Multivariate long-time series traffic passenger flow prediction using causal convolutional sparse self-attention MTS-Informer

As an important part of the operation preparation process of the intelligent transportation system, the passenger flow distribution law and forecast can guide the urban rail transit to formulate a reasonable operation scheduling plan. Due to the complexity, multi-variables, and instability of traffi...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 34; pp. 24207 - 24223
Main Authors Liu, Miaonan, Wang, Wei, Hu, Xianhui, Fu, Yunlai, Xu, Fujin, Miao, Xinying
Format Journal Article
LanguageEnglish
Published London Springer London 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As an important part of the operation preparation process of the intelligent transportation system, the passenger flow distribution law and forecast can guide the urban rail transit to formulate a reasonable operation scheduling plan. Due to the complexity, multi-variables, and instability of traffic passenger flow data, accurate passenger flow prediction takes a lot of work. Based on a convolutional neural network, a causal convolution self-attention traffic passenger flow prediction model MTS-Informer framework is proposed. This method follows the changing law of auxiliary variables, adopts the stabilization method to reduce the instability of the original sequence, and uses the causal convolution feature to improve the ability of the model’s self-attention mechanism to extract local information from the input sequence. The weakening effect of the self-attention mechanism ensures that it can learn similarly to the differential features in the original sequence data. In addition, the stationarity detection of the original sequence data is added. The experimental results show that the fitting degree of the sample data is significantly improved, and the standard error decreases between 10 and 40%, which verifies the effectiveness of the proposed modeling technique. It has higher prediction accuracy and operating efficiency and can provide a basis for urban traffic passenger flow prediction.
AbstractList As an important part of the operation preparation process of the intelligent transportation system, the passenger flow distribution law and forecast can guide the urban rail transit to formulate a reasonable operation scheduling plan. Due to the complexity, multi-variables, and instability of traffic passenger flow data, accurate passenger flow prediction takes a lot of work. Based on a convolutional neural network, a causal convolution self-attention traffic passenger flow prediction model MTS-Informer framework is proposed. This method follows the changing law of auxiliary variables, adopts the stabilization method to reduce the instability of the original sequence, and uses the causal convolution feature to improve the ability of the model’s self-attention mechanism to extract local information from the input sequence. The weakening effect of the self-attention mechanism ensures that it can learn similarly to the differential features in the original sequence data. In addition, the stationarity detection of the original sequence data is added. The experimental results show that the fitting degree of the sample data is significantly improved, and the standard error decreases between 10 and 40%, which verifies the effectiveness of the proposed modeling technique. It has higher prediction accuracy and operating efficiency and can provide a basis for urban traffic passenger flow prediction.
Author Xu, Fujin
Hu, Xianhui
Wang, Wei
Liu, Miaonan
Miao, Xinying
Fu, Yunlai
Author_xml – sequence: 1
  givenname: Miaonan
  surname: Liu
  fullname: Liu, Miaonan
  organization: College of Information Engineering, Dalian Ocean University, Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-8741-7180
  surname: Wang
  fullname: Wang, Wei
  email: ww_wangwei@dlou.edu.cn
  organization: College of Information Engineering, Dalian Ocean University, Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University
– sequence: 3
  givenname: Xianhui
  surname: Hu
  fullname: Hu, Xianhui
  organization: College of Information Engineering, Dalian Ocean University, Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University
– sequence: 4
  givenname: Yunlai
  surname: Fu
  fullname: Fu, Yunlai
  organization: College of Information Engineering, Dalian Ocean University, Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University
– sequence: 5
  givenname: Fujin
  surname: Xu
  fullname: Xu, Fujin
  organization: College of Information Engineering, Dalian Ocean University
– sequence: 6
  givenname: Xinying
  surname: Miao
  fullname: Miao, Xinying
  organization: College of Information Engineering, Dalian Ocean University
BookMark eNp9kE1r3DAQhkVJoZu0f6AnQc9KJWtly8cSmg9I6CHpWYxlaVHwSq5GTkgg_71ytlDIISch5n2Gd55jchRTdIR8FfxUcN59R85VIxhvJOM955I9fyAbsZWSSa70EdnwflvH7VZ-IseI95zzbavVhrzcLFMJD5ADFEenFHeshL2j6HJwSEsG74OlMyC6uHOZ-ik90jm7MdgSUqQLhrijFhaEidoUH9K0rIP6wxkyrqsmz6AUF1-Bm7tbdhV9ynuXP5OPHiZ0X_69J-T3-c-7s0t2_evi6uzHNbNS9IXZBkZVr7LWW925DqARQ9cIGHzjRtDDqKDlg2-lBtX1ctQc-t5qD53zg5LyhHw77J1z-rM4LOY-Lbl2RNNordqulUrUlD6kbE6I2XljQ4G1dNUQJiO4WWWbg2xTZZtX2ea5os0bdM5hD_npfUgeIKzhVe7_Vu9QfwHVU5jR
CitedBy_id crossref_primary_10_1080_23249935_2025_2457339
crossref_primary_10_1016_j_eswa_2025_126467
crossref_primary_10_1016_j_scs_2024_105375
crossref_primary_10_1007_s00500_023_09592_w
crossref_primary_10_1007_s11071_024_10655_2
Cites_doi 10.1109/TPAMI.2023.3293516
10.16383/j.aas.c180564
10.1049/iet-its.2016.0208
10.1016/j.energy.2022.124179
10.1016/j.apenergy.2017.03.034
10.1515/bile-2015-0008
10.1007/s00500-020-04954-0
10.1145/3209978.3210006
10.1109/TII.2021.3129888
10.1007/s00521-022-07631-5
10.1016/j.eswa.2019.05.028
10.1111/j.1467-9892.1990.tb00048.x
10.1093/bioinformatics/19.2.185
10.1016/j.ijforecast.2019.07.001
10.2307/1912517
10.1007/s00521-020-04771-4
10.1016/j.artmed.2018.11.004
10.1007/s00180-021-01188-y
10.1109/TCE.2021.3130228
10.1016/j.cie.2021.107598
10.1109/TITS.2020.3000761
10.1016/0304-4076(95)01741-0
10.1088/1361-665X/aba539
10.1007/s00521-022-08120-5
10.1016/j.dib.2020.105340
10.36339/jhest.v3i1.42
10.1007/978-3-030-17989-2_3
10.1609/aaai.v35i12.17325
10.1109/TITS.2023.3235805
10.1145/2939672.2939785
10.1111/j.1467-9892.1983.tb00373.x
10.1007/s00521-022-07889-9
10.1145/3336191.3372191
10.1080/00949655.2019.1658763
10.1016/j.eswa.2008.07.069
10.1109/TCE.2020.2977964
10.1016/j.neucom.2022.01.039
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-09003-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 24223
ExternalDocumentID 10_1007_s00521_023_09003_z
GrantInformation_xml – fundername: open project of State Key Laboratory of Integrated Automation of Process Industry, Northeastern University
  grantid: 2020052
– fundername: Open Project of Key Laboratory of Environment Controlled Aquaculture,Ministry of Education, China
  grantid: 202314
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-c2ad5003ccfc87e7aa21b721abf2eda8bd5a60bf638a5793d80a99c8fa7efb533
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Fri Jul 25 23:41:50 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Tue Jul 01 03:04:45 EDT 2025
Fri Feb 21 02:43:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords Stationarity detection
Causal convolutional networks
Traffic passenger flow prediction
Informer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c2ad5003ccfc87e7aa21b721abf2eda8bd5a60bf638a5793d80a99c8fa7efb533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8741-7180
PQID 2885676351
PQPubID 2043988
PageCount 17
ParticipantIDs proquest_journals_2885676351
crossref_citationtrail_10_1007_s00521_023_09003_z
crossref_primary_10_1007_s00521_023_09003_z
springer_journals_10_1007_s00521_023_09003_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Banerjee, Ling, Chen (CR24) 2019; 97
Piccolo (CR6) 1990; 11
Quraisy (CR54) 2020; 3
Chun-Hui, Song-Rui (CR15) 2011; 11
CR39
Jian-Wei, Hui-Dan, Xiong-Lin, Jun (CR46) 2020; 46
Salinas, Flunkert, Gasthaus (CR33) 2020; 36
Li, Xingzhi, Xuemei (CR27) 2022; 28
CR34
CR32
Hassantabar (CR31) 2021; 67
Bitencourt, Orang, de Souza (CR3) 2023; 35
Bolstad, Irizarry, Astrand (CR42) 2003; 19
Razali, Wah (CR50) 2011; 2
Barbosh, Singh, Sadhu (CR20) 2020; 29
Guo, Fang, Zhao (CR12) 2021; 161
CR49
Gonzalez-Estrada, Cosmes (CR51) 2019; 89
Li, Wang, Zhao (CR14) 2023; 24
Li, Cui, Zhang (CR36) 2023
CR45
Song, Ying (CR8) 2015; 27
CR40
Hanusz, Tarasiska (CR52) 2015; 52
Yang, Gao, Kong, Pang, Zhou (CR23) 2020; 66
Gong, Zhao, Sun (CR37) 2022; 253
Wang, Wang (CR41) 2020; 32
Benvenuto, Giovanetti, Vassallo (CR7) 2020; 29
Zhang, Chen, Cui (CR13) 2020; 22
Zhao, Chen, Wu (CR22) 2017; 11
Su, Wang, Huang (CR5) 2020; 33
CR19
CR17
CR16
Dickey, Fuller (CR47) 1981; 49
McLeod, Li (CR4) 1983; 4
Quinlan (CR9) 1986; 1
Ismail, Gunady, Corrada Bravo (CR1) 2020; 33
Rathipriya, Abdul Rahman, Dhamodharavadhani (CR25) 2023; 35
Lei, Chuan, Dandan, Yiwei (CR29) 2021; 44
Shen, Wang (CR35) 2022; 480
Fatima, Uddin (CR2) 2022; 34
Lee, Schmidt (CR48) 1996; 73
Gaoshen, Ling, Xiang, Tong (CR26) 2019; 36
Tiantian, Wei (CR44) 2022; 36
Wu, Lian, Zeng (CR38) 2022; 7
CR28
Chen, Xu, Chu (CR11) 2017; 195
CR21
Gonzalez-Estrada, Villasenor, Acosta-Pech (CR53) 2022; 37
Speiser, Miller, Tooze (CR18) 2019; 134
Jiang, Lu, Zhong (CR43) 2021; 19
Hewage, Behera, Trovati (CR30) 2020; 24
Castro-Neto, Jeong, Jeong (CR10) 2009; 36
JL Speiser (9003_CR18) 2019; 134
L Shen (9003_CR35) 2022; 480
L Gaoshen (9003_CR26) 2019; 36
D Salinas (9003_CR33) 2020; 36
B Li (9003_CR36) 2023
BM Bolstad (9003_CR42) 2003; 19
NM Razali (9003_CR50) 2011; 2
W Wang (9003_CR41) 2020; 32
J Su (9003_CR5) 2020; 33
9003_CR16
Z Hanusz (9003_CR52) 2015; 52
JR Quinlan (9003_CR9) 1986; 1
9003_CR17
Y Wu (9003_CR38) 2022; 7
9003_CR19
I Banerjee (9003_CR24) 2019; 97
D Yang (9003_CR23) 2020; 66
L Li (9003_CR27) 2022; 28
D Lee (9003_CR48) 1996; 73
M Gong (9003_CR37) 2022; 253
Z Zhao (9003_CR22) 2017; 11
9003_CR21
S Hassantabar (9003_CR31) 2021; 67
9003_CR28
T Tiantian (9003_CR44) 2022; 36
W Lei (9003_CR29) 2021; 44
D Piccolo (9003_CR6) 1990; 11
Y Chen (9003_CR11) 2017; 195
A Quraisy (9003_CR54) 2020; 3
R Rathipriya (9003_CR25) 2023; 35
P Li (9003_CR14) 2023; 24
L Jian-Wei (9003_CR46) 2020; 46
P Hewage (9003_CR30) 2020; 24
9003_CR32
9003_CR34
L Guo (9003_CR12) 2021; 161
9003_CR39
C Jiang (9003_CR43) 2021; 19
D Benvenuto (9003_CR7) 2020; 29
J Zhang (9003_CR13) 2020; 22
M Castro-Neto (9003_CR10) 2009; 36
E Gonzalez-Estrada (9003_CR53) 2022; 37
YY Song (9003_CR8) 2015; 27
AI McLeod (9003_CR4) 1983; 4
Z Chun-Hui (9003_CR15) 2011; 11
9003_CR40
DA Dickey (9003_CR47) 1981; 49
AA Ismail (9003_CR1) 2020; 33
S Fatima (9003_CR2) 2022; 34
9003_CR45
E Gonzalez-Estrada (9003_CR51) 2019; 89
HV Bitencourt (9003_CR3) 2023; 35
9003_CR49
M Barbosh (9003_CR20) 2020; 29
References_xml – ident: CR45
– volume: 35
  start-page: 9407
  year: 2023
  end-page: 9420
  ident: CR3
  article-title: An embedding-based non-stationary fuzzy time series method for multiple output high-dimensional multivariate time series forecasting in IoT applications
  publication-title: Neural Comput Appl
– volume: 28
  start-page: 2375
  issue: 08
  year: 2022
  end-page: 2386
  ident: CR27
  article-title: Temporal convolution attention network for remaining useful life estimation [J]
  publication-title: Comput Integ Manufact Syst
– ident: CR49
– volume: 480
  start-page: 131
  year: 2022
  end-page: 145
  ident: CR35
  article-title: TCCT: Tightly-coupled convolutional transformer on time series forecasting[J]
  publication-title: Neurocomputing
– ident: CR39
– ident: CR16
– year: 2023
  ident: CR36
  article-title: DifFormer: multi-resolutional differencing transformer with dynamic ranging for time series analysis[J]
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2023.3293516
– volume: 32
  start-page: 13625
  issue: 17
  year: 2020
  end-page: 13638
  ident: CR41
  article-title: Prediction of component concentrations in sodium aluminate liquor using stochastic configuration networks[J]
  publication-title: Neural Comput Appl
– volume: 19
  start-page: 40
  issue: 1
  year: 2021
  end-page: 51
  ident: CR43
  article-title: Deep Bayesian slow feature extraction with application to industrial inferential modeling[J]
  publication-title: IEEE Trans Ind Inf
– volume: 36
  start-page: 310
  issue: 07
  year: 2022
  end-page: 316
  ident: CR44
  article-title: Research on commodity sales forecast oriented on deep learning [J]
  publication-title: J Chongqing Univ Technol
– volume: 4
  start-page: 269
  issue: 4
  year: 1983
  end-page: 273
  ident: CR4
  article-title: Diagnostic checking ARMA time series models using squared-residual autocorrelations[J]
  publication-title: J Time Ser Anal
– volume: 97
  start-page: 79
  year: 2019
  end-page: 88
  ident: CR24
  article-title: Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification[J]
  publication-title: Artif Intell Med
– ident: CR21
– ident: CR19
– volume: 67
  start-page: 244
  issue: 4
  year: 2021
  end-page: 256
  ident: CR31
  article-title: CovidDeep: SARS-CoV-2/COVID-19 test based on wearable medical sensors and efficient neural networks
  publication-title: IEEE Trans Consum Electron
– volume: 49
  start-page: 1057
  year: 1981
  end-page: 1072
  ident: CR47
  article-title: Likelihood ratio statistics for autoregressive time series with a unit root[J]
  publication-title: Econometrica J Econom Soc
– volume: 89
  start-page: 3258
  issue: 17
  year: 2019
  end-page: 3272
  ident: CR51
  article-title: Shapiro-Wilk test for skew normal distributions based on data transformations[J]
  publication-title: J Stat Comput Simul
– volume: 22
  start-page: 7004
  issue: 11
  year: 2020
  end-page: 7014
  ident: CR13
  article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit[J]
  publication-title: IEEE Trans Intell Transp Syst
– volume: 253
  start-page: 124179
  year: 2022
  ident: CR37
  article-title: Load forecasting of district heating system based on Informer[J]
  publication-title: Energy
– volume: 24
  start-page: 16453
  year: 2020
  end-page: 16482
  ident: CR30
  article-title: Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]
  publication-title: Soft Comput
– ident: CR32
– volume: 36
  start-page: 128
  issue: 02
  year: 2019
  end-page: 135
  ident: CR26
  article-title: Study on short-term traffic forecast of Urban Bus stations based on LSTM [J]
  publication-title: J Highway Transp Res Develop
– volume: 37
  start-page: 1985
  issue: 4
  year: 2022
  end-page: 2001
  ident: CR53
  article-title: Shapiro-Wilk test for multivariate skew-normality[J]
  publication-title: Comput Stat
– volume: 35
  start-page: 1945
  year: 2023
  end-page: 1957
  ident: CR25
  article-title: Demand forecasting model for time-series pharmaceutical data using shallow and deep neural network model
  publication-title: Neural Comput Appl
– volume: 161
  start-page: 107598
  year: 2021
  ident: CR12
  article-title: The hybrid PROPHET-SVR approach for forecasting product time series demand with seasonality[J]
  publication-title: Comput Ind Eng
– volume: 134
  start-page: 93
  year: 2019
  end-page: 101
  ident: CR18
  article-title: A comparison of random forest variable selection methods for classification prediction modeling[J]
  publication-title: Expert Syst Appl
– volume: 3
  start-page: 7
  issue: 1
  year: 2020
  end-page: 11
  ident: CR54
  article-title: Normalitas data Menggunakan Uji Kolmogorov-Smirnov dan Saphiro-Wilk: Studi kasus penghasilan orang tua mahasiswa Prodi Pendidikan Matematika Unismuh Makassar[J]
  publication-title: J-HEST J Health Educ Econ Sci Technol
– volume: 11
  start-page: 68
  issue: 2
  year: 2017
  end-page: 75
  ident: CR22
  article-title: LSTM network: a deep learning approach for short-term traffic forecast[J]
  publication-title: IET Intel Transport Syst
– volume: 195
  start-page: 659
  year: 2017
  end-page: 670
  ident: CR11
  article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings[J]
  publication-title: Appl Energy
– volume: 36
  start-page: 6164
  issue: 3
  year: 2009
  end-page: 6173
  ident: CR10
  article-title: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]
  publication-title: Expert Syst Appl
– volume: 7
  start-page: 3768
  issue: 3
  year: 2022
  end-page: 779
  ident: CR38
  article-title: An aggregated convolutional transformer based on slices and channels for multivariate time series classification[J]
  publication-title: IEEE Trans Emerg Topics Comput Intell
– volume: 33
  start-page: 17696
  year: 2020
  end-page: 17707
  ident: CR5
  article-title: ARMA nets: expanding receptive field for dense prediction[J]
  publication-title: Adv Neural Inf Process Syst
– volume: 29
  year: 2020
  ident: CR7
  article-title: Application of the ARIMA model on the COVID-2019 epidemic dataset[J]
  publication-title: Data Brief
– volume: 36
  start-page: 1181
  issue: 3
  year: 2020
  end-page: 1191
  ident: CR33
  article-title: DeepAR: Probabilistic forecasting with autoregressive recurrent networks[J]
  publication-title: Int J Forecast
– volume: 27
  start-page: 130
  issue: 2
  year: 2015
  ident: CR8
  article-title: Decision tree methods: applications for classification and prediction[J]
  publication-title: Shanghai Arch Psychiatry
– volume: 44
  start-page: 87
  issue: 24
  year: 2021
  end-page: 91
  ident: CR29
  article-title: Design of subway passenger flow prediction algorithm based on improved convolutional neural network [J]
  publication-title: Modern Electron Techn
– volume: 2
  start-page: 21
  issue: 1
  year: 2011
  end-page: 33
  ident: CR50
  article-title: Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests[J]
  publication-title: J Stat Model Anal
– ident: CR40
– volume: 19
  start-page: 185
  issue: 2
  year: 2003
  end-page: 193
  ident: CR42
  article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias[J]
  publication-title: Bioinformatics
– volume: 34
  start-page: 21911
  year: 2022
  end-page: 21925
  ident: CR2
  article-title: On the forecasting of multivariate financial time series using hybridization of DCC-GARCH model and multivariate ANNs
  publication-title: Neural Comput Appl
– volume: 29
  start-page: 093001
  issue: 9
  year: 2020
  ident: CR20
  article-title: Empirical mode decomposition and its variants: a review with applications in structural health monitoring[J]
  publication-title: Smart Mater Struct
– volume: 46
  start-page: 1090
  issue: 06
  year: 2020
  end-page: 1120
  ident: CR46
  article-title: Research progress on batch normalization of deep learning and its related algorithms [J]
  publication-title: Acta Autom Sinica
  doi: 10.16383/j.aas.c180564
– volume: 24
  start-page: 4147
  issue: 4
  year: 2023
  end-page: 57
  ident: CR14
  article-title: IG-Net: an interaction graph network model for metro passenger flow forecasting[J]
  publication-title: IEEE Trans Intell Transp Syst
– volume: 33
  start-page: 6441
  year: 2020
  end-page: 6452
  ident: CR1
  article-title: Benchmarking deep learning interpretability in time series predictions[J]
  publication-title: Adv Neural Inf Process Syst
– volume: 66
  start-page: 173
  issue: 2
  year: 2020
  end-page: 182
  ident: CR23
  article-title: An event-driven convolutional neural architecture for non-intrusive load monitoring of residential appliance
  publication-title: IEEE Trans Consum Electron
– volume: 52
  start-page: 85
  issue: 2
  year: 2015
  end-page: 93
  ident: CR52
  article-title: Normalization of the Kolmogorov, Smirnov and Shapiro, Wilk tests of normality[J]
  publication-title: Biomet Lett
– ident: CR17
– ident: CR34
– volume: 11
  start-page: 153
  issue: 2
  year: 1990
  end-page: 164
  ident: CR6
  article-title: A distance measure for classifying ARIMA models[J]
  publication-title: J Time Ser Anal
– ident: CR28
– volume: 11
  start-page: 154
  issue: 4
  year: 2011
  ident: CR15
  article-title: Kalman filter-based short-term passenger flow forecasting on bus stop[J]
  publication-title: J Transp Syst Eng Inf Technol
– volume: 73
  start-page: 285
  issue: 1
  year: 1996
  end-page: 302
  ident: CR48
  article-title: On the power of the KPSS test of stationarity against fractionally-integrated alternatives[J]
  publication-title: J Econom
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: CR9
  article-title: Induction of decision trees[J]
  publication-title: Mach Learn
– volume: 11
  start-page: 154
  issue: 4
  year: 2011
  ident: 9003_CR15
  publication-title: J Transp Syst Eng Inf Technol
– ident: 9003_CR34
– volume: 11
  start-page: 68
  issue: 2
  year: 2017
  ident: 9003_CR22
  publication-title: IET Intel Transport Syst
  doi: 10.1049/iet-its.2016.0208
– volume: 36
  start-page: 310
  issue: 07
  year: 2022
  ident: 9003_CR44
  publication-title: J Chongqing Univ Technol
– volume: 253
  start-page: 124179
  year: 2022
  ident: 9003_CR37
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124179
– ident: 9003_CR28
– volume: 195
  start-page: 659
  year: 2017
  ident: 9003_CR11
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.034
– ident: 9003_CR21
– volume: 52
  start-page: 85
  issue: 2
  year: 2015
  ident: 9003_CR52
  publication-title: Biomet Lett
  doi: 10.1515/bile-2015-0008
– volume: 24
  start-page: 16453
  year: 2020
  ident: 9003_CR30
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-04954-0
– year: 2023
  ident: 9003_CR36
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2023.3293516
– ident: 9003_CR32
  doi: 10.1145/3209978.3210006
– volume: 19
  start-page: 40
  issue: 1
  year: 2021
  ident: 9003_CR43
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2021.3129888
– volume: 34
  start-page: 21911
  year: 2022
  ident: 9003_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07631-5
– volume: 134
  start-page: 93
  year: 2019
  ident: 9003_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.05.028
– volume: 11
  start-page: 153
  issue: 2
  year: 1990
  ident: 9003_CR6
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.1990.tb00048.x
– volume: 7
  start-page: 3768
  issue: 3
  year: 2022
  ident: 9003_CR38
  publication-title: IEEE Trans Emerg Topics Comput Intell
– volume: 19
  start-page: 185
  issue: 2
  year: 2003
  ident: 9003_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.185
– volume: 36
  start-page: 1181
  issue: 3
  year: 2020
  ident: 9003_CR33
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.07.001
– volume: 49
  start-page: 1057
  year: 1981
  ident: 9003_CR47
  publication-title: Econometrica J Econom Soc
  doi: 10.2307/1912517
– volume: 32
  start-page: 13625
  issue: 17
  year: 2020
  ident: 9003_CR41
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04771-4
– volume: 97
  start-page: 79
  year: 2019
  ident: 9003_CR24
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.11.004
– volume: 33
  start-page: 17696
  year: 2020
  ident: 9003_CR5
  publication-title: Adv Neural Inf Process Syst
– volume: 37
  start-page: 1985
  issue: 4
  year: 2022
  ident: 9003_CR53
  publication-title: Comput Stat
  doi: 10.1007/s00180-021-01188-y
– volume: 67
  start-page: 244
  issue: 4
  year: 2021
  ident: 9003_CR31
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/TCE.2021.3130228
– volume: 161
  start-page: 107598
  year: 2021
  ident: 9003_CR12
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107598
– volume: 36
  start-page: 128
  issue: 02
  year: 2019
  ident: 9003_CR26
  publication-title: J Highway Transp Res Develop
– volume: 22
  start-page: 7004
  issue: 11
  year: 2020
  ident: 9003_CR13
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3000761
– volume: 73
  start-page: 285
  issue: 1
  year: 1996
  ident: 9003_CR48
  publication-title: J Econom
  doi: 10.1016/0304-4076(95)01741-0
– volume: 29
  start-page: 093001
  issue: 9
  year: 2020
  ident: 9003_CR20
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aba539
– volume: 35
  start-page: 9407
  year: 2023
  ident: 9003_CR3
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-08120-5
– volume: 46
  start-page: 1090
  issue: 06
  year: 2020
  ident: 9003_CR46
  publication-title: Acta Autom Sinica
  doi: 10.16383/j.aas.c180564
– volume: 29
  year: 2020
  ident: 9003_CR7
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105340
– volume: 3
  start-page: 7
  issue: 1
  year: 2020
  ident: 9003_CR54
  publication-title: J-HEST J Health Educ Econ Sci Technol
  doi: 10.36339/jhest.v3i1.42
– ident: 9003_CR19
  doi: 10.1007/978-3-030-17989-2_3
– ident: 9003_CR39
  doi: 10.1609/aaai.v35i12.17325
– ident: 9003_CR49
– volume: 24
  start-page: 4147
  issue: 4
  year: 2023
  ident: 9003_CR14
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2023.3235805
– ident: 9003_CR17
  doi: 10.1145/2939672.2939785
– volume: 28
  start-page: 2375
  issue: 08
  year: 2022
  ident: 9003_CR27
  publication-title: Comput Integ Manufact Syst
– ident: 9003_CR16
– volume: 4
  start-page: 269
  issue: 4
  year: 1983
  ident: 9003_CR4
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.1983.tb00373.x
– volume: 44
  start-page: 87
  issue: 24
  year: 2021
  ident: 9003_CR29
  publication-title: Modern Electron Techn
– volume: 35
  start-page: 1945
  year: 2023
  ident: 9003_CR25
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07889-9
– ident: 9003_CR40
  doi: 10.1145/3336191.3372191
– volume: 89
  start-page: 3258
  issue: 17
  year: 2019
  ident: 9003_CR51
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2019.1658763
– volume: 33
  start-page: 6441
  year: 2020
  ident: 9003_CR1
  publication-title: Adv Neural Inf Process Syst
– volume: 1
  start-page: 81
  year: 1986
  ident: 9003_CR9
  publication-title: Mach Learn
– ident: 9003_CR45
– volume: 36
  start-page: 6164
  issue: 3
  year: 2009
  ident: 9003_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.07.069
– volume: 2
  start-page: 21
  issue: 1
  year: 2011
  ident: 9003_CR50
  publication-title: J Stat Model Anal
– volume: 66
  start-page: 173
  issue: 2
  year: 2020
  ident: 9003_CR23
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/TCE.2020.2977964
– volume: 480
  start-page: 131
  year: 2022
  ident: 9003_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.039
– volume: 27
  start-page: 130
  issue: 2
  year: 2015
  ident: 9003_CR8
  publication-title: Shanghai Arch Psychiatry
SSID ssj0004685
Score 2.3748713
Snippet As an important part of the operation preparation process of the intelligent transportation system, the passenger flow distribution law and forecast can guide...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24207
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Flow distribution
Flow stability
Forecasting
Image Processing and Computer Vision
Intelligent transportation systems
Machine learning
Methods
Neural networks
Operation scheduling
Original Article
Passengers
Prediction models
Probability and Statistics in Computer Science
R&D
Research & development
Standard error
Time series
Traffic flow
Traffic models
Transportation planning
Trends
Urban rail
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vXjxLVar7MGbLjbbPDYnUVGKoIgP8Bb22Utpa9IqFPzvziSbVgV7bJpsHvPY2dlv5iPkJOQqFpaHjKdhiNuMmklQLGZg9jQ8lSGv0BYPce81vHuL3nzCrfCwytonlo7ajDTmyM-5EFGM3dOCi_E7Q9Yo3F31FBqrpAkuWIgGaV7dPDw-_aiMLEk5YQ2D-J6w68tmyuI5zIjCUd7FXAU83uz31LSIN_9skZYzz-0mWfchI72sZLxFVuxwm2zUdAzUW-cO-SqLaT9g8QvxIx2Mhn2GzPEUlcwWdJJLbBdBxxAuI5Q1p24w-qTjHLdqUDwUMfB9quW0gNshHN2rJfwCv5MXONTAMezIWWIk6f3LM6vqmWy-S15vb16ue8yzKzANZjdhmksTwXtr7bRIbCIlDxSsB6Vy3BoplIlk3FEODFRGYMVGdGSaauFkYp2CKHGPNIajod0nNA4Cp0RX8yB24APS1KhEdG0SKYf9yUyLBPWHzbRvPY4MGINs3jS5FEYGwshKYWSzFjmdXzOuGm8sPbtdyyvzRlhkC5VpkbNahou__x_tYPloh2QNSecrUEubNCb51B5BaDJRx17_vgHZfeJi
  priority: 102
  providerName: ProQuest
Title Multivariate long-time series traffic passenger flow prediction using causal convolutional sparse self-attention MTS-Informer
URI https://link.springer.com/article/10.1007/s00521-023-09003-z
https://www.proquest.com/docview/2885676351
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XLjwRozHlAM3iESzPtLjBhsIBELAJDhVSZpwmbap3UBC4r9j9zEeAiROUdXUVWs7sePPNsCBL3QorfC5iH2fwoyGKxQsnuLumYpY-aJEW1yH533_4iF4qJLC8hrtXocki5V6luxGJ5jo-ooWnS0gudd5WAzQdycgV1-0P2VDFo040W8hTI_fqlJlfqbxdTv6sDG_hUWL3aa3CsuVmcjaJV_XYM4O12GlbsHAKo3cgLcigfYZHV60GdlgNHzi1C2ekWDZnE0yRSUi2BhNZIKvZswNRi9snFF4hljCCPf-xIya5vg6gqBXoohXuNZkOZEaOE5VOAtcJLu6v-NlDpPNNqHf696fnPOqowI3qGoTboRKA_xuY5yRkY2UEp5GH1BpJ2yqpE4DFR5rh0qpAtTcVB6rODbSqcg6jZbhFiwMR0O7DSz0PKdlywgvdKj3cZzqSLZsFGhHNcnSBnj1j01MVW6cul4Mklmh5IIZCTIjKZiRvDbgcPbMuCy28efsvZpfSaV4eSKkDEIqsuc14Kjm4cft36nt_G_6LixR4_kS2LIHC5NsavfRPJnoJszL3lkTFtud006PxrPHyy6One71zW2zkNV3zrXjxw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH6qygEuFGgRKQXmQE90RD3exgeEEBCStsmFVOrNzNpLlAQ7bdVK_CV-I--N7aYg0VuO3sbSvG_evgC8TYTOpBMJF0WSUJjRcIXA4halpxWFSkSTbTHOBqfJ0Vl6tgG_u1oYSqvseGJg1HZuyEf-XkiZZtQ9Lfq4-MlpahRFV7sRGg0sjt31FZps9YfhF6TvvhD9r5PPA95OFeAG4bbkRiibIpaN8UbmLldKRBrtIKW9cFZJbVOVHWqPwFQpotfKQ1UURnqVO69TcoAiy3-QxCjJqTK9_-1OHWYYAYoWE2UTJXFbpBNK9cj_indFTJ4R3IybvwXhSrv9JyAb5Fz_CTxuFVT2qUHUU9hws2ew1Q1_YC0v2IZfoXT3Ek1t1FbZdD475zSnnhGkXc2WlaLmFGyByjklzlbMT-dXbFFRYIjAwCjj_pwZdVHj7yj5vT0EeIVcrqppqann1P8zZGSy0eQ7b6qnXLUDp2vZ9eewOZvP3AtgWRR5LWMjoswjxykKq3MZuzzVnrqh2R5E3caWpm10TvM2puVti-ZAjBKJUQZilDc9eHf7zaJp83Hv23sdvcr2yNflCqA9OOhouHr8_9V271_tDTwcTEYn5clwfPwSHtG4-yadZg82l9WFe4VK0VK_Dkhk8GPd0P8DxZAgRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnjxLVar7sGbLpptHptjUYvPImjBW9inl5KWNCoU_O_O5NGqqOAxZDMhmZnd2Z3vmyHk0OcqFJb7jMe-j2lGzSQYFjOwehoeS5-XaIteeNn3r5-Cp08s_gLtXqckS04DVmlK85ORcSdT4hueZsI2mLfxnAFET-bJgo9sYLDoPu98YkYWTTlhD4P4Hr9d0WZ-lvF1aZrFm99SpMXK010ly1XISDuljtfInE3XyUrdjoFW3rlB3gsy7StsfiF-pINh-sywczxFI7NjmmcSy0XQEYTLCGXNqBsM3-gow1QNqociBv6ZavkyhtchHL0yS7iCeScbo6iBY1iRs8BI0rvHB1bymWy2Sfrdi8ezS1Z1V2Aa3C5nmksTwHdr7bSIbCQl9xTsB6Vy3BoplAlkeKocOKgMwIuNOJVxrIWTkXUKosQt0kiHqd0mNPQ8p0Rbcy90MAfEsVGRaNsoUA7rk5km8eofm-iq9Dh2wBgk06LJhTISUEZSKCOZNMnR9JlRWXjjz9GtWl9J5YTjhAsRhFhwz2uS41qHs9u_S9v53_ADsnh_3k1ur3o3u2QJ-9GXeJcWaeTZi92DqCVX-4VhfgDh0eVn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+long-time+series+traffic+passenger+flow+prediction+using+causal+convolutional+sparse+self-attention+MTS-Informer&rft.jtitle=Neural+computing+%26+applications&rft.au=Liu%2C+Miaonan&rft.au=Wang%2C+Wei&rft.au=Hu%2C+Xianhui&rft.au=Fu%2C+Yunlai&rft.date=2023-12-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=34&rft.spage=24207&rft.epage=24223&rft_id=info:doi/10.1007%2Fs00521-023-09003-z&rft.externalDocID=10_1007_s00521_023_09003_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon