi: 10.1016/J.ADDMA.2020.101240
– volume: 16
  year: 2019
  ident: 6437_CR7
  publication-title: FlatChem
  doi: 10.1016/J.FLATC.2019.100111
– volume: 392
  year: 2021
  ident: 6437_CR57
  publication-title: Electrochim Acta
  doi: 10.1016/J.ELECTACTA.2021.138976
– volume: 53
  start-page: 16022
  year: 2018
  ident: 6437_CR81
  publication-title: J Mater Sci
  doi: 10.1007/S10853-018-2742-1/METRICS
– volume: 246
  start-page: 267
  year: 2017
  ident: 6437_CR22
  publication-title: J Mater Process Technol
  doi: 10.1016/J.JMATPROTEC.2017.03.022
– ident: 6437_CR11
  doi: 10.1016/J.CJPH.2022.08.020
– volume: 11
  start-page: 9939
  year: 2009
  ident: 6437_CR42
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/B904100A
– volume: 30
  year: 2020
  ident: 6437_CR41
  publication-title: Adv Funct Mater
  doi: 10.1002/ADFM.202003653
– volume: 48
  start-page: 36975
  year: 2022
  ident: 6437_CR24
  publication-title: Ceram Int
  doi: 10.1016/J.CERAMINT.2022.08.266
– volume: 336
  year: 2023
  ident: 6437_CR2
  publication-title: Fuel
  doi: 10.1016/J.FUEL.2022.127066
– volume: 1
  start-page: 12759
  year: 2013
  ident: 6437_CR65
  publication-title: J Mater Chem A
  doi: 10.1039/C3TA12736B
– volume: 106
  start-page: 667
  issue: 10
  year: 2018
  ident: 6437_CR20
  publication-title: Nat Chem
  doi: 10.1038/s41557-018-0045-4
– volume: 43
  year: 2023
  ident: 6437_CR37
  publication-title: Surf Interfaces
  doi: 10.1016/J.SURFIN.2023.103555
– volume: 7
  start-page: 6037
  year: 2013
  ident: 6437_CR59
  publication-title: ACS Nano
  doi: 10.1021/NN401818T/SUPPL_FILE/NN401818T_SI_001.PDF
– volume: 37
  start-page: 17473
  year: 2023
  ident: 6437_CR17
  publication-title: Energy Fuels
  doi: 10.1021/ACS.ENERGYFUELS.3C03380
– volume: 37
  start-page: 1297
  year: 2023
  ident: 6437_CR73
  publication-title: Energy Fuels
  doi: 10.1021/ACS.ENERGYFUELS.2C03279/ASSET/IMAGES/MEDIUM/EF2C03279_0012.GIF
– volume: 16
  start-page: 6916
  year: 2023
  ident: 6437_CR31
  publication-title: Mater
  doi: 10.3390/MA16216916
– volume: 222
  start-page: 1424
  year: 2016
  ident: 6437_CR34
  publication-title: Electrochim Acta
  doi: 10.1016/J.ELECTACTA.2016.11.120
– volume: 466
  year: 2023
  ident: 6437_CR26
  publication-title: Electrochim Acta
  doi: 10.1016/J.ELECTACTA.2023.143020
– volume: 57
  start-page: 2343
  year: 2021
  ident: 6437_CR40
  publication-title: Chem Commun
  doi: 10.1039/D0CC07970G
– volume: 823
  start-page: 80
  year: 2018
  ident: 6437_CR79
  publication-title: J Electroanal Chem
  doi: 10.1016/J.JELECHEM.2018.05.037
– volume: 405
  start-page: 2286
  year: 2010
  ident: 6437_CR32
  publication-title: Phys B Condens Matter
  doi: 10.1016/J.PHYSB.2010.02.028
– volume: 938
  year: 2023
  ident: 6437_CR47
  publication-title: J Alloy Compd
  doi: 10.1016/J.JALLCOM.2022.168657
– volume: 26
  start-page: 1291
  year: 2022
  ident: 6437_CR74
  publication-title: J Solid State Electrochem
  doi: 10.1007/S10008-022-05165-3/METRICS
– volume: 49
  start-page: 28036
  year: 2023
  ident: 6437_CR25
  publication-title: Ceram Int
  doi: 10.1016/J.CERAMINT.2023.06.051
– volume: 356
  start-page: 232
  year: 2015
  ident: 6437_CR48
  publication-title: Appl Surf Sci
  doi: 10.1016/J.APSUSC.2015.08.077
– volume: 61
  start-page: 1
  issue: 6
  year: 2016
  ident: 6437_CR70
  publication-title: Sci Rep.
  doi: 10.1038/srep25793
– volume: 10
  start-page: 23163
  year: 2018
  ident: 6437_CR44
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/ACSAMI.8B07082/ASSET/IMAGES/LARGE/AM-2018-07082Q_0003.JPEG
– volume: 103
  start-page: 704
  year: 2022
  ident: 6437_CR15
  publication-title: J Sol Gel Sci Technol
  doi: 10.1007/S10971-022-05888-9/TABLES/1
– volume: 679
  year: 2023
  ident: 6437_CR33
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/J.COLSURFA.2023.132541
– volume: 462
  year: 2023
  ident: 6437_CR46
  publication-title: Electrochim Acta
  doi: 10.1016/J.ELECTACTA.2023.142729
– volume: 92
  start-page: 108
  year: 2019
  ident: 6437_CR49
  publication-title: Mater Sci Semicond Process
  doi: 10.1016/J.MSSP.2018.03.028
– volume: 49
  start-page: 27496
  year: 2023
  ident: 6437_CR6
  publication-title: Ceram Int
  doi: 10.1016/J.CERAMINT.2023.06.025
– volume: 7
  start-page: 21735
  year: 2015
  ident: 6437_CR72
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/ACSAMI.5B04452/SUPPL_FILE/AM5B04452_SI_001.PDF
– volume: 34
  start-page: 1
  year: 2023
  ident: 6437_CR3
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/S10854-022-09584-W/FIGURES/4
– volume: 12
  start-page: 11293
  year: 2022
  ident: 6437_CR60
  publication-title: RSC Adv
  doi: 10.1039/D1RA08413E
– volume: 68
  start-page: 155
  year: 2015
  ident: 6437_CR51
  publication-title: Compos Part A Appl Sci Manuf
  doi: 10.1016/J.COMPOSITESA.2014.10.010
– volume: 52
  start-page: 14837
  year: 2023
  ident: 6437_CR50
  publication-title: Dalton Trans
  doi: 10.1039/D3DT02547K
– volume: 5
  start-page: 3726
  year: 2023
  ident: 6437_CR13
  publication-title: ACS Appl Electron Mater
  doi: 10.1021/ACSAELM.3C00451/SUPPL_FILE/EL3C00451_SI_001.PDF
– volume: 15
  start-page: 35459
  year: 2023
  ident: 6437_CR19
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/ACSAMI.3C05154/SUPPL_FILE/AM3C05154_SI_001.PDF
– volume: 360
  start-page: 46
  year: 2003
  ident: 6437_CR43
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(03)00415-5
– volume: 32
  year: 2020
  ident: 6437_CR76
  publication-title: J Energy Storage
  doi: 10.1016/J.EST.2020.101843
– ident: 6437_CR9
  doi: 10.1002/ANIE.202403775
– volume: 171
  start-page: 348
  year: 2007
  ident: 6437_CR71
  publication-title: J Power Sources
  doi: 10.1016/J.JPOWSOUR.2007.06.220
– volume: 4
  start-page: 11903
  year: 2019
  ident: 6437_CR78
  publication-title: ChemistrySelect
  doi: 10.1002/SLCT.201903426
– volume: 33
  start-page: 137
  year: 1992
  ident: 6437_CR63
  publication-title: Corros Sci
  doi: 10.1016/0010-938X(92)90023-V
– volume: 7
  start-page: 24543
  year: 2019
  ident: 6437_CR66
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA08227A
– volume: 41
  start-page: 13284
  year: 2012
  ident: 6437_CR77
  publication-title: Dalton Trans
  doi: 10.1039/C2DT31916K
– ident: 6437_CR8
  doi: 10.1002/ADFM.202403166
– volume: 52
  start-page: 7477
  year: 2018
  ident: 6437_CR61
  publication-title: Environ Sci Technol
  doi: 10.1021/ACS.EST.8B01728/SUPPL_FILE/ES8B01728_SI_001.PDF
– volume: 45
  start-page: 16908
  year: 2021
  ident: 6437_CR4
  publication-title: Int J Energy Res
  doi: 10.1002/ER.6885
– ident: 6437_CR53
  doi: 10.1063/1.3089666/351495
– volume: 122
  start-page: 9257
  year: 2018
  ident: 6437_CR62
  publication-title: J Phys Chem C
  doi: 10.1021/ACS.JPCC.7B11643/SUPPL_FILE/JP7B11643_SI_001.PDF
– volume: 186
  year: 2020
  ident: 6437_CR30
  publication-title: Mater Des
  doi: 10.1016/J.MATDES.2019.108199
– volume: 46
  start-page: 3912
  year: 2020
  ident: 6437_CR36
  publication-title: Ceram Int
  doi: 10.1016/J.CERAMINT.2019.10.119
– volume: 106
  start-page: 121
  year: 2023
  ident: 6437_CR10
  publication-title: J Sol Gel Sci Technol
  doi: 10.1007/S10971-023-06035-8/FIGURES/3
– volume: 137
  start-page: 726
  issue: 13
  year: 2014
  ident: 6437_CR58
  publication-title: Nat Mater
  doi: 10.1038/nmat4000
– ident: 6437_CR23
  doi: 10.1007/S10971-022-05953-3/TABLES/1
– volume: 51
  start-page: 36
  year: 2013
  ident: 6437_CR52
  publication-title: Carbon N. Y
  doi: 10.1016/J.CARBON.2012.08.003
– volume: 35
  start-page: 7127
  year: 2010
  ident: 6437_CR64
  publication-title: Int J Hydrog Energy
  doi: 10.1016/J.IJHYDENE.2010.02.026
– volume: 8
  start-page: 30531
  year: 2016
  ident: 6437_CR45
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/ACSAMI.6B08082/ASSET/IMAGES/AM-2016-08082V_M013.GIF
– ident: 6437_CR1
  doi: 10.1007/S43207-023-00289-2/FIGURES/5
– volume: 26
  start-page: 1251
  year: 2022
  ident: 6437_CR12
  publication-title: J Solid State Electrochem
  doi: 10.1007/S10008-022-05154-6/FIGURES/7
– volume: 49
  start-page: 6780
  year: 2023
  ident: 6437_CR28
  publication-title: Ceram Int
  doi: 10.1016/J.CERAMINT.2022.10.131
– volume: 60
  start-page: 21310
  year: 2021
  ident: 6437_CR55
  publication-title: Angew Chem Int Ed
  doi: 10.1002/ANIE.202104167
– volume: 57
  start-page: 221
  year: 2014
  ident: 6437_CR69
  publication-title: Mater Res Bull
  doi: 10.1016/J.MATERRESBULL.2014.05.044
– volume: 43
  year: 2023
  ident: 6437_CR35
  publication-title: Surf Interfaces
  doi: 10.1016/J.SURFIN.2023.103519
– volume: 467
  year: 2023
  ident: 6437_CR27
  publication-title: Electrochim Acta
  doi: 10.1016/J.ELECTACTA.2023.143070
– volume: 44
  start-page: 7357
  year: 2018
  ident: 6437_CR38
  publication-title: Ceram Int
  doi: 10.1016/J.CERAMINT.2018.02.013
– volume: 962
  year: 2023
  ident: 6437_CR5
  publication-title: J Alloy Compd
  doi: 10.1016/J.JALLCOM.2023.171076
– volume: 335
  year: 2024
  ident: 6437_CR14
  publication-title: J Solid State Chem
  doi: 10.1016/J.JSSC.2024.124717
– volume: 41
  year: 2023
  ident: 6437_CR29
  publication-title: Surf Interfaces
  doi: 10.1016/J.SURFIN.2023.103267
– volume: 253
  start-page: 123289
  year: 2020
  ident: 6437_CR75
  publication-title: Mater Chem Phys
  doi: 10.1016/J.MATCHEMPHYS.2020.s123289
SSID ssj0005417
Score 2.432405
Snippet The conversion and preservation of energy have been the subject of extensive research because of the increasing need for renewable and pollution-free energy...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 309
SubjectTerms Capacitance
Ceramics
Charge density
Charge efficiency
Charge transfer
Chemistry and Materials Science
Composites
Electric charge
Electrical resistivity
Electrode materials
Electrodes
Flux density
Free energy
Glass
Inorganic Chemistry
Ionic mobility
Materials Science
Nanotechnology
Natural Materials
Optical and Electronic Materials
Original Paper
Pollution sources
Potential energy
Specific energy
Storage systems
Supercapacitors
Zinc oxide
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66IehBdCpOp-TgTcPaJu3ak0zZGB42EYfDS0mTFIXZzXYT_O99yVI7BT23yeG9vF_Je9-H0IUXcso5dUjI0pQwVwSE04STSPj6yk1GTBm0z2EwGLO7iT-xF26FbassfaJx1HIm9B15mzoQyAOwhuB6_k40a5R-XbUUGpuoDi44hOKrftMb3j9UTR7McO7C2pBoYBs7NmOH56IOlNIeI-b1ing_Q1OVb_56IjWRp7-Hdm3KiLsrHe-jDZU10M4akGADbZlGTlEcoKe1LiA8S_FzNmp3p301olh3j-sWLYU_Xjl--ZS5mb56g71XPNKYF7hYzlUuIIIKMPUcW5YcqQ7RuN97vB0QS55ABFjVggimkfDdNBVJICWFKCTcIFJQciWsE3EufC7CBLQEOQGnkJX4kLgpFxxY4HEomekRqmWzTB0jzN1IOqmTyLTjMOkkkSs16iAPIVvyacSayC3lFguLLK4JLqZxhYmsZR2DrGMj69hrosvvNfMVrsa_f7dKdcTWxoq4OhFNdFWqqPr8924n_-92irY9cyp0l18L1Rb5Up1B5rFIzu3x-gIBzdJ5
  priority: 102
  providerName: ProQuest
Title Development of ZnO/AlFeO3 composite via hydrothermal method as supercapacitor electrode
URI https://link.springer.com/article/10.1007/s10971-024-06437-2
https://www.proquest.com/docview/3092967636
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58IOhBfGJ9lBy8aXB3k33k2EpXUagiFh-XJZtkUahVulXw3ztJd20VFTzlsEkOM8k8Nt98A7AfJJJJyTya8KKg3FcRlSyXVKjQ_nLTghvH9tmNTnv87Da8rYrCyhrtXj9JOks9VewmYkx9A07daxNFwzsf2twdT3EvaE2AHdz12fWE5V6Ovbgqlfl5j6_uaBJjfnsWdd4mXYHlKkwkrbFeV2HGDNZgaYo8cA0WHHhTletwM4X8Ic8FuR9cHLX6qblgxCLGLSzLkLdHSR7e9dBVXD3h3uPe0USWpHx9MUOFXlPh9R6SqjOONhvQSzvXx6e0aphAFd6kEVXcst_7RaHySGuGnkf5kTCYZuU8FlKqUKokR81gHCAZRiIhBmvGR6MVBRLTZLYJc4PngdkCIn2hvcLLdRF7XHu58LVlGpQJRkghE7wBfi23TFVs4rapRT-b8CBbWWco68zJOgsacPC55mXMpfHn7N1aHVl1r8qMoVZFhDYxasBhraLJ59932_7f9B1YDNwpsUi_XZgbDV_NHkYfo7wJs0l60oT5Vtpud-14cnfewbHd6V5eNd1R_ACaU9N-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xEAIGxFMUCniACSyS2EmTASEElPJeQCCW4NiOQCptaQqof4rfyNlNCCDBxuzkZJ3vad99B7DuhYIJwRwa8jSl3JUBFSwRNJK-uXJTEdcW7fMiaFzzk1v_dgjei14YU1ZZ2ERrqFVbmjvybeagIw9QG4LdzjM1U6PM62oxQmMgFqe6_4YpW7ZzfIDnu-F59cOr_QbNpwpQieLWo5IbiHg3TWUSKMXQPEs3iDTmIgmvRUJIX8gwwe2jsxQM3bWPEY12UbMDT2AuyZDuMIxyXDIaFdaPypISbif84k5DamB08iadvFUvqmHi7nFq38qo990RltHtjwdZ6-fq0zCVB6hkbyBRMzCkW7Mw-QW2cBbGbNmozObg5kvNEWmn5K51ub3XrOtLRkytuikI0-T1UZCHvuraXq8npD2YWk1ERrKXju5K9NcSDUuX5DN5lJ6H639h6gKMtNotvQhEuJFyUidRac3hykkiVxmMQxFibOaziFfALfgWyxzH3IzTaMYlArPhdYy8ji2vY68Cm5__dAYoHn9-XS2OI841OotL-avAVnFE5fLv1Jb-prYG442r87P47PjidBkmPCshpr6wCiO97otewZinl6xaQSNw_9-S_QEliAxE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iKHoQnYrTqTl407C2SdvlONQxf7B5cDi8lDRJUZjdWDvB_96XrLNVVPDcNIf3kve-JN_7HkKnXktQIahDWixJCHNlQASNBeHSN1duijNt1T57QXfAbob-sFLFb9nuiyfJeU2DUWlK8-ZEJc1K4RsP4RjsMWJfnggE4RUIx65Z1wOvXZI8mO2563Cjwxw6YVE28_McX1NTiTe_PZHazNPZQpsFZMTtuY-30ZJOa2ijIiRYQ6uWyCmzHfRYYQHhcYKf0n6zPeroPsWGPW4oWhq_vQj8_K6mtvrqFeae95HGIsPZbKKnEjKohK0-xUWXHKV30aBz9XDRJUXzBCLBDDmRzCjhu0ki40ApCllIugHXcOSKWciFkL6QrRi8BJhAUEAlPgA37UIACzwBR2a6h5bTcar3ERYuV07ixCoJHaacmLvKqA6KFqAln3JWR-7CbpEslMVNg4tRVGoiG1tHYOvI2jry6ujs85_JXFfjz9GNhTuiYo9lEQWv8gDiY1BH5wsXlZ9_n-3gf8NP0Nr9ZSe6u-7dHqJ1zy4YQwBsoOV8OtNHAEry-Niuuw9updUd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+ZnO%2FAlFeO3+composite+via+hydrothermal+method+as+supercapacitor+electrode&rft.jtitle=Journal+of+sol-gel+science+and+technology&rft.au=Ahmad%2C+Tamoor&rft.au=Alotaibi%2C+B.+M.&rft.au=Alrowaily%2C+Albandari.+W.&rft.au=Alyousef%2C+Haifa+A.&rft.date=2024-08-01&rft.issn=0928-0707&rft.eissn=1573-4846&rft.volume=111&rft.issue=2&rft.spage=309&rft.epage=323&rft_id=info:doi/10.1007%2Fs10971-024-06437-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10971_024_06437_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0707&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0707&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0707&client=summon