Multivariate long-time series traffic passenger flow prediction using causal convolutional sparse self-attention MTS-Informer
As an important part of the operation preparation process of the intelligent transportation system, the passenger flow distribution law and forecast can guide the urban rail transit to formulate a reasonable operation scheduling plan. Due to the complexity, multi-variables, and instability of traffi...
Saved in:
Published in | Neural computing & applications Vol. 35; no. 34; pp. 24207 - 24223 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As an important part of the operation preparation process of the intelligent transportation system, the passenger flow distribution law and forecast can guide the urban rail transit to formulate a reasonable operation scheduling plan. Due to the complexity, multi-variables, and instability of traffic passenger flow data, accurate passenger flow prediction takes a lot of work. Based on a convolutional neural network, a causal convolution self-attention traffic passenger flow prediction model MTS-Informer framework is proposed. This method follows the changing law of auxiliary variables, adopts the stabilization method to reduce the instability of the original sequence, and uses the causal convolution feature to improve the ability of the model’s self-attention mechanism to extract local information from the input sequence. The weakening effect of the self-attention mechanism ensures that it can learn similarly to the differential features in the original sequence data. In addition, the stationarity detection of the original sequence data is added. The experimental results show that the fitting degree of the sample data is significantly improved, and the standard error decreases between 10 and 40%, which verifies the effectiveness of the proposed modeling technique. It has higher prediction accuracy and operating efficiency and can provide a basis for urban traffic passenger flow prediction. |
---|---|
AbstractList | As an important part of the operation preparation process of the intelligent transportation system, the passenger flow distribution law and forecast can guide the urban rail transit to formulate a reasonable operation scheduling plan. Due to the complexity, multi-variables, and instability of traffic passenger flow data, accurate passenger flow prediction takes a lot of work. Based on a convolutional neural network, a causal convolution self-attention traffic passenger flow prediction model MTS-Informer framework is proposed. This method follows the changing law of auxiliary variables, adopts the stabilization method to reduce the instability of the original sequence, and uses the causal convolution feature to improve the ability of the model’s self-attention mechanism to extract local information from the input sequence. The weakening effect of the self-attention mechanism ensures that it can learn similarly to the differential features in the original sequence data. In addition, the stationarity detection of the original sequence data is added. The experimental results show that the fitting degree of the sample data is significantly improved, and the standard error decreases between 10 and 40%, which verifies the effectiveness of the proposed modeling technique. It has higher prediction accuracy and operating efficiency and can provide a basis for urban traffic passenger flow prediction. |
Author | Xu, Fujin Hu, Xianhui Wang, Wei Liu, Miaonan Miao, Xinying Fu, Yunlai |
Author_xml | – sequence: 1 givenname: Miaonan surname: Liu fullname: Liu, Miaonan organization: College of Information Engineering, Dalian Ocean University, Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University – sequence: 2 givenname: Wei orcidid: 0000-0001-8741-7180 surname: Wang fullname: Wang, Wei email: ww_wangwei@dlou.edu.cn organization: College of Information Engineering, Dalian Ocean University, Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University – sequence: 3 givenname: Xianhui surname: Hu fullname: Hu, Xianhui organization: College of Information Engineering, Dalian Ocean University, Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University – sequence: 4 givenname: Yunlai surname: Fu fullname: Fu, Yunlai organization: College of Information Engineering, Dalian Ocean University, Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University – sequence: 5 givenname: Fujin surname: Xu fullname: Xu, Fujin organization: College of Information Engineering, Dalian Ocean University – sequence: 6 givenname: Xinying surname: Miao fullname: Miao, Xinying organization: College of Information Engineering, Dalian Ocean University |
BookMark | eNp9kE1r3DAQhkVJoZu0f6AnQc9KJWtly8cSmg9I6CHpWYxlaVHwSq5GTkgg_71ytlDIISch5n2Gd55jchRTdIR8FfxUcN59R85VIxhvJOM955I9fyAbsZWSSa70EdnwflvH7VZ-IseI95zzbavVhrzcLFMJD5ADFEenFHeshL2j6HJwSEsG74OlMyC6uHOZ-ik90jm7MdgSUqQLhrijFhaEidoUH9K0rIP6wxkyrqsmz6AUF1-Bm7tbdhV9ynuXP5OPHiZ0X_69J-T3-c-7s0t2_evi6uzHNbNS9IXZBkZVr7LWW925DqARQ9cIGHzjRtDDqKDlg2-lBtX1ctQc-t5qD53zg5LyhHw77J1z-rM4LOY-Lbl2RNNordqulUrUlD6kbE6I2XljQ4G1dNUQJiO4WWWbg2xTZZtX2ea5os0bdM5hD_npfUgeIKzhVe7_Vu9QfwHVU5jR |
CitedBy_id | crossref_primary_10_1080_23249935_2025_2457339 crossref_primary_10_1016_j_eswa_2025_126467 crossref_primary_10_1016_j_scs_2024_105375 crossref_primary_10_1007_s00500_023_09592_w crossref_primary_10_1007_s11071_024_10655_2 |
Cites_doi | 10.1109/TPAMI.2023.3293516 10.16383/j.aas.c180564 10.1049/iet-its.2016.0208 10.1016/j.energy.2022.124179 10.1016/j.apenergy.2017.03.034 10.1515/bile-2015-0008 10.1007/s00500-020-04954-0 10.1145/3209978.3210006 10.1109/TII.2021.3129888 10.1007/s00521-022-07631-5 10.1016/j.eswa.2019.05.028 10.1111/j.1467-9892.1990.tb00048.x 10.1093/bioinformatics/19.2.185 10.1016/j.ijforecast.2019.07.001 10.2307/1912517 10.1007/s00521-020-04771-4 10.1016/j.artmed.2018.11.004 10.1007/s00180-021-01188-y 10.1109/TCE.2021.3130228 10.1016/j.cie.2021.107598 10.1109/TITS.2020.3000761 10.1016/0304-4076(95)01741-0 10.1088/1361-665X/aba539 10.1007/s00521-022-08120-5 10.1016/j.dib.2020.105340 10.36339/jhest.v3i1.42 10.1007/978-3-030-17989-2_3 10.1609/aaai.v35i12.17325 10.1109/TITS.2023.3235805 10.1145/2939672.2939785 10.1111/j.1467-9892.1983.tb00373.x 10.1007/s00521-022-07889-9 10.1145/3336191.3372191 10.1080/00949655.2019.1658763 10.1016/j.eswa.2008.07.069 10.1109/TCE.2020.2977964 10.1016/j.neucom.2022.01.039 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00521-023-09003-z |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 24223 |
ExternalDocumentID | 10_1007_s00521_023_09003_z |
GrantInformation_xml | – fundername: open project of State Key Laboratory of Integrated Automation of Process Industry, Northeastern University grantid: 2020052 – fundername: Open Project of Key Laboratory of Environment Controlled Aquaculture,Ministry of Education, China grantid: 202314 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-c2ad5003ccfc87e7aa21b721abf2eda8bd5a60bf638a5793d80a99c8fa7efb533 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 23:41:50 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Tue Jul 01 03:04:45 EDT 2025 Fri Feb 21 02:43:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | Stationarity detection Causal convolutional networks Traffic passenger flow prediction Informer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-c2ad5003ccfc87e7aa21b721abf2eda8bd5a60bf638a5793d80a99c8fa7efb533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8741-7180 |
PQID | 2885676351 |
PQPubID | 2043988 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2885676351 crossref_citationtrail_10_1007_s00521_023_09003_z crossref_primary_10_1007_s00521_023_09003_z springer_journals_10_1007_s00521_023_09003_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231200 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Banerjee, Ling, Chen (CR24) 2019; 97 Piccolo (CR6) 1990; 11 Quraisy (CR54) 2020; 3 Chun-Hui, Song-Rui (CR15) 2011; 11 CR39 Jian-Wei, Hui-Dan, Xiong-Lin, Jun (CR46) 2020; 46 Salinas, Flunkert, Gasthaus (CR33) 2020; 36 Li, Xingzhi, Xuemei (CR27) 2022; 28 CR34 CR32 Hassantabar (CR31) 2021; 67 Bitencourt, Orang, de Souza (CR3) 2023; 35 Bolstad, Irizarry, Astrand (CR42) 2003; 19 Razali, Wah (CR50) 2011; 2 Barbosh, Singh, Sadhu (CR20) 2020; 29 Guo, Fang, Zhao (CR12) 2021; 161 CR49 Gonzalez-Estrada, Cosmes (CR51) 2019; 89 Li, Wang, Zhao (CR14) 2023; 24 Li, Cui, Zhang (CR36) 2023 CR45 Song, Ying (CR8) 2015; 27 CR40 Hanusz, Tarasiska (CR52) 2015; 52 Yang, Gao, Kong, Pang, Zhou (CR23) 2020; 66 Gong, Zhao, Sun (CR37) 2022; 253 Wang, Wang (CR41) 2020; 32 Benvenuto, Giovanetti, Vassallo (CR7) 2020; 29 Zhang, Chen, Cui (CR13) 2020; 22 Zhao, Chen, Wu (CR22) 2017; 11 Su, Wang, Huang (CR5) 2020; 33 CR19 CR17 CR16 Dickey, Fuller (CR47) 1981; 49 McLeod, Li (CR4) 1983; 4 Quinlan (CR9) 1986; 1 Ismail, Gunady, Corrada Bravo (CR1) 2020; 33 Rathipriya, Abdul Rahman, Dhamodharavadhani (CR25) 2023; 35 Lei, Chuan, Dandan, Yiwei (CR29) 2021; 44 Shen, Wang (CR35) 2022; 480 Fatima, Uddin (CR2) 2022; 34 Lee, Schmidt (CR48) 1996; 73 Gaoshen, Ling, Xiang, Tong (CR26) 2019; 36 Tiantian, Wei (CR44) 2022; 36 Wu, Lian, Zeng (CR38) 2022; 7 CR28 Chen, Xu, Chu (CR11) 2017; 195 CR21 Gonzalez-Estrada, Villasenor, Acosta-Pech (CR53) 2022; 37 Speiser, Miller, Tooze (CR18) 2019; 134 Jiang, Lu, Zhong (CR43) 2021; 19 Hewage, Behera, Trovati (CR30) 2020; 24 Castro-Neto, Jeong, Jeong (CR10) 2009; 36 JL Speiser (9003_CR18) 2019; 134 L Shen (9003_CR35) 2022; 480 L Gaoshen (9003_CR26) 2019; 36 D Salinas (9003_CR33) 2020; 36 B Li (9003_CR36) 2023 BM Bolstad (9003_CR42) 2003; 19 NM Razali (9003_CR50) 2011; 2 W Wang (9003_CR41) 2020; 32 J Su (9003_CR5) 2020; 33 9003_CR16 Z Hanusz (9003_CR52) 2015; 52 JR Quinlan (9003_CR9) 1986; 1 9003_CR17 Y Wu (9003_CR38) 2022; 7 9003_CR19 I Banerjee (9003_CR24) 2019; 97 D Yang (9003_CR23) 2020; 66 L Li (9003_CR27) 2022; 28 D Lee (9003_CR48) 1996; 73 M Gong (9003_CR37) 2022; 253 Z Zhao (9003_CR22) 2017; 11 9003_CR21 S Hassantabar (9003_CR31) 2021; 67 9003_CR28 T Tiantian (9003_CR44) 2022; 36 W Lei (9003_CR29) 2021; 44 D Piccolo (9003_CR6) 1990; 11 Y Chen (9003_CR11) 2017; 195 A Quraisy (9003_CR54) 2020; 3 R Rathipriya (9003_CR25) 2023; 35 P Li (9003_CR14) 2023; 24 L Jian-Wei (9003_CR46) 2020; 46 P Hewage (9003_CR30) 2020; 24 9003_CR32 9003_CR34 L Guo (9003_CR12) 2021; 161 9003_CR39 C Jiang (9003_CR43) 2021; 19 D Benvenuto (9003_CR7) 2020; 29 J Zhang (9003_CR13) 2020; 22 M Castro-Neto (9003_CR10) 2009; 36 E Gonzalez-Estrada (9003_CR53) 2022; 37 YY Song (9003_CR8) 2015; 27 AI McLeod (9003_CR4) 1983; 4 Z Chun-Hui (9003_CR15) 2011; 11 9003_CR40 DA Dickey (9003_CR47) 1981; 49 AA Ismail (9003_CR1) 2020; 33 S Fatima (9003_CR2) 2022; 34 9003_CR45 E Gonzalez-Estrada (9003_CR51) 2019; 89 HV Bitencourt (9003_CR3) 2023; 35 9003_CR49 M Barbosh (9003_CR20) 2020; 29 |
References_xml | – ident: CR45 – volume: 35 start-page: 9407 year: 2023 end-page: 9420 ident: CR3 article-title: An embedding-based non-stationary fuzzy time series method for multiple output high-dimensional multivariate time series forecasting in IoT applications publication-title: Neural Comput Appl – volume: 28 start-page: 2375 issue: 08 year: 2022 end-page: 2386 ident: CR27 article-title: Temporal convolution attention network for remaining useful life estimation [J] publication-title: Comput Integ Manufact Syst – ident: CR49 – volume: 480 start-page: 131 year: 2022 end-page: 145 ident: CR35 article-title: TCCT: Tightly-coupled convolutional transformer on time series forecasting[J] publication-title: Neurocomputing – ident: CR39 – ident: CR16 – year: 2023 ident: CR36 article-title: DifFormer: multi-resolutional differencing transformer with dynamic ranging for time series analysis[J] publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2023.3293516 – volume: 32 start-page: 13625 issue: 17 year: 2020 end-page: 13638 ident: CR41 article-title: Prediction of component concentrations in sodium aluminate liquor using stochastic configuration networks[J] publication-title: Neural Comput Appl – volume: 19 start-page: 40 issue: 1 year: 2021 end-page: 51 ident: CR43 article-title: Deep Bayesian slow feature extraction with application to industrial inferential modeling[J] publication-title: IEEE Trans Ind Inf – volume: 36 start-page: 310 issue: 07 year: 2022 end-page: 316 ident: CR44 article-title: Research on commodity sales forecast oriented on deep learning [J] publication-title: J Chongqing Univ Technol – volume: 4 start-page: 269 issue: 4 year: 1983 end-page: 273 ident: CR4 article-title: Diagnostic checking ARMA time series models using squared-residual autocorrelations[J] publication-title: J Time Ser Anal – volume: 97 start-page: 79 year: 2019 end-page: 88 ident: CR24 article-title: Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification[J] publication-title: Artif Intell Med – ident: CR21 – ident: CR19 – volume: 67 start-page: 244 issue: 4 year: 2021 end-page: 256 ident: CR31 article-title: CovidDeep: SARS-CoV-2/COVID-19 test based on wearable medical sensors and efficient neural networks publication-title: IEEE Trans Consum Electron – volume: 49 start-page: 1057 year: 1981 end-page: 1072 ident: CR47 article-title: Likelihood ratio statistics for autoregressive time series with a unit root[J] publication-title: Econometrica J Econom Soc – volume: 89 start-page: 3258 issue: 17 year: 2019 end-page: 3272 ident: CR51 article-title: Shapiro-Wilk test for skew normal distributions based on data transformations[J] publication-title: J Stat Comput Simul – volume: 22 start-page: 7004 issue: 11 year: 2020 end-page: 7014 ident: CR13 article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit[J] publication-title: IEEE Trans Intell Transp Syst – volume: 253 start-page: 124179 year: 2022 ident: CR37 article-title: Load forecasting of district heating system based on Informer[J] publication-title: Energy – volume: 24 start-page: 16453 year: 2020 end-page: 16482 ident: CR30 article-title: Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J] publication-title: Soft Comput – ident: CR32 – volume: 36 start-page: 128 issue: 02 year: 2019 end-page: 135 ident: CR26 article-title: Study on short-term traffic forecast of Urban Bus stations based on LSTM [J] publication-title: J Highway Transp Res Develop – volume: 37 start-page: 1985 issue: 4 year: 2022 end-page: 2001 ident: CR53 article-title: Shapiro-Wilk test for multivariate skew-normality[J] publication-title: Comput Stat – volume: 35 start-page: 1945 year: 2023 end-page: 1957 ident: CR25 article-title: Demand forecasting model for time-series pharmaceutical data using shallow and deep neural network model publication-title: Neural Comput Appl – volume: 161 start-page: 107598 year: 2021 ident: CR12 article-title: The hybrid PROPHET-SVR approach for forecasting product time series demand with seasonality[J] publication-title: Comput Ind Eng – volume: 134 start-page: 93 year: 2019 end-page: 101 ident: CR18 article-title: A comparison of random forest variable selection methods for classification prediction modeling[J] publication-title: Expert Syst Appl – volume: 3 start-page: 7 issue: 1 year: 2020 end-page: 11 ident: CR54 article-title: Normalitas data Menggunakan Uji Kolmogorov-Smirnov dan Saphiro-Wilk: Studi kasus penghasilan orang tua mahasiswa Prodi Pendidikan Matematika Unismuh Makassar[J] publication-title: J-HEST J Health Educ Econ Sci Technol – volume: 11 start-page: 68 issue: 2 year: 2017 end-page: 75 ident: CR22 article-title: LSTM network: a deep learning approach for short-term traffic forecast[J] publication-title: IET Intel Transport Syst – volume: 195 start-page: 659 year: 2017 end-page: 670 ident: CR11 article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings[J] publication-title: Appl Energy – volume: 36 start-page: 6164 issue: 3 year: 2009 end-page: 6173 ident: CR10 article-title: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J] publication-title: Expert Syst Appl – volume: 7 start-page: 3768 issue: 3 year: 2022 end-page: 779 ident: CR38 article-title: An aggregated convolutional transformer based on slices and channels for multivariate time series classification[J] publication-title: IEEE Trans Emerg Topics Comput Intell – volume: 33 start-page: 17696 year: 2020 end-page: 17707 ident: CR5 article-title: ARMA nets: expanding receptive field for dense prediction[J] publication-title: Adv Neural Inf Process Syst – volume: 29 year: 2020 ident: CR7 article-title: Application of the ARIMA model on the COVID-2019 epidemic dataset[J] publication-title: Data Brief – volume: 36 start-page: 1181 issue: 3 year: 2020 end-page: 1191 ident: CR33 article-title: DeepAR: Probabilistic forecasting with autoregressive recurrent networks[J] publication-title: Int J Forecast – volume: 27 start-page: 130 issue: 2 year: 2015 ident: CR8 article-title: Decision tree methods: applications for classification and prediction[J] publication-title: Shanghai Arch Psychiatry – volume: 44 start-page: 87 issue: 24 year: 2021 end-page: 91 ident: CR29 article-title: Design of subway passenger flow prediction algorithm based on improved convolutional neural network [J] publication-title: Modern Electron Techn – volume: 2 start-page: 21 issue: 1 year: 2011 end-page: 33 ident: CR50 article-title: Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests[J] publication-title: J Stat Model Anal – ident: CR40 – volume: 19 start-page: 185 issue: 2 year: 2003 end-page: 193 ident: CR42 article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias[J] publication-title: Bioinformatics – volume: 34 start-page: 21911 year: 2022 end-page: 21925 ident: CR2 article-title: On the forecasting of multivariate financial time series using hybridization of DCC-GARCH model and multivariate ANNs publication-title: Neural Comput Appl – volume: 29 start-page: 093001 issue: 9 year: 2020 ident: CR20 article-title: Empirical mode decomposition and its variants: a review with applications in structural health monitoring[J] publication-title: Smart Mater Struct – volume: 46 start-page: 1090 issue: 06 year: 2020 end-page: 1120 ident: CR46 article-title: Research progress on batch normalization of deep learning and its related algorithms [J] publication-title: Acta Autom Sinica doi: 10.16383/j.aas.c180564 – volume: 24 start-page: 4147 issue: 4 year: 2023 end-page: 57 ident: CR14 article-title: IG-Net: an interaction graph network model for metro passenger flow forecasting[J] publication-title: IEEE Trans Intell Transp Syst – volume: 33 start-page: 6441 year: 2020 end-page: 6452 ident: CR1 article-title: Benchmarking deep learning interpretability in time series predictions[J] publication-title: Adv Neural Inf Process Syst – volume: 66 start-page: 173 issue: 2 year: 2020 end-page: 182 ident: CR23 article-title: An event-driven convolutional neural architecture for non-intrusive load monitoring of residential appliance publication-title: IEEE Trans Consum Electron – volume: 52 start-page: 85 issue: 2 year: 2015 end-page: 93 ident: CR52 article-title: Normalization of the Kolmogorov, Smirnov and Shapiro, Wilk tests of normality[J] publication-title: Biomet Lett – ident: CR17 – ident: CR34 – volume: 11 start-page: 153 issue: 2 year: 1990 end-page: 164 ident: CR6 article-title: A distance measure for classifying ARIMA models[J] publication-title: J Time Ser Anal – ident: CR28 – volume: 11 start-page: 154 issue: 4 year: 2011 ident: CR15 article-title: Kalman filter-based short-term passenger flow forecasting on bus stop[J] publication-title: J Transp Syst Eng Inf Technol – volume: 73 start-page: 285 issue: 1 year: 1996 end-page: 302 ident: CR48 article-title: On the power of the KPSS test of stationarity against fractionally-integrated alternatives[J] publication-title: J Econom – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: CR9 article-title: Induction of decision trees[J] publication-title: Mach Learn – volume: 11 start-page: 154 issue: 4 year: 2011 ident: 9003_CR15 publication-title: J Transp Syst Eng Inf Technol – ident: 9003_CR34 – volume: 11 start-page: 68 issue: 2 year: 2017 ident: 9003_CR22 publication-title: IET Intel Transport Syst doi: 10.1049/iet-its.2016.0208 – volume: 36 start-page: 310 issue: 07 year: 2022 ident: 9003_CR44 publication-title: J Chongqing Univ Technol – volume: 253 start-page: 124179 year: 2022 ident: 9003_CR37 publication-title: Energy doi: 10.1016/j.energy.2022.124179 – ident: 9003_CR28 – volume: 195 start-page: 659 year: 2017 ident: 9003_CR11 publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.034 – ident: 9003_CR21 – volume: 52 start-page: 85 issue: 2 year: 2015 ident: 9003_CR52 publication-title: Biomet Lett doi: 10.1515/bile-2015-0008 – volume: 24 start-page: 16453 year: 2020 ident: 9003_CR30 publication-title: Soft Comput doi: 10.1007/s00500-020-04954-0 – year: 2023 ident: 9003_CR36 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2023.3293516 – ident: 9003_CR32 doi: 10.1145/3209978.3210006 – volume: 19 start-page: 40 issue: 1 year: 2021 ident: 9003_CR43 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2021.3129888 – volume: 34 start-page: 21911 year: 2022 ident: 9003_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07631-5 – volume: 134 start-page: 93 year: 2019 ident: 9003_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.05.028 – volume: 11 start-page: 153 issue: 2 year: 1990 ident: 9003_CR6 publication-title: J Time Ser Anal doi: 10.1111/j.1467-9892.1990.tb00048.x – volume: 7 start-page: 3768 issue: 3 year: 2022 ident: 9003_CR38 publication-title: IEEE Trans Emerg Topics Comput Intell – volume: 19 start-page: 185 issue: 2 year: 2003 ident: 9003_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 – volume: 36 start-page: 1181 issue: 3 year: 2020 ident: 9003_CR33 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2019.07.001 – volume: 49 start-page: 1057 year: 1981 ident: 9003_CR47 publication-title: Econometrica J Econom Soc doi: 10.2307/1912517 – volume: 32 start-page: 13625 issue: 17 year: 2020 ident: 9003_CR41 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04771-4 – volume: 97 start-page: 79 year: 2019 ident: 9003_CR24 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2018.11.004 – volume: 33 start-page: 17696 year: 2020 ident: 9003_CR5 publication-title: Adv Neural Inf Process Syst – volume: 37 start-page: 1985 issue: 4 year: 2022 ident: 9003_CR53 publication-title: Comput Stat doi: 10.1007/s00180-021-01188-y – volume: 67 start-page: 244 issue: 4 year: 2021 ident: 9003_CR31 publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2021.3130228 – volume: 161 start-page: 107598 year: 2021 ident: 9003_CR12 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107598 – volume: 36 start-page: 128 issue: 02 year: 2019 ident: 9003_CR26 publication-title: J Highway Transp Res Develop – volume: 22 start-page: 7004 issue: 11 year: 2020 ident: 9003_CR13 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3000761 – volume: 73 start-page: 285 issue: 1 year: 1996 ident: 9003_CR48 publication-title: J Econom doi: 10.1016/0304-4076(95)01741-0 – volume: 29 start-page: 093001 issue: 9 year: 2020 ident: 9003_CR20 publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aba539 – volume: 35 start-page: 9407 year: 2023 ident: 9003_CR3 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-08120-5 – volume: 46 start-page: 1090 issue: 06 year: 2020 ident: 9003_CR46 publication-title: Acta Autom Sinica doi: 10.16383/j.aas.c180564 – volume: 29 year: 2020 ident: 9003_CR7 publication-title: Data Brief doi: 10.1016/j.dib.2020.105340 – volume: 3 start-page: 7 issue: 1 year: 2020 ident: 9003_CR54 publication-title: J-HEST J Health Educ Econ Sci Technol doi: 10.36339/jhest.v3i1.42 – ident: 9003_CR19 doi: 10.1007/978-3-030-17989-2_3 – ident: 9003_CR39 doi: 10.1609/aaai.v35i12.17325 – ident: 9003_CR49 – volume: 24 start-page: 4147 issue: 4 year: 2023 ident: 9003_CR14 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2023.3235805 – ident: 9003_CR17 doi: 10.1145/2939672.2939785 – volume: 28 start-page: 2375 issue: 08 year: 2022 ident: 9003_CR27 publication-title: Comput Integ Manufact Syst – ident: 9003_CR16 – volume: 4 start-page: 269 issue: 4 year: 1983 ident: 9003_CR4 publication-title: J Time Ser Anal doi: 10.1111/j.1467-9892.1983.tb00373.x – volume: 44 start-page: 87 issue: 24 year: 2021 ident: 9003_CR29 publication-title: Modern Electron Techn – volume: 35 start-page: 1945 year: 2023 ident: 9003_CR25 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07889-9 – ident: 9003_CR40 doi: 10.1145/3336191.3372191 – volume: 89 start-page: 3258 issue: 17 year: 2019 ident: 9003_CR51 publication-title: J Stat Comput Simul doi: 10.1080/00949655.2019.1658763 – volume: 33 start-page: 6441 year: 2020 ident: 9003_CR1 publication-title: Adv Neural Inf Process Syst – volume: 1 start-page: 81 year: 1986 ident: 9003_CR9 publication-title: Mach Learn – ident: 9003_CR45 – volume: 36 start-page: 6164 issue: 3 year: 2009 ident: 9003_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.07.069 – volume: 2 start-page: 21 issue: 1 year: 2011 ident: 9003_CR50 publication-title: J Stat Model Anal – volume: 66 start-page: 173 issue: 2 year: 2020 ident: 9003_CR23 publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2020.2977964 – volume: 480 start-page: 131 year: 2022 ident: 9003_CR35 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.039 – volume: 27 start-page: 130 issue: 2 year: 2015 ident: 9003_CR8 publication-title: Shanghai Arch Psychiatry |
SSID | ssj0004685 |
Score | 2.3748713 |
Snippet | As an important part of the operation preparation process of the intelligent transportation system, the passenger flow distribution law and forecast can guide... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 24207 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Deep learning Flow distribution Flow stability Forecasting Image Processing and Computer Vision Intelligent transportation systems Machine learning Methods Neural networks Operation scheduling Original Article Passengers Prediction models Probability and Statistics in Computer Science R&D Research & development Standard error Time series Traffic flow Traffic models Transportation planning Trends Urban rail Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vXjxLVar7MGbLjbbPDYnUVGKoIgP8Bb22Utpa9IqFPzvziSbVgV7bJpsHvPY2dlv5iPkJOQqFpaHjKdhiNuMmklQLGZg9jQ8lSGv0BYPce81vHuL3nzCrfCwytonlo7ajDTmyM-5EFGM3dOCi_E7Q9Yo3F31FBqrpAkuWIgGaV7dPDw-_aiMLEk5YQ2D-J6w68tmyuI5zIjCUd7FXAU83uz31LSIN_9skZYzz-0mWfchI72sZLxFVuxwm2zUdAzUW-cO-SqLaT9g8QvxIx2Mhn2GzPEUlcwWdJJLbBdBxxAuI5Q1p24w-qTjHLdqUDwUMfB9quW0gNshHN2rJfwCv5MXONTAMezIWWIk6f3LM6vqmWy-S15vb16ue8yzKzANZjdhmksTwXtr7bRIbCIlDxSsB6Vy3BoplIlk3FEODFRGYMVGdGSaauFkYp2CKHGPNIajod0nNA4Cp0RX8yB24APS1KhEdG0SKYf9yUyLBPWHzbRvPY4MGINs3jS5FEYGwshKYWSzFjmdXzOuGm8sPbtdyyvzRlhkC5VpkbNahou__x_tYPloh2QNSecrUEubNCb51B5BaDJRx17_vgHZfeJi priority: 102 providerName: ProQuest |
Title | Multivariate long-time series traffic passenger flow prediction using causal convolutional sparse self-attention MTS-Informer |
URI | https://link.springer.com/article/10.1007/s00521-023-09003-z https://www.proquest.com/docview/2885676351 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XLjwRozHlAM3iESzPtLjBhsIBELAJDhVSZpwmbap3UBC4r9j9zEeAiROUdXUVWs7sePPNsCBL3QorfC5iH2fwoyGKxQsnuLumYpY-aJEW1yH533_4iF4qJLC8hrtXocki5V6luxGJ5jo-ooWnS0gudd5WAzQdycgV1-0P2VDFo040W8hTI_fqlJlfqbxdTv6sDG_hUWL3aa3CsuVmcjaJV_XYM4O12GlbsHAKo3cgLcigfYZHV60GdlgNHzi1C2ekWDZnE0yRSUi2BhNZIKvZswNRi9snFF4hljCCPf-xIya5vg6gqBXoohXuNZkOZEaOE5VOAtcJLu6v-NlDpPNNqHf696fnPOqowI3qGoTboRKA_xuY5yRkY2UEp5GH1BpJ2yqpE4DFR5rh0qpAtTcVB6rODbSqcg6jZbhFiwMR0O7DSz0PKdlywgvdKj3cZzqSLZsFGhHNcnSBnj1j01MVW6cul4Mklmh5IIZCTIjKZiRvDbgcPbMuCy28efsvZpfSaV4eSKkDEIqsuc14Kjm4cft36nt_G_6LixR4_kS2LIHC5NsavfRPJnoJszL3lkTFtud006PxrPHyy6One71zW2zkNV3zrXjxw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH6qygEuFGgRKQXmQE90RD3exgeEEBCStsmFVOrNzNpLlAQ7bdVK_CV-I--N7aYg0VuO3sbSvG_evgC8TYTOpBMJF0WSUJjRcIXA4halpxWFSkSTbTHOBqfJ0Vl6tgG_u1oYSqvseGJg1HZuyEf-XkiZZtQ9Lfq4-MlpahRFV7sRGg0sjt31FZps9YfhF6TvvhD9r5PPA95OFeAG4bbkRiibIpaN8UbmLldKRBrtIKW9cFZJbVOVHWqPwFQpotfKQ1UURnqVO69TcoAiy3-QxCjJqTK9_-1OHWYYAYoWE2UTJXFbpBNK9cj_indFTJ4R3IybvwXhSrv9JyAb5Fz_CTxuFVT2qUHUU9hws2ew1Q1_YC0v2IZfoXT3Ek1t1FbZdD475zSnnhGkXc2WlaLmFGyByjklzlbMT-dXbFFRYIjAwCjj_pwZdVHj7yj5vT0EeIVcrqppqann1P8zZGSy0eQ7b6qnXLUDp2vZ9eewOZvP3AtgWRR5LWMjoswjxykKq3MZuzzVnrqh2R5E3caWpm10TvM2puVti-ZAjBKJUQZilDc9eHf7zaJp83Hv23sdvcr2yNflCqA9OOhouHr8_9V271_tDTwcTEYn5clwfPwSHtG4-yadZg82l9WFe4VK0VK_Dkhk8GPd0P8DxZAgRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnjxLVar7sGbLpptHptjUYvPImjBW9inl5KWNCoU_O_O5NGqqOAxZDMhmZnd2Z3vmyHk0OcqFJb7jMe-j2lGzSQYFjOwehoeS5-XaIteeNn3r5-Cp08s_gLtXqckS04DVmlK85ORcSdT4hueZsI2mLfxnAFET-bJgo9sYLDoPu98YkYWTTlhD4P4Hr9d0WZ-lvF1aZrFm99SpMXK010ly1XISDuljtfInE3XyUrdjoFW3rlB3gsy7StsfiF-pINh-sywczxFI7NjmmcSy0XQEYTLCGXNqBsM3-gow1QNqociBv6ZavkyhtchHL0yS7iCeScbo6iBY1iRs8BI0rvHB1bymWy2Sfrdi8ezS1Z1V2Aa3C5nmksTwHdr7bSIbCQl9xTsB6Vy3BoplAlkeKocOKgMwIuNOJVxrIWTkXUKosQt0kiHqd0mNPQ8p0Rbcy90MAfEsVGRaNsoUA7rk5km8eofm-iq9Dh2wBgk06LJhTISUEZSKCOZNMnR9JlRWXjjz9GtWl9J5YTjhAsRhFhwz2uS41qHs9u_S9v53_ADsnh_3k1ur3o3u2QJ-9GXeJcWaeTZi92DqCVX-4VhfgDh0eVn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+long-time+series+traffic+passenger+flow+prediction+using+causal+convolutional+sparse+self-attention+MTS-Informer&rft.jtitle=Neural+computing+%26+applications&rft.au=Liu%2C+Miaonan&rft.au=Wang%2C+Wei&rft.au=Hu%2C+Xianhui&rft.au=Fu%2C+Yunlai&rft.date=2023-12-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=34&rft.spage=24207&rft.epage=24223&rft_id=info:doi/10.1007%2Fs00521-023-09003-z&rft.externalDocID=10_1007_s00521_023_09003_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |