The odd log-logistic Lindley-G family of distributions: properties, Bayesian and non-Bayesian estimation with applications

In this paper, a new class of distributions called the odd log-logistic Lindley-G family is proposed. Several of its statistical and reliability properties are studied in-detail. One members of the proposed family can have symmetrical, right-skewed, leftt-skewed and reversed-J shaped densities, and...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics Vol. 35; no. 1; pp. 281 - 308
Main Authors Alizadeh, Morad, Afify, Ahmed Z., Eliwa, M. S., Ali, Sajid
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a new class of distributions called the odd log-logistic Lindley-G family is proposed. Several of its statistical and reliability properties are studied in-detail. One members of the proposed family can have symmetrical, right-skewed, leftt-skewed and reversed-J shaped densities, and decreasing, increasing, bathtub, unimodal and reversed-J shaped hazard rates. The model parameters are estimated using the maximum likelihood and Bayesian methods. Monte-Carlo simulation study is carried out to examine the bias and mean square error of maximum likelihood and Bayesian estimators. Finally, four real data sets are analyzed to show the flexibility of the new family.
AbstractList In this paper, a new class of distributions called the odd log-logistic Lindley-G family is proposed. Several of its statistical and reliability properties are studied in-detail. One members of the proposed family can have symmetrical, right-skewed, leftt-skewed and reversed-J shaped densities, and decreasing, increasing, bathtub, unimodal and reversed-J shaped hazard rates. The model parameters are estimated using the maximum likelihood and Bayesian methods. Monte-Carlo simulation study is carried out to examine the bias and mean square error of maximum likelihood and Bayesian estimators. Finally, four real data sets are analyzed to show the flexibility of the new family.
Author Alizadeh, Morad
Ali, Sajid
Afify, Ahmed Z.
Eliwa, M. S.
Author_xml – sequence: 1
  givenname: Morad
  surname: Alizadeh
  fullname: Alizadeh, Morad
  organization: Department of Statistics, Persian Gulf University
– sequence: 2
  givenname: Ahmed Z.
  orcidid: 0000-0002-6723-6785
  surname: Afify
  fullname: Afify, Ahmed Z.
  organization: Department of Statistics, Mathematics and Insurance, Benha University
– sequence: 3
  givenname: M. S.
  orcidid: 0000-0001-5619-210X
  surname: Eliwa
  fullname: Eliwa, M. S.
  email: mseliwa@mans.edu.eg
  organization: Department of Mathematics, Faculty of Science, Mansoura University
– sequence: 4
  givenname: Sajid
  surname: Ali
  fullname: Ali, Sajid
  organization: Department of Statistics, Quaid-i-Azam University
BookMark eNp9kEFPAyEQhYmpia36BzyReBUdYMsu3rTRatLESz0TWNiWZru7wjam_nppazTx0AOQDO-befNGaNC0jUPoisItBcjvIgAtgACVBEByRuQJGlJBOZFiXAzQEGTGSQaCnaFRjCsAxnJGh-hrvnS4tRbX7YKk42PvSzzzja3dlkxxpde-3uK2wjZ9BW82vW-beI-70HYu9N7FG_yoty563WDdWJyckd-CS-3WeofgT98vse662pf7QrxAp5Wuo7v8ec_R-_PTfPJCZm_T18nDjJScyj7dUApLc-GMEUUlTM7HjAuntZPcFHkGhamMGBvhrBRWCFEUUJbGQkUzOXb8HF0f-ibLH5vkSK3aTWjSSMV4loEUjEJSFQdVGdoYg6tU6fu90T5oXysKape0OiStUtJqn7SSCWX_0C6krcP2OMQPUEziZuHCn6sj1DeJdJTL
CitedBy_id crossref_primary_10_3390_math8020264
crossref_primary_10_18187_pjsor_v16i3_3306
crossref_primary_10_1007_s40745_021_00336_x
crossref_primary_10_1063_5_0192518
crossref_primary_10_1007_s00180_023_01405_w
crossref_primary_10_1016_j_sciaf_2023_e01912
crossref_primary_10_3390_axioms12080739
crossref_primary_10_3390_math8010135
crossref_primary_10_1080_02664763_2020_1783520
crossref_primary_10_1080_16583655_2020_1741919
crossref_primary_10_3390_sym13030474
crossref_primary_10_1080_02664763_2021_1905787
crossref_primary_10_1016_j_heliyon_2021_e08383
crossref_primary_10_1109_ACCESS_2020_3044156
crossref_primary_10_3934_mbe_2023340
crossref_primary_10_1016_j_jksus_2021_101801
crossref_primary_10_3390_math8111989
crossref_primary_10_1063_5_0187498
crossref_primary_10_3390_axioms12060534
crossref_primary_10_3390_math8101684
crossref_primary_10_3390_math9161837
crossref_primary_10_3390_math8030358
crossref_primary_10_3390_sym13050745
crossref_primary_10_1155_2020_5498638
crossref_primary_10_3390_e22050497
crossref_primary_10_3390_e23040446
crossref_primary_10_1080_02664763_2019_1638893
crossref_primary_10_1007_s40304_020_00225_4
crossref_primary_10_1007_s40096_019_00313_9
crossref_primary_10_1080_02664763_2021_1928018
crossref_primary_10_1080_16583655_2019_1698276
crossref_primary_10_1016_j_aej_2024_04_064
crossref_primary_10_1016_j_kjs_2025_100385
crossref_primary_10_1371_journal_pone_0246969
crossref_primary_10_3390_math8112060
Cites_doi 10.1016/j.csda.2013.02.026
10.1080/03610926.2015.1078478
10.1016/j.cam.2018.08.008
10.1016/j.jkss.2011.06.002
10.1080/03610920902898514
10.1016/j.cam.2017.12.001
10.1080/02664763.2019.1638893
10.1080/03610918.2015.1118503
10.1590/0001-3765201920180040
10.1080/01621459.1996.10476725
10.1016/j.matcom.2010.11.005
10.12816/0006170
10.17713/ajs.v46i1.222
10.5539/ijsp.v7n4p57
10.1007/s40300-013-0007-y
10.1007/s40745-018-0173-0
10.1007/s13571-011-0025-9
10.2307/2347795
10.1080/00949650802552402
10.1002/qre.691
10.1080/03610918.2016.1206931
10.1016/j.matcom.2010.09.006
10.1007/s40745-018-01
10.1016/j.ress.2005.05.008
10.4236/am.2013.42056
10.1007/s00180-017-0780-9
10.1080/03610926.2015.1130839
10.6339/JDS.201604_14(2).0004
10.2298/FIL1909635E
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Computational Statistics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Computational Statistics is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00180-019-00932-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Complete
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central (New)
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1613-9658
EndPage 308
ExternalDocumentID 10_1007_s00180_019_00932_9
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
88I
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-c30c6d176ebb68f6b735236eaae93b87408bfb65b6ed96d666880ccbd0f1495e3
IEDL.DBID U2A
ISSN 0943-4062
IngestDate Fri Jul 25 19:33:18 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Tue Jul 01 04:23:17 EDT 2025
Fri Feb 21 02:33:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hazard rate function
Lindley distribution
Bayesian estimation
Maximum likelihood
Simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c30c6d176ebb68f6b735236eaae93b87408bfb65b6ed96d666880ccbd0f1495e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6723-6785
0000-0001-5619-210X
PQID 2344096210
PQPubID 54096
PageCount 28
ParticipantIDs proquest_journals_2344096210
crossref_citationtrail_10_1007_s00180_019_00932_9
crossref_primary_10_1007_s00180_019_00932_9
springer_journals_10_1007_s00180_019_00932_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200300
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational statistics
PublicationTitleAbbrev Comput Stat
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ghitany, Alqallaf, Al-Mutairi, Husain (CR19) 2011; 81
Mahmoudi, Zakerzadeh (CR28) 2010; 39
Zeghdoudi, Nedjar (CR42) 2016; 11
Afify, Cordeiro, Yousof, Alzaatreh, Nofal (CR2) 2016; 14
Khan, King, Hudson (CR26) 2017; 46
Cordeiro, Alizadeh, Tahir, Mansoor, Bourguignon, Hamedani (CR13) 2016; 45
CR17
Nichols, Padgett (CR35) 2006; 22
CR15
Nadarajah, Bakouch, Tahmasbi (CR33) 2011; 73
Barreto-Souza, Santos, Cordeiro (CR9) 2010; 80
Merovci (CR29) 2013; 6
Nofal, Afify, Yousof, Cordeiro (CR36) 2017; 46
Nadarajah, Kotz (CR32) 2006; 91
Smith, Naylor (CR41) 1987; 36
Alzaatreh, Lee, Famoye (CR7) 2013; 71
Altun, Alizadeh, Altun, Özel (CR6) 2017; 46
Zeghdoudi, Nedjar (CR43) 2017; 15
Chang, Cui, Hwang (CR10) 2009; 7
Özel, Alizadeh, Cakmakyapan, Hamedani, Ortega, Cancho (CR37) 2017; 46
Jodrá (CR25) 2010; 81
Gupta, Kundu (CR22) 2001; 43
El-Morshedy, Eliwa, Nagy (CR14) 2019
Hassan, Nassr (CR23) 2018
Murthy, Xie, Jiang (CR31) 2004
Sharma, Singh, Singh, Agiwal (CR40) 2015; 32
Bakouch, Al-Zahrani, Al-Shomrani, Marchi, Louzada (CR8) 2012; 41
Alizadeh, Emadi, Doostparast, Cordeiro, Ortega, Pescim (CR4) 2015; 44
Nassar, Afify, Dey, Kumar (CR34) 2018; 336
Shanker, Sharma, Shanker (CR39) 2013; 4
Afify, Cordeiro, Mead, Alizadeh, Al-Mofleh, Nofal (CR1) 2019; 91
Pararai, Warahena-Liyanage, Oluyede (CR38) 2015; 5
Gleaton, Lynch (CR20) 2006; 4
Mahdavi, Kundu (CR27) 2016; 46
Gomes-Silva, Percontin, Brito, Ramos, Venâncio, Cordeiro (CR21) 2017
Cordeiro, Afify, Ortega, Suzuki, Mead (CR11) 2019; 347
Eliwa, El-Morshedy, Ibrahim (CR16) 2018
Mudholkar, Srivastava, Kollia (CR30) 1996; 91
Jehhan, Mohamed, Eliwa, Al-mualim, Yousof (CR24) 2018; 7
Alizadeh, Lak, Rasekhi, Ramires, Yousof, Altun (CR5) 2018; 33
Ghitany, Al-Mutairi, Balakrishhnan, Al-Enezi (CR18) 2013; 64
Afify, Cordeiro, Yousof, Saboor, Ortega (CR3) 2018; 47
Cordeiro, Alizadeh, Ortega, Serrano (CR12) 2016; 45
H Zeghdoudi (932_CR43) 2017; 15
GM Cordeiro (932_CR12) 2016; 45
ME Ghitany (932_CR18) 2013; 64
M Alizadeh (932_CR5) 2018; 33
ME Ghitany (932_CR19) 2011; 81
P Jodrá (932_CR25) 2010; 81
DP Murthy (932_CR31) 2004
GM Cordeiro (932_CR11) 2019; 347
G Özel (932_CR37) 2017; 46
R Shanker (932_CR39) 2013; 4
MS Khan (932_CR26) 2017; 46
GS Mudholkar (932_CR30) 1996; 91
ZM Nofal (932_CR36) 2017; 46
H Zeghdoudi (932_CR42) 2016; 11
RD Gupta (932_CR22) 2001; 43
A Jehhan (932_CR24) 2018; 7
AZ Afify (932_CR3) 2018; 47
W Barreto-Souza (932_CR9) 2010; 80
S Nadarajah (932_CR32) 2006; 91
JU Gleaton (932_CR20) 2006; 4
GM Cordeiro (932_CR13) 2016; 45
M Nassar (932_CR34) 2018; 336
A Alzaatreh (932_CR7) 2013; 71
M Pararai (932_CR38) 2015; 5
M Alizadeh (932_CR4) 2015; 44
G Altun (932_CR6) 2017; 46
AS Hassan (932_CR23) 2018
S Nadarajah (932_CR33) 2011; 73
F Gomes-Silva (932_CR21) 2017
M El-Morshedy (932_CR14) 2019
A Mahdavi (932_CR27) 2016; 46
932_CR17
MD Nichols (932_CR35) 2006; 22
RL Smith (932_CR41) 1987; 36
E Mahmoudi (932_CR28) 2010; 39
MS Eliwa (932_CR16) 2018
V Sharma (932_CR40) 2015; 32
932_CR15
AZ Afify (932_CR1) 2019; 91
AZ Afify (932_CR2) 2016; 14
HS Bakouch (932_CR8) 2012; 41
F Merovci (932_CR29) 2013; 6
GJ Chang (932_CR10) 2009; 7
References_xml – volume: 47
  start-page: 365
  year: 2018
  end-page: 381
  ident: CR3
  article-title: The Marshall–Olkin additive Weibull distribution with variable shapes for the hazard rate
  publication-title: Hacettepe J Math Stat
– volume: 64
  start-page: 20
  year: 2013
  end-page: 33
  ident: CR18
  article-title: Power Lindley distribution and associated inference
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.02.026
– volume: 46
  start-page: 4119
  year: 2017
  end-page: 4136
  ident: CR36
  article-title: The generalized transmuted-G family of distributions
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2015.1078478
– volume: 347
  start-page: 222
  year: 2019
  end-page: 237
  ident: CR11
  article-title: The odd Lomax generator of distributions: properties, estimation and applications
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2018.08.008
– volume: 32
  start-page: 162
  year: 2015
  end-page: 173
  ident: CR40
  article-title: The inverse Lindley distribution: a stress-strength reliability model with applications to head and neck cancer data
  publication-title: J Ind Prod Eng
– volume: 41
  start-page: 75
  year: 2012
  end-page: 85
  ident: CR8
  article-title: An extended Lindley distribution
  publication-title: J Korean Stat Soc
  doi: 10.1016/j.jkss.2011.06.002
– volume: 39
  start-page: 1785
  year: 2010
  end-page: 1798
  ident: CR28
  article-title: Generalized Poisson-Lindley distribution
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610920902898514
– year: 2004
  ident: CR31
  publication-title: Weibull models
– volume: 336
  start-page: 439
  year: 2018
  end-page: 457
  ident: CR34
  article-title: A new extension of Weibull distribution: properties and different methods of estimation
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2017.12.001
– year: 2019
  ident: CR14
  article-title: A new two-parameter exponentiated discrete Lindley distribution: properties, estimation and applications
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2019.1638893
– volume: 46
  start-page: 4377
  year: 2017
  end-page: 98
  ident: CR26
  article-title: Transmuted generalized exponential distribution: a generalization of the exponential distribution with applications to survival data
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2015.1118503
– volume: 91
  start-page: 1
  year: 2019
  end-page: 22
  ident: CR1
  article-title: The generalized odd Lindley-G family: properties and applications
  publication-title: Anais da Academia Brasileira de Ciências
  doi: 10.1590/0001-3765201920180040
– volume: 44
  start-page: 1491
  year: 2015
  end-page: 1512
  ident: CR4
  article-title: A new family of distributions: the Kumaraswamy odd log-logistic, properties and applications
  publication-title: Hacettepe J Math Stat
– volume: 14
  start-page: 245
  year: 2016
  end-page: 270
  ident: CR2
  article-title: The Kumaraswamy transmuted-G family of distributions: properties and applications
  publication-title: J Data Sci
– volume: 91
  start-page: 1575
  year: 1996
  end-page: 1583
  ident: CR30
  article-title: A generalization of the Weibull distribution with application to the analysis of survival data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476725
– volume: 15
  start-page: 19
  year: 2017
  end-page: 28
  ident: CR43
  article-title: On Poisson pseudo Lindley distribution: properties and applications
  publication-title: J Prob Stat Sci
– volume: 43
  start-page: 117
  year: 2001
  end-page: 130
  ident: CR22
  article-title: Exponentiated exponential family: an alternative to gamma and Weibull distributions
  publication-title: Biometrical J J Math Methods Biosci
– volume: 7
  start-page: 435
  year: 2009
  end-page: 452
  ident: CR10
  article-title: Reliabilities of consecutive k-out- of-n: F systems
  publication-title: J Stat Theory Appl
– volume: 81
  start-page: 1190
  year: 2011
  end-page: 1201
  ident: CR19
  article-title: A two-parameter weighted Lindley distribution and its applications to survival data
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2010.11.005
– volume: 6
  start-page: 63
  year: 2013
  end-page: 72
  ident: CR29
  article-title: Transmuted Lindley distribution
  publication-title: Int J Open Prob Comput Sci Math
  doi: 10.12816/0006170
– year: 2017
  ident: CR21
  article-title: The odd Lindley-G family of distributions
  publication-title: Austrian J Stat
  doi: 10.17713/ajs.v46i1.222
– volume: 5
  start-page: 53
  year: 2015
  end-page: 96
  ident: CR38
  article-title: A new class of generalized power Lindley distribution with applications to lifetime data
  publication-title: Theor Math Appl
– volume: 7
  start-page: 57
  year: 2018
  end-page: 68
  ident: CR24
  article-title: The two-parameter odd Lindley Weibull lifetime model with properties and applications
  publication-title: Int J Stat Prob
  doi: 10.5539/ijsp.v7n4p57
– volume: 71
  start-page: 63
  year: 2013
  end-page: 79
  ident: CR7
  article-title: A new method for generating families of continuous distributions
  publication-title: Metron
  doi: 10.1007/s40300-013-0007-y
– year: 2018
  ident: CR16
  article-title: Inverse Gompertz distribution: properties and different estimation methods with application to complete and censored data
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-018-0173-0
– ident: CR15
– volume: 73
  start-page: 331
  year: 2011
  end-page: 359
  ident: CR33
  article-title: A generalized Lindley distribution
  publication-title: Sankhya B
  doi: 10.1007/s13571-011-0025-9
– volume: 36
  start-page: 358
  year: 1987
  end-page: 369
  ident: CR41
  article-title: A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution
  publication-title: J Appl Stat
  doi: 10.2307/2347795
– ident: CR17
– volume: 80
  start-page: 159
  year: 2010
  end-page: 172
  ident: CR9
  article-title: The beta generalized exponential distribution
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949650802552402
– volume: 22
  start-page: 141
  year: 2006
  end-page: 151
  ident: CR35
  article-title: A bootstrap control chart for Weibull percentiles
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.691
– volume: 46
  start-page: 255
  year: 2017
  end-page: 276
  ident: CR6
  article-title: Odd Burr Lindley distribution with properties and applications
  publication-title: Hacettepe J Math Stat
– volume: 46
  start-page: 6513
  year: 2017
  end-page: 6537
  ident: CR37
  article-title: The odd log-logistic Lindley Poisson model for lifetime data
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2016.1206931
– volume: 81
  start-page: 851
  year: 2010
  end-page: 859
  ident: CR25
  article-title: Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert W function
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2010.09.006
– volume: 45
  start-page: 1781
  year: 2016
  end-page: 1803
  ident: CR12
  article-title: The Zografos-Balakrishnan odd log-logistic family of distributions: properties and applications
  publication-title: Hacettepe J Math Stat
– year: 2018
  ident: CR23
  article-title: Power Lindley-G family of distributions
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-018-01
– volume: 11
  start-page: 129
  year: 2016
  end-page: 138
  ident: CR42
  article-title: Gamma Lindley distribution and its application
  publication-title: J Appl Prob Stat
– volume: 4
  start-page: 51
  year: 2006
  end-page: 64
  ident: CR20
  article-title: Properties of generalized log-logistic families of lifetime distributions
  publication-title: J Prob Stat Sci
– volume: 91
  start-page: 689
  year: 2006
  end-page: 697
  ident: CR32
  article-title: The beta exponential distribution
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.05.008
– volume: 4
  start-page: 363
  year: 2013
  end-page: 368
  ident: CR39
  article-title: A two-parameter Lindley distribution for modeling waiting and survival times data
  publication-title: Appl Math
  doi: 10.4236/am.2013.42056
– volume: 45
  start-page: 1175
  year: 2016
  end-page: 1202
  ident: CR13
  article-title: The beta odd log-logistic generalized family of distributions
  publication-title: Hacettepe J Math Stat
– volume: 33
  start-page: 1217
  year: 2018
  end-page: 1244
  ident: CR5
  article-title: The odd log-logistic Topp-Leone G family of distributions: heteroscedastic regression models and applications
  publication-title: Comput Stat
  doi: 10.1007/s00180-017-0780-9
– volume: 46
  start-page: 6543
  year: 2016
  end-page: 6557
  ident: CR27
  article-title: A new method for generating distributions with an application to exponential distribution
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2015.1130839
– volume: 73
  start-page: 331
  year: 2011
  ident: 932_CR33
  publication-title: Sankhya B
  doi: 10.1007/s13571-011-0025-9
– volume: 36
  start-page: 358
  year: 1987
  ident: 932_CR41
  publication-title: J Appl Stat
  doi: 10.2307/2347795
– volume: 4
  start-page: 51
  year: 2006
  ident: 932_CR20
  publication-title: J Prob Stat Sci
– volume: 15
  start-page: 19
  year: 2017
  ident: 932_CR43
  publication-title: J Prob Stat Sci
– volume: 14
  start-page: 245
  year: 2016
  ident: 932_CR2
  publication-title: J Data Sci
  doi: 10.6339/JDS.201604_14(2).0004
– year: 2018
  ident: 932_CR23
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-018-01
– volume: 7
  start-page: 57
  year: 2018
  ident: 932_CR24
  publication-title: Int J Stat Prob
  doi: 10.5539/ijsp.v7n4p57
– volume: 46
  start-page: 255
  year: 2017
  ident: 932_CR6
  publication-title: Hacettepe J Math Stat
– volume: 71
  start-page: 63
  year: 2013
  ident: 932_CR7
  publication-title: Metron
  doi: 10.1007/s40300-013-0007-y
– year: 2017
  ident: 932_CR21
  publication-title: Austrian J Stat
  doi: 10.17713/ajs.v46i1.222
– ident: 932_CR17
– volume: 81
  start-page: 1190
  year: 2011
  ident: 932_CR19
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2010.11.005
– volume: 47
  start-page: 365
  year: 2018
  ident: 932_CR3
  publication-title: Hacettepe J Math Stat
– volume: 81
  start-page: 851
  year: 2010
  ident: 932_CR25
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2010.09.006
– volume: 39
  start-page: 1785
  year: 2010
  ident: 932_CR28
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610920902898514
– year: 2019
  ident: 932_CR14
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2019.1638893
– volume: 336
  start-page: 439
  year: 2018
  ident: 932_CR34
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2017.12.001
– volume: 91
  start-page: 1575
  year: 1996
  ident: 932_CR30
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476725
– volume: 33
  start-page: 1217
  year: 2018
  ident: 932_CR5
  publication-title: Comput Stat
  doi: 10.1007/s00180-017-0780-9
– volume: 41
  start-page: 75
  year: 2012
  ident: 932_CR8
  publication-title: J Korean Stat Soc
  doi: 10.1016/j.jkss.2011.06.002
– volume-title: Weibull models
  year: 2004
  ident: 932_CR31
– volume: 46
  start-page: 6513
  year: 2017
  ident: 932_CR37
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2016.1206931
– volume: 22
  start-page: 141
  year: 2006
  ident: 932_CR35
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.691
– volume: 32
  start-page: 162
  year: 2015
  ident: 932_CR40
  publication-title: J Ind Prod Eng
– volume: 5
  start-page: 53
  year: 2015
  ident: 932_CR38
  publication-title: Theor Math Appl
– volume: 45
  start-page: 1175
  year: 2016
  ident: 932_CR13
  publication-title: Hacettepe J Math Stat
– volume: 80
  start-page: 159
  year: 2010
  ident: 932_CR9
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949650802552402
– volume: 46
  start-page: 6543
  year: 2016
  ident: 932_CR27
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2015.1130839
– volume: 46
  start-page: 4119
  year: 2017
  ident: 932_CR36
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2015.1078478
– volume: 6
  start-page: 63
  year: 2013
  ident: 932_CR29
  publication-title: Int J Open Prob Comput Sci Math
  doi: 10.12816/0006170
– year: 2018
  ident: 932_CR16
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-018-0173-0
– volume: 91
  start-page: 689
  year: 2006
  ident: 932_CR32
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.05.008
– volume: 64
  start-page: 20
  year: 2013
  ident: 932_CR18
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.02.026
– volume: 91
  start-page: 1
  year: 2019
  ident: 932_CR1
  publication-title: Anais da Academia Brasileira de Ciências
  doi: 10.1590/0001-3765201920180040
– volume: 43
  start-page: 117
  year: 2001
  ident: 932_CR22
  publication-title: Biometrical J J Math Methods Biosci
– volume: 4
  start-page: 363
  year: 2013
  ident: 932_CR39
  publication-title: Appl Math
  doi: 10.4236/am.2013.42056
– ident: 932_CR15
  doi: 10.2298/FIL1909635E
– volume: 44
  start-page: 1491
  year: 2015
  ident: 932_CR4
  publication-title: Hacettepe J Math Stat
– volume: 46
  start-page: 4377
  year: 2017
  ident: 932_CR26
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2015.1118503
– volume: 7
  start-page: 435
  year: 2009
  ident: 932_CR10
  publication-title: J Stat Theory Appl
– volume: 45
  start-page: 1781
  year: 2016
  ident: 932_CR12
  publication-title: Hacettepe J Math Stat
– volume: 11
  start-page: 129
  year: 2016
  ident: 932_CR42
  publication-title: J Appl Prob Stat
– volume: 347
  start-page: 222
  year: 2019
  ident: 932_CR11
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2018.08.008
SSID ssj0022721
Score 2.4162047
Snippet In this paper, a new class of distributions called the odd log-logistic Lindley-G family is proposed. Several of its statistical and reliability properties are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 281
SubjectTerms Bayesian analysis
Computer simulation
Economic Theory/Quantitative Economics/Mathematical Methods
Estimating techniques
Mathematics and Statistics
Maximum likelihood estimates
Maximum likelihood estimators
Monte Carlo simulation
Original Paper
Parameter estimation
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistics
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1yh682cXm0U3Wi1hpLYJFxEJvIfsCQZra1IP-emeSTaqCveSQxxJ2dmbnm535hpALq5WnAhuzVKoIS3J6LPUlZ7EJI6k8L0p1kSA75qNJ-DDtTV3ALXdplZVNLAy1zhTGyK_8IAQowgGh3MzfGXaNwtNV10JjkzTBBMcAvpr9wfjpuYZcflRUXmH6HCAl7ruymaJ4DvvRYVKWYAjrfSZ-b00rf_PPEWmx8wx3yY5zGeltKeM9smFm-2T7seZbzQ_IF0ibZlpTsGSsLOp5VRTxNug8u6dlGINmlmokynU9rvJrOsdY_AJJVTu0n34aLKmk6UzTWTZj9Q1k4ihLHCnGbenPU-9DMhkOXu5GzHVVYArUbQnXruLai7iRkseWywh8sICbNDUikNihL5ZW8p7kRguuAd6AiislddcimjLBEWnAP5hjQmOuekIJa4QNQ99IYWKkJ_NFrDjAQNsiXjWhiXKU49j54i2pyZILISQghKQQQiJa5LL-Zl4Sbqx9u13JKXHKlyerpdIinUp2q8f_j3ayfrRTsuUj2i4y0NqksVx8mDNwSZby3K27b0qa3hQ
  priority: 102
  providerName: ProQuest
Title The odd log-logistic Lindley-G family of distributions: properties, Bayesian and non-Bayesian estimation with applications
URI https://link.springer.com/article/10.1007/s00180-019-00932-9
https://www.proquest.com/docview/2344096210
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58XPQgPrFayx686YLZJJust1baiqKIWNBTyL5AkLbYetBf70xePlDBywaSzRIy-5hvd75vAA69NYEJfcpzbRKi5MQ8F1ry1EWJNkGQ5LYIkL2W56Po4j6-r0hhszravT6SLGbqhuxG-eMoiEpxguGCq0VYjgm7Yy8eiW4Ds0RSsK0oZA7RkRQVVebnNr4uRx8-5rdj0WK1GazDWuUmsm5p1w1YcONNWL1qNFZnm7BCfmIps7wFb2huNrGW4VTGS1bPo2EEuHHQ8yEr9zHYxDNLSrlVkqvZKZvSZvwzqaoes17-6ohTyfKxZePJmDc3SIqj5Dgy2rhln4-9t2E06N-dnfMqrQI3ON7mWJ4YaYNEOq1l6qVO0AkLpctzp0JNKfpS7bWMtXRWSYv4Bse4MdqeeIJTLtyBJfwGtwsslSZWRnmnfBQJp5VLSZ9MqNRIxIG-BUH9dzNTaY5T6ounrFFLLiySoUWywiKZasFR8860VNz4s3a7NlpWjb5ZJsIIYatENNuC49qQH49_b23vf9X3YUUQ_C5C0tqwNH9-cQfoo8x1BxbTs4DKwbADy93hw2Ufr73-9c1tp-iu78h44tI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOiKfYAsUHegIL4mSdGAmhtrAs5XECiVuIXxIS2t2yW1Xwo_iNzDiPhUpw45JDHlbiGU_mG883A7DlrYlM7DNeaJMSJafNC6Elz1ySahNFaWFDguyl7F4nv2_aNxPwXHNhKK2ytonBUNu-oRj5rogThCISEcrh4A-nrlG0u1q30CjV4sw9_kPINjw4PUL5fheic3z1q8urrgLcoLqN8LhnpI1S6bSWmZc6RR8klq4onIo1dajLtNeyraWzSlp071HFjdF2zxOacDGOOwnT-FmKVlTWOWkAnkgDz4uS9RCXSVGRdAJVj7rfUQqY4hREEFy9_RGOvdv_NmTDf64zD3OVg8p-lBq1ABOutwizF0111-ESPKFusb61DO0mLylEd4YRukcLw09YGTRhfc8sleWtOmoN99mAIv8PVMJ1h_0sHh0ROFnRs6zX7_HmBNX9KAmVjKLE7PUe-zJcf8psr8AUvoNbBZZJ01ZGead8kginlcuoGJpQmZEIOn0LonpCc1MVOKc-G_d5U5o5CCFHIeRBCLlqwXbzzKAs7_Hh3eu1nPJqqQ_zsWK2YKeW3fjy-6N9_Xi0TfjSvbo4z89PL8_WYEYQzg-5b-swNXr46zbQGRrpb0EDGdx-tsq_AE2tGlU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVwqHhVTZvCHtoTWVGvnbUXCVWQkja0jTgQqTfX-5KQUBLqVCj8NH4dM-tHAIncevHBj5Xl-Tw7r28G4NBbE5nYZ7zQJiVKTp8XQkueuSTVJorSwoYC2bE8nySfrvvXG_Cr4cJQWWWjE4OitjNDMfI3Ik7QFZHEOPF1WcTn0-HJ_DunCVKUaW3GaVQQuXDLH-i-le9GpyjrIyGGH78Mznk9YYAbhN4Cj8dG2iiVTmuZealTtEdi6YrCqVjTtLpMey37WjqrpEVTH-FujLbHnjwLF-O6D-BhGuM-Syz1QVteIkQaOF9UuIc-mhQ1YSfQ9mgSHpWDKU4BBcHV35viytL9Jzkb9rzhE9iujVX2vkLXU9hw02fw-Krt9Fo-h5-IMzazlqEO5RWd6Kth5OmjtuFnrAqgsJlnllr01tO1yrdsTlmAW2rn2mMfiqUjMicrppZNZ1PenqAeIBW5klHEmP2Zb38Bk3v52juwie_gdoFl0vSVUd4pnyTCaeUyaowmVGYkOqC-A1HzQXNTNzunmRvf8rZNcxBCjkLIgxBy1YHX7TPzqtXH2ru7jZzy-rcv8xVIO9BrZLe6_P_V9tav9gq2EOz55Wh8sQ-PBLn8oQyuC5uL2zt3gHbRQr8MAGRwc9-I_w0IrR5W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+odd+log-logistic+Lindley-G+family+of+distributions%3A+properties%2C+Bayesian+and+non-Bayesian+estimation+with+applications&rft.jtitle=Computational+statistics&rft.au=Alizadeh%2C+Morad&rft.au=Afify%2C+Ahmed+Z.&rft.au=Eliwa%2C+M.+S.&rft.au=Ali%2C+Sajid&rft.date=2020-03-01&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=35&rft.issue=1&rft.spage=281&rft.epage=308&rft_id=info:doi/10.1007%2Fs00180-019-00932-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00180_019_00932_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon