Explainable robotic systems: understanding goal-driven actions in a reinforcement learning scenario
Robotic systems are more present in our society everyday. In human–robot environments, it is crucial that end-users may correctly understand their robotic team-partners, in order to collaboratively complete a task. To increase action understanding, users demand more explainability about the decision...
Saved in:
Published in | Neural computing & applications Vol. 35; no. 25; pp. 18113 - 18130 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Robotic systems are more present in our society everyday. In human–robot environments, it is crucial that end-users may correctly understand their robotic team-partners, in order to collaboratively complete a task. To increase action understanding, users demand more explainability about the decisions by the robot in particular situations. Recently, explainable robotic systems have emerged as an alternative focused not only on completing a task satisfactorily, but also on justifying, in a human-like manner, the reasons that lead to making a decision. In reinforcement learning scenarios, a great effort has been focused on providing explanations using data-driven approaches, particularly from the visual input modality in deep learning-based systems. In this work, we focus rather on the decision-making process of reinforcement learning agents performing a task in a robotic scenario. Experimental results are obtained using 3 different set-ups, namely, a deterministic navigation task, a stochastic navigation task, and a continuous visual-based sorting object task. As a way to explain the goal-driven robot’s actions, we use the probability of success computed by three different proposed approaches: memory-based, learning-based, and introspection-based. The difference between these approaches is the amount of memory required to compute or estimate the probability of success as well as the kind of reinforcement learning representation where they could be used. In this regard, we use the memory-based approach as a baseline since it is obtained directly from the agent’s observations. When comparing the learning-based and the introspection-based approaches to this baseline, both are found to be suitable alternatives to compute the probability of success, obtaining high levels of similarity when compared using both the Pearson’s correlation and the mean squared error. |
---|---|
AbstractList | Robotic systems are more present in our society everyday. In human–robot environments, it is crucial that end-users may correctly understand their robotic team-partners, in order to collaboratively complete a task. To increase action understanding, users demand more explainability about the decisions by the robot in particular situations. Recently, explainable robotic systems have emerged as an alternative focused not only on completing a task satisfactorily, but also on justifying, in a human-like manner, the reasons that lead to making a decision. In reinforcement learning scenarios, a great effort has been focused on providing explanations using data-driven approaches, particularly from the visual input modality in deep learning-based systems. In this work, we focus rather on the decision-making process of reinforcement learning agents performing a task in a robotic scenario. Experimental results are obtained using 3 different set-ups, namely, a deterministic navigation task, a stochastic navigation task, and a continuous visual-based sorting object task. As a way to explain the goal-driven robot’s actions, we use the probability of success computed by three different proposed approaches: memory-based, learning-based, and introspection-based. The difference between these approaches is the amount of memory required to compute or estimate the probability of success as well as the kind of reinforcement learning representation where they could be used. In this regard, we use the memory-based approach as a baseline since it is obtained directly from the agent’s observations. When comparing the learning-based and the introspection-based approaches to this baseline, both are found to be suitable alternatives to compute the probability of success, obtaining high levels of similarity when compared using both the Pearson’s correlation and the mean squared error. |
Author | Cruz, Francisco Dazeley, Richard Vamplew, Peter Moreira, Ithan |
Author_xml | – sequence: 1 givenname: Francisco orcidid: 0000-0002-1131-3382 surname: Cruz fullname: Cruz, Francisco email: francisco.cruz@deakin.edu.au organization: School of Information Technology, Deakin University, Escuela de Ingeniería, Universidad Central de Chile – sequence: 2 givenname: Richard surname: Dazeley fullname: Dazeley, Richard organization: School of Information Technology, Deakin University – sequence: 3 givenname: Peter surname: Vamplew fullname: Vamplew, Peter organization: School of Engineering, IT and Physical Sciences, Federation University – sequence: 4 givenname: Ithan surname: Moreira fullname: Moreira, Ithan organization: Escuela de Ingeniería, Universidad Central de Chile |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8Bz6uTzSabepNS_0DBi55DNjspKdukJlux395dK3jz8JiBee8N_GZkEmJAQq4Z3DKA-i4DiJIVMEpWpSjEGZmyivOCg1ATMoVF9XPiF2SW8xYAKqnElNjV174zPpimQ5piE3tvaT7mHnf5nh5Ciyn3JrQ-bOgmmq5ok__EQI3tfQyZ-mGlCX1wMVncYehphyaF0Z8tBpN8vCTnznQZr37nnLw_rt6Wz8X69ell-bAuLGeLvrCsKUG5SknpWFszwZW0EmuQYmERnKuF5G0ppHWNFVygNRYAWwMcDCjF5-Tm1LtP8eOAudfbeEhheKlLJaAaSNRscJUnl00x54RO75PfmXTUDPQIU59gahg1wtRiCPFTKA_msMH0V_1P6hsvpnqE |
CitedBy_id | crossref_primary_10_1007_s12652_021_03489_y crossref_primary_10_1007_s00521_022_07606_6 crossref_primary_10_3390_biomimetics6010013 crossref_primary_10_12677_CSA_2022_123056 crossref_primary_10_3389_frai_2023_1250725 crossref_primary_10_3390_electronics10182271 crossref_primary_10_1016_j_jmsy_2023_11_012 crossref_primary_10_1007_s00521_023_08586_x crossref_primary_10_3390_app112110227 crossref_primary_10_1007_s10994_023_06479_7 crossref_primary_10_3389_frobt_2022_783863 crossref_primary_10_1007_s00521_022_07746_9 crossref_primary_10_3390_a15030091 crossref_primary_10_3390_computers9030075 |
Cites_doi | 10.1109/ICDM.2018.00074 10.1109/SCCC.2010.41 10.1016/j.artint.2018.07.007 10.1109/TSMCC.2011.2106494 10.1109/HRI.2016.7451741 10.1145/3196478.3196488 10.1609/aaai.v34i03.5631 10.1080/09540091.2018.1443318 10.3390/app10165574 10.1145/2909824.3020230 10.1007/978-3-319-46493-0_1 10.1371/journal.pcbi.1005684 10.1007/s10458-019-09408-y 10.1007/978-3-030-57321-8_5 10.24963/ijcai.2019/184 10.1145/3173386.3177057 10.1177/0278364913495721 10.1145/3278721.3278776 10.1016/j.engappai.2018.09.007 10.1016/j.artint.2020.103367 10.1109/CogSIMA.2014.6816556 10.1109/ACCESS.2018.2870052 10.1145/2157689.2157748 10.1016/j.artint.2021.103525 10.1007/978-3-540-72393-6_47 10.1145/1518701.1519023 10.1109/IJCNN.2018.8489237 10.1109/IROS.2013.6696520 10.1609/aaai.v31i2.19108 10.1609/aaai.v33i01.330110007 10.1146/annurev-psych-122414-033625 10.7551/mitpress/9320.001.0001 10.1016/j.procs.2020.09.198 10.1109/CIG.2016.7860433 10.1007/978-3-030-35288-2_6 10.1109/HRI.2019.8673198 10.1021/ac60214a047 10.1038/nature14236 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PQEST PQQKQ PQUKI |
DOI | 10.1007/s00521-021-06425-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 18130 |
ExternalDocumentID | 10_1007_s00521_021_06425_5 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-c1b208f4866f1d715386c6e70659ce0ff7563d256cfbc535ecac00eda030a0883 |
IEDL.DBID | BENPR |
ISSN | 0941-0643 |
IngestDate | Thu Oct 10 21:56:47 EDT 2024 Thu Sep 12 19:02:07 EDT 2024 Sat Dec 16 12:05:05 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | Explainable robotic systems Goal-driven explanations Explainable reinforcement learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-c1b208f4866f1d715386c6e70659ce0ff7563d256cfbc535ecac00eda030a0883 |
ORCID | 0000-0002-1131-3382 |
PQID | 2850405871 |
PQPubID | 2043988 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2850405871 crossref_primary_10_1007_s00521_021_06425_5 springer_journals_10_1007_s00521_021_06425_5 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Cruz F, Dazeley R, Vamplew P (2019) Memory-based explainable reinforcement learning. In: The 32nd Australasian joint conference on artificial intelligence (AI2019), pp 66–77 De Graaf MM, Malle BF (2017) How people explain action (and autonomous intelligent systems should too). In: 2017 AAAI fall symposium series Wang N, Pynadath DV, Hill SG (2016) Trust calibration within a human–robot team: comparing automatically generated explanations. In: The eleventh ACM/IEEE international conference on human robot interaction, pp 109–116. IEEE Press Vinyals O, Ewalds T, Bartunov S, Georgiev P, Vezhnevets AS, Yeo M, Makhzani A, Küttler H, Agapiou J, Schrittwieser J et al (2017) Starcraft II: a new challenge for reinforcement learning. arXiv preprint, arXiv:1708.04782 Anderson A, Dodge J, Sadarangani A, Juozapaitis Z, Newman E, Irvine J, Chattopadhyay S, Fern A, Burnett M (2019) Explaining reinforcement learning to mere mortals: an empirical study. In: Proceedings of the 28th international joint conference on artificial intelligence, pp 1328–1334. AAAI Press Sheh RK-M (2017) “Why did you do that?” Explainable intelligent robots. In: Workshops on human-aware artificial intelligence at the thirty-first AAAI conference on artificial intelligence, pp 628–634 MoreiraIRivasJCruzFDazeleyRAyalaAFernandesBDeep reinforcement learning with interactive feedback in a human–robot environmentAppl Sci20201016557410.3390/app10165574 CruzFMaggSNagaiYWermterSImproving interactive reinforcement learning: what makes a good teacher?Connect Sci201830330632510.1080/09540091.2018.1443318 Churamani N, Cruz F, Griffiths S, Barros P (2020) iCub: learning emotion expressions using human reward. arXiv preprint, arXiv:2003.13483 Verma A, Murali V, Singh R, Kohli P, Chaudhuri S (2018) Programmatically interpretable reinforcement learning. arXiv preprint, arXiv:1804.02477 Pocius R, Neal L, Fern A (2019) Strategic tasks for explainable reinforcement learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 10007–10008 MnihVKavukcuogluKSilverDRusuAAVenessJBellemareMGGravesARiedmillerMFidjelandAKOstrovskiGHuman-level control through deep reinforcement learningNature2015518754052910.1038/nature14236 GershmanSJDawNDReinforcement learning and episodic memory in humans and animals: an integrative frameworkAnn Rev Psychol20176810112810.1146/annurev-psych-122414-033625 Langley P (2016) Explainable agency in human–robot interaction. In: AAAI fall symposium series Yang XJ, Unhelkar VV, Li K, Shah JA (2017) Evaluating effects of user experience and system transparency on trust in automation. In: 2017 12th ACM/IEEE international conference on human–robot interaction (HRI), pp 408–416. IEEE Sado F, Loo CK, Kerzel M, Wermter S (2020) Explainable goal-driven agents and robots—a comprehensive review and new framework. arXiv preprint, arXiv:2004.09705 Cruz F, Parisi GI, Wermter S (2018) Multi-modal feedback for affordance-driven interactive reinforcement learning. In: Proceedings of the international joint conference on neural networks IJCNN, pp 5515–5122. IEEE Sukkerd R, Simmons R, Garlan D (2018) Toward explainable multi-objective probabilistic planning. In: 2018 IEEE/ACM 4th international workshop on software engineering for smart cyber-physical systems (SEsCPS), pp 19–25. IEEE BöhmGPfisterH-RHow people explain their own and others’ behavior: a theory of lay causal explanationsFront Psychol20156139 Puiutta E, Veith E (2020) Explainable reinforcement learning: a survey. arXiv preprint, arXiv:2005.06247 Gunning D (2017) Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency (DARPA), nd Web HeinDUdluftSRunklerTAInterpretable policies for reinforcement learning by genetic programmingEng Appl Artif Intell20187615816910.1016/j.engappai.2018.09.007 SavitzkyAGolayMJSmoothing and differentiation of data by simplified least squares proceduresAnal Chem19643681627163910.1021/ac60214a047 Juozapaitis Z, Koul A, Fern A, Erwig M, Doshi-Velez F (2019) Explainable reinforcement learning via reward decomposition. In: IJCAI/ECAI workshop on explainable artificial intelligence Barros P, Tanevska A, Sciutti A (2020) Learning from learners: adapting reinforcement learning agents to be competitive in a card game. arXiv preprint, arXiv:2004.04000 Lomas M, Chevalier R, Cross II EV, Garrett RC, Hoare J, Kopack M (2012) Explaining robot actions. In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction, pp 187–188. ACM KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt J Robot Res20133213710.1177/0278364913495721 Kempka M, Wydmuch M, Runc G, Toczek J, Jaśkowski W (2016) ViZDoom: a doom-based AI research platform for visual reinforcement learning. In: 2016 IEEE conference on computational intelligence and games (CIG), pp 1–8. IEEE Wang X, Chen Y, Yang J, Wu L, Wu Z, Xie X (2018) A reinforcement learning framework for explainable recommendation. In: 2018 IEEE international conference on data mining (ICDM), pp 587–596. IEEE Sequeira P, Gervasio M (2019) Interestingness elements for explainable reinforcement learning: understanding agents’ capabilities and limitations. arXiv preprint, arXiv:1912.09007 Langley P, Meadows B, Sridharan M, Choi D (2017) Explainable agency for intelligent autonomous systems. In: Twenty-ninth IAAI conference, pp 4762–4763 CangelosiASchlesingerMDevelopmental robotics: from babies to robots2015Cambridge, MAMIT Press10.7551/mitpress/9320.001.0001 Sequeira P, Yeh E, Gervasio MT (2019) Interestingness elements for explainable reinforcement learning through introspection. In: IUI workshops, pp 1–7 Li Y, Sycara K, Iyer R (2018) Object-sensitive deep reinforcement learning. arXiv preprint, arXiv:1809.06064 SuttonRSBartoAGReinforcement learning: an introduction2018CambridgeMIT Press1407.68009 Hendricks LA, Akata Z, Rohrbach M, Donahue J, Schiele B, Darrell T (2016) Generating visual explanations. In: European conference on computer vision, pp 3–19. Springer AdamSBusoniuLBabuskaRExperience replay for real-time reinforcement learning controlIEEE Trans Syst Man Cybern Part C: Appl Rev20124220121210.1109/TSMCC.2011.2106494 Cruz F, Acuña G, Cubillos F, Moreno V, Bassi D (2007) Indirect training of grey-box models: application to a bioprocess. In: International symposium on neural networks, pp 391–397. Springer Rummery GA, Niranjan M (1994) On-line Q-learning using connectionist systems. Technical Report CUED/F-INFENG/TR166 Haspiel J, Du N, Meyerson J, Robert Jr LP, Tilbury D, Yang XJ, Pradhan AK (2018) Explanations and expectations: trust building in automated vehicles. In: Companion of the 2018 ACM/IEEE international conference on human–robot interaction, pp 119–120. ACM Lengerich BJ, Konam S, Xing EP, Rosenthal S, Veloso M (2017) Towards visual explanations for convolutional neural networks via input resampling. arXiv preprint, arXiv:1707.09641 Dazeley R, Vamplew P, Cruz F (2021) Explainable reinforcement learning for Broad-XAI: a conceptual framework and survey. arXiv preprint, arXiv:2108.09003 Dulac-Arnold G, Mankowitz D, Hester T (2019) Challenges of real-world reinforcement learning. arXiv preprint, arXiv:1904.12901 Madumal P, Miller T, Sonenberg L, Vetere F (2020) Distal explanations for explainable reinforcement learning agents. arXiv preprint, arXiv:2001.10284 SetchiRDehkordiMBKhanJSExplainable robotics in human–robot interactionsProcedia Comput Sci20201763057306610.1016/j.procs.2020.09.198 Erwig M, Fern A, Murali M, Koul A (2018) Explaining deep adaptive programs via reward decomposition. In: IJCAI/ECAI workshop on explainable artificial intelligence, pp 40–44 Sakai T, Nagai T (2021) Explainable autonomous robots: a survey and perspective. arXiv preprint, arXiv:2105.02658 Shu T, Xiong C, Socher R (2017) Hierarchical and interpretable skill acquisition in multi-task reinforcement learning. arXiv preprint, arXiv:1712.07294 Rohmer E, Singh SPN, Freese M (2013) V-REP: a versatile and scalable robot simulation framework. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems IROS, pp 1321–1326 Sanders TL, Wixon T, Schafer KE, Chen JY, Hancock P (2014) The influence of modality and transparency on trust in human–robot interaction. In: 2014 IEEE international inter-disciplinary conference on cognitive methods in situation awareness and decision support (CogSIMA), pp 156–159. IEEE Dawson D, Schleiger E, Horton J, McLaughlin J, Robinson C, Quezada G, Scowcroft J, Hajkowicz S (2019) Artificial intelligence: Australia’s ethics framework, Data61 CSIRO, Australia Iyer R, Li Y, Li H, Lewis M, Sundar R, Sycara K (2018) Transparency and explanation in deep reinforcement learning neural networks. In: Proceedings of the 2018 AAAI/ACM conference on AI, ethics, and society, pp 144–150 RosenfeldARichardsonAExplainability in human-agent systemsAuton Agent Multi-Agent Syst201933667370510.1007/s10458-019-09408-y Tabrez A, Hayes B (2019) Improving human–robot interaction through explainable reinforcement learning. In: 2019 14th ACM/IEEE international conference on human–robot interaction (HRI), pp 751–753. IEEE Lim B, Dey AK, Avrahami D (2009) Why and why not explanations improve the intelligibility of context-aware intelligent systems. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 2119–2128. ACM Wang N, Pynadath DV, Hill SG, Ground AP (2015) Building trust in a human–robot team with automatically generated explanations. In: Proceedings of the interservice/industry training, simulation and education conference (I/ITSEC), vol 15315, pp 1–12 Naranjo FC, Leiva GA (2010) Indirect training with error backpropagation in gray-box neural model: application to a chemical process. In: 2010 XXIX international conference of the Chilean Computer Science Society, pp 265–269 PalminteriSLefebvreGKilfordEJBlakemoreS-JConfirmation bias in human reinforcement learning: evidence from counterfactual feedback processingPLoS Comput Biol2017138e100568410.1371/journal.pcbi.1005684 Greydanus S, Kou 6425_CR24 6425_CR23 6425_CR22 6425_CR66 6425_CR65 6425_CR20 F Cruz (6425_CR16) 2018; 30 6425_CR60 6425_CR29 6425_CR27 G Böhm (6425_CR44) 2015; 6 6425_CR57 6425_CR56 6425_CR11 6425_CR55 6425_CR10 6425_CR54 6425_CR53 6425_CR52 6425_CR51 I Moreira (6425_CR61) 2020; 10 6425_CR50 V Mnih (6425_CR28) 2015; 518 R Dazeley (6425_CR33) 2021; 299 6425_CR19 6425_CR18 6425_CR17 R Setchi (6425_CR64) 2020; 176 6425_CR15 6425_CR59 6425_CR58 6425_CR9 6425_CR46 6425_CR45 6425_CR43 6425_CR42 6425_CR6 T Miller (6425_CR32) 2018; 267 6425_CR41 6425_CR7 6425_CR40 6425_CR8 6425_CR1 6425_CR2 6425_CR3 6425_CR4 A Savitzky (6425_CR63) 1964; 36 A Cangelosi (6425_CR25) 2015 S Adam (6425_CR62) 2012; 42 SJ Gershman (6425_CR13) 2017; 68 6425_CR49 6425_CR48 RS Sutton (6425_CR12) 2018 6425_CR47 6425_CR35 6425_CR34 D Hein (6425_CR38) 2018; 76 6425_CR31 A Adadi (6425_CR21) 2018; 6 6425_CR30 A Rosenfeld (6425_CR5) 2019; 33 J Kober (6425_CR26) 2013; 32 S Palminteri (6425_CR14) 2017; 13 6425_CR39 6425_CR37 6425_CR36 |
References_xml | – ident: 6425_CR19 – ident: 6425_CR1 – ident: 6425_CR40 doi: 10.1109/ICDM.2018.00074 – ident: 6425_CR31 doi: 10.1109/SCCC.2010.41 – volume: 267 start-page: 1 year: 2018 ident: 6425_CR32 publication-title: Artif Intell doi: 10.1016/j.artint.2018.07.007 contributor: fullname: T Miller – volume: 42 start-page: 201 year: 2012 ident: 6425_CR62 publication-title: IEEE Trans Syst Man Cybern Part C: Appl Rev doi: 10.1109/TSMCC.2011.2106494 contributor: fullname: S Adam – ident: 6425_CR4 doi: 10.1109/HRI.2016.7451741 – ident: 6425_CR29 – ident: 6425_CR45 doi: 10.1145/3196478.3196488 – ident: 6425_CR41 doi: 10.1609/aaai.v34i03.5631 – volume: 30 start-page: 306 issue: 3 year: 2018 ident: 6425_CR16 publication-title: Connect Sci doi: 10.1080/09540091.2018.1443318 contributor: fullname: F Cruz – ident: 6425_CR39 – ident: 6425_CR20 – volume: 10 start-page: 5574 issue: 16 year: 2020 ident: 6425_CR61 publication-title: Appl Sci doi: 10.3390/app10165574 contributor: fullname: I Moreira – ident: 6425_CR48 doi: 10.1145/2909824.3020230 – ident: 6425_CR9 doi: 10.1007/978-3-319-46493-0_1 – volume: 13 start-page: e1005684 issue: 8 year: 2017 ident: 6425_CR14 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005684 contributor: fullname: S Palminteri – volume: 33 start-page: 673 issue: 6 year: 2019 ident: 6425_CR5 publication-title: Auton Agent Multi-Agent Syst doi: 10.1007/s10458-019-09408-y contributor: fullname: A Rosenfeld – ident: 6425_CR66 – ident: 6425_CR8 – ident: 6425_CR35 doi: 10.1007/978-3-030-57321-8_5 – ident: 6425_CR46 doi: 10.24963/ijcai.2019/184 – ident: 6425_CR50 doi: 10.1145/3173386.3177057 – volume: 32 start-page: 1 year: 2013 ident: 6425_CR26 publication-title: Int J Robot Res doi: 10.1177/0278364913495721 contributor: fullname: J Kober – ident: 6425_CR11 doi: 10.1145/3278721.3278776 – volume: 76 start-page: 158 year: 2018 ident: 6425_CR38 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.09.007 contributor: fullname: D Hein – ident: 6425_CR51 – ident: 6425_CR54 doi: 10.1016/j.artint.2020.103367 – ident: 6425_CR42 doi: 10.1609/aaai.v34i03.5631 – ident: 6425_CR17 – ident: 6425_CR34 – ident: 6425_CR59 – ident: 6425_CR49 doi: 10.1109/CogSIMA.2014.6816556 – volume: 6 start-page: 52138 year: 2018 ident: 6425_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 contributor: fullname: A Adadi – ident: 6425_CR47 doi: 10.1145/2157689.2157748 – volume: 299 start-page: 103525 year: 2021 ident: 6425_CR33 publication-title: Artif Intell doi: 10.1016/j.artint.2021.103525 contributor: fullname: R Dazeley – ident: 6425_CR30 doi: 10.1007/978-3-540-72393-6_47 – ident: 6425_CR58 doi: 10.1145/1518701.1519023 – ident: 6425_CR3 – volume-title: Reinforcement learning: an introduction year: 2018 ident: 6425_CR12 contributor: fullname: RS Sutton – ident: 6425_CR15 doi: 10.1109/IJCNN.2018.8489237 – ident: 6425_CR23 – ident: 6425_CR65 – ident: 6425_CR27 – ident: 6425_CR60 doi: 10.1109/IROS.2013.6696520 – volume: 6 start-page: 139 year: 2015 ident: 6425_CR44 publication-title: Front Psychol contributor: fullname: G Böhm – ident: 6425_CR56 – ident: 6425_CR7 – ident: 6425_CR10 – ident: 6425_CR37 – ident: 6425_CR55 doi: 10.1609/aaai.v31i2.19108 – ident: 6425_CR6 doi: 10.1609/aaai.v33i01.330110007 – ident: 6425_CR43 – ident: 6425_CR22 – volume: 68 start-page: 101 year: 2017 ident: 6425_CR13 publication-title: Ann Rev Psychol doi: 10.1146/annurev-psych-122414-033625 contributor: fullname: SJ Gershman – ident: 6425_CR2 – volume-title: Developmental robotics: from babies to robots year: 2015 ident: 6425_CR25 doi: 10.7551/mitpress/9320.001.0001 contributor: fullname: A Cangelosi – volume: 176 start-page: 3057 year: 2020 ident: 6425_CR64 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.09.198 contributor: fullname: R Setchi – ident: 6425_CR18 doi: 10.1109/CIG.2016.7860433 – ident: 6425_CR24 doi: 10.1007/978-3-030-35288-2_6 – ident: 6425_CR52 doi: 10.1109/HRI.2019.8673198 – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: 6425_CR63 publication-title: Anal Chem doi: 10.1021/ac60214a047 contributor: fullname: A Savitzky – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 6425_CR28 publication-title: Nature doi: 10.1038/nature14236 contributor: fullname: V Mnih – ident: 6425_CR53 – ident: 6425_CR36 – ident: 6425_CR57 |
SSID | ssj0004685 |
Score | 2.4504955 |
Snippet | Robotic systems are more present in our society everyday. In human–robot environments, it is crucial that end-users may correctly understand their robotic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 18113 |
SubjectTerms | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Decision making Deep learning Image Processing and Computer Vision Navigation Probability and Statistics in Computer Science Robotics Robots S.I. : LatinX in AI Research Special Issue on LatinX in AI Research Success Visual tasks |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgXLjwjRgMlAM3iNQ2SbtxmxDThAQnJu1WJakzIaEVddv_x0nbbSA4cIhUqVYObm0_J342wK2MtcukHXBMUFOCIpAbMRA8o-BNcNdYk3nu8MtrOp7I56mabnjcodi9vZEMjnrNdfMHmJT5-kWbKK52YY_Ag_R1XJNkuEWGDHM4KW0JkqJhyvy-x_dotIGYP25FQ7AZHcFBgxLZsP6sx7CD8xM4bCcwsMYgT8H6ErqG_8Sq0pQkz-rmzIsHttomrrBZqT94UXnvxmo2w4K90yOrMHRPteGgkDVjJGbMt3miRLo8g8no6e1xzJuxCdySPS25jU0S9Z3sp6mLi8y7tNSm6O8zBxYj5zKVioKgjnXGKqHQahtFWGiyd01OR5xDZ17O8QKYkEo7AjEuyqxEnZkYHUoPMqw2aIou3LXqyz_r7hj5ug9yUHYe-eWVnasu9FoN542lLPKkr8iPKMrbunDfan3z-u_dLv8nfgX7flJ8XR7Wg86yWuE14YmluQn_zxcB6MLL priority: 102 providerName: Springer Nature |
Title | Explainable robotic systems: understanding goal-driven actions in a reinforcement learning scenario |
URI | https://link.springer.com/article/10.1007/s00521-021-06425-5 https://www.proquest.com/docview/2850405871 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_c9uKL3-J0jjz4psGubdrOF5myDxSHiIP5VJI0GYKss93-fy9t6qagD4XSlDxccpffXe7uB3Dhd7gOfdmlylUcHRRPUeF1PRri4Y1wV0gRmtrhp3EwmvgPUza1AbfcplVWNrEw1EkqTYz82o0Y7jeG-P528UkNa5S5XbUUGjVouOgpuHVo3PXHzy8blZEFKSf6MCa_x_ds2UxRPGciovjVLUZcRtnPo2mNN39dkRYnz2APdixkJL1yjfdhS80PYLeiYyBWOw9Bmnw6WwxFslSk-D8pOzXnN2S1WcVCZin_oElmTB0pSxty8o6vJFNFK1VZRA2J5ZSYEdPzCb3q9Agmg_7r_YhaDgUqUbmWVHaE60Taj4JAd5LQ2LdABspcbnalcrQOWeAliHukFpJ5TEkuHUclHJWfowXyjqE-T-fqBIjnM64R0WgnlL7ioegorXyDOCQXSiRNuKzEFy_KVhnxd1PkQtixYx4j7Jg1oVVJOLZqk8frRW7CVSX19fDfs53-P9sZbBua-DI3rAX1ZbZS5wgmlqINtWgwbEOjN3x77Lft_sGvE7f3BdJXyyE |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33758,41095,41537,42164,42606,43614,43819,52125,52248 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLDwjSgU8MAGFklsJy0LQohSoO3USmyR7dgVEmpK0v5_zo5DCxIMkaI48nD23T2f790hdMlCYRKmOkRHWsABhWoiaYeSBJw3wF2pZGK5w4Nh3Buzlzf-5gNupU-rrG2iM9RZrmyM_CZqc9hvHPD93eyT2K5R9nbVt9BYRxuMgqOxTPHu0wov0rXkhBOMze5h1JNmHHXOxkPha-RGIk74T8e0RJu_Lkid3-nuom0PGPF9tcJ7aE1P99FO3YwBe908QMpm03kqFC5ymcP_uKrTXN7ixSqHBU9y8UGywho6XBEbSvwOr7jQrpCqcjFD7DtKTLCt-ARn6vwQjbuPo4ce8R0UiALVmhMVyihoG9aOYxNmibVusYq1vdrsKB0Yk_CYZoB6lJGKU66VUEGgMwGqL8D-0CPUmOZTfYwwZVwYwDMmSBTTIpGhNppZvKGE1DJroqtafOmsKpSRfpdEdsJOA_tYYae8iVq1hFOvNGW6XOImuq6lvhz-e7aT_2e7QJu90aCf9p-Hr6doyzaMr7LEWqgxLxb6DGDFXJ67vfMFODLJSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9RSIwX8TOiqD140-HG1g28EQVRlHiQBE9L27XEaDYyxsW_3td9ABI9GA9Nlqxptn68_l77fr8HcO5YTHmOaBmyIRk6KLY0uN2yDQ83b4S7XHBPc4efBm5v6DyM6GiJxZ9GuxdXkhmnQas0hcnVJFBXc-KbPs1EN1gXbJEadB3KjoVwoQTl9t1rv7PEjUzTcqIXk9a1c-LMz61835wWiHPlkjTde7oVYMVXZyEn7_VZwuvic0XQ8T-_tQ1bOTAl7Wwm7cCaDHehUiR9ILkN2AOho_ZyyhWJIx5hfZLpQU-vyWyZK0PGEfswglgbVJIRKKbkDR9JLFPBVpGeTZI8c8WYaGUp9N2jfRh2Oy83PSPP1GAIXMKJISzeMJvKabqusgJPW1FXuFJfobaENJXyqGsHiK6E4oLaVAomTFMGDE0MQztnH0ApjEJ5CMR2KFOIm5TpCUcyj1tSSUfjGsG45EEVLooh8ieZIIc_l15O-883ddH959Mq1IpR9PPFOfUbTYqmi6KrWIXLYlAWr39v7ehv1c9g4_m26z_eD_rHsKnz1GfBaTUoJfFMniCaSfhpPmG_APwH6_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+robotic+systems%3A+understanding+goal-driven+actions+in+a+reinforcement+learning+scenario&rft.jtitle=Neural+computing+%26+applications&rft.au=Cruz%2C+Francisco&rft.au=Dazeley%2C+Richard&rft.au=Vamplew%2C+Peter&rft.au=Moreira%2C+Ithan&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=25&rft.spage=18113&rft.epage=18130&rft_id=info:doi/10.1007%2Fs00521-021-06425-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |