Explainable robotic systems: understanding goal-driven actions in a reinforcement learning scenario

Robotic systems are more present in our society everyday. In human–robot environments, it is crucial that end-users may correctly understand their robotic team-partners, in order to collaboratively complete a task. To increase action understanding, users demand more explainability about the decision...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 25; pp. 18113 - 18130
Main Authors Cruz, Francisco, Dazeley, Richard, Vamplew, Peter, Moreira, Ithan
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Robotic systems are more present in our society everyday. In human–robot environments, it is crucial that end-users may correctly understand their robotic team-partners, in order to collaboratively complete a task. To increase action understanding, users demand more explainability about the decisions by the robot in particular situations. Recently, explainable robotic systems have emerged as an alternative focused not only on completing a task satisfactorily, but also on justifying, in a human-like manner, the reasons that lead to making a decision. In reinforcement learning scenarios, a great effort has been focused on providing explanations using data-driven approaches, particularly from the visual input modality in deep learning-based systems. In this work, we focus rather on the decision-making process of reinforcement learning agents performing a task in a robotic scenario. Experimental results are obtained using 3 different set-ups, namely, a deterministic navigation task, a stochastic navigation task, and a continuous visual-based sorting object task. As a way to explain the goal-driven robot’s actions, we use the probability of success computed by three different proposed approaches: memory-based, learning-based, and introspection-based. The difference between these approaches is the amount of memory required to compute or estimate the probability of success as well as the kind of reinforcement learning representation where they could be used. In this regard, we use the memory-based approach as a baseline since it is obtained directly from the agent’s observations. When comparing the learning-based and the introspection-based approaches to this baseline, both are found to be suitable alternatives to compute the probability of success, obtaining high levels of similarity when compared using both the Pearson’s correlation and the mean squared error.
AbstractList Robotic systems are more present in our society everyday. In human–robot environments, it is crucial that end-users may correctly understand their robotic team-partners, in order to collaboratively complete a task. To increase action understanding, users demand more explainability about the decisions by the robot in particular situations. Recently, explainable robotic systems have emerged as an alternative focused not only on completing a task satisfactorily, but also on justifying, in a human-like manner, the reasons that lead to making a decision. In reinforcement learning scenarios, a great effort has been focused on providing explanations using data-driven approaches, particularly from the visual input modality in deep learning-based systems. In this work, we focus rather on the decision-making process of reinforcement learning agents performing a task in a robotic scenario. Experimental results are obtained using 3 different set-ups, namely, a deterministic navigation task, a stochastic navigation task, and a continuous visual-based sorting object task. As a way to explain the goal-driven robot’s actions, we use the probability of success computed by three different proposed approaches: memory-based, learning-based, and introspection-based. The difference between these approaches is the amount of memory required to compute or estimate the probability of success as well as the kind of reinforcement learning representation where they could be used. In this regard, we use the memory-based approach as a baseline since it is obtained directly from the agent’s observations. When comparing the learning-based and the introspection-based approaches to this baseline, both are found to be suitable alternatives to compute the probability of success, obtaining high levels of similarity when compared using both the Pearson’s correlation and the mean squared error.
Author Cruz, Francisco
Dazeley, Richard
Vamplew, Peter
Moreira, Ithan
Author_xml – sequence: 1
  givenname: Francisco
  orcidid: 0000-0002-1131-3382
  surname: Cruz
  fullname: Cruz, Francisco
  email: francisco.cruz@deakin.edu.au
  organization: School of Information Technology, Deakin University, Escuela de Ingeniería, Universidad Central de Chile
– sequence: 2
  givenname: Richard
  surname: Dazeley
  fullname: Dazeley, Richard
  organization: School of Information Technology, Deakin University
– sequence: 3
  givenname: Peter
  surname: Vamplew
  fullname: Vamplew, Peter
  organization: School of Engineering, IT and Physical Sciences, Federation University
– sequence: 4
  givenname: Ithan
  surname: Moreira
  fullname: Moreira, Ithan
  organization: Escuela de Ingeniería, Universidad Central de Chile
BookMark eNp9kE9LAzEQxYNUsK1-AU8Bz6uTzSabepNS_0DBi55DNjspKdukJlux395dK3jz8JiBee8N_GZkEmJAQq4Z3DKA-i4DiJIVMEpWpSjEGZmyivOCg1ATMoVF9XPiF2SW8xYAKqnElNjV174zPpimQ5piE3tvaT7mHnf5nh5Ciyn3JrQ-bOgmmq5ok__EQI3tfQyZ-mGlCX1wMVncYehphyaF0Z8tBpN8vCTnznQZr37nnLw_rt6Wz8X69ell-bAuLGeLvrCsKUG5SknpWFszwZW0EmuQYmERnKuF5G0ppHWNFVygNRYAWwMcDCjF5-Tm1LtP8eOAudfbeEhheKlLJaAaSNRscJUnl00x54RO75PfmXTUDPQIU59gahg1wtRiCPFTKA_msMH0V_1P6hsvpnqE
CitedBy_id crossref_primary_10_1007_s12652_021_03489_y
crossref_primary_10_1007_s00521_022_07606_6
crossref_primary_10_3390_biomimetics6010013
crossref_primary_10_12677_CSA_2022_123056
crossref_primary_10_3389_frai_2023_1250725
crossref_primary_10_3390_electronics10182271
crossref_primary_10_1016_j_jmsy_2023_11_012
crossref_primary_10_1007_s00521_023_08586_x
crossref_primary_10_3390_app112110227
crossref_primary_10_1007_s10994_023_06479_7
crossref_primary_10_3389_frobt_2022_783863
crossref_primary_10_1007_s00521_022_07746_9
crossref_primary_10_3390_a15030091
crossref_primary_10_3390_computers9030075
Cites_doi 10.1109/ICDM.2018.00074
10.1109/SCCC.2010.41
10.1016/j.artint.2018.07.007
10.1109/TSMCC.2011.2106494
10.1109/HRI.2016.7451741
10.1145/3196478.3196488
10.1609/aaai.v34i03.5631
10.1080/09540091.2018.1443318
10.3390/app10165574
10.1145/2909824.3020230
10.1007/978-3-319-46493-0_1
10.1371/journal.pcbi.1005684
10.1007/s10458-019-09408-y
10.1007/978-3-030-57321-8_5
10.24963/ijcai.2019/184
10.1145/3173386.3177057
10.1177/0278364913495721
10.1145/3278721.3278776
10.1016/j.engappai.2018.09.007
10.1016/j.artint.2020.103367
10.1109/CogSIMA.2014.6816556
10.1109/ACCESS.2018.2870052
10.1145/2157689.2157748
10.1016/j.artint.2021.103525
10.1007/978-3-540-72393-6_47
10.1145/1518701.1519023
10.1109/IJCNN.2018.8489237
10.1109/IROS.2013.6696520
10.1609/aaai.v31i2.19108
10.1609/aaai.v33i01.330110007
10.1146/annurev-psych-122414-033625
10.7551/mitpress/9320.001.0001
10.1016/j.procs.2020.09.198
10.1109/CIG.2016.7860433
10.1007/978-3-030-35288-2_6
10.1109/HRI.2019.8673198
10.1021/ac60214a047
10.1038/nature14236
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PQEST
PQQKQ
PQUKI
DOI 10.1007/s00521-021-06425-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 18130
ExternalDocumentID 10_1007_s00521_021_06425_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-c1b208f4866f1d715386c6e70659ce0ff7563d256cfbc535ecac00eda030a0883
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Thu Oct 10 21:56:47 EDT 2024
Thu Sep 12 19:02:07 EDT 2024
Sat Dec 16 12:05:05 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords Explainable robotic systems
Goal-driven explanations
Explainable reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c1b208f4866f1d715386c6e70659ce0ff7563d256cfbc535ecac00eda030a0883
ORCID 0000-0002-1131-3382
PQID 2850405871
PQPubID 2043988
PageCount 18
ParticipantIDs proquest_journals_2850405871
crossref_primary_10_1007_s00521_021_06425_5
springer_journals_10_1007_s00521_021_06425_5
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Cruz F, Dazeley R, Vamplew P (2019) Memory-based explainable reinforcement learning. In: The 32nd Australasian joint conference on artificial intelligence (AI2019), pp 66–77
De Graaf MM, Malle BF (2017) How people explain action (and autonomous intelligent systems should too). In: 2017 AAAI fall symposium series
Wang N, Pynadath DV, Hill SG (2016) Trust calibration within a human–robot team: comparing automatically generated explanations. In: The eleventh ACM/IEEE international conference on human robot interaction, pp 109–116. IEEE Press
Vinyals O, Ewalds T, Bartunov S, Georgiev P, Vezhnevets AS, Yeo M, Makhzani A, Küttler H, Agapiou J, Schrittwieser J et al (2017) Starcraft II: a new challenge for reinforcement learning. arXiv preprint, arXiv:1708.04782
Anderson A, Dodge J, Sadarangani A, Juozapaitis Z, Newman E, Irvine J, Chattopadhyay S, Fern A, Burnett M (2019) Explaining reinforcement learning to mere mortals: an empirical study. In: Proceedings of the 28th international joint conference on artificial intelligence, pp 1328–1334. AAAI Press
Sheh RK-M (2017) “Why did you do that?” Explainable intelligent robots. In: Workshops on human-aware artificial intelligence at the thirty-first AAAI conference on artificial intelligence, pp 628–634
MoreiraIRivasJCruzFDazeleyRAyalaAFernandesBDeep reinforcement learning with interactive feedback in a human–robot environmentAppl Sci20201016557410.3390/app10165574
CruzFMaggSNagaiYWermterSImproving interactive reinforcement learning: what makes a good teacher?Connect Sci201830330632510.1080/09540091.2018.1443318
Churamani N, Cruz F, Griffiths S, Barros P (2020) iCub: learning emotion expressions using human reward. arXiv preprint, arXiv:2003.13483
Verma A, Murali V, Singh R, Kohli P, Chaudhuri S (2018) Programmatically interpretable reinforcement learning. arXiv preprint, arXiv:1804.02477
Pocius R, Neal L, Fern A (2019) Strategic tasks for explainable reinforcement learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 10007–10008
MnihVKavukcuogluKSilverDRusuAAVenessJBellemareMGGravesARiedmillerMFidjelandAKOstrovskiGHuman-level control through deep reinforcement learningNature2015518754052910.1038/nature14236
GershmanSJDawNDReinforcement learning and episodic memory in humans and animals: an integrative frameworkAnn Rev Psychol20176810112810.1146/annurev-psych-122414-033625
Langley P (2016) Explainable agency in human–robot interaction. In: AAAI fall symposium series
Yang XJ, Unhelkar VV, Li K, Shah JA (2017) Evaluating effects of user experience and system transparency on trust in automation. In: 2017 12th ACM/IEEE international conference on human–robot interaction (HRI), pp 408–416. IEEE
Sado F, Loo CK, Kerzel M, Wermter S (2020) Explainable goal-driven agents and robots—a comprehensive review and new framework. arXiv preprint, arXiv:2004.09705
Cruz F, Parisi GI, Wermter S (2018) Multi-modal feedback for affordance-driven interactive reinforcement learning. In: Proceedings of the international joint conference on neural networks IJCNN, pp 5515–5122. IEEE
Sukkerd R, Simmons R, Garlan D (2018) Toward explainable multi-objective probabilistic planning. In: 2018 IEEE/ACM 4th international workshop on software engineering for smart cyber-physical systems (SEsCPS), pp 19–25. IEEE
BöhmGPfisterH-RHow people explain their own and others’ behavior: a theory of lay causal explanationsFront Psychol20156139
Puiutta E, Veith E (2020) Explainable reinforcement learning: a survey. arXiv preprint, arXiv:2005.06247
Gunning D (2017) Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency (DARPA), nd Web
HeinDUdluftSRunklerTAInterpretable policies for reinforcement learning by genetic programmingEng Appl Artif Intell20187615816910.1016/j.engappai.2018.09.007
SavitzkyAGolayMJSmoothing and differentiation of data by simplified least squares proceduresAnal Chem19643681627163910.1021/ac60214a047
Juozapaitis Z, Koul A, Fern A, Erwig M, Doshi-Velez F (2019) Explainable reinforcement learning via reward decomposition. In: IJCAI/ECAI workshop on explainable artificial intelligence
Barros P, Tanevska A, Sciutti A (2020) Learning from learners: adapting reinforcement learning agents to be competitive in a card game. arXiv preprint, arXiv:2004.04000
Lomas M, Chevalier R, Cross II EV, Garrett RC, Hoare J, Kopack M (2012) Explaining robot actions. In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction, pp 187–188. ACM
KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt J Robot Res20133213710.1177/0278364913495721
Kempka M, Wydmuch M, Runc G, Toczek J, Jaśkowski W (2016) ViZDoom: a doom-based AI research platform for visual reinforcement learning. In: 2016 IEEE conference on computational intelligence and games (CIG), pp 1–8. IEEE
Wang X, Chen Y, Yang J, Wu L, Wu Z, Xie X (2018) A reinforcement learning framework for explainable recommendation. In: 2018 IEEE international conference on data mining (ICDM), pp 587–596. IEEE
Sequeira P, Gervasio M (2019) Interestingness elements for explainable reinforcement learning: understanding agents’ capabilities and limitations. arXiv preprint, arXiv:1912.09007
Langley P, Meadows B, Sridharan M, Choi D (2017) Explainable agency for intelligent autonomous systems. In: Twenty-ninth IAAI conference, pp 4762–4763
CangelosiASchlesingerMDevelopmental robotics: from babies to robots2015Cambridge, MAMIT Press10.7551/mitpress/9320.001.0001
Sequeira P, Yeh E, Gervasio MT (2019) Interestingness elements for explainable reinforcement learning through introspection. In: IUI workshops, pp 1–7
Li Y, Sycara K, Iyer R (2018) Object-sensitive deep reinforcement learning. arXiv preprint, arXiv:1809.06064
SuttonRSBartoAGReinforcement learning: an introduction2018CambridgeMIT Press1407.68009
Hendricks LA, Akata Z, Rohrbach M, Donahue J, Schiele B, Darrell T (2016) Generating visual explanations. In: European conference on computer vision, pp 3–19. Springer
AdamSBusoniuLBabuskaRExperience replay for real-time reinforcement learning controlIEEE Trans Syst Man Cybern Part C: Appl Rev20124220121210.1109/TSMCC.2011.2106494
Cruz F, Acuña G, Cubillos F, Moreno V, Bassi D (2007) Indirect training of grey-box models: application to a bioprocess. In: International symposium on neural networks, pp 391–397. Springer
Rummery GA, Niranjan M (1994) On-line Q-learning using connectionist systems. Technical Report CUED/F-INFENG/TR166
Haspiel J, Du N, Meyerson J, Robert Jr LP, Tilbury D, Yang XJ, Pradhan AK (2018) Explanations and expectations: trust building in automated vehicles. In: Companion of the 2018 ACM/IEEE international conference on human–robot interaction, pp 119–120. ACM
Lengerich BJ, Konam S, Xing EP, Rosenthal S, Veloso M (2017) Towards visual explanations for convolutional neural networks via input resampling. arXiv preprint, arXiv:1707.09641
Dazeley R, Vamplew P, Cruz F (2021) Explainable reinforcement learning for Broad-XAI: a conceptual framework and survey. arXiv preprint, arXiv:2108.09003
Dulac-Arnold G, Mankowitz D, Hester T (2019) Challenges of real-world reinforcement learning. arXiv preprint, arXiv:1904.12901
Madumal P, Miller T, Sonenberg L, Vetere F (2020) Distal explanations for explainable reinforcement learning agents. arXiv preprint, arXiv:2001.10284
SetchiRDehkordiMBKhanJSExplainable robotics in human–robot interactionsProcedia Comput Sci20201763057306610.1016/j.procs.2020.09.198
Erwig M, Fern A, Murali M, Koul A (2018) Explaining deep adaptive programs via reward decomposition. In: IJCAI/ECAI workshop on explainable artificial intelligence, pp 40–44
Sakai T, Nagai T (2021) Explainable autonomous robots: a survey and perspective. arXiv preprint, arXiv:2105.02658
Shu T, Xiong C, Socher R (2017) Hierarchical and interpretable skill acquisition in multi-task reinforcement learning. arXiv preprint, arXiv:1712.07294
Rohmer E, Singh SPN, Freese M (2013) V-REP: a versatile and scalable robot simulation framework. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems IROS, pp 1321–1326
Sanders TL, Wixon T, Schafer KE, Chen JY, Hancock P (2014) The influence of modality and transparency on trust in human–robot interaction. In: 2014 IEEE international inter-disciplinary conference on cognitive methods in situation awareness and decision support (CogSIMA), pp 156–159. IEEE
Dawson D, Schleiger E, Horton J, McLaughlin J, Robinson C, Quezada G, Scowcroft J, Hajkowicz S (2019) Artificial intelligence: Australia’s ethics framework, Data61 CSIRO, Australia
Iyer R, Li Y, Li H, Lewis M, Sundar R, Sycara K (2018) Transparency and explanation in deep reinforcement learning neural networks. In: Proceedings of the 2018 AAAI/ACM conference on AI, ethics, and society, pp 144–150
RosenfeldARichardsonAExplainability in human-agent systemsAuton Agent Multi-Agent Syst201933667370510.1007/s10458-019-09408-y
Tabrez A, Hayes B (2019) Improving human–robot interaction through explainable reinforcement learning. In: 2019 14th ACM/IEEE international conference on human–robot interaction (HRI), pp 751–753. IEEE
Lim B, Dey AK, Avrahami D (2009) Why and why not explanations improve the intelligibility of context-aware intelligent systems. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 2119–2128. ACM
Wang N, Pynadath DV, Hill SG, Ground AP (2015) Building trust in a human–robot team with automatically generated explanations. In: Proceedings of the interservice/industry training, simulation and education conference (I/ITSEC), vol 15315, pp 1–12
Naranjo FC, Leiva GA (2010) Indirect training with error backpropagation in gray-box neural model: application to a chemical process. In: 2010 XXIX international conference of the Chilean Computer Science Society, pp 265–269
PalminteriSLefebvreGKilfordEJBlakemoreS-JConfirmation bias in human reinforcement learning: evidence from counterfactual feedback processingPLoS Comput Biol2017138e100568410.1371/journal.pcbi.1005684
Greydanus S, Kou
6425_CR24
6425_CR23
6425_CR22
6425_CR66
6425_CR65
6425_CR20
F Cruz (6425_CR16) 2018; 30
6425_CR60
6425_CR29
6425_CR27
G Böhm (6425_CR44) 2015; 6
6425_CR57
6425_CR56
6425_CR11
6425_CR55
6425_CR10
6425_CR54
6425_CR53
6425_CR52
6425_CR51
I Moreira (6425_CR61) 2020; 10
6425_CR50
V Mnih (6425_CR28) 2015; 518
R Dazeley (6425_CR33) 2021; 299
6425_CR19
6425_CR18
6425_CR17
R Setchi (6425_CR64) 2020; 176
6425_CR15
6425_CR59
6425_CR58
6425_CR9
6425_CR46
6425_CR45
6425_CR43
6425_CR42
6425_CR6
T Miller (6425_CR32) 2018; 267
6425_CR41
6425_CR7
6425_CR40
6425_CR8
6425_CR1
6425_CR2
6425_CR3
6425_CR4
A Savitzky (6425_CR63) 1964; 36
A Cangelosi (6425_CR25) 2015
S Adam (6425_CR62) 2012; 42
SJ Gershman (6425_CR13) 2017; 68
6425_CR49
6425_CR48
RS Sutton (6425_CR12) 2018
6425_CR47
6425_CR35
6425_CR34
D Hein (6425_CR38) 2018; 76
6425_CR31
A Adadi (6425_CR21) 2018; 6
6425_CR30
A Rosenfeld (6425_CR5) 2019; 33
J Kober (6425_CR26) 2013; 32
S Palminteri (6425_CR14) 2017; 13
6425_CR39
6425_CR37
6425_CR36
References_xml – ident: 6425_CR19
– ident: 6425_CR1
– ident: 6425_CR40
  doi: 10.1109/ICDM.2018.00074
– ident: 6425_CR31
  doi: 10.1109/SCCC.2010.41
– volume: 267
  start-page: 1
  year: 2018
  ident: 6425_CR32
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2018.07.007
  contributor:
    fullname: T Miller
– volume: 42
  start-page: 201
  year: 2012
  ident: 6425_CR62
  publication-title: IEEE Trans Syst Man Cybern Part C: Appl Rev
  doi: 10.1109/TSMCC.2011.2106494
  contributor:
    fullname: S Adam
– ident: 6425_CR4
  doi: 10.1109/HRI.2016.7451741
– ident: 6425_CR29
– ident: 6425_CR45
  doi: 10.1145/3196478.3196488
– ident: 6425_CR41
  doi: 10.1609/aaai.v34i03.5631
– volume: 30
  start-page: 306
  issue: 3
  year: 2018
  ident: 6425_CR16
  publication-title: Connect Sci
  doi: 10.1080/09540091.2018.1443318
  contributor:
    fullname: F Cruz
– ident: 6425_CR39
– ident: 6425_CR20
– volume: 10
  start-page: 5574
  issue: 16
  year: 2020
  ident: 6425_CR61
  publication-title: Appl Sci
  doi: 10.3390/app10165574
  contributor:
    fullname: I Moreira
– ident: 6425_CR48
  doi: 10.1145/2909824.3020230
– ident: 6425_CR9
  doi: 10.1007/978-3-319-46493-0_1
– volume: 13
  start-page: e1005684
  issue: 8
  year: 2017
  ident: 6425_CR14
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005684
  contributor:
    fullname: S Palminteri
– volume: 33
  start-page: 673
  issue: 6
  year: 2019
  ident: 6425_CR5
  publication-title: Auton Agent Multi-Agent Syst
  doi: 10.1007/s10458-019-09408-y
  contributor:
    fullname: A Rosenfeld
– ident: 6425_CR66
– ident: 6425_CR8
– ident: 6425_CR35
  doi: 10.1007/978-3-030-57321-8_5
– ident: 6425_CR46
  doi: 10.24963/ijcai.2019/184
– ident: 6425_CR50
  doi: 10.1145/3173386.3177057
– volume: 32
  start-page: 1
  year: 2013
  ident: 6425_CR26
  publication-title: Int J Robot Res
  doi: 10.1177/0278364913495721
  contributor:
    fullname: J Kober
– ident: 6425_CR11
  doi: 10.1145/3278721.3278776
– volume: 76
  start-page: 158
  year: 2018
  ident: 6425_CR38
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.09.007
  contributor:
    fullname: D Hein
– ident: 6425_CR51
– ident: 6425_CR54
  doi: 10.1016/j.artint.2020.103367
– ident: 6425_CR42
  doi: 10.1609/aaai.v34i03.5631
– ident: 6425_CR17
– ident: 6425_CR34
– ident: 6425_CR59
– ident: 6425_CR49
  doi: 10.1109/CogSIMA.2014.6816556
– volume: 6
  start-page: 52138
  year: 2018
  ident: 6425_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
  contributor:
    fullname: A Adadi
– ident: 6425_CR47
  doi: 10.1145/2157689.2157748
– volume: 299
  start-page: 103525
  year: 2021
  ident: 6425_CR33
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2021.103525
  contributor:
    fullname: R Dazeley
– ident: 6425_CR30
  doi: 10.1007/978-3-540-72393-6_47
– ident: 6425_CR58
  doi: 10.1145/1518701.1519023
– ident: 6425_CR3
– volume-title: Reinforcement learning: an introduction
  year: 2018
  ident: 6425_CR12
  contributor:
    fullname: RS Sutton
– ident: 6425_CR15
  doi: 10.1109/IJCNN.2018.8489237
– ident: 6425_CR23
– ident: 6425_CR65
– ident: 6425_CR27
– ident: 6425_CR60
  doi: 10.1109/IROS.2013.6696520
– volume: 6
  start-page: 139
  year: 2015
  ident: 6425_CR44
  publication-title: Front Psychol
  contributor:
    fullname: G Böhm
– ident: 6425_CR56
– ident: 6425_CR7
– ident: 6425_CR10
– ident: 6425_CR37
– ident: 6425_CR55
  doi: 10.1609/aaai.v31i2.19108
– ident: 6425_CR6
  doi: 10.1609/aaai.v33i01.330110007
– ident: 6425_CR43
– ident: 6425_CR22
– volume: 68
  start-page: 101
  year: 2017
  ident: 6425_CR13
  publication-title: Ann Rev Psychol
  doi: 10.1146/annurev-psych-122414-033625
  contributor:
    fullname: SJ Gershman
– ident: 6425_CR2
– volume-title: Developmental robotics: from babies to robots
  year: 2015
  ident: 6425_CR25
  doi: 10.7551/mitpress/9320.001.0001
  contributor:
    fullname: A Cangelosi
– volume: 176
  start-page: 3057
  year: 2020
  ident: 6425_CR64
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.09.198
  contributor:
    fullname: R Setchi
– ident: 6425_CR18
  doi: 10.1109/CIG.2016.7860433
– ident: 6425_CR24
  doi: 10.1007/978-3-030-35288-2_6
– ident: 6425_CR52
  doi: 10.1109/HRI.2019.8673198
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 6425_CR63
  publication-title: Anal Chem
  doi: 10.1021/ac60214a047
  contributor:
    fullname: A Savitzky
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 6425_CR28
  publication-title: Nature
  doi: 10.1038/nature14236
  contributor:
    fullname: V Mnih
– ident: 6425_CR53
– ident: 6425_CR36
– ident: 6425_CR57
SSID ssj0004685
Score 2.4504955
Snippet Robotic systems are more present in our society everyday. In human–robot environments, it is crucial that end-users may correctly understand their robotic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 18113
SubjectTerms Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Decision making
Deep learning
Image Processing and Computer Vision
Navigation
Probability and Statistics in Computer Science
Robotics
Robots
S.I. : LatinX in AI Research
Special Issue on LatinX in AI Research
Success
Visual tasks
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgXLjwjRgMlAM3iNQ2SbtxmxDThAQnJu1WJakzIaEVddv_x0nbbSA4cIhUqVYObm0_J342wK2MtcukHXBMUFOCIpAbMRA8o-BNcNdYk3nu8MtrOp7I56mabnjcodi9vZEMjnrNdfMHmJT5-kWbKK52YY_Ag_R1XJNkuEWGDHM4KW0JkqJhyvy-x_dotIGYP25FQ7AZHcFBgxLZsP6sx7CD8xM4bCcwsMYgT8H6ErqG_8Sq0pQkz-rmzIsHttomrrBZqT94UXnvxmo2w4K90yOrMHRPteGgkDVjJGbMt3miRLo8g8no6e1xzJuxCdySPS25jU0S9Z3sp6mLi8y7tNSm6O8zBxYj5zKVioKgjnXGKqHQahtFWGiyd01OR5xDZ17O8QKYkEo7AjEuyqxEnZkYHUoPMqw2aIou3LXqyz_r7hj5ug9yUHYe-eWVnasu9FoN542lLPKkr8iPKMrbunDfan3z-u_dLv8nfgX7flJ8XR7Wg86yWuE14YmluQn_zxcB6MLL
  priority: 102
  providerName: Springer Nature
Title Explainable robotic systems: understanding goal-driven actions in a reinforcement learning scenario
URI https://link.springer.com/article/10.1007/s00521-021-06425-5
https://www.proquest.com/docview/2850405871
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_c9uKL3-J0jjz4psGubdrOF5myDxSHiIP5VJI0GYKss93-fy9t6qagD4XSlDxccpffXe7uB3Dhd7gOfdmlylUcHRRPUeF1PRri4Y1wV0gRmtrhp3EwmvgPUza1AbfcplVWNrEw1EkqTYz82o0Y7jeG-P528UkNa5S5XbUUGjVouOgpuHVo3PXHzy8blZEFKSf6MCa_x_ds2UxRPGciovjVLUZcRtnPo2mNN39dkRYnz2APdixkJL1yjfdhS80PYLeiYyBWOw9Bmnw6WwxFslSk-D8pOzXnN2S1WcVCZin_oElmTB0pSxty8o6vJFNFK1VZRA2J5ZSYEdPzCb3q9Agmg_7r_YhaDgUqUbmWVHaE60Taj4JAd5LQ2LdABspcbnalcrQOWeAliHukFpJ5TEkuHUclHJWfowXyjqE-T-fqBIjnM64R0WgnlL7ioegorXyDOCQXSiRNuKzEFy_KVhnxd1PkQtixYx4j7Jg1oVVJOLZqk8frRW7CVSX19fDfs53-P9sZbBua-DI3rAX1ZbZS5wgmlqINtWgwbEOjN3x77Lft_sGvE7f3BdJXyyE
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,41095,41537,42164,42606,43614,43819,52125,52248
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLDwjSgU8MAGFklsJy0LQohSoO3USmyR7dgVEmpK0v5_zo5DCxIMkaI48nD23T2f790hdMlCYRKmOkRHWsABhWoiaYeSBJw3wF2pZGK5w4Nh3Buzlzf-5gNupU-rrG2iM9RZrmyM_CZqc9hvHPD93eyT2K5R9nbVt9BYRxuMgqOxTPHu0wov0rXkhBOMze5h1JNmHHXOxkPha-RGIk74T8e0RJu_Lkid3-nuom0PGPF9tcJ7aE1P99FO3YwBe908QMpm03kqFC5ymcP_uKrTXN7ixSqHBU9y8UGywho6XBEbSvwOr7jQrpCqcjFD7DtKTLCt-ARn6vwQjbuPo4ce8R0UiALVmhMVyihoG9aOYxNmibVusYq1vdrsKB0Yk_CYZoB6lJGKU66VUEGgMwGqL8D-0CPUmOZTfYwwZVwYwDMmSBTTIpGhNppZvKGE1DJroqtafOmsKpSRfpdEdsJOA_tYYae8iVq1hFOvNGW6XOImuq6lvhz-e7aT_2e7QJu90aCf9p-Hr6doyzaMr7LEWqgxLxb6DGDFXJ67vfMFODLJSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9RSIwX8TOiqD140-HG1g28EQVRlHiQBE9L27XEaDYyxsW_3td9ABI9GA9Nlqxptn68_l77fr8HcO5YTHmOaBmyIRk6KLY0uN2yDQ83b4S7XHBPc4efBm5v6DyM6GiJxZ9GuxdXkhmnQas0hcnVJFBXc-KbPs1EN1gXbJEadB3KjoVwoQTl9t1rv7PEjUzTcqIXk9a1c-LMz61835wWiHPlkjTde7oVYMVXZyEn7_VZwuvic0XQ8T-_tQ1bOTAl7Wwm7cCaDHehUiR9ILkN2AOho_ZyyhWJIx5hfZLpQU-vyWyZK0PGEfswglgbVJIRKKbkDR9JLFPBVpGeTZI8c8WYaGUp9N2jfRh2Oy83PSPP1GAIXMKJISzeMJvKabqusgJPW1FXuFJfobaENJXyqGsHiK6E4oLaVAomTFMGDE0MQztnH0ApjEJ5CMR2KFOIm5TpCUcyj1tSSUfjGsG45EEVLooh8ieZIIc_l15O-883ddH959Mq1IpR9PPFOfUbTYqmi6KrWIXLYlAWr39v7ehv1c9g4_m26z_eD_rHsKnz1GfBaTUoJfFMniCaSfhpPmG_APwH6_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+robotic+systems%3A+understanding+goal-driven+actions+in+a+reinforcement+learning+scenario&rft.jtitle=Neural+computing+%26+applications&rft.au=Cruz%2C+Francisco&rft.au=Dazeley%2C+Richard&rft.au=Vamplew%2C+Peter&rft.au=Moreira%2C+Ithan&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=25&rft.spage=18113&rft.epage=18130&rft_id=info:doi/10.1007%2Fs00521-021-06425-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon