Deep Label Distribution Learning With Label Ambiguity

Convolutional neural networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is one of the most important factors for its success. However, it is difficult to collect sufficient training images with precise labels in some...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 26; no. 6; pp. 2825 - 2838
Main Authors Gao, Bin-Bin, Xing, Chao, Xie, Chen-Wei, Wu, Jianxin, Geng, Xin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Convolutional neural networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is one of the most important factors for its success. However, it is difficult to collect sufficient training images with precise labels in some domains, such as apparent age estimation, head pose estimation, multilabel classification, and semantic segmentation. Fortunately, there is ambiguous information among labels, which makes these tasks different from traditional classification. Based on this observation, we convert the label of each image into a discrete label distribution, and learn the label distribution by minimizing a Kullback-Leibler divergence between the predicted and ground-truth label distributions using deep ConvNets. The proposed deep label distribution learning (DLDL) method effectively utilizes the label ambiguity in both feature learning and classifier learning, which help prevent the network from overfitting even when the training set is small. Experimental results show that the proposed approach produces significantly better results than the state-of-the-art methods for age estimation and head pose estimation. At the same time, it also improves recognition performance for multi-label classification and semantic segmentation tasks.
AbstractList Convolutional neural networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is one of the most important factors for its success. However, it is difficult to collect sufficient training images with precise labels in some domains, such as apparent age estimation, head pose estimation, multilabel classification, and semantic segmentation. Fortunately, there is ambiguous information among labels, which makes these tasks different from traditional classification. Based on this observation, we convert the label of each image into a discrete label distribution, and learn the label distribution by minimizing a Kullback-Leibler divergence between the predicted and ground-truth label distributions using deep ConvNets. The proposed deep label distribution learning (DLDL) method effectively utilizes the label ambiguity in both feature learning and classifier learning, which help prevent the network from overfitting even when the training set is small. Experimental results show that the proposed approach produces significantly better results than the state-of-the-art methods for age estimation and head pose estimation. At the same time, it also improves recognition performance for multi-label classification and semantic segmentation tasks.
Convolutional neural networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is one of the most important factors for its success. However, it is difficult to collect sufficient training images with precise labels in some domains, such as apparent age estimation, head pose estimation, multilabel classification, and semantic segmentation. Fortunately, there is ambiguous information among labels, which makes these tasks different from traditional classification. Based on this observation, we convert the label of each image into a discrete label distribution, and learn the label distribution by minimizing a Kullback-Leibler divergence between the predicted and ground-truth label distributions using deep ConvNets. The proposed deep label distribution learning (DLDL) method effectively utilizes the label ambiguity in both feature learning and classifier learning, which help prevent the network from overfitting even when the training set is small. Experimental results show that the proposed approach produces significantly better results than the state-of-the-art methods for age estimation and head pose estimation. At the same time, it also improves recognition performance for multi-label classification and semantic segmentation tasks.Convolutional neural networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is one of the most important factors for its success. However, it is difficult to collect sufficient training images with precise labels in some domains, such as apparent age estimation, head pose estimation, multilabel classification, and semantic segmentation. Fortunately, there is ambiguous information among labels, which makes these tasks different from traditional classification. Based on this observation, we convert the label of each image into a discrete label distribution, and learn the label distribution by minimizing a Kullback-Leibler divergence between the predicted and ground-truth label distributions using deep ConvNets. The proposed deep label distribution learning (DLDL) method effectively utilizes the label ambiguity in both feature learning and classifier learning, which help prevent the network from overfitting even when the training set is small. Experimental results show that the proposed approach produces significantly better results than the state-of-the-art methods for age estimation and head pose estimation. At the same time, it also improves recognition performance for multi-label classification and semantic segmentation tasks.
Author Bin-Bin Gao
Chao Xing
Chen-Wei Xie
Xin Geng
Jianxin Wu
Author_xml – sequence: 1
  givenname: Bin-Bin
  surname: Gao
  fullname: Gao, Bin-Bin
– sequence: 2
  givenname: Chao
  surname: Xing
  fullname: Xing, Chao
– sequence: 3
  givenname: Chen-Wei
  surname: Xie
  fullname: Xie, Chen-Wei
– sequence: 4
  givenname: Jianxin
  orcidid: 0000-0002-2085-7568
  surname: Wu
  fullname: Wu, Jianxin
– sequence: 5
  givenname: Xin
  surname: Geng
  fullname: Geng, Xin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28371776$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtPwzAQgC1URGlhR0JCGVlS7mzHj7FqeVSKBEMRo5WkTjHKo8TJ0H9PqoYODEy-4fvu5G9CRlVdWUJuEGaIoB_Wq7cZBZQzKpTWWp2RS9QcQwBOR_0MkQwlcj0mE--_AJBHKC7ImComUUpxSaKltbsgTlJbBEvn28alXevqKoht0lSu2gYfrv0cgHmZum3n2v0VOc-Twtvr4Z2S96fH9eIljF-fV4t5HGYMdRtm1KYoRQ4bDoyllMpUKIEKGKpMS0UhQkpB6U0qmRSASjFNudYCueKQsym5P-7dNfV3Z31rSuczWxRJZevOm17gKHQv9ejdgHZpaTdm17gyafbm96s9AEcga2rvG5ufEARzqGn6muZQ0ww1e0X8UTLXJoc8bZO44j_x9ig6a-3pjlQamOLsB00pfRA
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_ins_2022_05_094
crossref_primary_10_1109_JSEN_2024_3362996
crossref_primary_10_1109_TIP_2024_3364539
crossref_primary_10_1016_j_bspc_2023_105083
crossref_primary_10_1109_ACCESS_2023_3271517
crossref_primary_10_1109_TMM_2021_3116430
crossref_primary_10_1007_s11277_022_09501_8
crossref_primary_10_1007_s44267_023_00004_z
crossref_primary_10_1109_TAFFC_2023_3331776
crossref_primary_10_1109_TIP_2018_2886785
crossref_primary_10_1016_j_neucom_2024_128022
crossref_primary_10_1007_s11432_023_3954_7
crossref_primary_10_1016_j_knosys_2023_110389
crossref_primary_10_1155_2018_1090565
crossref_primary_10_1109_TMI_2024_3405794
crossref_primary_10_3389_fdata_2022_1025806
crossref_primary_10_1109_TCSVT_2020_3032650
crossref_primary_10_1016_j_media_2023_102944
crossref_primary_10_1109_TBDATA_2023_3338023
crossref_primary_10_1109_JAS_2023_123591
crossref_primary_10_1007_s10489_023_04963_0
crossref_primary_10_1016_j_inffus_2023_02_019
crossref_primary_10_1109_TIM_2021_3091489
crossref_primary_10_1109_TMM_2021_3089422
crossref_primary_10_1016_j_jvcir_2019_03_025
crossref_primary_10_1016_j_neucom_2020_09_068
crossref_primary_10_1109_ACCESS_2020_3010815
crossref_primary_10_1016_j_psep_2023_02_079
crossref_primary_10_1109_TAFFC_2020_2994159
crossref_primary_10_1016_j_neucom_2018_12_053
crossref_primary_10_1109_JBHI_2022_3179619
crossref_primary_10_3233_JIFS_210251
crossref_primary_10_1109_ACCESS_2019_2960769
crossref_primary_10_1007_s11432_020_3356_4
crossref_primary_10_32604_cmc_2024_047641
crossref_primary_10_1007_s13042_024_02343_9
crossref_primary_10_1016_j_jvoice_2022_10_020
crossref_primary_10_1016_j_media_2024_103162
crossref_primary_10_1145_3578518
crossref_primary_10_1021_acssusresmgt_5c00040
crossref_primary_10_1109_TAFFC_2022_3163609
crossref_primary_10_1007_s13042_024_02295_0
crossref_primary_10_1587_transinf_2023EDL8056
crossref_primary_10_1587_transinf_2018EDL8136
crossref_primary_10_1109_TNSRE_2024_3516216
crossref_primary_10_1109_TBIOM_2021_3080300
crossref_primary_10_1109_TIFS_2024_3520020
crossref_primary_10_1016_j_knosys_2022_109992
crossref_primary_10_3390_diagnostics13101719
crossref_primary_10_1016_j_asoc_2025_112963
crossref_primary_10_1016_j_jvcir_2020_102930
crossref_primary_10_1109_TFUZZ_2024_3419144
crossref_primary_10_1109_TKDE_2021_3054465
crossref_primary_10_1109_TAFFC_2023_3283595
crossref_primary_10_1016_j_ins_2024_120836
crossref_primary_10_1016_j_knosys_2024_111429
crossref_primary_10_1016_j_patcog_2024_110974
crossref_primary_10_1016_j_cviu_2020_102961
crossref_primary_10_1016_j_ipm_2022_103173
crossref_primary_10_1007_s00530_022_01022_5
crossref_primary_10_1093_bioinformatics_btz295
crossref_primary_10_1016_j_knosys_2021_107163
crossref_primary_10_1109_TMM_2023_3256065
crossref_primary_10_1109_TMI_2018_2868333
crossref_primary_10_1109_ACCESS_2024_3445178
crossref_primary_10_3390_s21196661
crossref_primary_10_1016_j_future_2022_12_018
crossref_primary_10_1007_s00521_023_08563_4
crossref_primary_10_1007_s00138_022_01318_6
crossref_primary_10_1117_1_JEI_28_1_013029
crossref_primary_10_1109_TIP_2023_3327540
crossref_primary_10_1109_TNNLS_2023_3341807
crossref_primary_10_1016_j_media_2020_101759
crossref_primary_10_1007_s11704_022_1446_5
crossref_primary_10_1117_1_JEI_28_1_013025
crossref_primary_10_1016_j_bspc_2022_104487
crossref_primary_10_1109_ACCESS_2022_3154403
crossref_primary_10_3390_axioms11040181
crossref_primary_10_1364_OE_479638
crossref_primary_10_1109_ACCESS_2019_2959584
crossref_primary_10_1109_TCSVT_2020_2981117
crossref_primary_10_1016_j_neucom_2022_07_076
crossref_primary_10_1121_10_0011741
crossref_primary_10_1016_j_media_2023_102916
crossref_primary_10_1016_j_patcog_2024_111006
crossref_primary_10_1109_TMI_2024_3371948
crossref_primary_10_1007_s00158_019_02288_6
crossref_primary_10_1016_j_media_2023_102911
crossref_primary_10_1016_j_patrec_2025_01_005
crossref_primary_10_1007_s13042_022_01567_x
crossref_primary_10_1016_j_patrec_2019_05_002
crossref_primary_10_1016_j_neucom_2020_07_149
crossref_primary_10_1007_s00371_021_02323_y
crossref_primary_10_1109_TMM_2022_3144070
crossref_primary_10_1177_08953996251319652
crossref_primary_10_1007_s11704_020_8272_4
crossref_primary_10_1016_j_ins_2024_121113
crossref_primary_10_1109_ACCESS_2019_2928970
crossref_primary_10_1007_s40962_024_01335_3
crossref_primary_10_1016_j_fcr_2022_108693
crossref_primary_10_1109_TNNLS_2021_3133262
crossref_primary_10_1109_TKDE_2021_3073157
crossref_primary_10_1109_JBHI_2022_3190923
crossref_primary_10_1109_TMM_2023_3267887
crossref_primary_10_1007_s11042_022_14094_2
crossref_primary_10_1145_3512935
crossref_primary_10_1109_TAFFC_2020_3022732
crossref_primary_10_1016_j_ecoinf_2022_101849
crossref_primary_10_1007_s00530_023_01219_2
crossref_primary_10_3390_rs13040755
crossref_primary_10_1007_s10115_018_1244_4
crossref_primary_10_1016_j_ijar_2022_08_009
crossref_primary_10_1016_j_neucom_2018_12_074
crossref_primary_10_1109_ACCESS_2023_3333871
crossref_primary_10_1109_TMI_2019_2959209
crossref_primary_10_1109_TPAMI_2022_3156885
crossref_primary_10_1049_iet_ipr_2019_1291
crossref_primary_10_1002_aisy_202400048
crossref_primary_10_1016_j_ins_2024_120954
crossref_primary_10_1109_TCDS_2021_3075280
crossref_primary_10_1109_TCSS_2023_3311013
crossref_primary_10_1016_j_inffus_2020_08_024
crossref_primary_10_1016_j_neucom_2022_11_022
crossref_primary_10_1016_j_bspc_2024_107382
crossref_primary_10_1109_TMI_2021_3091178
crossref_primary_10_1016_j_ins_2021_11_005
crossref_primary_10_1007_s13042_024_02385_z
crossref_primary_10_1109_TITS_2023_3297948
crossref_primary_10_1587_transinf_2020EDL8038
crossref_primary_10_1109_ACCESS_2020_2964281
crossref_primary_10_1109_TAFFC_2022_3225238
crossref_primary_10_1109_ACCESS_2021_3062380
crossref_primary_10_1109_TCSVT_2017_2782709
crossref_primary_10_1007_s10489_024_05845_9
crossref_primary_10_1109_TCSVT_2021_3098712
crossref_primary_10_1016_j_engappai_2023_107061
crossref_primary_10_1007_s13042_019_00958_x
crossref_primary_10_1109_TPAMI_2021_3082623
crossref_primary_10_1016_j_ins_2021_08_076
crossref_primary_10_3390_app13064019
crossref_primary_10_3390_s21093222
crossref_primary_10_1007_s11263_018_1131_1
crossref_primary_10_1016_j_patcog_2019_107178
crossref_primary_10_1109_TIFS_2023_3313356
crossref_primary_10_1016_j_fsigen_2023_103004
crossref_primary_10_1109_TIFS_2021_3114066
crossref_primary_10_1109_TIFS_2020_2969552
crossref_primary_10_1007_s13042_023_01858_x
crossref_primary_10_1007_s13042_023_02090_3
crossref_primary_10_1016_j_knosys_2020_106690
crossref_primary_10_1016_j_compbiomed_2024_109256
crossref_primary_10_1109_TCDS_2021_3116604
crossref_primary_10_1007_s10489_024_05999_6
crossref_primary_10_1109_TCSVT_2019_2936410
crossref_primary_10_1016_j_compmedimag_2022_102176
crossref_primary_10_1007_s10994_022_06247_z
crossref_primary_10_1109_TPAMI_2020_3029486
crossref_primary_10_1109_TNNLS_2021_3103178
crossref_primary_10_1109_TNNLS_2023_3297261
crossref_primary_10_1109_TMM_2018_2875357
crossref_primary_10_1109_TMI_2022_3202759
crossref_primary_10_1109_TNNLS_2022_3162316
crossref_primary_10_1109_TMM_2023_3304454
crossref_primary_10_1016_j_eswa_2024_124682
crossref_primary_10_1002_cpe_6660
crossref_primary_10_1155_2021_1996803
crossref_primary_10_1109_TCYB_2021_3083245
crossref_primary_10_1016_j_est_2024_114928
crossref_primary_10_1109_TIFS_2022_3218431
crossref_primary_10_1016_j_ins_2020_07_071
crossref_primary_10_1109_TNNLS_2021_3090358
crossref_primary_10_1016_j_patcog_2022_109056
crossref_primary_10_3390_rs15143578
crossref_primary_10_1016_j_neucom_2020_12_090
crossref_primary_10_1007_s13042_024_02525_5
crossref_primary_10_1109_TAFFC_2023_3334520
crossref_primary_10_1155_2022_3880201
crossref_primary_10_3390_sym12010146
crossref_primary_10_1016_j_imavis_2022_104555
crossref_primary_10_1016_j_jvcir_2018_11_006
crossref_primary_10_1109_TIP_2022_3188061
crossref_primary_10_1145_3359164
crossref_primary_10_1007_s10044_019_00857_5
crossref_primary_10_1109_LGRS_2021_3109728
crossref_primary_10_1109_TPAMI_2022_3187079
crossref_primary_10_1016_j_aei_2024_102717
crossref_primary_10_1016_j_mlwa_2024_100569
crossref_primary_10_1016_j_knosys_2019_105245
crossref_primary_10_1145_3152118
crossref_primary_10_1109_TMM_2022_3142398
crossref_primary_10_1111_cgf_142643
crossref_primary_10_3934_mbe_2024198
crossref_primary_10_1016_j_future_2022_10_009
crossref_primary_10_1007_s11263_020_01295_1
crossref_primary_10_1109_ACCESS_2023_3283148
crossref_primary_10_3390_s23239390
crossref_primary_10_3390_s22186828
crossref_primary_10_1016_j_asoc_2024_112254
crossref_primary_10_1109_ACCESS_2023_3275765
crossref_primary_10_1016_j_patcog_2022_109197
crossref_primary_10_1016_j_jksuci_2022_10_008
crossref_primary_10_1109_TKDE_2021_3092406
crossref_primary_10_1007_s11042_021_11765_4
crossref_primary_10_1016_j_eswa_2023_120710
crossref_primary_10_1109_TIP_2022_3193749
crossref_primary_10_1007_s11263_023_01758_1
crossref_primary_10_1109_ACCESS_2020_3034801
crossref_primary_10_1109_TPAMI_2019_2937294
crossref_primary_10_1016_j_neucom_2020_05_010
crossref_primary_10_1109_TCSVT_2023_3327113
crossref_primary_10_1109_TPAMI_2023_3273712
crossref_primary_10_3389_fnins_2023_1136934
crossref_primary_10_1007_s42979_023_01796_z
crossref_primary_10_1016_j_knosys_2020_105684
crossref_primary_10_1145_3414843
crossref_primary_10_1109_TMC_2023_3296501
crossref_primary_10_1109_ACCESS_2023_3333904
crossref_primary_10_1109_ACCESS_2024_3443179
crossref_primary_10_1038_s41598_023_43864_7
crossref_primary_10_1016_j_neucom_2025_129777
crossref_primary_10_1109_TII_2021_3075989
crossref_primary_10_1109_TNNLS_2022_3214610
crossref_primary_10_1016_j_patcog_2024_110322
crossref_primary_10_3390_app10093089
crossref_primary_10_1109_TCSVT_2021_3096061
crossref_primary_10_1016_j_ijar_2018_10_009
crossref_primary_10_1016_j_neucom_2020_01_046
crossref_primary_10_1007_s00371_023_02854_6
crossref_primary_10_1109_TIP_2022_3163544
crossref_primary_10_1007_s00521_021_06218_w
crossref_primary_10_1109_TIFS_2020_2965298
crossref_primary_10_1109_TCYB_2020_2973450
crossref_primary_10_1016_j_asoc_2020_107046
crossref_primary_10_1016_j_asoc_2021_107585
Cites_doi 10.1109/TPAMI.2013.51
10.1109/CVPR.2014.237
10.1007/978-3-319-16811-1_6
10.1109/CVPR.2013.446
10.1109/FGR.2006.78
10.1145/2733373.2807412
10.1109/CVPR.2014.81
10.1007/978-3-319-16811-1_10
10.1109/CVPR.2015.7298965
10.1109/CVPR.2016.308
10.1109/ICCV.2015.123
10.1109/34.868688
10.1007/BF01450852
10.1109/TIP.2015.2481327
10.1016/j.patrec.2015.06.006
10.1109/CVPR.2011.5995458
10.1109/ICCVW.2015.41
10.1109/CVPR.2014.222
10.1109/ICCVW.2015.40
10.1109/TIP.2014.2387379
10.1109/ICCV.2011.6126343
10.1109/TIP.2017.2655445
10.1109/TKDE.2016.2545658
10.1109/CVPR.2014.414
10.1109/CVPR.2016.90
10.1109/TPAMI.2015.2491929
10.1109/CVPR.2016.486
10.1007/s11263-009-0275-4
10.1109/ICCV.2015.324
10.1109/ICCVW.2011.6130513
10.1109/CVPRW.2015.7301354
10.1007/s11263-016-0940-3
10.1109/CVPR.2013.112
10.1109/TIP.2015.2405483
10.1109/CVPR.2011.5995330
10.1109/TIP.2016.2545300
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2017.2689998
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2838
ExternalDocumentID 28371776
10_1109_TIP_2017_2689998
7890384
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Collaborative Innovation Center of Novel Software Technology and Industrialization
– fundername: Collaborative Innovation Center of Wireless Communications Technology
– fundername: National Natural Science Foundation of China
  grantid: 61422203; 61622203; 61232007
  funderid: 10.13039/501100001809
– fundername: Jiangsu Natural Science Funds for Distinguished Young Scholar
  grantid: BK20140022
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c319t-c2eb176f0d4033b227b686180318c978205122089db73760188392499614840f3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 09:31:01 EDT 2025
Thu Apr 03 07:05:31 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Tue Jul 01 02:03:14 EDT 2025
Tue Aug 26 17:00:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c2eb176f0d4033b227b686180318c978205122089db73760188392499614840f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2085-7568
PMID 28371776
PQID 1884169392
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_28371776
proquest_miscellaneous_1884169392
ieee_primary_7890384
crossref_primary_10_1109_TIP_2017_2689998
crossref_citationtrail_10_1109_TIP_2017_2689998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-June
2017-6-00
2017-Jun
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-June
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
minka (ref24) 2005
ref15
ref14
ref11
ref10
zhao (ref48) 2016
ref18
krahenbuhl (ref50) 2011
mathias (ref26) 2014
chen (ref51) 2015
yin (ref33) 2009; 46
ref46
ref45
ref47
ref42
gourier (ref32) 2004
ref44
van der maaten (ref52) 2008; 9
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
krizhevsky (ref1) 2012
ref5
parkhi (ref17) 2015
ref35
ref34
zitnick (ref39) 2014
ref36
ref31
ref30
ref2
gong (ref41) 2013
ref38
simonyan (ref16) 2015
wei (ref37) 2014
ref23
zeiler (ref19) 2014
ref25
ref20
yang (ref40) 2016
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref4
  doi: 10.1109/TPAMI.2013.51
– year: 2005
  ident: ref24
  article-title: Divergence measures and message passing
– start-page: 391
  year: 2014
  ident: ref39
  article-title: Edge boxes: Locating object proposals from edges
  publication-title: Proc Eur Conf Comput Vis
– ident: ref7
  doi: 10.1109/CVPR.2014.237
– year: 2013
  ident: ref41
  article-title: Deep convolutional ranking for multilabel image annotation
– ident: ref14
  doi: 10.1007/978-3-319-16811-1_6
– ident: ref15
  doi: 10.1109/CVPR.2013.446
– ident: ref22
  doi: 10.1109/FGR.2006.78
– ident: ref21
  doi: 10.1145/2733373.2807412
– ident: ref2
  doi: 10.1109/CVPR.2014.81
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref52
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– start-page: 1
  year: 2015
  ident: ref16
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref28
  doi: 10.1007/978-3-319-16811-1_10
– start-page: 818
  year: 2014
  ident: ref19
  article-title: Visualizing and understanding convolutional networks
  publication-title: Proc Eur Conf Comput Vis
– ident: ref3
  doi: 10.1109/CVPR.2015.7298965
– start-page: 109
  year: 2011
  ident: ref50
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref18
  doi: 10.1109/CVPR.2016.308
– ident: ref20
  doi: 10.1109/ICCV.2015.123
– ident: ref46
  doi: 10.1109/34.868688
– ident: ref35
  doi: 10.1007/BF01450852
– start-page: 6
  year: 2015
  ident: ref17
  article-title: Deep face recognition
  publication-title: Proc Brit Mach Vis Conf
– ident: ref13
  doi: 10.1109/TIP.2015.2481327
– ident: ref29
  doi: 10.1016/j.patrec.2015.06.006
– ident: ref12
  doi: 10.1109/CVPR.2011.5995458
– volume: 46
  start-page: 1009
  year: 2009
  ident: ref33
  article-title: BJUT-3D large scale 3D face database and information processing
  publication-title: J Comput Res Develop
– ident: ref30
  doi: 10.1109/ICCVW.2015.41
– ident: ref45
  doi: 10.1109/CVPR.2014.222
– ident: ref23
  doi: 10.1109/ICCVW.2015.40
– year: 2014
  ident: ref37
  article-title: CNN: Single-label to multi-label
– start-page: 1
  year: 2016
  ident: ref48
  article-title: Regional gating neural networks for multi-label image classification
  publication-title: Proc Brit Mach Vis Conf
– ident: ref27
  doi: 10.1109/TIP.2014.2387379
– start-page: 280
  year: 2016
  ident: ref40
  article-title: Exploit bounding box annotations for multi-label object recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 1097
  year: 2012
  ident: ref1
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2004
  ident: ref32
  article-title: Estimating face orientation from robust detection of salient facial structures
  publication-title: Proc FG Net Workshop Visual Observation of Deictic Gestures
– ident: ref49
  doi: 10.1109/ICCV.2011.6126343
– ident: ref9
  doi: 10.1109/TIP.2017.2655445
– ident: ref25
  doi: 10.1109/TKDE.2016.2545658
– ident: ref38
  doi: 10.1109/CVPR.2014.414
– ident: ref10
  doi: 10.1109/CVPR.2016.90
– ident: ref42
  doi: 10.1109/TPAMI.2015.2491929
– ident: ref8
  doi: 10.1109/CVPR.2016.486
– ident: ref6
  doi: 10.1007/s11263-009-0275-4
– ident: ref11
  doi: 10.1109/ICCV.2015.324
– ident: ref34
  doi: 10.1109/ICCVW.2011.6130513
– ident: ref36
  doi: 10.1109/CVPRW.2015.7301354
– ident: ref31
  doi: 10.1007/s11263-016-0940-3
– ident: ref43
  doi: 10.1109/CVPR.2013.112
– ident: ref5
  doi: 10.1109/TIP.2015.2405483
– start-page: 1
  year: 2015
  ident: ref51
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: Proc Int Conf Learn Representat
– ident: ref44
  doi: 10.1109/CVPR.2011.5995330
– start-page: 720
  year: 2014
  ident: ref26
  article-title: Face detection without bells and whistles
  publication-title: Proc Eur Conf Comput Vis
– ident: ref47
  doi: 10.1109/TIP.2016.2545300
SSID ssj0014516
Score 2.6663425
Snippet Convolutional neural networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2825
SubjectTerms age estimation
Correlation
deep learning
Head
head pose estimation
Image segmentation
Label distribution
Pose estimation
semantic segmentation
Semantics
Training
Title Deep Label Distribution Learning With Label Ambiguity
URI https://ieeexplore.ieee.org/document/7890384
https://www.ncbi.nlm.nih.gov/pubmed/28371776
https://www.proquest.com/docview/1884169392
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLaACQbej-OlIrEg0btcm2uSEfEQIEAMINiqJnEPBNwhaBd-PXGbVggBYuuQtI0dN59r-zPALotFbN1BF2Z5koVcWRtKwzCUuRYDbfsSLRUnX14lp7f8_H5wPwH7bS0MIlbJZ9ilyyqWb8empF9lPSrajCWfhEnnuNW1Wm3EgBrOVpHNgQiFg_1NSJKp3s3ZNeVwiW6UOO9CUYs-4nzpCyIa-XIaVe1Vfkea1YlzMgeXzbvWiSZP3bLQXfPxjcbxv4uZh1kPPYODeq8swASOFmHOw9DAG_n7Isx84ShcgsER4mtwkWl8Do6IZdc3yAo8M-swuHssHvyAgxf9OCwdsF-G25Pjm8PT0PdaCI0zwiI0kftoiyRnlrM41lEkdCKTviSbN4pI9RwyiJhUVosqj0YSsnLuEhGJcpbHKzA1Go9wDQJk1irMMkyU4Zg5hzBXDpYabrnKZZR3oNfIPDWeiJz6YTynlUPCVOoUlpLCUq-wDuy1M15rEo4_xi6RrNtxXswd2GnUmjoDoqhINsJx-Z66lXBipFFRB1ZrfbeTm22y_vNNN2CaHl1njm3CVPFW4pbDKIXerjbnJ9rO3TY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFFoeyzNIcOCQXa_jxPaBQ8VS7dJtxWEregvxI6Wi7FZsIgS_hb_Cf2MmcaIKAbdK3HJwrNjz2TOTmfkG4DlLZOJQ0cVFmRWx0M7FyjIfq9LI1Lix8o6Kkw8Os-mReHucHm_Aj74WxnvfJJ_5IT02sXy3sjX9KhtR0WaiREih3PffvqKDtn41m6A0X3C-92bxehqHHgKxRXBVseV4GcmsZE6wJDGcS5OpbKwIy1YTWRxqPM6UdkY2-SGKLAZ0A4ggU7AywXmvwFW0M1LeVof1MQpqcdvEUlMZS3Q0uiAo06PF7B1ljckhz9Cf0dQUkFhmxpKoTS7ov6ahy99t20bH7W3Bz2532tSWT8O6MkP7_TfiyP91-27BzWBcR7vtabgNG365DVvB0I7CNbbehhsXWBh3IJ14fx7NC-PPognxCIcWYFHgnj2J3p9WH8OA3c_m9KRG1-UOHF3KUu7C5nK19Pch8sw57YvCZ9oKX6DLW2o0vK1wQpeKlwMYdTLObaBap44fZ3njcjGdI0ByAkgeADKAl_0b5y3NyD_G7pBs-3FBrAN41sEoxyuC4j7F0q_qdY4rEcS5o_kA7rX46l_uYPngz5M-hWvTxcE8n88O9x_CdfqMNk_uEWxWX2r_GC2yyjxpDkYEHy4bSr8ASiQzOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Label+Distribution+Learning+With+Label+Ambiguity&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Bin-Bin+Gao&rft.au=Chao+Xing&rft.au=Chen-Wei+Xie&rft.au=Jianxin+Wu&rft.date=2017-06-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=26&rft.issue=6&rft.spage=2825&rft.epage=2838&rft_id=info:doi/10.1109%2FTIP.2017.2689998&rft_id=info%3Apmid%2F28371776&rft.externalDocID=7890384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon