Skin cancer detection using ensemble of machine learning and deep learning techniques

Skin cancer is one of the most common forms of cancer, which makes it pertinent to be able to diagnose it accurately. In particular, melanoma is a form of skin cancer that is fatal and accounts for 6 of every 7-skin cancer related death. Moreover, in hospitals where dermatologists have to diagnose m...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 18; pp. 27501 - 27524
Main Authors Tembhurne, Jitendra V., Hebbar, Nachiketa, Patil, Hemprasad Y., Diwan, Tausif
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Skin cancer is one of the most common forms of cancer, which makes it pertinent to be able to diagnose it accurately. In particular, melanoma is a form of skin cancer that is fatal and accounts for 6 of every 7-skin cancer related death. Moreover, in hospitals where dermatologists have to diagnose multiple cases of skin cancer, there are high possibilities of false negatives in diagnosis. To avoid such incidents, there here has been exhaustive research conducted by the research community all over the world to build highly accurate automated tools for skin cancer detection. In this paper, we introduce a novel approach of combining machine learning and deep learning techniques to solve the problem of skin cancer detection. The deep learning model uses state-of-the-art neural networks to extract features from images whereas the machine learning model processes image features which are obtained after performing the techniques such as Contourlet Transform and Local Binary Pattern Histogram. Meaningful feature extraction is crucial for any image classification roblem. As a result, by combining the manual and automated features, our designed model achieves a higher accuracy of 93% with an individual recall score of 99.7% and 86% for the benign and malignant forms of cancer, respectively. We benchmarked the model on publicly available Kaggle dataset containing processed images from ISIC Archive dataset. The proposed ensemble outperforms both expert dermatologists as well as other state-of-the-art deep learning and machine learning methods. Thus, this novel method can be of high assistance to dermatologists to help prevent any misdiagnosis.
AbstractList Skin cancer is one of the most common forms of cancer, which makes it pertinent to be able to diagnose it accurately. In particular, melanoma is a form of skin cancer that is fatal and accounts for 6 of every 7-skin cancer related death. Moreover, in hospitals where dermatologists have to diagnose multiple cases of skin cancer, there are high possibilities of false negatives in diagnosis. To avoid such incidents, there here has been exhaustive research conducted by the research community all over the world to build highly accurate automated tools for skin cancer detection. In this paper, we introduce a novel approach of combining machine learning and deep learning techniques to solve the problem of skin cancer detection. The deep learning model uses state-of-the-art neural networks to extract features from images whereas the machine learning model processes image features which are obtained after performing the techniques such as Contourlet Transform and Local Binary Pattern Histogram. Meaningful feature extraction is crucial for any image classification roblem. As a result, by combining the manual and automated features, our designed model achieves a higher accuracy of 93% with an individual recall score of 99.7% and 86% for the benign and malignant forms of cancer, respectively. We benchmarked the model on publicly available Kaggle dataset containing processed images from ISIC Archive dataset. The proposed ensemble outperforms both expert dermatologists as well as other state-of-the-art deep learning and machine learning methods. Thus, this novel method can be of high assistance to dermatologists to help prevent any misdiagnosis.
Author Tembhurne, Jitendra V.
Hebbar, Nachiketa
Patil, Hemprasad Y.
Diwan, Tausif
Author_xml – sequence: 1
  givenname: Jitendra V.
  orcidid: 0000-0002-1389-3456
  surname: Tembhurne
  fullname: Tembhurne, Jitendra V.
  email: jtembhurne@iiitn.ac.in
  organization: Department of Computer Science & Engineering, Indian Institute of Information Technology
– sequence: 2
  givenname: Nachiketa
  surname: Hebbar
  fullname: Hebbar, Nachiketa
  organization: School of Electronics Engineering (SENSE), VIT Vellore University
– sequence: 3
  givenname: Hemprasad Y.
  surname: Patil
  fullname: Patil, Hemprasad Y.
  organization: School of Electronics Engineering (SENSE), VIT Vellore University
– sequence: 4
  givenname: Tausif
  surname: Diwan
  fullname: Diwan, Tausif
  organization: Department of Computer Science & Engineering, Indian Institute of Information Technology
BookMark eNp9kE1PAyEQhompiW31D3jaxDPKxwLL0TRqTZp40J4Jy0JL3bIVtgf_vaxr0sRDT0Nm5pmXPDMwCV2wANxidI8REg8JY1QSiAiFuORSQHoBppgJCoUgeJLftEJQMISvwCylHUKYM1JOwfr904fC6GBsLBrbW9P7LhTH5MOmsCHZfd3aonPFXputD7ZorY5hGOrQZMAeTp0Mb4P_Otp0DS6dbpO9-atzsH5--lgs4ert5XXxuIKGYtlDUxLmGupEJWvGBau5dpWuSOlk7musJUHYESxlwxklNaXSOCMansc1M5rOwd149xC7IbdXu-4YQ45UpCJSVpwwlrfIuGVil1K0Th2i3-v4rTBSgz416lNZn_rVp2iGqn-Q8b0e5PRR-_Y8Skc05ZywsfH0qzPUD_RAhtA
CitedBy_id crossref_primary_10_3390_sym16030366
crossref_primary_10_3390_math11163601
crossref_primary_10_1007_s11042_023_16783_y
crossref_primary_10_1016_j_bspc_2025_107627
crossref_primary_10_1016_j_compbiomed_2024_108742
crossref_primary_10_1177_09287329241312628
crossref_primary_10_1038_s41598_024_84949_1
crossref_primary_10_1080_07357907_2024_2422602
crossref_primary_10_17798_bitlisfen_1479725
crossref_primary_10_1038_s41598_024_67424_9
crossref_primary_10_3390_diagnostics14192242
crossref_primary_10_1155_2024_3022192
crossref_primary_10_53608_estudambilisim_1409734
crossref_primary_10_1007_s10278_024_01140_8
crossref_primary_10_1002_jbio_202400325
crossref_primary_10_1007_s00521_025_11111_x
crossref_primary_10_1007_s11042_024_19561_6
crossref_primary_10_1038_s41598_024_81961_3
crossref_primary_10_3390_electronics13224421
crossref_primary_10_3390_diagnostics13182869
crossref_primary_10_1007_s11042_023_16758_z
crossref_primary_10_1007_s41870_024_02366_z
crossref_primary_10_1007_s42600_024_00350_x
crossref_primary_10_51477_mejs_1592302
crossref_primary_10_3390_diagnostics13101815
crossref_primary_10_3390_bioengineering12040326
crossref_primary_10_1177_10732748241274978
crossref_primary_10_53759_7669_jmc202505011
crossref_primary_10_1007_s10278_024_01106_w
crossref_primary_10_1007_s13369_024_09896_5
crossref_primary_10_1007_s00521_024_10225_y
crossref_primary_10_1016_j_asoc_2024_112013
crossref_primary_10_1007_s42979_024_03581_y
crossref_primary_10_1016_j_rineng_2024_103692
crossref_primary_10_3233_THC_240020
crossref_primary_10_1109_ACCESS_2024_3486153
crossref_primary_10_3390_technologies12090142
crossref_primary_10_2139_ssrn_4819527
crossref_primary_10_1007_s11831_023_10005_2
crossref_primary_10_1007_s12626_025_00181_x
crossref_primary_10_3390_computation13030078
crossref_primary_10_1038_s41598_024_82402_x
crossref_primary_10_3390_bioengineering10080979
crossref_primary_10_3390_diagnostics13193063
crossref_primary_10_1111_php_14006
crossref_primary_10_3390_math12071030
Cites_doi 10.3233/ICA-200641
10.1109/TMI.2016.2633551
10.1201/9781003180593
10.1109/CVPR.2016.308
10.1007/978-3-030-51935-3_29
10.1016/j.patcog.2021.108212
10.1049/PBPC042E
10.1186/s40537-019-0197-0
10.1007/978-981-33-4673-4_58
10.1186/s40537-016-0043-6
10.1016/j.patcog.2017.02.013
10.3390/s20247080
10.1109/TIP.2021.3068644
10.1136/bmj.38516.649537.E0
10.1109/TMI.2015.2506270
10.1186/s13638-017-0993-1
10.1109/iccic.2017.8524554
10.1088/1742-6596/1168/2/022022
10.4103/jcrt.JCRT_785_19
10.1109/TSMCC.2011.2118750
10.1109/TMI.2016.2642839
10.1109/TIP.2005.859376
10.1038/s41598-020-71294-2
10.1016/j.ejca.2019.05.023
10.1016/j.ijleo.2015.11.187
10.1109/AEECT.2017.8257738
10.1109/ISBI.2018.8363547
10.1371/journal.pone.0218713
10.1109/CVPR.2017.195
10.1007/s11042-020-09388-2
10.1109/tmi.2019.2893944
10.1109/CVPR.2016.90
10.1109/TSC.2015.2501981
10.1109/42.918473
10.1016/j.media.2016.06.023
10.1109/CIBEC.2018.8641762
10.1007/978-3-319-47157-0_20
10.3233/ICA-170544
10.1109/CICT51604.2020.9312098
10.1016/j.procs.2018.05.198
10.1016/0031-3203(95)00067-4
10.5455/ijlr.20170415115235
10.1109/CVPR.2017.243
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-14697-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 27524
ExternalDocumentID 10_1007_s11042_023_14697_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-c425fd3f789b5675b6af8a824f95fda1a9201f2199d6532b339cfc7d695fb5ca3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 22:40:47 EDT 2025
Tue Jul 01 04:13:19 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
Fri Feb 21 02:43:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Deep learning
Contourlet transform
Melanoma
Machine learning
Skin cancer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c425fd3f789b5675b6af8a824f95fda1a9201f2199d6532b339cfc7d695fb5ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1389-3456
PQID 2829986255
PQPubID 54626
PageCount 24
ParticipantIDs proquest_journals_2829986255
crossref_primary_10_1007_s11042_023_14697_3
crossref_citationtrail_10_1007_s11042_023_14697_3
springer_journals_10_1007_s11042_023_14697_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BrinkerTJHeklerAEnkAHBerkingCHaferkampSHauschildAWeichenthalMKlodeJSchadendorfDHolland-LetzTKalleCVFröhlingSSchillingBUtikalJSDeep neural networks are superior to dermatologists in melanoma image classificationEur J Cancer2019119111710.1016/j.ejca.2019.05.023
ChenYHeFWuYHouNA local start search algorithm to compute exact Hausdorff distance for arbitrary point setsPattern Recogn20176713914810.1016/j.patcog.2017.02.013
WeissKKhoshgoftaarTMWangDA survey of transfer learningJ Big Data20163114010.1186/s40537-016-0043-6
PatilHYKothariAGBhurchandiKMExpression invariant face recognition using local binary patterns and contourlet transformOptik201612752670267810.1016/j.ijleo.2015.11.187
OjalaTPietikäinenMHarwoodDAComparative study of texture measures with classification based on featured distributionsPattern Recogn1996291515910.1016/0031-3203(95)00067-4
SáezASánchez-MonederoJGutiérrezPAHervás-MartínezCMachine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic imagesIEEE Trans Med Imaging20153541036104510.1109/TMI.2015.2506270
GansterHPinzPRohrerRWildlingEBinderMKittlerHAutomated melanoma recognitionIEEE Trans Med Imaging200120323323910.1109/42.918473
HuangDShanCArdabilianMWangYChenLLocal binary patterns and its application to facial image analysis: a surveyIEEE Trans Syst Man Cybern Part C Appl Rev201141676578110.1109/TSMCC.2011.2118750
KawaharaJHamarnehGMulti-resolution-tract CNN with hybrid pretrained and skin-lesion trained layersInternational workshop on machine learning in medical imaging2016ChamSpringer16417110.1007/978-3-319-47157-0_20
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In proceedings of the IEEE conference on computer vision and pattern recognition, 4700-4708
WelchHGWoloshinSSchwartzLMSkin biopsy rates and incidence of melanoma: population based ecological studyBMJ2005331751548110.1136/bmj.38516.649537.E0
Hosny KM, Kassem MA, Foaud MM (2018) Skin cancer classification using deep learning and transfer learning. In 9th Cairo international biomedical engineering conference (CIBEC), 90-93. https://doi.org/10.1109/CIBEC.2018.8641762
ZhangDHeFHanSZouLWuYChenYAn efficient approach to directly compute the exact Hausdorff distance for 3D point setsIntegr Comput-Aided Eng201724326127710.3233/ICA-170544
He K, Zhang X, Ren S, Su, J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. https://doi.org/10.1109/CVPR.2016.90
Chowdhary CL, Alazab M, Chaudhary A, Hakak S, Gadekallu TR (2021) Computer vision and recognition systems using machine and deep learning approaches: fundamentals, Technologies and Applications. Inst Eng Technol
LiangHSunXSunYGaoYText feature extraction based on deep learning: a reviewEURASIP J Wirel Commun Netw20172017111210.1186/s13638-017-0993-1
Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang L, Wang G, Cai J, Chen, T (2015) Recent advances in convolutional neural networks. CoRR, arXiv preprint arXiv
Ying X (2019) An overview of overfitting and its solutions. J Phys Conf Ser 1168(2):022022 IOP Publishing
Hebbar N, Patil HY, Agarwal K (2020) Web powered CT scan diagnosis for brain hemorrhage using deep learning. In 2020 IEEE 4th conference on Information & Communication Technology (CICT), 1–5
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
SahlolATYousriDEweesAAAl-QanessMADamaseviciusRElazizMACOVID-19 image classification using deep features and fractional-order marine predators algorithmSci Rep202010111510.1038/s41598-020-71294-2
Lopez AR, Giro-i-Nieto X, Burdick J, Marques O (2017) Skin lesion classification from dermoscopic images using deep learning techniques. In 13th IASTED international conference on biomedical engineering (BioMed), 49-54
Wu Z, Li S, Chen C, Hao A, Qin H (2020) A deeper look at salient object detection: bi-stream network with a small training dataset. arXiv preprint arXiv:2008.02938
Ismail MA, Hameed N, Clos J (2021) Deep learning-based algorithm for skin Cancer classification. In proceedings of the international conference on trends in computational and cognitive engineering, 709–719
WeeseJLorenzCFour challenges in medical image analysis from an industrial perspectiveMed Image Anal201633444910.1016/j.media.2016.06.023
ChaturvediSSTembhurneJVDiwanTA multi-class skin Cancer classification using deep convolutional neural networksMultimed Tools Appl20207939284772849810.1007/s11042-020-09388-2
Farooq MA, Khatoon A, Varkarakis V, Corcoran P (2020) Advanced deep learning methodologies for skin Cancer classification in prodromal stages. arXiv preprint arXiv:2003.06356
WuYHeFZhangDLiXService-oriented feature-based data exchange for cloud-based design and manufacturingIEEE Trans Serv Comput201511234135310.1109/TSC.2015.2501981
SharmaNJainVMishraAAn analysis of convolutional neural networks for image classificationProced Comput Sci201813237738410.1016/j.procs.2018.05.198
YuLChenHDouQQinJHengPAAutomated melanoma recognition in dermoscopy images via very deep residual networksIEEE Trans Med Imaging2016364994100410.1109/TMI.2016.2642839
Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Halpern A (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In IEEE 15th international symposium on biomedical imaging (ISBI 2018), 168-172
Jana E, Subban R, Saraswathi S (2017) Research on skin Cancer cell detection using image processing. In IEEE international conference on computational intelligence and computing research (ICCIC), 1–8. https://doi.org/10.1109/iccic.2017.8524554
XieFFanHLiYJiangZMengRBovikAMelanoma classification on dermoscopy images using a neural network ensemble modelIEEE Trans Med Imaging201636384985810.1109/TMI.2016.2633551
LiangYHeFZengX3D mesh simplification with feature preservation based on whale optimization algorithm and differential evolutionIntegr Comput-Aided Eng202027441743510.3233/ICA-200641
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In proceedings of the IEEE conference on computer vision and pattern recognition, 2818-2826. https://doi.org/10.1109/CVPR.2016.308
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
BaslyHOuardaWSayadiFEOuniBAlimiAMCNN-SVM learning approach based human activity recognitionProceedings of international conference on image and signal processing2020ChamSpringer27128110.1007/978-3-030-51935-3_29
RikerAIZeaNTrinhTThe epidemiology, prevention, and detection of melanomaOchsner J20101025665
MishraSPSarkarUTaraphderSDattaSSwainDPSaikhomRLaishramMMultivariate statistical data analysis-principal component analysis (PCA)Int J Livestock Res201775607810.5455/ijlr.20170415115235
WuZLiSChenCHaoAQinHRecursive multi-model complementary deep fusion for robust salient object detection via parallel sub-networksPattern Recogn202212110821210.1016/j.patcog.2021.108212
Kaggle Skin Cancer Dataset (2021) https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign. Accessed on 7 February 2021.
ElgamalMAutomatic skin Cancer images classificationInt J Adv Comput Sci Appl201343287294
WuJHuWWenYTuWLiuXSkin lesion classification using densely connected convolutional networks with attention residual learningSensors20202024708010.3390/s20247080
ChenCWangGPengCFangYZhangDQinHExploring rich and efficient spatial temporal interactions for real-time video salient object detectionIEEE Trans Image Process2021303995400710.1109/TIP.2021.3068644
Chowdhary CL, Reddy GT, Parameshachari BD (2022) Computer vision and recognition systems: research innovations and trends. CRC Press
DoMNVetterliMThe contourlet transform: an efficient directional multiresolution image representationIEEE Trans Image Process200514122091210610.1109/TIP.2005.859376
ShortenCKhoshgoftaarTMA survey on image data augmentation for deep learningJ Big Data20196114810.1186/s40537-019-0197-0
American Cancer Society - Key Statistics for Melanoma Skin Cancer (2021) https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html. Accessed on 12th January 2021.
BrinkerTJHeklerAEnkAHvon KalleCEnhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesionsPLoS One201914610.1371/journal.pone.0218713
Labani S, Asthana S, Rathore K, Sardana K (2020) Incidence of melanoma and nonmelanoma skin cancers in Indian and the global regions. 17:906–911. https://doi.org/10.4103/jcrt.JCRT_785_19
ZhangJXieYXiaYShenCAttention residual learning for skin lesion classificationIEEE Trans Med Imaging20193892092210310.1109/tmi.2019.2893944
Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In proceedings of the IEEE conference on computer vision and pattern recognition, 1251-1258
Argenziano G, Soyer HP, De Giorgio V, Piccolo D, Carli P, Delfino M, Wolf IH (2000) Interactive atlas of dermoscopy
Alquran H, Qasmieh IA, Alqudah AM, Alhammouri S, Alawneh E, Abughazaleh A, Hasayen F (2017) The melanoma skin cancer detection and classification using support vector machine. In IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT), 1-5
Y Chen (14697_CR8) 2017; 67
N Sharma (14697_CR39) 2018; 132
L Yu (14697_CR52) 2016; 36
SS Chaturvedi (14697_CR7) 2020; 79
SP Mishra (14697_CR33) 2017; 7
14697_CR48
AI Riker (14697_CR36) 2010; 10
K Weiss (14697_CR44) 2016; 3
14697_CR10
14697_CR11
14697_CR12
14697_CR13
C Chen (14697_CR9) 2021; 30
14697_CR51
T Ojala (14697_CR34) 1996; 29
H Basly (14697_CR4) 2020
A Sáez (14697_CR37) 2015; 35
Z Wu (14697_CR49) 2022; 121
TJ Brinker (14697_CR6) 2019; 14
M Elgamal (14697_CR15) 2013; 4
TJ Brinker (14697_CR5) 2019; 119
J Wu (14697_CR47) 2020; 20
14697_CR41
14697_CR42
Y Liang (14697_CR31) 2020; 27
J Weese (14697_CR43) 2016; 33
D Zhang (14697_CR53) 2017; 24
14697_CR29
14697_CR25
14697_CR26
14697_CR28
14697_CR32
H Ganster (14697_CR17) 2001; 20
AT Sahlol (14697_CR38) 2020; 10
Y Wu (14697_CR46) 2015; 11
14697_CR3
14697_CR18
14697_CR19
14697_CR1
14697_CR2
14697_CR16
MN Do (14697_CR14) 2005; 14
14697_CR21
J Zhang (14697_CR54) 2019; 38
14697_CR23
14697_CR24
F Xie (14697_CR50) 2016; 36
D Huang (14697_CR22) 2011; 41
H Liang (14697_CR30) 2017; 2017
14697_CR20
HG Welch (14697_CR45) 2005; 331
C Shorten (14697_CR40) 2019; 6
J Kawahara (14697_CR27) 2016
HY Patil (14697_CR35) 2016; 127
References_xml – reference: Argenziano G, Soyer HP, De Giorgio V, Piccolo D, Carli P, Delfino M, Wolf IH (2000) Interactive atlas of dermoscopy
– reference: ChenCWangGPengCFangYZhangDQinHExploring rich and efficient spatial temporal interactions for real-time video salient object detectionIEEE Trans Image Process2021303995400710.1109/TIP.2021.3068644
– reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In proceedings of the IEEE conference on computer vision and pattern recognition, 2818-2826. https://doi.org/10.1109/CVPR.2016.308
– reference: Chowdhary CL, Alazab M, Chaudhary A, Hakak S, Gadekallu TR (2021) Computer vision and recognition systems using machine and deep learning approaches: fundamentals, Technologies and Applications. Inst Eng Technol
– reference: OjalaTPietikäinenMHarwoodDAComparative study of texture measures with classification based on featured distributionsPattern Recogn1996291515910.1016/0031-3203(95)00067-4
– reference: ChenYHeFWuYHouNA local start search algorithm to compute exact Hausdorff distance for arbitrary point setsPattern Recogn20176713914810.1016/j.patcog.2017.02.013
– reference: Hebbar N, Patil HY, Agarwal K (2020) Web powered CT scan diagnosis for brain hemorrhage using deep learning. In 2020 IEEE 4th conference on Information & Communication Technology (CICT), 1–5
– reference: Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
– reference: Labani S, Asthana S, Rathore K, Sardana K (2020) Incidence of melanoma and nonmelanoma skin cancers in Indian and the global regions. 17:906–911. https://doi.org/10.4103/jcrt.JCRT_785_19
– reference: Wu Z, Li S, Chen C, Hao A, Qin H (2020) A deeper look at salient object detection: bi-stream network with a small training dataset. arXiv preprint arXiv:2008.02938
– reference: ChaturvediSSTembhurneJVDiwanTA multi-class skin Cancer classification using deep convolutional neural networksMultimed Tools Appl20207939284772849810.1007/s11042-020-09388-2
– reference: Farooq MA, Khatoon A, Varkarakis V, Corcoran P (2020) Advanced deep learning methodologies for skin Cancer classification in prodromal stages. arXiv preprint arXiv:2003.06356
– reference: SáezASánchez-MonederoJGutiérrezPAHervás-MartínezCMachine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic imagesIEEE Trans Med Imaging20153541036104510.1109/TMI.2015.2506270
– reference: SahlolATYousriDEweesAAAl-QanessMADamaseviciusRElazizMACOVID-19 image classification using deep features and fractional-order marine predators algorithmSci Rep202010111510.1038/s41598-020-71294-2
– reference: LiangHSunXSunYGaoYText feature extraction based on deep learning: a reviewEURASIP J Wirel Commun Netw20172017111210.1186/s13638-017-0993-1
– reference: Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In proceedings of the IEEE conference on computer vision and pattern recognition, 1251-1258
– reference: XieFFanHLiYJiangZMengRBovikAMelanoma classification on dermoscopy images using a neural network ensemble modelIEEE Trans Med Imaging201636384985810.1109/TMI.2016.2633551
– reference: Jana E, Subban R, Saraswathi S (2017) Research on skin Cancer cell detection using image processing. In IEEE international conference on computational intelligence and computing research (ICCIC), 1–8. https://doi.org/10.1109/iccic.2017.8524554
– reference: ZhangJXieYXiaYShenCAttention residual learning for skin lesion classificationIEEE Trans Med Imaging20193892092210310.1109/tmi.2019.2893944
– reference: WeeseJLorenzCFour challenges in medical image analysis from an industrial perspectiveMed Image Anal201633444910.1016/j.media.2016.06.023
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
– reference: WuYHeFZhangDLiXService-oriented feature-based data exchange for cloud-based design and manufacturingIEEE Trans Serv Comput201511234135310.1109/TSC.2015.2501981
– reference: YuLChenHDouQQinJHengPAAutomated melanoma recognition in dermoscopy images via very deep residual networksIEEE Trans Med Imaging2016364994100410.1109/TMI.2016.2642839
– reference: Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Halpern A (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In IEEE 15th international symposium on biomedical imaging (ISBI 2018), 168-172
– reference: Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang L, Wang G, Cai J, Chen, T (2015) Recent advances in convolutional neural networks. CoRR, arXiv preprint arXiv
– reference: Chowdhary CL, Reddy GT, Parameshachari BD (2022) Computer vision and recognition systems: research innovations and trends. CRC Press
– reference: ShortenCKhoshgoftaarTMA survey on image data augmentation for deep learningJ Big Data20196114810.1186/s40537-019-0197-0
– reference: WuZLiSChenCHaoAQinHRecursive multi-model complementary deep fusion for robust salient object detection via parallel sub-networksPattern Recogn202212110821210.1016/j.patcog.2021.108212
– reference: Hosny KM, Kassem MA, Foaud MM (2018) Skin cancer classification using deep learning and transfer learning. In 9th Cairo international biomedical engineering conference (CIBEC), 90-93. https://doi.org/10.1109/CIBEC.2018.8641762
– reference: LiangYHeFZengX3D mesh simplification with feature preservation based on whale optimization algorithm and differential evolutionIntegr Comput-Aided Eng202027441743510.3233/ICA-200641
– reference: BrinkerTJHeklerAEnkAHvon KalleCEnhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesionsPLoS One201914610.1371/journal.pone.0218713
– reference: He K, Zhang X, Ren S, Su, J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. https://doi.org/10.1109/CVPR.2016.90
– reference: Ismail MA, Hameed N, Clos J (2021) Deep learning-based algorithm for skin Cancer classification. In proceedings of the international conference on trends in computational and cognitive engineering, 709–719
– reference: PatilHYKothariAGBhurchandiKMExpression invariant face recognition using local binary patterns and contourlet transformOptik201612752670267810.1016/j.ijleo.2015.11.187
– reference: American Cancer Society - Key Statistics for Melanoma Skin Cancer (2021) https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html. Accessed on 12th January 2021.
– reference: WelchHGWoloshinSSchwartzLMSkin biopsy rates and incidence of melanoma: population based ecological studyBMJ2005331751548110.1136/bmj.38516.649537.E0
– reference: HuangDShanCArdabilianMWangYChenLLocal binary patterns and its application to facial image analysis: a surveyIEEE Trans Syst Man Cybern Part C Appl Rev201141676578110.1109/TSMCC.2011.2118750
– reference: WuJHuWWenYTuWLiuXSkin lesion classification using densely connected convolutional networks with attention residual learningSensors20202024708010.3390/s20247080
– reference: WeissKKhoshgoftaarTMWangDA survey of transfer learningJ Big Data20163114010.1186/s40537-016-0043-6
– reference: Kaggle Skin Cancer Dataset (2021) https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign. Accessed on 7 February 2021.
– reference: Lopez AR, Giro-i-Nieto X, Burdick J, Marques O (2017) Skin lesion classification from dermoscopic images using deep learning techniques. In 13th IASTED international conference on biomedical engineering (BioMed), 49-54
– reference: BrinkerTJHeklerAEnkAHBerkingCHaferkampSHauschildAWeichenthalMKlodeJSchadendorfDHolland-LetzTKalleCVFröhlingSSchillingBUtikalJSDeep neural networks are superior to dermatologists in melanoma image classificationEur J Cancer2019119111710.1016/j.ejca.2019.05.023
– reference: Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In proceedings of the IEEE conference on computer vision and pattern recognition, 4700-4708
– reference: Ying X (2019) An overview of overfitting and its solutions. J Phys Conf Ser 1168(2):022022 IOP Publishing
– reference: DoMNVetterliMThe contourlet transform: an efficient directional multiresolution image representationIEEE Trans Image Process200514122091210610.1109/TIP.2005.859376
– reference: KawaharaJHamarnehGMulti-resolution-tract CNN with hybrid pretrained and skin-lesion trained layersInternational workshop on machine learning in medical imaging2016ChamSpringer16417110.1007/978-3-319-47157-0_20
– reference: BaslyHOuardaWSayadiFEOuniBAlimiAMCNN-SVM learning approach based human activity recognitionProceedings of international conference on image and signal processing2020ChamSpringer27128110.1007/978-3-030-51935-3_29
– reference: ElgamalMAutomatic skin Cancer images classificationInt J Adv Comput Sci Appl201343287294
– reference: MishraSPSarkarUTaraphderSDattaSSwainDPSaikhomRLaishramMMultivariate statistical data analysis-principal component analysis (PCA)Int J Livestock Res201775607810.5455/ijlr.20170415115235
– reference: SharmaNJainVMishraAAn analysis of convolutional neural networks for image classificationProced Comput Sci201813237738410.1016/j.procs.2018.05.198
– reference: ZhangDHeFHanSZouLWuYChenYAn efficient approach to directly compute the exact Hausdorff distance for 3D point setsIntegr Comput-Aided Eng201724326127710.3233/ICA-170544
– reference: GansterHPinzPRohrerRWildlingEBinderMKittlerHAutomated melanoma recognitionIEEE Trans Med Imaging200120323323910.1109/42.918473
– reference: Alquran H, Qasmieh IA, Alqudah AM, Alhammouri S, Alawneh E, Abughazaleh A, Hasayen F (2017) The melanoma skin cancer detection and classification using support vector machine. In IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT), 1-5
– reference: RikerAIZeaNTrinhTThe epidemiology, prevention, and detection of melanomaOchsner J20101025665
– volume: 27
  start-page: 417
  issue: 4
  year: 2020
  ident: 14697_CR31
  publication-title: Integr Comput-Aided Eng
  doi: 10.3233/ICA-200641
– volume: 10
  start-page: 56
  issue: 2
  year: 2010
  ident: 14697_CR36
  publication-title: Ochsner J
– volume: 36
  start-page: 849
  issue: 3
  year: 2016
  ident: 14697_CR50
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2633551
– ident: 14697_CR12
  doi: 10.1201/9781003180593
– ident: 14697_CR28
– ident: 14697_CR3
– ident: 14697_CR42
  doi: 10.1109/CVPR.2016.308
– start-page: 271
  volume-title: Proceedings of international conference on image and signal processing
  year: 2020
  ident: 14697_CR4
  doi: 10.1007/978-3-030-51935-3_29
– volume: 121
  start-page: 108212
  year: 2022
  ident: 14697_CR49
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108212
– ident: 14697_CR11
  doi: 10.1049/PBPC042E
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 14697_CR40
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: 14697_CR24
  doi: 10.1007/978-981-33-4673-4_58
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 14697_CR44
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0043-6
– volume: 67
  start-page: 139
  year: 2017
  ident: 14697_CR8
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.02.013
– volume: 20
  start-page: 7080
  issue: 24
  year: 2020
  ident: 14697_CR47
  publication-title: Sensors
  doi: 10.3390/s20247080
– volume: 30
  start-page: 3995
  year: 2021
  ident: 14697_CR9
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3068644
– volume: 4
  start-page: 287
  issue: 3
  year: 2013
  ident: 14697_CR15
  publication-title: Int J Adv Comput Sci Appl
– volume: 331
  start-page: 481
  issue: 7515
  year: 2005
  ident: 14697_CR45
  publication-title: BMJ
  doi: 10.1136/bmj.38516.649537.E0
– volume: 35
  start-page: 1036
  issue: 4
  year: 2015
  ident: 14697_CR37
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2506270
– volume: 2017
  start-page: 1
  issue: 1
  year: 2017
  ident: 14697_CR30
  publication-title: EURASIP J Wirel Commun Netw
  doi: 10.1186/s13638-017-0993-1
– ident: 14697_CR25
  doi: 10.1109/iccic.2017.8524554
– ident: 14697_CR51
  doi: 10.1088/1742-6596/1168/2/022022
– ident: 14697_CR29
  doi: 10.4103/jcrt.JCRT_785_19
– volume: 41
  start-page: 765
  issue: 6
  year: 2011
  ident: 14697_CR22
  publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev
  doi: 10.1109/TSMCC.2011.2118750
– volume: 36
  start-page: 994
  issue: 4
  year: 2016
  ident: 14697_CR52
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2642839
– volume: 14
  start-page: 2091
  issue: 12
  year: 2005
  ident: 14697_CR14
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2005.859376
– ident: 14697_CR18
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 14697_CR38
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-71294-2
– volume: 119
  start-page: 11
  year: 2019
  ident: 14697_CR5
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2019.05.023
– volume: 127
  start-page: 2670
  issue: 5
  year: 2016
  ident: 14697_CR35
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.11.187
– ident: 14697_CR1
  doi: 10.1109/AEECT.2017.8257738
– ident: 14697_CR13
  doi: 10.1109/ISBI.2018.8363547
– ident: 14697_CR32
– ident: 14697_CR26
– volume: 14
  issue: 6
  year: 2019
  ident: 14697_CR6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0218713
– ident: 14697_CR10
  doi: 10.1109/CVPR.2017.195
– volume: 79
  start-page: 28477
  issue: 39
  year: 2020
  ident: 14697_CR7
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09388-2
– ident: 14697_CR2
– volume: 38
  start-page: 2092
  issue: 9
  year: 2019
  ident: 14697_CR54
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2019.2893944
– ident: 14697_CR41
– ident: 14697_CR19
  doi: 10.1109/CVPR.2016.90
– volume: 11
  start-page: 341
  issue: 2
  year: 2015
  ident: 14697_CR46
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2015.2501981
– volume: 20
  start-page: 233
  issue: 3
  year: 2001
  ident: 14697_CR17
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.918473
– volume: 33
  start-page: 44
  year: 2016
  ident: 14697_CR43
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.023
– ident: 14697_CR21
  doi: 10.1109/CIBEC.2018.8641762
– start-page: 164
  volume-title: International workshop on machine learning in medical imaging
  year: 2016
  ident: 14697_CR27
  doi: 10.1007/978-3-319-47157-0_20
– ident: 14697_CR48
– volume: 24
  start-page: 261
  issue: 3
  year: 2017
  ident: 14697_CR53
  publication-title: Integr Comput-Aided Eng
  doi: 10.3233/ICA-170544
– ident: 14697_CR20
  doi: 10.1109/CICT51604.2020.9312098
– volume: 132
  start-page: 377
  year: 2018
  ident: 14697_CR39
  publication-title: Proced Comput Sci
  doi: 10.1016/j.procs.2018.05.198
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  ident: 14697_CR34
  publication-title: Pattern Recogn
  doi: 10.1016/0031-3203(95)00067-4
– volume: 7
  start-page: 60
  issue: 5
  year: 2017
  ident: 14697_CR33
  publication-title: Int J Livestock Res
  doi: 10.5455/ijlr.20170415115235
– ident: 14697_CR16
– ident: 14697_CR23
  doi: 10.1109/CVPR.2017.243
SSID ssj0016524
Score 2.5378294
Snippet Skin cancer is one of the most common forms of cancer, which makes it pertinent to be able to diagnose it accurately. In particular, melanoma is a form of skin...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27501
SubjectTerms Automation
Cancer
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Deep learning
Dermatology
Feature extraction
Image classification
Machine learning
Medical imaging
Melanoma
Multimedia Information Systems
Neural networks
Skin cancer
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwKCAKBXlgA0tNbSf2WCGqCgkmInWL_OzSphUN_59z6jSAAInVjj3c5fPd6R4fQreSgU8gEk-YNJowzTRRWjAAnkrggMoyGpqTn1_SSc6epnwam8LWTbV7k5KsX-q22S0JrSRgYwigWwI0dtEeh9g9FHLlw9E2d5DySGUrBgTsYRJbZX6-46s5an3Mb2nR2tqMj9FhdBPxaKPXE7Tjyi46aigYcERkFx18mid4ivJApYVNUOQbtq6qy6xKHGrbZxjiVbfQc4eXHi_qEkqHI2fEDKvSwgG3ale2w13XZygfP74-TEjkTSAGAFURAzj0lvpMSM0hINCp8kKJIfMS1lWiJFh9D0-VtCmnQ02pNN5kNoVtzY2i56hTLkt3gTA1Sg8spyaximXCSmEgoKJDbpkTzsgeShrxFSYOFQ_cFvOiHYccRF6AyIta5AXtobvtmdVmpMafX_cbrRQRXusipH8lxGKc99B9o6l2-_fbLv_3-RXaD_Tym_LcPupUb-_uGpyQSt_U_9wHjTLSFQ
  priority: 102
  providerName: Springer Nature
Title Skin cancer detection using ensemble of machine learning and deep learning techniques
URI https://link.springer.com/article/10.1007/s11042-023-14697-3
https://www.proquest.com/docview/2829986255
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB4t7QUOsMtDlGUrH7iBBantxD6tWtSCFlEhRCU4RX6FC6SFlv_POHUaQFpOkezYhxnPw57HB3CkOPoEMikoV9ZQbrih2kiOgqcTXKCzjIXi5Otxejnh_-7FfXxwm8e0ylonVoraTW14Iz8NET-F7rcQf2cvNKBGhehqhNBYgzaqYClb0B4Mxze3qzhCKiKsrTyjaBuTWDazLJ5LQmkK2iyK2kKhqH02TY2_-SVEWlme0U_YjC4j6S95_At--HIbtmo4BhKlcxs2PvQW3IFJgNUiNjD1lTi_qFKuShLy3B8J3l39s3nyZFqQ5yqd0pOIH_FIdOlwgZ81I6tGr_NdmIyGd-eXNGIoUIvCtaAWZbJwrMikMgIvBybVhdSyxwuF4zrRCj2AAtWWcqlgPcOYsoXNXIrTRljN9qBVTku_D4RZbc6cYDZxmmfSKWnxcsV6wnEvvVUdSGry5TY2GA84F0950xo5kDxHkucVyXPWgePVmtmyvca3fx_WXMmjqM3z5mB04KTmVDP9_90Ovt_tN6wHaPllau4htBavb_4POiAL04U1ObroQrs_GgzG4XvxcDXsxrOHs5Ne_x04cNuP
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6C4VB6AMoiBij40J7AgsR2Yh-qCrUMQ1lOjMQteAsXyExnBqH-qf5GnrNMClK5cbVjH57fmrd8AF8UR59ARjnlyhrKDTdUG8lR8HSEB3SastCcfHmV9Af81424mYO_TS9MKKtsdGKpqN3Qhn_khyHjp9D9FuL76DcNqFEhu9pAaFRsce7_PGHINvl29hPf92sc906uf_RpjSpALbLblFrk0tyxPJXKCHSXTaJzqWXMc4XrOtIKbWKOgqxcIlhsGFM2t6lLcNsIqxneOw8LHNdDsCd7p7OsRSJqEF15RNESR3WTTtWqF4VGGLSQFHWTQsF-aQhb7_ZVQra0c70VWKodVHJccdQnmPPFKiw34A-k1gWr8PGfSYZrMAggXsQGFhoT56dlgVdBQlX9HcFI2T-Ye0-GOXkoizc9qdEq7oguHB7wo3ZlNlZ2sg6Dd6HtBnSKYeE3gTCrzZETzEZO81Q6JS2GciwWjnvprepC1JAvs_U484CqcZ-1g5gDyTMkeVaSPGNd2J-dGVXDPN78eqd5lawW7EnWsmEXDpqXarf_f9vW27ftwYf-9eVFdnF2db4NiwHUvioK3oHOdPzoP6PrMzW7Jb8RuH1vBn8GdMkSnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH_BJTF6UAGNqyg96EkamGk70x6MUWEDAhti3ITb2E8uMLuyawz_Gn-drzOdHTWRG9d22sPrr33vzfv4AbxRHG0CmQXKlTWUG26oNpLjxdMZLtBlyWJx8sm4OJjwL2fibAVuulqYmFbZvYnNQ-2mNv4j34kRP4XmtxA7IaVFnO6NPsx-0MggFSOtHZ1GC5Ejf_0L3bf5-8M9POu3eT7a__b5gCaGAWoRegtqEbHBsVBKZQSazqbQQWqZ86BwXGdaoX4MeKmVKwTLDWPKBlu6AqeNsJrhvvdgtYxe0QBWP-2PT78uYxiFSJS6cpeiXs5SyU5buJfFshjUlxRfKoXX_G-12Nu6_4RnG603egKPkrlKPrb4WoMVX6_D444KgqSXYR0e_tHXcAMmkdKL2AioK-L8okn3qknMsT8n6Df7S3PhyTSQyyaV05PEXXFOdO1wgZ_1I8sms_OnMLkT6T6DQT2t_XMgzGqz6wSzmdO8lE5Ji44dy4XjXnqrhpB14qtsam4eOTYuqr4tcxR5hSKvGpFXbAjvlmtmbWuPW7_e7E6lStd8XvWgHMJ2d1L99P93e3H7bltwH8FdHR-Oj17Cg8hw32YIb8JgcfXTv0I7aGFeJ8AR-H7XGP8N7OEYMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skin+cancer+detection+using+ensemble+of+machine+learning+and+deep+learning+techniques&rft.jtitle=Multimedia+tools+and+applications&rft.au=Tembhurne%2C+Jitendra+V.&rft.au=Hebbar%2C+Nachiketa&rft.au=Patil%2C+Hemprasad+Y.&rft.au=Diwan%2C+Tausif&rft.date=2023-07-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=18&rft.spage=27501&rft.epage=27524&rft_id=info:doi/10.1007%2Fs11042-023-14697-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_14697_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon