Skin cancer detection using ensemble of machine learning and deep learning techniques
Skin cancer is one of the most common forms of cancer, which makes it pertinent to be able to diagnose it accurately. In particular, melanoma is a form of skin cancer that is fatal and accounts for 6 of every 7-skin cancer related death. Moreover, in hospitals where dermatologists have to diagnose m...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 18; pp. 27501 - 27524 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Skin cancer is one of the most common forms of cancer, which makes it pertinent to be able to diagnose it accurately. In particular, melanoma is a form of skin cancer that is fatal and accounts for 6 of every 7-skin cancer related death. Moreover, in hospitals where dermatologists have to diagnose multiple cases of skin cancer, there are high possibilities of false negatives in diagnosis. To avoid such incidents, there here has been exhaustive research conducted by the research community all over the world to build highly accurate automated tools for skin cancer detection. In this paper, we introduce a novel approach of combining machine learning and deep learning techniques to solve the problem of skin cancer detection. The deep learning model uses state-of-the-art neural networks to extract features from images whereas the machine learning model processes image features which are obtained after performing the techniques such as Contourlet Transform and Local Binary Pattern Histogram. Meaningful feature extraction is crucial for any image classification roblem. As a result, by combining the manual and automated features, our designed model achieves a higher accuracy of 93% with an individual recall score of 99.7% and 86% for the benign and malignant forms of cancer, respectively. We benchmarked the model on publicly available Kaggle dataset containing processed images from ISIC Archive dataset. The proposed ensemble outperforms both expert dermatologists as well as other state-of-the-art deep learning and machine learning methods. Thus, this novel method can be of high assistance to dermatologists to help prevent any misdiagnosis. |
---|---|
AbstractList | Skin cancer is one of the most common forms of cancer, which makes it pertinent to be able to diagnose it accurately. In particular, melanoma is a form of skin cancer that is fatal and accounts for 6 of every 7-skin cancer related death. Moreover, in hospitals where dermatologists have to diagnose multiple cases of skin cancer, there are high possibilities of false negatives in diagnosis. To avoid such incidents, there here has been exhaustive research conducted by the research community all over the world to build highly accurate automated tools for skin cancer detection. In this paper, we introduce a novel approach of combining machine learning and deep learning techniques to solve the problem of skin cancer detection. The deep learning model uses state-of-the-art neural networks to extract features from images whereas the machine learning model processes image features which are obtained after performing the techniques such as Contourlet Transform and Local Binary Pattern Histogram. Meaningful feature extraction is crucial for any image classification roblem. As a result, by combining the manual and automated features, our designed model achieves a higher accuracy of 93% with an individual recall score of 99.7% and 86% for the benign and malignant forms of cancer, respectively. We benchmarked the model on publicly available Kaggle dataset containing processed images from ISIC Archive dataset. The proposed ensemble outperforms both expert dermatologists as well as other state-of-the-art deep learning and machine learning methods. Thus, this novel method can be of high assistance to dermatologists to help prevent any misdiagnosis. |
Author | Tembhurne, Jitendra V. Hebbar, Nachiketa Patil, Hemprasad Y. Diwan, Tausif |
Author_xml | – sequence: 1 givenname: Jitendra V. orcidid: 0000-0002-1389-3456 surname: Tembhurne fullname: Tembhurne, Jitendra V. email: jtembhurne@iiitn.ac.in organization: Department of Computer Science & Engineering, Indian Institute of Information Technology – sequence: 2 givenname: Nachiketa surname: Hebbar fullname: Hebbar, Nachiketa organization: School of Electronics Engineering (SENSE), VIT Vellore University – sequence: 3 givenname: Hemprasad Y. surname: Patil fullname: Patil, Hemprasad Y. organization: School of Electronics Engineering (SENSE), VIT Vellore University – sequence: 4 givenname: Tausif surname: Diwan fullname: Diwan, Tausif organization: Department of Computer Science & Engineering, Indian Institute of Information Technology |
BookMark | eNp9kE1PAyEQhompiW31D3jaxDPKxwLL0TRqTZp40J4Jy0JL3bIVtgf_vaxr0sRDT0Nm5pmXPDMwCV2wANxidI8REg8JY1QSiAiFuORSQHoBppgJCoUgeJLftEJQMISvwCylHUKYM1JOwfr904fC6GBsLBrbW9P7LhTH5MOmsCHZfd3aonPFXputD7ZorY5hGOrQZMAeTp0Mb4P_Otp0DS6dbpO9-atzsH5--lgs4ert5XXxuIKGYtlDUxLmGupEJWvGBau5dpWuSOlk7musJUHYESxlwxklNaXSOCMansc1M5rOwd149xC7IbdXu-4YQ45UpCJSVpwwlrfIuGVil1K0Th2i3-v4rTBSgz416lNZn_rVp2iGqn-Q8b0e5PRR-_Y8Skc05ZywsfH0qzPUD_RAhtA |
CitedBy_id | crossref_primary_10_3390_sym16030366 crossref_primary_10_3390_math11163601 crossref_primary_10_1007_s11042_023_16783_y crossref_primary_10_1016_j_bspc_2025_107627 crossref_primary_10_1016_j_compbiomed_2024_108742 crossref_primary_10_1177_09287329241312628 crossref_primary_10_1038_s41598_024_84949_1 crossref_primary_10_1080_07357907_2024_2422602 crossref_primary_10_17798_bitlisfen_1479725 crossref_primary_10_1038_s41598_024_67424_9 crossref_primary_10_3390_diagnostics14192242 crossref_primary_10_1155_2024_3022192 crossref_primary_10_53608_estudambilisim_1409734 crossref_primary_10_1007_s10278_024_01140_8 crossref_primary_10_1002_jbio_202400325 crossref_primary_10_1007_s00521_025_11111_x crossref_primary_10_1007_s11042_024_19561_6 crossref_primary_10_1038_s41598_024_81961_3 crossref_primary_10_3390_electronics13224421 crossref_primary_10_3390_diagnostics13182869 crossref_primary_10_1007_s11042_023_16758_z crossref_primary_10_1007_s41870_024_02366_z crossref_primary_10_1007_s42600_024_00350_x crossref_primary_10_51477_mejs_1592302 crossref_primary_10_3390_diagnostics13101815 crossref_primary_10_3390_bioengineering12040326 crossref_primary_10_1177_10732748241274978 crossref_primary_10_53759_7669_jmc202505011 crossref_primary_10_1007_s10278_024_01106_w crossref_primary_10_1007_s13369_024_09896_5 crossref_primary_10_1007_s00521_024_10225_y crossref_primary_10_1016_j_asoc_2024_112013 crossref_primary_10_1007_s42979_024_03581_y crossref_primary_10_1016_j_rineng_2024_103692 crossref_primary_10_3233_THC_240020 crossref_primary_10_1109_ACCESS_2024_3486153 crossref_primary_10_3390_technologies12090142 crossref_primary_10_2139_ssrn_4819527 crossref_primary_10_1007_s11831_023_10005_2 crossref_primary_10_1007_s12626_025_00181_x crossref_primary_10_3390_computation13030078 crossref_primary_10_1038_s41598_024_82402_x crossref_primary_10_3390_bioengineering10080979 crossref_primary_10_3390_diagnostics13193063 crossref_primary_10_1111_php_14006 crossref_primary_10_3390_math12071030 |
Cites_doi | 10.3233/ICA-200641 10.1109/TMI.2016.2633551 10.1201/9781003180593 10.1109/CVPR.2016.308 10.1007/978-3-030-51935-3_29 10.1016/j.patcog.2021.108212 10.1049/PBPC042E 10.1186/s40537-019-0197-0 10.1007/978-981-33-4673-4_58 10.1186/s40537-016-0043-6 10.1016/j.patcog.2017.02.013 10.3390/s20247080 10.1109/TIP.2021.3068644 10.1136/bmj.38516.649537.E0 10.1109/TMI.2015.2506270 10.1186/s13638-017-0993-1 10.1109/iccic.2017.8524554 10.1088/1742-6596/1168/2/022022 10.4103/jcrt.JCRT_785_19 10.1109/TSMCC.2011.2118750 10.1109/TMI.2016.2642839 10.1109/TIP.2005.859376 10.1038/s41598-020-71294-2 10.1016/j.ejca.2019.05.023 10.1016/j.ijleo.2015.11.187 10.1109/AEECT.2017.8257738 10.1109/ISBI.2018.8363547 10.1371/journal.pone.0218713 10.1109/CVPR.2017.195 10.1007/s11042-020-09388-2 10.1109/tmi.2019.2893944 10.1109/CVPR.2016.90 10.1109/TSC.2015.2501981 10.1109/42.918473 10.1016/j.media.2016.06.023 10.1109/CIBEC.2018.8641762 10.1007/978-3-319-47157-0_20 10.3233/ICA-170544 10.1109/CICT51604.2020.9312098 10.1016/j.procs.2018.05.198 10.1016/0031-3203(95)00067-4 10.5455/ijlr.20170415115235 10.1109/CVPR.2017.243 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-14697-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 27524 |
ExternalDocumentID | 10_1007_s11042_023_14697_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-c425fd3f789b5675b6af8a824f95fda1a9201f2199d6532b339cfc7d695fb5ca3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 22:40:47 EDT 2025 Tue Jul 01 04:13:19 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Fri Feb 21 02:43:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Deep learning Contourlet transform Melanoma Machine learning Skin cancer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-c425fd3f789b5675b6af8a824f95fda1a9201f2199d6532b339cfc7d695fb5ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1389-3456 |
PQID | 2829986255 |
PQPubID | 54626 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2829986255 crossref_primary_10_1007_s11042_023_14697_3 crossref_citationtrail_10_1007_s11042_023_14697_3 springer_journals_10_1007_s11042_023_14697_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230700 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 7 year: 2023 text: 20230700 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | BrinkerTJHeklerAEnkAHBerkingCHaferkampSHauschildAWeichenthalMKlodeJSchadendorfDHolland-LetzTKalleCVFröhlingSSchillingBUtikalJSDeep neural networks are superior to dermatologists in melanoma image classificationEur J Cancer2019119111710.1016/j.ejca.2019.05.023 ChenYHeFWuYHouNA local start search algorithm to compute exact Hausdorff distance for arbitrary point setsPattern Recogn20176713914810.1016/j.patcog.2017.02.013 WeissKKhoshgoftaarTMWangDA survey of transfer learningJ Big Data20163114010.1186/s40537-016-0043-6 PatilHYKothariAGBhurchandiKMExpression invariant face recognition using local binary patterns and contourlet transformOptik201612752670267810.1016/j.ijleo.2015.11.187 OjalaTPietikäinenMHarwoodDAComparative study of texture measures with classification based on featured distributionsPattern Recogn1996291515910.1016/0031-3203(95)00067-4 SáezASánchez-MonederoJGutiérrezPAHervás-MartínezCMachine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic imagesIEEE Trans Med Imaging20153541036104510.1109/TMI.2015.2506270 GansterHPinzPRohrerRWildlingEBinderMKittlerHAutomated melanoma recognitionIEEE Trans Med Imaging200120323323910.1109/42.918473 HuangDShanCArdabilianMWangYChenLLocal binary patterns and its application to facial image analysis: a surveyIEEE Trans Syst Man Cybern Part C Appl Rev201141676578110.1109/TSMCC.2011.2118750 KawaharaJHamarnehGMulti-resolution-tract CNN with hybrid pretrained and skin-lesion trained layersInternational workshop on machine learning in medical imaging2016ChamSpringer16417110.1007/978-3-319-47157-0_20 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In proceedings of the IEEE conference on computer vision and pattern recognition, 4700-4708 WelchHGWoloshinSSchwartzLMSkin biopsy rates and incidence of melanoma: population based ecological studyBMJ2005331751548110.1136/bmj.38516.649537.E0 Hosny KM, Kassem MA, Foaud MM (2018) Skin cancer classification using deep learning and transfer learning. In 9th Cairo international biomedical engineering conference (CIBEC), 90-93. https://doi.org/10.1109/CIBEC.2018.8641762 ZhangDHeFHanSZouLWuYChenYAn efficient approach to directly compute the exact Hausdorff distance for 3D point setsIntegr Comput-Aided Eng201724326127710.3233/ICA-170544 He K, Zhang X, Ren S, Su, J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. https://doi.org/10.1109/CVPR.2016.90 Chowdhary CL, Alazab M, Chaudhary A, Hakak S, Gadekallu TR (2021) Computer vision and recognition systems using machine and deep learning approaches: fundamentals, Technologies and Applications. Inst Eng Technol LiangHSunXSunYGaoYText feature extraction based on deep learning: a reviewEURASIP J Wirel Commun Netw20172017111210.1186/s13638-017-0993-1 Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang L, Wang G, Cai J, Chen, T (2015) Recent advances in convolutional neural networks. CoRR, arXiv preprint arXiv Ying X (2019) An overview of overfitting and its solutions. J Phys Conf Ser 1168(2):022022 IOP Publishing Hebbar N, Patil HY, Agarwal K (2020) Web powered CT scan diagnosis for brain hemorrhage using deep learning. In 2020 IEEE 4th conference on Information & Communication Technology (CICT), 1–5 Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 SahlolATYousriDEweesAAAl-QanessMADamaseviciusRElazizMACOVID-19 image classification using deep features and fractional-order marine predators algorithmSci Rep202010111510.1038/s41598-020-71294-2 Lopez AR, Giro-i-Nieto X, Burdick J, Marques O (2017) Skin lesion classification from dermoscopic images using deep learning techniques. In 13th IASTED international conference on biomedical engineering (BioMed), 49-54 Wu Z, Li S, Chen C, Hao A, Qin H (2020) A deeper look at salient object detection: bi-stream network with a small training dataset. arXiv preprint arXiv:2008.02938 Ismail MA, Hameed N, Clos J (2021) Deep learning-based algorithm for skin Cancer classification. In proceedings of the international conference on trends in computational and cognitive engineering, 709–719 WeeseJLorenzCFour challenges in medical image analysis from an industrial perspectiveMed Image Anal201633444910.1016/j.media.2016.06.023 ChaturvediSSTembhurneJVDiwanTA multi-class skin Cancer classification using deep convolutional neural networksMultimed Tools Appl20207939284772849810.1007/s11042-020-09388-2 Farooq MA, Khatoon A, Varkarakis V, Corcoran P (2020) Advanced deep learning methodologies for skin Cancer classification in prodromal stages. arXiv preprint arXiv:2003.06356 WuYHeFZhangDLiXService-oriented feature-based data exchange for cloud-based design and manufacturingIEEE Trans Serv Comput201511234135310.1109/TSC.2015.2501981 SharmaNJainVMishraAAn analysis of convolutional neural networks for image classificationProced Comput Sci201813237738410.1016/j.procs.2018.05.198 YuLChenHDouQQinJHengPAAutomated melanoma recognition in dermoscopy images via very deep residual networksIEEE Trans Med Imaging2016364994100410.1109/TMI.2016.2642839 Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Halpern A (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In IEEE 15th international symposium on biomedical imaging (ISBI 2018), 168-172 Jana E, Subban R, Saraswathi S (2017) Research on skin Cancer cell detection using image processing. In IEEE international conference on computational intelligence and computing research (ICCIC), 1–8. https://doi.org/10.1109/iccic.2017.8524554 XieFFanHLiYJiangZMengRBovikAMelanoma classification on dermoscopy images using a neural network ensemble modelIEEE Trans Med Imaging201636384985810.1109/TMI.2016.2633551 LiangYHeFZengX3D mesh simplification with feature preservation based on whale optimization algorithm and differential evolutionIntegr Comput-Aided Eng202027441743510.3233/ICA-200641 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In proceedings of the IEEE conference on computer vision and pattern recognition, 2818-2826. https://doi.org/10.1109/CVPR.2016.308 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 BaslyHOuardaWSayadiFEOuniBAlimiAMCNN-SVM learning approach based human activity recognitionProceedings of international conference on image and signal processing2020ChamSpringer27128110.1007/978-3-030-51935-3_29 RikerAIZeaNTrinhTThe epidemiology, prevention, and detection of melanomaOchsner J20101025665 MishraSPSarkarUTaraphderSDattaSSwainDPSaikhomRLaishramMMultivariate statistical data analysis-principal component analysis (PCA)Int J Livestock Res201775607810.5455/ijlr.20170415115235 WuZLiSChenCHaoAQinHRecursive multi-model complementary deep fusion for robust salient object detection via parallel sub-networksPattern Recogn202212110821210.1016/j.patcog.2021.108212 Kaggle Skin Cancer Dataset (2021) https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign. Accessed on 7 February 2021. ElgamalMAutomatic skin Cancer images classificationInt J Adv Comput Sci Appl201343287294 WuJHuWWenYTuWLiuXSkin lesion classification using densely connected convolutional networks with attention residual learningSensors20202024708010.3390/s20247080 ChenCWangGPengCFangYZhangDQinHExploring rich and efficient spatial temporal interactions for real-time video salient object detectionIEEE Trans Image Process2021303995400710.1109/TIP.2021.3068644 Chowdhary CL, Reddy GT, Parameshachari BD (2022) Computer vision and recognition systems: research innovations and trends. CRC Press DoMNVetterliMThe contourlet transform: an efficient directional multiresolution image representationIEEE Trans Image Process200514122091210610.1109/TIP.2005.859376 ShortenCKhoshgoftaarTMA survey on image data augmentation for deep learningJ Big Data20196114810.1186/s40537-019-0197-0 American Cancer Society - Key Statistics for Melanoma Skin Cancer (2021) https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html. Accessed on 12th January 2021. BrinkerTJHeklerAEnkAHvon KalleCEnhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesionsPLoS One201914610.1371/journal.pone.0218713 Labani S, Asthana S, Rathore K, Sardana K (2020) Incidence of melanoma and nonmelanoma skin cancers in Indian and the global regions. 17:906–911. https://doi.org/10.4103/jcrt.JCRT_785_19 ZhangJXieYXiaYShenCAttention residual learning for skin lesion classificationIEEE Trans Med Imaging20193892092210310.1109/tmi.2019.2893944 Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In proceedings of the IEEE conference on computer vision and pattern recognition, 1251-1258 Argenziano G, Soyer HP, De Giorgio V, Piccolo D, Carli P, Delfino M, Wolf IH (2000) Interactive atlas of dermoscopy Alquran H, Qasmieh IA, Alqudah AM, Alhammouri S, Alawneh E, Abughazaleh A, Hasayen F (2017) The melanoma skin cancer detection and classification using support vector machine. In IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT), 1-5 Y Chen (14697_CR8) 2017; 67 N Sharma (14697_CR39) 2018; 132 L Yu (14697_CR52) 2016; 36 SS Chaturvedi (14697_CR7) 2020; 79 SP Mishra (14697_CR33) 2017; 7 14697_CR48 AI Riker (14697_CR36) 2010; 10 K Weiss (14697_CR44) 2016; 3 14697_CR10 14697_CR11 14697_CR12 14697_CR13 C Chen (14697_CR9) 2021; 30 14697_CR51 T Ojala (14697_CR34) 1996; 29 H Basly (14697_CR4) 2020 A Sáez (14697_CR37) 2015; 35 Z Wu (14697_CR49) 2022; 121 TJ Brinker (14697_CR6) 2019; 14 M Elgamal (14697_CR15) 2013; 4 TJ Brinker (14697_CR5) 2019; 119 J Wu (14697_CR47) 2020; 20 14697_CR41 14697_CR42 Y Liang (14697_CR31) 2020; 27 J Weese (14697_CR43) 2016; 33 D Zhang (14697_CR53) 2017; 24 14697_CR29 14697_CR25 14697_CR26 14697_CR28 14697_CR32 H Ganster (14697_CR17) 2001; 20 AT Sahlol (14697_CR38) 2020; 10 Y Wu (14697_CR46) 2015; 11 14697_CR3 14697_CR18 14697_CR19 14697_CR1 14697_CR2 14697_CR16 MN Do (14697_CR14) 2005; 14 14697_CR21 J Zhang (14697_CR54) 2019; 38 14697_CR23 14697_CR24 F Xie (14697_CR50) 2016; 36 D Huang (14697_CR22) 2011; 41 H Liang (14697_CR30) 2017; 2017 14697_CR20 HG Welch (14697_CR45) 2005; 331 C Shorten (14697_CR40) 2019; 6 J Kawahara (14697_CR27) 2016 HY Patil (14697_CR35) 2016; 127 |
References_xml | – reference: Argenziano G, Soyer HP, De Giorgio V, Piccolo D, Carli P, Delfino M, Wolf IH (2000) Interactive atlas of dermoscopy – reference: ChenCWangGPengCFangYZhangDQinHExploring rich and efficient spatial temporal interactions for real-time video salient object detectionIEEE Trans Image Process2021303995400710.1109/TIP.2021.3068644 – reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In proceedings of the IEEE conference on computer vision and pattern recognition, 2818-2826. https://doi.org/10.1109/CVPR.2016.308 – reference: Chowdhary CL, Alazab M, Chaudhary A, Hakak S, Gadekallu TR (2021) Computer vision and recognition systems using machine and deep learning approaches: fundamentals, Technologies and Applications. Inst Eng Technol – reference: OjalaTPietikäinenMHarwoodDAComparative study of texture measures with classification based on featured distributionsPattern Recogn1996291515910.1016/0031-3203(95)00067-4 – reference: ChenYHeFWuYHouNA local start search algorithm to compute exact Hausdorff distance for arbitrary point setsPattern Recogn20176713914810.1016/j.patcog.2017.02.013 – reference: Hebbar N, Patil HY, Agarwal K (2020) Web powered CT scan diagnosis for brain hemorrhage using deep learning. In 2020 IEEE 4th conference on Information & Communication Technology (CICT), 1–5 – reference: Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 – reference: Labani S, Asthana S, Rathore K, Sardana K (2020) Incidence of melanoma and nonmelanoma skin cancers in Indian and the global regions. 17:906–911. https://doi.org/10.4103/jcrt.JCRT_785_19 – reference: Wu Z, Li S, Chen C, Hao A, Qin H (2020) A deeper look at salient object detection: bi-stream network with a small training dataset. arXiv preprint arXiv:2008.02938 – reference: ChaturvediSSTembhurneJVDiwanTA multi-class skin Cancer classification using deep convolutional neural networksMultimed Tools Appl20207939284772849810.1007/s11042-020-09388-2 – reference: Farooq MA, Khatoon A, Varkarakis V, Corcoran P (2020) Advanced deep learning methodologies for skin Cancer classification in prodromal stages. arXiv preprint arXiv:2003.06356 – reference: SáezASánchez-MonederoJGutiérrezPAHervás-MartínezCMachine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic imagesIEEE Trans Med Imaging20153541036104510.1109/TMI.2015.2506270 – reference: SahlolATYousriDEweesAAAl-QanessMADamaseviciusRElazizMACOVID-19 image classification using deep features and fractional-order marine predators algorithmSci Rep202010111510.1038/s41598-020-71294-2 – reference: LiangHSunXSunYGaoYText feature extraction based on deep learning: a reviewEURASIP J Wirel Commun Netw20172017111210.1186/s13638-017-0993-1 – reference: Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In proceedings of the IEEE conference on computer vision and pattern recognition, 1251-1258 – reference: XieFFanHLiYJiangZMengRBovikAMelanoma classification on dermoscopy images using a neural network ensemble modelIEEE Trans Med Imaging201636384985810.1109/TMI.2016.2633551 – reference: Jana E, Subban R, Saraswathi S (2017) Research on skin Cancer cell detection using image processing. In IEEE international conference on computational intelligence and computing research (ICCIC), 1–8. https://doi.org/10.1109/iccic.2017.8524554 – reference: ZhangJXieYXiaYShenCAttention residual learning for skin lesion classificationIEEE Trans Med Imaging20193892092210310.1109/tmi.2019.2893944 – reference: WeeseJLorenzCFour challenges in medical image analysis from an industrial perspectiveMed Image Anal201633444910.1016/j.media.2016.06.023 – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 – reference: WuYHeFZhangDLiXService-oriented feature-based data exchange for cloud-based design and manufacturingIEEE Trans Serv Comput201511234135310.1109/TSC.2015.2501981 – reference: YuLChenHDouQQinJHengPAAutomated melanoma recognition in dermoscopy images via very deep residual networksIEEE Trans Med Imaging2016364994100410.1109/TMI.2016.2642839 – reference: Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Halpern A (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In IEEE 15th international symposium on biomedical imaging (ISBI 2018), 168-172 – reference: Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang L, Wang G, Cai J, Chen, T (2015) Recent advances in convolutional neural networks. CoRR, arXiv preprint arXiv – reference: Chowdhary CL, Reddy GT, Parameshachari BD (2022) Computer vision and recognition systems: research innovations and trends. CRC Press – reference: ShortenCKhoshgoftaarTMA survey on image data augmentation for deep learningJ Big Data20196114810.1186/s40537-019-0197-0 – reference: WuZLiSChenCHaoAQinHRecursive multi-model complementary deep fusion for robust salient object detection via parallel sub-networksPattern Recogn202212110821210.1016/j.patcog.2021.108212 – reference: Hosny KM, Kassem MA, Foaud MM (2018) Skin cancer classification using deep learning and transfer learning. In 9th Cairo international biomedical engineering conference (CIBEC), 90-93. https://doi.org/10.1109/CIBEC.2018.8641762 – reference: LiangYHeFZengX3D mesh simplification with feature preservation based on whale optimization algorithm and differential evolutionIntegr Comput-Aided Eng202027441743510.3233/ICA-200641 – reference: BrinkerTJHeklerAEnkAHvon KalleCEnhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesionsPLoS One201914610.1371/journal.pone.0218713 – reference: He K, Zhang X, Ren S, Su, J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. https://doi.org/10.1109/CVPR.2016.90 – reference: Ismail MA, Hameed N, Clos J (2021) Deep learning-based algorithm for skin Cancer classification. In proceedings of the international conference on trends in computational and cognitive engineering, 709–719 – reference: PatilHYKothariAGBhurchandiKMExpression invariant face recognition using local binary patterns and contourlet transformOptik201612752670267810.1016/j.ijleo.2015.11.187 – reference: American Cancer Society - Key Statistics for Melanoma Skin Cancer (2021) https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html. Accessed on 12th January 2021. – reference: WelchHGWoloshinSSchwartzLMSkin biopsy rates and incidence of melanoma: population based ecological studyBMJ2005331751548110.1136/bmj.38516.649537.E0 – reference: HuangDShanCArdabilianMWangYChenLLocal binary patterns and its application to facial image analysis: a surveyIEEE Trans Syst Man Cybern Part C Appl Rev201141676578110.1109/TSMCC.2011.2118750 – reference: WuJHuWWenYTuWLiuXSkin lesion classification using densely connected convolutional networks with attention residual learningSensors20202024708010.3390/s20247080 – reference: WeissKKhoshgoftaarTMWangDA survey of transfer learningJ Big Data20163114010.1186/s40537-016-0043-6 – reference: Kaggle Skin Cancer Dataset (2021) https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign. Accessed on 7 February 2021. – reference: Lopez AR, Giro-i-Nieto X, Burdick J, Marques O (2017) Skin lesion classification from dermoscopic images using deep learning techniques. In 13th IASTED international conference on biomedical engineering (BioMed), 49-54 – reference: BrinkerTJHeklerAEnkAHBerkingCHaferkampSHauschildAWeichenthalMKlodeJSchadendorfDHolland-LetzTKalleCVFröhlingSSchillingBUtikalJSDeep neural networks are superior to dermatologists in melanoma image classificationEur J Cancer2019119111710.1016/j.ejca.2019.05.023 – reference: Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In proceedings of the IEEE conference on computer vision and pattern recognition, 4700-4708 – reference: Ying X (2019) An overview of overfitting and its solutions. J Phys Conf Ser 1168(2):022022 IOP Publishing – reference: DoMNVetterliMThe contourlet transform: an efficient directional multiresolution image representationIEEE Trans Image Process200514122091210610.1109/TIP.2005.859376 – reference: KawaharaJHamarnehGMulti-resolution-tract CNN with hybrid pretrained and skin-lesion trained layersInternational workshop on machine learning in medical imaging2016ChamSpringer16417110.1007/978-3-319-47157-0_20 – reference: BaslyHOuardaWSayadiFEOuniBAlimiAMCNN-SVM learning approach based human activity recognitionProceedings of international conference on image and signal processing2020ChamSpringer27128110.1007/978-3-030-51935-3_29 – reference: ElgamalMAutomatic skin Cancer images classificationInt J Adv Comput Sci Appl201343287294 – reference: MishraSPSarkarUTaraphderSDattaSSwainDPSaikhomRLaishramMMultivariate statistical data analysis-principal component analysis (PCA)Int J Livestock Res201775607810.5455/ijlr.20170415115235 – reference: SharmaNJainVMishraAAn analysis of convolutional neural networks for image classificationProced Comput Sci201813237738410.1016/j.procs.2018.05.198 – reference: ZhangDHeFHanSZouLWuYChenYAn efficient approach to directly compute the exact Hausdorff distance for 3D point setsIntegr Comput-Aided Eng201724326127710.3233/ICA-170544 – reference: GansterHPinzPRohrerRWildlingEBinderMKittlerHAutomated melanoma recognitionIEEE Trans Med Imaging200120323323910.1109/42.918473 – reference: Alquran H, Qasmieh IA, Alqudah AM, Alhammouri S, Alawneh E, Abughazaleh A, Hasayen F (2017) The melanoma skin cancer detection and classification using support vector machine. In IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT), 1-5 – reference: RikerAIZeaNTrinhTThe epidemiology, prevention, and detection of melanomaOchsner J20101025665 – volume: 27 start-page: 417 issue: 4 year: 2020 ident: 14697_CR31 publication-title: Integr Comput-Aided Eng doi: 10.3233/ICA-200641 – volume: 10 start-page: 56 issue: 2 year: 2010 ident: 14697_CR36 publication-title: Ochsner J – volume: 36 start-page: 849 issue: 3 year: 2016 ident: 14697_CR50 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2633551 – ident: 14697_CR12 doi: 10.1201/9781003180593 – ident: 14697_CR28 – ident: 14697_CR3 – ident: 14697_CR42 doi: 10.1109/CVPR.2016.308 – start-page: 271 volume-title: Proceedings of international conference on image and signal processing year: 2020 ident: 14697_CR4 doi: 10.1007/978-3-030-51935-3_29 – volume: 121 start-page: 108212 year: 2022 ident: 14697_CR49 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108212 – ident: 14697_CR11 doi: 10.1049/PBPC042E – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 14697_CR40 publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – ident: 14697_CR24 doi: 10.1007/978-981-33-4673-4_58 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 14697_CR44 publication-title: J Big Data doi: 10.1186/s40537-016-0043-6 – volume: 67 start-page: 139 year: 2017 ident: 14697_CR8 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.02.013 – volume: 20 start-page: 7080 issue: 24 year: 2020 ident: 14697_CR47 publication-title: Sensors doi: 10.3390/s20247080 – volume: 30 start-page: 3995 year: 2021 ident: 14697_CR9 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3068644 – volume: 4 start-page: 287 issue: 3 year: 2013 ident: 14697_CR15 publication-title: Int J Adv Comput Sci Appl – volume: 331 start-page: 481 issue: 7515 year: 2005 ident: 14697_CR45 publication-title: BMJ doi: 10.1136/bmj.38516.649537.E0 – volume: 35 start-page: 1036 issue: 4 year: 2015 ident: 14697_CR37 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2506270 – volume: 2017 start-page: 1 issue: 1 year: 2017 ident: 14697_CR30 publication-title: EURASIP J Wirel Commun Netw doi: 10.1186/s13638-017-0993-1 – ident: 14697_CR25 doi: 10.1109/iccic.2017.8524554 – ident: 14697_CR51 doi: 10.1088/1742-6596/1168/2/022022 – ident: 14697_CR29 doi: 10.4103/jcrt.JCRT_785_19 – volume: 41 start-page: 765 issue: 6 year: 2011 ident: 14697_CR22 publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev doi: 10.1109/TSMCC.2011.2118750 – volume: 36 start-page: 994 issue: 4 year: 2016 ident: 14697_CR52 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2642839 – volume: 14 start-page: 2091 issue: 12 year: 2005 ident: 14697_CR14 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2005.859376 – ident: 14697_CR18 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 14697_CR38 publication-title: Sci Rep doi: 10.1038/s41598-020-71294-2 – volume: 119 start-page: 11 year: 2019 ident: 14697_CR5 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2019.05.023 – volume: 127 start-page: 2670 issue: 5 year: 2016 ident: 14697_CR35 publication-title: Optik doi: 10.1016/j.ijleo.2015.11.187 – ident: 14697_CR1 doi: 10.1109/AEECT.2017.8257738 – ident: 14697_CR13 doi: 10.1109/ISBI.2018.8363547 – ident: 14697_CR32 – ident: 14697_CR26 – volume: 14 issue: 6 year: 2019 ident: 14697_CR6 publication-title: PLoS One doi: 10.1371/journal.pone.0218713 – ident: 14697_CR10 doi: 10.1109/CVPR.2017.195 – volume: 79 start-page: 28477 issue: 39 year: 2020 ident: 14697_CR7 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09388-2 – ident: 14697_CR2 – volume: 38 start-page: 2092 issue: 9 year: 2019 ident: 14697_CR54 publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2019.2893944 – ident: 14697_CR41 – ident: 14697_CR19 doi: 10.1109/CVPR.2016.90 – volume: 11 start-page: 341 issue: 2 year: 2015 ident: 14697_CR46 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2015.2501981 – volume: 20 start-page: 233 issue: 3 year: 2001 ident: 14697_CR17 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.918473 – volume: 33 start-page: 44 year: 2016 ident: 14697_CR43 publication-title: Med Image Anal doi: 10.1016/j.media.2016.06.023 – ident: 14697_CR21 doi: 10.1109/CIBEC.2018.8641762 – start-page: 164 volume-title: International workshop on machine learning in medical imaging year: 2016 ident: 14697_CR27 doi: 10.1007/978-3-319-47157-0_20 – ident: 14697_CR48 – volume: 24 start-page: 261 issue: 3 year: 2017 ident: 14697_CR53 publication-title: Integr Comput-Aided Eng doi: 10.3233/ICA-170544 – ident: 14697_CR20 doi: 10.1109/CICT51604.2020.9312098 – volume: 132 start-page: 377 year: 2018 ident: 14697_CR39 publication-title: Proced Comput Sci doi: 10.1016/j.procs.2018.05.198 – volume: 29 start-page: 51 issue: 1 year: 1996 ident: 14697_CR34 publication-title: Pattern Recogn doi: 10.1016/0031-3203(95)00067-4 – volume: 7 start-page: 60 issue: 5 year: 2017 ident: 14697_CR33 publication-title: Int J Livestock Res doi: 10.5455/ijlr.20170415115235 – ident: 14697_CR16 – ident: 14697_CR23 doi: 10.1109/CVPR.2017.243 |
SSID | ssj0016524 |
Score | 2.5378294 |
Snippet | Skin cancer is one of the most common forms of cancer, which makes it pertinent to be able to diagnose it accurately. In particular, melanoma is a form of skin... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 27501 |
SubjectTerms | Automation Cancer Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Deep learning Dermatology Feature extraction Image classification Machine learning Medical imaging Melanoma Multimedia Information Systems Neural networks Skin cancer Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwKCAKBXlgA0tNbSf2WCGqCgkmInWL_OzSphUN_59z6jSAAInVjj3c5fPd6R4fQreSgU8gEk-YNJowzTRRWjAAnkrggMoyGpqTn1_SSc6epnwam8LWTbV7k5KsX-q22S0JrSRgYwigWwI0dtEeh9g9FHLlw9E2d5DySGUrBgTsYRJbZX6-46s5an3Mb2nR2tqMj9FhdBPxaKPXE7Tjyi46aigYcERkFx18mid4ivJApYVNUOQbtq6qy6xKHGrbZxjiVbfQc4eXHi_qEkqHI2fEDKvSwgG3ale2w13XZygfP74-TEjkTSAGAFURAzj0lvpMSM0hINCp8kKJIfMS1lWiJFh9D0-VtCmnQ02pNN5kNoVtzY2i56hTLkt3gTA1Sg8spyaximXCSmEgoKJDbpkTzsgeShrxFSYOFQ_cFvOiHYccRF6AyIta5AXtobvtmdVmpMafX_cbrRQRXusipH8lxGKc99B9o6l2-_fbLv_3-RXaD_Tym_LcPupUb-_uGpyQSt_U_9wHjTLSFQ priority: 102 providerName: Springer Nature |
Title | Skin cancer detection using ensemble of machine learning and deep learning techniques |
URI | https://link.springer.com/article/10.1007/s11042-023-14697-3 https://www.proquest.com/docview/2829986255 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB4t7QUOsMtDlGUrH7iBBantxD6tWtSCFlEhRCU4RX6FC6SFlv_POHUaQFpOkezYhxnPw57HB3CkOPoEMikoV9ZQbrih2kiOgqcTXKCzjIXi5Otxejnh_-7FfXxwm8e0ylonVoraTW14Iz8NET-F7rcQf2cvNKBGhehqhNBYgzaqYClb0B4Mxze3qzhCKiKsrTyjaBuTWDazLJ5LQmkK2iyK2kKhqH02TY2_-SVEWlme0U_YjC4j6S95_At--HIbtmo4BhKlcxs2PvQW3IFJgNUiNjD1lTi_qFKuShLy3B8J3l39s3nyZFqQ5yqd0pOIH_FIdOlwgZ81I6tGr_NdmIyGd-eXNGIoUIvCtaAWZbJwrMikMgIvBybVhdSyxwuF4zrRCj2AAtWWcqlgPcOYsoXNXIrTRljN9qBVTku_D4RZbc6cYDZxmmfSKWnxcsV6wnEvvVUdSGry5TY2GA84F0950xo5kDxHkucVyXPWgePVmtmyvca3fx_WXMmjqM3z5mB04KTmVDP9_90Ovt_tN6wHaPllau4htBavb_4POiAL04U1ObroQrs_GgzG4XvxcDXsxrOHs5Ne_x04cNuP |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6C4VB6AMoiBij40J7AgsR2Yh-qCrUMQ1lOjMQteAsXyExnBqH-qf5GnrNMClK5cbVjH57fmrd8AF8UR59ARjnlyhrKDTdUG8lR8HSEB3SastCcfHmV9Af81424mYO_TS9MKKtsdGKpqN3Qhn_khyHjp9D9FuL76DcNqFEhu9pAaFRsce7_PGHINvl29hPf92sc906uf_RpjSpALbLblFrk0tyxPJXKCHSXTaJzqWXMc4XrOtIKbWKOgqxcIlhsGFM2t6lLcNsIqxneOw8LHNdDsCd7p7OsRSJqEF15RNESR3WTTtWqF4VGGLSQFHWTQsF-aQhb7_ZVQra0c70VWKodVHJccdQnmPPFKiw34A-k1gWr8PGfSYZrMAggXsQGFhoT56dlgVdBQlX9HcFI2T-Ye0-GOXkoizc9qdEq7oguHB7wo3ZlNlZ2sg6Dd6HtBnSKYeE3gTCrzZETzEZO81Q6JS2GciwWjnvprepC1JAvs_U484CqcZ-1g5gDyTMkeVaSPGNd2J-dGVXDPN78eqd5lawW7EnWsmEXDpqXarf_f9vW27ftwYf-9eVFdnF2db4NiwHUvioK3oHOdPzoP6PrMzW7Jb8RuH1vBn8GdMkSnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH_BJTF6UAGNqyg96EkamGk70x6MUWEDAhti3ITb2E8uMLuyawz_Gn-drzOdHTWRG9d22sPrr33vzfv4AbxRHG0CmQXKlTWUG26oNpLjxdMZLtBlyWJx8sm4OJjwL2fibAVuulqYmFbZvYnNQ-2mNv4j34kRP4XmtxA7IaVFnO6NPsx-0MggFSOtHZ1GC5Ejf_0L3bf5-8M9POu3eT7a__b5gCaGAWoRegtqEbHBsVBKZQSazqbQQWqZ86BwXGdaoX4MeKmVKwTLDWPKBlu6AqeNsJrhvvdgtYxe0QBWP-2PT78uYxiFSJS6cpeiXs5SyU5buJfFshjUlxRfKoXX_G-12Nu6_4RnG603egKPkrlKPrb4WoMVX6_D444KgqSXYR0e_tHXcAMmkdKL2AioK-L8okn3qknMsT8n6Df7S3PhyTSQyyaV05PEXXFOdO1wgZ_1I8sms_OnMLkT6T6DQT2t_XMgzGqz6wSzmdO8lE5Ji44dy4XjXnqrhpB14qtsam4eOTYuqr4tcxR5hSKvGpFXbAjvlmtmbWuPW7_e7E6lStd8XvWgHMJ2d1L99P93e3H7bltwH8FdHR-Oj17Cg8hw32YIb8JgcfXTv0I7aGFeJ8AR-H7XGP8N7OEYMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skin+cancer+detection+using+ensemble+of+machine+learning+and+deep+learning+techniques&rft.jtitle=Multimedia+tools+and+applications&rft.au=Tembhurne%2C+Jitendra+V.&rft.au=Hebbar%2C+Nachiketa&rft.au=Patil%2C+Hemprasad+Y.&rft.au=Diwan%2C+Tausif&rft.date=2023-07-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=18&rft.spage=27501&rft.epage=27524&rft_id=info:doi/10.1007%2Fs11042-023-14697-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_14697_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |