A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network
One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study of the subject and its effects on the environment can affect the control of flyrock hazards in the studied area. Therefore, the use of intelli...
Saved in:
Published in | Engineering with computers Vol. 36; no. 2; pp. 713 - 723 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study of the subject and its effects on the environment can affect the control of flyrock hazards in the studied area. Therefore, the use of intelligent models and methods which are capable of predicting and simulating the risk of flyrock can be considered as an appropriate solution in this regard. The current research was conducted using nonlinear models and Monte Carlo (MC) simulation. The data used in this study consist of 260 samples of rock thrown from a mine in Malaysia. The parameters used in these models include hole’s diameter (D), hole’s depth (HD), burden to spacing (BS), stemming (ST), maximum charge per delay (MC), and powder factor (PF). At first, multiple regression analysis (MRA) and artificial neural network (ANN) models were used in order to develop a non-linear relationship between dependent and independent parameters. The ANN model was an appropriate predictor of flyrock in the mine. Then using the best implemented model of ANN, the flyrock environmental phenomenon was simulated using MC technique. MC simulation showed a proper level of accuracy of flyrock ranges in the mine. Using this simulation, it can be concluded with 90% accuracy that the Flyrock phenomenon does not exceed 331 m. Under these conditions, this simulation can be used for various areas requiring risk assessment. Finally, a sensitive analysis was carried out on data. This analysis showed MC has the greatest effect on flyrock. |
---|---|
AbstractList | One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study of the subject and its effects on the environment can affect the control of flyrock hazards in the studied area. Therefore, the use of intelligent models and methods which are capable of predicting and simulating the risk of flyrock can be considered as an appropriate solution in this regard. The current research was conducted using nonlinear models and Monte Carlo (MC) simulation. The data used in this study consist of 260 samples of rock thrown from a mine in Malaysia. The parameters used in these models include hole’s diameter (D), hole’s depth (HD), burden to spacing (BS), stemming (ST), maximum charge per delay (MC), and powder factor (PF). At first, multiple regression analysis (MRA) and artificial neural network (ANN) models were used in order to develop a non-linear relationship between dependent and independent parameters. The ANN model was an appropriate predictor of flyrock in the mine. Then using the best implemented model of ANN, the flyrock environmental phenomenon was simulated using MC technique. MC simulation showed a proper level of accuracy of flyrock ranges in the mine. Using this simulation, it can be concluded with 90% accuracy that the Flyrock phenomenon does not exceed 331 m. Under these conditions, this simulation can be used for various areas requiring risk assessment. Finally, a sensitive analysis was carried out on data. This analysis showed MC has the greatest effect on flyrock. One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study of the subject and its effects on the environment can affect the control of flyrock hazards in the studied area. Therefore, the use of intelligent models and methods which are capable of predicting and simulating the risk of flyrock can be considered as an appropriate solution in this regard. The current research was conducted using nonlinear models and Monte Carlo (MC) simulation. The data used in this study consist of 260 samples of rock thrown from a mine in Malaysia. The parameters used in these models include hole’s diameter (D), hole’s depth (HD), burden to spacing (BS), stemming (ST), maximum charge per delay (MC), and powder factor (PF). At first, multiple regression analysis (MRA) and artificial neural network (ANN) models were used in order to develop a non-linear relationship between dependent and independent parameters. The ANN model was an appropriate predictor of flyrock in the mine. Then using the best implemented model of ANN, the flyrock environmental phenomenon was simulated using MC technique. MC simulation showed a proper level of accuracy of flyrock ranges in the mine. Using this simulation, it can be concluded with 90% accuracy that the Flyrock phenomenon does not exceed 331 m. Under these conditions, this simulation can be used for various areas requiring risk assessment. Finally, a sensitive analysis was carried out on data. This analysis showed MC has the greatest effect on flyrock. |
Author | Zhou, Jian Aghili, Nasim Koopialipoor, Mohammadreza Bui, Dieu Tien Ghaleini, Ebrahim Noroozi Tahir, M. M. |
Author_xml | – sequence: 1 givenname: Jian surname: Zhou fullname: Zhou, Jian organization: School of Resources and Safety Engineering, Central South University, State Key Laboratory of Safety and Health for Metal Mines – sequence: 2 givenname: Nasim surname: Aghili fullname: Aghili, Nasim organization: School of Housing, Building and Planning, Universiti Sains Malaysia (USM), Department of Real Estate, Faculty of Geo-Information and Real Estate, Universiti Teknologi Malaysia – sequence: 3 givenname: Ebrahim Noroozi surname: Ghaleini fullname: Ghaleini, Ebrahim Noroozi organization: Faculty of Mining and Metallurgy, Amirkabir University of Technology – sequence: 4 givenname: Dieu Tien surname: Bui fullname: Bui, Dieu Tien email: buitiendieu@tdtu.edu.vn organization: Geographic Information Science Research Group, Ton Duc Thang University, Faculty of Environment and Labour Safety, Ton Duc Thang University – sequence: 5 givenname: M. M. surname: Tahir fullname: Tahir, M. M. organization: UTM Construction Research Centre, Institute for Smart Infrastructure and Innovative Construction (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia – sequence: 6 givenname: Mohammadreza surname: Koopialipoor fullname: Koopialipoor, Mohammadreza organization: Faculty of Civil and Environmental Engineering, Amirkabir University of Technology |
BookMark | eNp9kE1PAjEQhhuDiYD-AU9NPK9OaffrSIhfCcaLnpuyO8WFZYudooFfbwETEw-cJpO-z3TmGbBe5zpk7FrArQDI7whAZlkCokxiO8qS3RnrCyXTJM0y2WN9EHmeQJblF2xAtAAQEqDsMxrzF9cF5BPjW8epWW1aExrXcbNee2eqD26d52gtVqH5Qm6IkGiFXeDOcttuvauWfGYIax6pJs5q22a-f6ctBVztYx1uvGljCd_OLy_ZuTUt4dVvHbL3h_u3yVMyfX18noynSSVFGZIKEHNUdQqocixUJWyR5qoWVgkBojamhqJMpZIqLleizQHQ1KmSMJPxXDlkN8e58ZDPDVLQC7fxXfxSj0RRCqlUVDRkxTFVeUfk0eqqCQcFwZum1QL0XrE-KtZRsT4o1ruIjv6ha9-sjN-ehuQRohju5uj_tjpB_QCHkZMc |
CitedBy_id | crossref_primary_10_1007_s00366_019_00808_y crossref_primary_10_3390_app9061042 crossref_primary_10_1007_s00366_019_00768_3 crossref_primary_10_1007_s11053_019_09605_2 crossref_primary_10_1007_s11053_020_09730_3 crossref_primary_10_1007_s40808_023_01719_0 crossref_primary_10_1007_s00366_020_01105_9 crossref_primary_10_1080_24705314_2020_1862965 crossref_primary_10_3390_app12178468 crossref_primary_10_1016_j_eswa_2023_119555 crossref_primary_10_1007_s12517_023_11561_4 crossref_primary_10_1007_s00366_020_01231_4 crossref_primary_10_1007_s10462_023_10636_8 crossref_primary_10_3390_sym14040807 crossref_primary_10_1007_s11600_023_01247_6 crossref_primary_10_1007_s40948_021_00243_8 crossref_primary_10_1080_10589759_2019_1623214 crossref_primary_10_1007_s12517_022_10615_3 crossref_primary_10_1016_j_cscm_2024_e03416 crossref_primary_10_1007_s40996_022_00912_y crossref_primary_10_3390_app10030869 crossref_primary_10_1007_s12597_024_00744_6 crossref_primary_10_1007_s00366_019_00868_0 crossref_primary_10_1016_j_heliyon_2024_e37876 crossref_primary_10_1007_s00521_022_06964_5 crossref_primary_10_1002_ep_14476 crossref_primary_10_1007_s00366_019_00754_9 crossref_primary_10_1007_s11053_023_10259_4 crossref_primary_10_1007_s00366_021_01305_x crossref_primary_10_1109_ACCESS_2021_3129979 crossref_primary_10_1080_08839514_2021_1997225 crossref_primary_10_1007_s12517_021_07772_2 crossref_primary_10_1016_j_knosys_2022_109533 crossref_primary_10_1016_j_eiar_2021_106627 crossref_primary_10_1016_j_trgeo_2024_101233 crossref_primary_10_3390_su15043265 crossref_primary_10_3390_app9245372 crossref_primary_10_1007_s13762_022_04170_3 crossref_primary_10_3390_su15108424 crossref_primary_10_1007_s11053_020_09764_7 crossref_primary_10_1007_s13762_022_04096_w crossref_primary_10_1007_s00366_019_00875_1 crossref_primary_10_3390_app10020472 crossref_primary_10_1007_s11053_020_09794_1 crossref_primary_10_1016_j_ins_2022_03_063 crossref_primary_10_1007_s11356_024_32561_1 crossref_primary_10_1016_j_istruc_2022_12_108 crossref_primary_10_1007_s00366_020_00997_x crossref_primary_10_1007_s11053_019_09519_z crossref_primary_10_1007_s10064_020_01788_w crossref_primary_10_1007_s12665_020_09300_z crossref_primary_10_1016_j_undsp_2020_05_005 crossref_primary_10_1038_s41598_020_76569_2 crossref_primary_10_1007_s00366_020_01136_2 crossref_primary_10_1016_j_advwatres_2021_104110 crossref_primary_10_1007_s42461_023_00879_y crossref_primary_10_53501_rteufemud_986903 crossref_primary_10_1007_s11053_020_09710_7 crossref_primary_10_1007_s11053_024_10445_y crossref_primary_10_3390_mining3020019 crossref_primary_10_1007_s10064_020_01834_7 crossref_primary_10_1007_s11053_019_09611_4 crossref_primary_10_1016_j_rineng_2024_101986 crossref_primary_10_1007_s00366_019_00752_x crossref_primary_10_1007_s00366_019_00816_y crossref_primary_10_1080_17480930_2020_1734151 crossref_primary_10_3390_su16031325 crossref_primary_10_1016_j_trgeo_2021_100579 crossref_primary_10_1007_s40996_022_00825_w crossref_primary_10_2478_amns_2022_2_0052 crossref_primary_10_3390_app10051761 crossref_primary_10_1007_s11053_019_09548_8 crossref_primary_10_1108_IJPPM_04_2023_0201 crossref_primary_10_1007_s11053_020_09676_6 crossref_primary_10_1007_s00366_019_00770_9 crossref_primary_10_1016_j_mlwa_2023_100517 crossref_primary_10_1016_j_measurement_2019_06_007 crossref_primary_10_1007_s11053_019_09515_3 crossref_primary_10_3390_math10152596 crossref_primary_10_1007_s00366_019_00855_5 crossref_primary_10_3390_geosciences13100294 crossref_primary_10_1007_s00366_019_00908_9 crossref_primary_10_1155_2022_5438023 crossref_primary_10_1007_s11053_020_09697_1 crossref_primary_10_1515_geo_2022_0624 crossref_primary_10_3390_app10041403 crossref_primary_10_1007_s00366_019_00833_x crossref_primary_10_3390_app10041486 crossref_primary_10_3390_app9081621 crossref_primary_10_1109_ACCESS_2019_2927632 crossref_primary_10_1007_s11053_019_09593_3 |
Cites_doi | 10.1007/s12665-015-4274-1 10.1016/j.ijrmms.2012.03.011 10.1007/s00500-018-3253-3 10.1007/s10064-017-1116-2 10.1007/s10064-014-0657-x 10.1007/s00366-015-0402-5 10.1007/s00366-018-00694-w 10.1007/s00366-018-0642-2 10.1016/j.tust.2016.12.009 10.1016/j.radphyschem.2009.04.030 10.1007/s00521-017-2990-z10 10.1007/s12665-017-6864-6 10.1007/s00366-018-00700-1 10.1007/s10706-015-9970-9 10.1007/s00366-019-00711-6 10.1007/s00366-017-0545-7 10.1007/s00366-018-0658-7 10.1016/j.tust.2018.07.023 10.1007/s00366-018-0596-4 10.1007/s00366-018-0625-3 10.1007/s00521-016-2598-8 10.1007/s10064-018-1349-8 10.1016/j.measurement.2014.12.029 10.1007/s00366-019-00715-2 10.1007/s00366-016-0499-1 10.1007/s00366-019-00701-8 10.1007/s00603-016-1015-z 10.1061/(ASCE)CF.1943-5509.0001263 10.1016/j.cageo.2005.06.022 10.1260/0957456053499095 10.1016/j.ssci.2011.08.065 10.12989/sss.2015.16.3.497 10.1016/j.enggeo.2007.10.009 10.1080/014311697218719 10.1016/j.tust.2008.01.007 10.1007/s12517-010-0185-3 10.1016/S1452-3981(23)15063-2 10.1016/0893-6080(89)90020-8 10.1007/s10661-018-6719-y 10.1016/j.jsr.2003.07.003 10.1016/j.buildenv.2012.07.005 10.1061/(ASCE)GM.1943-5622.0001125 10.1007/s00521-012-0917-2 10.1016/j.petrol.2018.03.050 10.12989/scs.2016.21.3.679 10.1007/s12517-015-2057-3 10.1061/(ASCE)CP.1943-5487.0000553 10.1007/s10706-018-0459-1 10.1080/0305215X.2018.1439943 10.1007/s12517-015-1952-y 10.1007/978-1-4899-3099-6_2 10.1016/j.ijrmms.2018.08.004 10.12989/sss.2014.14.5.785 10.1007/s00521-016-2537-8 10.1007/s00603-012-0269-3 10.12989/sem.2016.60.3.471 10.1016/0925-2312(95)00039-9 10.1016/S1003-6326(11)61195-3 10.1007/s00603-018-1667-y 10.1007/s00603-017-1395-8 10.1007/s10845-017-1306-6 10.1007/s12517-013-1174-0 10.1177/1077546314568172 10.1016/j.ssci.2010.09.004 10.1016/j.tust.2018.08.029 10.12989/scs.2014.17.5.623 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s00366-019-00726-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1435-5663 |
EndPage | 723 |
ExternalDocumentID | 10_1007_s00366_019_00726_z |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-c0ee7e4d50e47e84c1f8574d1f41101daad08953434fec9ef700ead5430b31773 |
IEDL.DBID | U2A |
ISSN | 0177-0667 |
IngestDate | Wed Aug 13 08:37:32 EDT 2025 Tue Jul 01 04:18:14 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Fri Feb 21 02:35:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ANN Flyrock phenomenon Sensitivity analysis Risk assessment Monte Carlo simulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-c0ee7e4d50e47e84c1f8574d1f41101daad08953434fec9ef700ead5430b31773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2189134414 |
PQPubID | 326339 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2189134414 crossref_citationtrail_10_1007_s00366_019_00726_z crossref_primary_10_1007_s00366_019_00726_z springer_journals_10_1007_s00366_019_00726_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200400 2020-4-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200400 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationSubtitle | An International Journal for Simulation-Based Engineering |
PublicationTitle | Engineering with computers |
PublicationTitleAbbrev | Engineering with Computers |
PublicationYear | 2020 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Shams, Monjezi, Majd, Armaghani (CR37) 2015; 8 Hasanipanah, Jahed Armaghani, Bakhshandeh Amnieh, Koopialipoor, Arab (CR45) 2018; 36 Toghroli, Suhatril, Ibrahim (CR28) 2016; 29 Yazdani Bejarbaneh, Jahed Armaghani, Mohd Amin (CR16) 2015 Bhandari (CR12) 1997; 388 Safa, Shariati, Ibrahim (CR27) 2016; 21 Moayedi, Jahed Armaghani (CR47) 2017 Zhao, Yang, Chen, Chen, Huang, Liu (CR19) 2018; 52 Zhao, Noorbakhsh, Koopialipoor (CR66) 2019 Koopialipoor, Armaghani, Hedayat (CR60) 2018 CR79 CR78 Khandelwal, Armaghani (CR59) 2016; 34 Faradonbeh, Hasanipanah, Amnieh (CR39) 2018; 190 Toghroli, Darvishmoghaddam, Zandi (CR33) 2018; 21 Shi, Zhou, Wu (CR40) 2012; 22 Armaghani, Mahdiyar, Hasanipanah (CR80) 2016; 49 Hajihassani, Jahed Armaghani, Monjezi (CR8) 2015 Koopialipoor, Ghaleini, Haghighi (CR57) 2018 CR71 Hajihassani, Jahed Armaghani, Marto, Tonnizam Mohamad (CR1) 2015 Roth (CR52) 1979 Khandelwal, Singh (CR6) 2005; 36 Zhou, Li, Mitri (CR22) 2018; 81 Liao, Khandelwal, Yang (CR65) 2019 Koopialipoor, Fallah, Armaghani (CR2) 2018 Morin, Ficarazzo (CR84) 2006; 32 Armaghani, Mohamad, Narayanasamy (CR34) 2017; 63 Asadi, Moayedi, Huat (CR50) 2011; 6 Ripley (CR69) 1993; 50, pp Gordan, Koopialipoor, Clementking (CR62) 2018 Kanellopoulos, Wilkinson (CR73) 1997; 18 Faradonbeh, Armaghani, Amnieh, Mohamad (CR14) 2016; 29 Wang, Shi, Zhou (CR41) 2018; 110 Bianchini, Hewage (CR82) 2012; 58 Mohammadhassani, Nezamabadi-Pour, Suhatril, Shariati (CR77) 2014; 14 Ghasemi, Sari, Ataei (CR9) 2012; 52 Wang, Shi, Zhou, Qiu (CR43) 2018; 50 Dunn, Shultis (CR83) 2009; 78 Yang, Li, Jie, Zhang (CR17) 2018; 81 Khandelwal, Monjezi (CR5) 2013; 46 Bajpayee, Rehak, Mowrey, Ingram (CR11) 2004; 35 Masters (CR72) 1993 Zhou, Li, Shi (CR44) 2012; 50 Koopialipoor, Murlidhar, Hedayat (CR55) 2019 Koopialipoor, Nikouei, Marto (CR58) 2018 Moayedi, Rezaei (CR48) 2017 Hornik, Stinchcombe, White (CR64) 1989; 2 CR15 Zorlu, Gokceoglu, Ocakoglu (CR75) 2008; 96 Armaghani, Mohamad, Momeni (CR35) 2016; 9 Zhou, Shi, Li (CR21) 2016; 22 CR53 Mansouri, Shariati, Safa (CR30) 2017; 30 Jahed Armaghani, Tonnizam Mohamad, Hajihassani (CR7) 2016 Chahnasir, Zandi, Shariati (CR67) 2018; 22 Toghroli, Mohammadhassani, Suhatril (CR29) 2014; 17 Karkevandi-Talkhooncheh, Sharifi, Ahmadi (CR56) 2018; 166 Moayedi, Raftari, Sharifi (CR49) 2019 Zhou, Li, Mitri (CR20) 2016; 30 Armaghani, Hajihassani, Mohamad (CR3) 2014; 7 Little, Blair (CR10) 2010; 9 Mansouri, Safa, Ibrahim (CR31) 2016; 60 Monjezi, Mehrdanesh, Malek, Khandelwal (CR4) 2013; 23 Monjezi, Khoshalan, Varjani (CR26) 2012; 5 Shahnazar, Nikafshan Rad, Hasanipanah (CR38) 2017 Ghaleini, Koopialipoor, Momenzadeh (CR61) 2018 CR24 Mohammadhassani, Saleh, Suhatril, Safa (CR32) 2015; 16 Moayedi, Hayati (CR51) 2018; 18 CR68 Mandal, Singh (CR13) 2009; 24 Yang, Liu, Liu (CR18) 2018; 51 Koopialipoor, Fahimifar, Ghaleini (CR76) 2019 Wang, Shi, Zhou (CR42) 2019; 33 Jahed Armaghani, Hasanipanah, Mahdiyar (CR36) 2016 Paola (CR70) 1994 Kaastra, Boyd (CR74) 1996; 10 Mahdiyar, Hasanipanah, Armaghani (CR81) 2017 Koopialipoor, Armaghani, Haghighi, Ghaleini (CR63) 2017 Rezaei, Monjezi, Varjani (CR46) 2011; 49 Lundborg, Persson, Ladegaard-Pedersen, Holmberg (CR25) 1975; 176 Jimeno, Jimeno, Carcedo, De Ramiro (CR54) 1995 Roth (CR23) 1979 M Khandelwal (726_CR5) 2013; 46 N Lundborg (726_CR25) 1975; 176 K Hornik (726_CR64) 1989; 2 Roohollah Shirani Faradonbeh (726_CR14) 2016; 29 TN Little (726_CR10) 2010; 9 DJ Armaghani (726_CR34) 2017; 63 726_CR53 M Koopialipoor (726_CR58) 2018 M Koopialipoor (726_CR55) 2019 I Kaastra (726_CR74) 1996; 10 B Yazdani Bejarbaneh (726_CR16) 2015 BD Ripley (726_CR69) 1993; 50, pp 726_CR15 DJ Armaghani (726_CR35) 2016; 9 X Shi (726_CR40) 2012; 22 M Wang (726_CR42) 2019; 33 I Mansouri (726_CR30) 2017; 30 H Moayedi (726_CR47) 2017 I Kanellopoulos (726_CR73) 1997; 18 A Toghroli (726_CR33) 2018; 21 J Zhou (726_CR20) 2016; 30 J Roth (726_CR52) 1979 CL Jimeno (726_CR54) 1995 A Asadi (726_CR50) 2011; 6 A Shahnazar (726_CR38) 2017 JD Paola (726_CR70) 1994 J Zhou (726_CR21) 2016; 22 Mahdi Hasanipanah (726_CR45) 2018; 36 726_CR24 M Wang (726_CR41) 2018; 110 726_CR68 M Monjezi (726_CR4) 2013; 23 M Koopialipoor (726_CR2) 2018 M Hajihassani (726_CR8) 2015 M Hajihassani (726_CR1) 2015 H Moayedi (726_CR48) 2017 M Monjezi (726_CR26) 2012; 5 M Koopialipoor (726_CR63) 2017 J Roth (726_CR23) 1979 H Moayedi (726_CR49) 2019 T Masters (726_CR72) 1993 ES Chahnasir (726_CR67) 2018; 22 DJ Armaghani (726_CR80) 2016; 49 RS Faradonbeh (726_CR39) 2018; 190 EN Ghaleini (726_CR61) 2018 726_CR78 A Toghroli (726_CR28) 2016; 29 726_CR79 M Koopialipoor (726_CR60) 2018 M Koopialipoor (726_CR57) 2018 B Gordan (726_CR62) 2018 F Bianchini (726_CR82) 2012; 58 D Jahed Armaghani (726_CR7) 2016 M Wang (726_CR43) 2018; 50 726_CR71 S Shams (726_CR37) 2015; 8 J Zhou (726_CR22) 2018; 81 M Khandelwal (726_CR6) 2005; 36 H Yang (726_CR18) 2018; 51 M Safa (726_CR27) 2016; 21 J Zhou (726_CR44) 2012; 50 Y Zhao (726_CR66) 2019 HQ Yang (726_CR17) 2018; 81 X Liao (726_CR65) 2019 M Mohammadhassani (726_CR77) 2014; 14 A Toghroli (726_CR29) 2014; 17 H Moayedi (726_CR51) 2018; 18 K Zorlu (726_CR75) 2008; 96 WL Dunn (726_CR83) 2009; 78 MA Morin (726_CR84) 2006; 32 SK Mandal (726_CR13) 2009; 24 M Khandelwal (726_CR59) 2016; 34 TS Bajpayee (726_CR11) 2004; 35 M Koopialipoor (726_CR76) 2019 DJ Armaghani (726_CR3) 2014; 7 I Mansouri (726_CR31) 2016; 60 M Mohammadhassani (726_CR32) 2015; 16 M Rezaei (726_CR46) 2011; 49 E Ghasemi (726_CR9) 2012; 52 A Mahdiyar (726_CR81) 2017 S Bhandari (726_CR12) 1997; 388 Yanru Zhao (726_CR19) 2018; 52 D Jahed Armaghani (726_CR36) 2016 A Karkevandi-Talkhooncheh (726_CR56) 2018; 166 |
References_xml | – volume: 190 start-page: 351 year: 2018 ident: CR39 article-title: Development of GP and GEP models to estimate an environmental issue induced by blasting operation publication-title: Environ Monit Assess – volume: 10 start-page: 215 year: 1996 end-page: 236 ident: CR74 article-title: Designing a neural network for forecasting financial and economic time series publication-title: Neurocomputing – ident: CR68 – year: 2015 ident: CR8 article-title: Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4274-1 – volume: 52 start-page: 163 year: 2012 end-page: 170 ident: CR9 article-title: Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2012.03.011 – volume: 36 start-page: 2247 issue: 4 year: 2018 end-page: 2260 ident: CR45 article-title: A Risk-Based Technique to Analyze Flyrock Results Through Rock Engineering System publication-title: Geotechnical and Geological Engineering – year: 2018 ident: CR60 article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions publication-title: Soft Comput doi: 10.1007/s00500-018-3253-3 – year: 2017 ident: CR63 article-title: A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-017-1116-2 – year: 2015 ident: CR1 article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-014-0657-x – year: 2016 ident: CR7 article-title: Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods publication-title: Eng Comput doi: 10.1007/s00366-015-0402-5 – year: 2019 ident: CR49 article-title: Optimization of ANFIS with GA and PSO estimating α ratio in driven piles publication-title: Eng Comput doi: 10.1007/s00366-018-00694-w – volume: 81 start-page: 632 year: 2018 end-page: 659 ident: CR22 article-title: Evaluation method of rockburst: state-of-the-art literature review publication-title: Tunn Undergr Sp Technol – year: 2018 ident: CR62 article-title: Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques publication-title: Eng Comput doi: 10.1007/s00366-018-0642-2 – volume: 16 start-page: 497 year: 2015 end-page: 519 ident: CR32 article-title: Fuzzy modelling approach for shear strength prediction of RC deep beams publication-title: Smart Struct Syst – volume: 63 start-page: 29 year: 2017 end-page: 43 ident: CR34 article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2016.12.009 – volume: 78 start-page: 852 year: 2009 end-page: 858 ident: CR83 article-title: Monte Carlo methods for design and analysis of radiation detectors publication-title: Radiat Phys Chem doi: 10.1016/j.radphyschem.2009.04.030 – year: 2017 ident: CR48 article-title: An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2990-z10 – volume: 176 start-page: 95 year: 1975 end-page: 100 ident: CR25 article-title: Keeping the lid on flyrock in open-pit blasting publication-title: Eng Min J – year: 1979 ident: CR23 publication-title: A model for the determination of flyrock range as a function of shot conditions – volume: 21 start-page: 679 year: 2016 end-page: 688 ident: CR27 article-title: Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength publication-title: Steel Compos Struct – volume: 22 start-page: 3986 year: 2016 end-page: 3997 ident: CR21 article-title: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining publication-title: J Vib Control – year: 2017 ident: CR38 article-title: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model publication-title: Environ Earth Sci doi: 10.1007/s12665-017-6864-6 – year: 2019 ident: CR55 article-title: The use of new intelligent techniques in designing retaining walls publication-title: Eng Comput doi: 10.1007/s00366-018-00700-1 – volume: 32 start-page: 352 year: 2006 end-page: 359 ident: CR84 article-title: Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz–Ram model publication-title: Comput Geosci – ident: CR71 – volume: 50 start-page: 629 year: 2012 end-page: 644 ident: CR44 article-title: Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines publication-title: Saf Sci – volume: 34 start-page: 605 year: 2016 end-page: 620 ident: CR59 article-title: Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique publication-title: Geotech Geol Eng doi: 10.1007/s10706-015-9970-9 – volume: 52 start-page: 1303 issue: 5 year: 2018 end-page: 1313 ident: CR19 article-title: Effects of Jointed Rock Mass and Mixed Ground Conditions on the Cutting Efficiency and Cutter Wear of Tunnel Boring Machine publication-title: Rock Mechanics and Rock Engineering – volume: 110 start-page: 199 year: 2018 end-page: 209 ident: CR41 article-title: Charge design scheme optimization for ring blasting based on the developed Scaled Heelan model publication-title: Int J Rock Mech Min Sci – volume: 50, pp start-page: 40 year: 1993 end-page: 123 ident: CR69 article-title: Statistical aspects of neural networks publication-title: Networks chaos—statistical and probabilistic aspects, vol – ident: CR15 – volume: 96 start-page: 141 year: 2008 end-page: 158 ident: CR75 article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models publication-title: Eng Geol – volume: 60 start-page: 471 year: 2016 end-page: 488 ident: CR31 article-title: Strength prediction of rotary brace damper using MLR and MARS publication-title: Struct Eng Mech – year: 2019 ident: CR65 article-title: Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques publication-title: Eng Comput doi: 10.1007/s00366-019-00711-6 – volume: 18 start-page: 6018009 year: 2018 ident: CR51 article-title: Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile publication-title: Int J Geomech – ident: CR78 – year: 2017 ident: CR47 article-title: Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil publication-title: Eng Comput doi: 10.1007/s00366-017-0545-7 – year: 2018 ident: CR57 article-title: Overbreak prediction and optimization in tunnel using neural network and bee colony techniques publication-title: Eng Comput doi: 10.1007/s00366-018-0658-7 – volume: 81 start-page: 112 year: 2018 end-page: 120 ident: CR17 article-title: Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2018.07.023 – volume: 30 start-page: 4016003 year: 2016 ident: CR20 article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods publication-title: J Comput Civ Eng – year: 2018 ident: CR2 article-title: Three hybrid intelligent models in estimating flyrock distance resulting from blasting publication-title: Eng Comput doi: 10.1007/s00366-018-0596-4 – volume: 8 start-page: 10819 year: 2015 end-page: 10832 ident: CR37 article-title: Application of fuzzy inference system for prediction of rock fragmentation induced by blasting publication-title: Arab J Geosci – volume: 29 start-page: 1 year: 2016 end-page: 9 ident: CR28 article-title: Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam publication-title: J Intell Manuf – year: 2018 ident: CR61 article-title: A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls publication-title: Eng Comput doi: 10.1007/s00366-018-0625-3 – volume: 22 start-page: 413 year: 2018 end-page: 424 ident: CR67 article-title: Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors publication-title: SMART Struct Syst – volume: 5 start-page: 441 year: 2012 end-page: 448 ident: CR26 article-title: Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach publication-title: Arab J Geosci – year: 2016 ident: CR36 article-title: Airblast prediction through a hybrid genetic algorithm-ANN model publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2598-8 – volume: 49 start-page: 298 year: 2011 end-page: 305 ident: CR46 article-title: Development of a fuzzy model to predict flyrock in surface mining publication-title: Saf Sci – volume: 7 start-page: 5383 year: 2014 end-page: 5396 ident: CR3 article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization publication-title: Arab J Geosci – year: 1994 ident: CR70 publication-title: Neural network classification of multispectral imagery – year: 1995 ident: CR54 publication-title: Drilling and blasting of rocks, Geomining Technological Institute of Spain – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: CR64 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw – volume: 166 start-page: 924 year: 2018 end-page: 947 ident: CR56 article-title: Application of hybrid adaptive neuro-fuzzy inference system in well placement optimization publication-title: J Pet Sci Eng – year: 2018 ident: CR58 article-title: Predicting tunnel boring machine performance through a new model based on the group method of data handling publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1349-8 – year: 1979 ident: CR52 publication-title: A model for the determination of flyrock range as a function of shot conditions. US Bureau of Mines contract J0387242 – ident: CR53 – volume: 29 start-page: 269 issue: 6 year: 2016 end-page: 281 ident: CR14 article-title: Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm publication-title: Neural Computing and Applications – volume: 46 start-page: 389 year: 2013 end-page: 396 ident: CR5 article-title: Prediction of backbreak in open-pit blasting operations using the machine learning method publication-title: Rock Mech Rock Eng – volume: 6 start-page: 1146 year: 2011 end-page: 1158 ident: CR50 article-title: Prediction of zeta potential for tropical peat in the presence of different cations using artificial neural networks publication-title: Int J Electrochem Sci – volume: 18 start-page: 711 year: 1997 end-page: 725 ident: CR73 article-title: Strategies and best practice for neural network image classification publication-title: Int J Remote Sens – volume: 388 start-page: 388 year: 1997 ident: CR12 article-title: Engineering rock blasting operations publication-title: A A Balkema – volume: 51 start-page: 1263 year: 2018 end-page: 1277 ident: CR18 article-title: Investigation on the cracking character of jointed rock mass beneath TBM disc cutter publication-title: Rock Mech Rock Eng – volume: 33 start-page: 4019002 year: 2019 ident: CR42 article-title: Optimal charge scheme calculation for multiring blasting using modified Harries mathematical model publication-title: J Perform Constr Facil – volume: 24 start-page: 22 year: 2009 end-page: 36 ident: CR13 article-title: Evaluating extent and causes of overbreak in tunnels publication-title: Tunn Undergr Sp Technol – year: 2015 ident: CR16 article-title: Strength characterisation of shale using Mohr-Coulomb and Hoek-Brown criteria publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2014.12.029 – volume: 21 start-page: 525 year: 2018 end-page: 530 ident: CR33 article-title: Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method publication-title: Comput Concr – ident: CR79 – year: 2019 ident: CR66 article-title: A new methodology for optimization and prediction of rate of penetration during drilling operations publication-title: Eng Comput doi: 10.1007/s00366-019-00715-2 – year: 2017 ident: CR81 article-title: A Monte Carlo technique in safety assessment of slope under seismic condition publication-title: Eng Comput doi: 10.1007/s00366-016-0499-1 – volume: 36 start-page: 7 year: 2005 end-page: 16 ident: CR6 article-title: Prediction of blast induced air overpressure in opencast mine publication-title: Noise Vib Worldw – volume: 9 start-page: 48 year: 2016 ident: CR35 article-title: Prediction of the strength and elasticity modulus of granite through an expert artificial neural network publication-title: Arab J Geosci – volume: 14 start-page: 785 year: 2014 end-page: 809 ident: CR77 article-title: An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups publication-title: Smart Struct Syst Int J – volume: 50 start-page: 2177 year: 2018 end-page: 2191 ident: CR43 article-title: Multi-planar detection optimization algorithm for the interval charging structure of large-diameter longhole blasting design based on rock fragmentation aspects publication-title: Eng Optim – volume: 30 start-page: 1247 year: 2017 end-page: 1257 ident: CR30 article-title: Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique publication-title: J Intell Manuf – volume: 58 start-page: 152 year: 2012 end-page: 162 ident: CR82 article-title: Probabilistic social cost-benefit analysis for green roofs: a lifecycle approach publication-title: Build Environ – volume: 35 start-page: 47 year: 2004 end-page: 57 ident: CR11 article-title: Blasting injuries in surface mining with emphasis on flyrock and blast area security publication-title: J Saf Res – year: 1993 ident: CR72 publication-title: Practical neural network recipes in C++ – volume: 23 start-page: 349 year: 2013 end-page: 356 ident: CR4 article-title: Evaluation of effect of blast design parameters on flyrock using artificial neural networks publication-title: Neural Comput Appl – volume: 22 start-page: 432 year: 2012 end-page: 441 ident: CR40 article-title: Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction publication-title: Trans Nonferrous Met Soc China – year: 2019 ident: CR76 article-title: Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance publication-title: Eng Comput doi: 10.1007/s00366-019-00701-8 – volume: 9 start-page: 641 year: 2010 end-page: 647 ident: CR10 article-title: Mechanistic Monte Carlo models for analysis of flyrock risk publication-title: Rock Fragm Blasting – volume: 49 start-page: 1 year: 2016 end-page: 11 ident: CR80 article-title: Risk assessment and prediction of flyrock distance by combined multiple regression analysis and Monte Carlo simulation of quarry blasting publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1015-z – ident: CR24 – volume: 17 start-page: 623 year: 2014 end-page: 639 ident: CR29 article-title: Prediction of shear capacity of channel shear connectors using the ANFIS model publication-title: Steel Compos Struct – volume: 33 start-page: 4019002 year: 2019 ident: 726_CR42 publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0001263 – year: 2018 ident: 726_CR61 publication-title: Eng Comput doi: 10.1007/s00366-018-0625-3 – year: 2018 ident: 726_CR62 publication-title: Eng Comput doi: 10.1007/s00366-018-0642-2 – volume: 32 start-page: 352 year: 2006 ident: 726_CR84 publication-title: Comput Geosci doi: 10.1016/j.cageo.2005.06.022 – volume: 36 start-page: 7 year: 2005 ident: 726_CR6 publication-title: Noise Vib Worldw doi: 10.1260/0957456053499095 – volume: 50 start-page: 629 year: 2012 ident: 726_CR44 publication-title: Saf Sci doi: 10.1016/j.ssci.2011.08.065 – volume: 388 start-page: 388 year: 1997 ident: 726_CR12 publication-title: A A Balkema – ident: 726_CR78 – volume: 16 start-page: 497 year: 2015 ident: 726_CR32 publication-title: Smart Struct Syst doi: 10.12989/sss.2015.16.3.497 – ident: 726_CR71 – year: 2016 ident: 726_CR7 publication-title: Eng Comput doi: 10.1007/s00366-015-0402-5 – volume: 96 start-page: 141 year: 2008 ident: 726_CR75 publication-title: Eng Geol doi: 10.1016/j.enggeo.2007.10.009 – volume: 29 start-page: 1 year: 2016 ident: 726_CR28 publication-title: J Intell Manuf – year: 2019 ident: 726_CR49 publication-title: Eng Comput doi: 10.1007/s00366-018-00694-w – volume-title: A model for the determination of flyrock range as a function of shot conditions. US Bureau of Mines contract J0387242 year: 1979 ident: 726_CR52 – volume-title: Neural network classification of multispectral imagery year: 1994 ident: 726_CR70 – volume: 18 start-page: 711 year: 1997 ident: 726_CR73 publication-title: Int J Remote Sens doi: 10.1080/014311697218719 – volume: 24 start-page: 22 year: 2009 ident: 726_CR13 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2008.01.007 – volume: 5 start-page: 441 year: 2012 ident: 726_CR26 publication-title: Arab J Geosci doi: 10.1007/s12517-010-0185-3 – ident: 726_CR68 – year: 2018 ident: 726_CR2 publication-title: Eng Comput doi: 10.1007/s00366-018-0596-4 – volume: 21 start-page: 525 year: 2018 ident: 726_CR33 publication-title: Comput Concr – volume: 6 start-page: 1146 year: 2011 ident: 726_CR50 publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)15063-2 – year: 2015 ident: 726_CR8 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4274-1 – volume: 2 start-page: 359 year: 1989 ident: 726_CR64 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – year: 2017 ident: 726_CR47 publication-title: Eng Comput doi: 10.1007/s00366-017-0545-7 – volume: 34 start-page: 605 year: 2016 ident: 726_CR59 publication-title: Geotech Geol Eng doi: 10.1007/s10706-015-9970-9 – volume: 190 start-page: 351 year: 2018 ident: 726_CR39 publication-title: Environ Monit Assess doi: 10.1007/s10661-018-6719-y – volume: 35 start-page: 47 year: 2004 ident: 726_CR11 publication-title: J Saf Res doi: 10.1016/j.jsr.2003.07.003 – volume: 58 start-page: 152 year: 2012 ident: 726_CR82 publication-title: Build Environ doi: 10.1016/j.buildenv.2012.07.005 – volume: 176 start-page: 95 year: 1975 ident: 726_CR25 publication-title: Eng Min J – volume: 18 start-page: 6018009 year: 2018 ident: 726_CR51 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0001125 – year: 2019 ident: 726_CR65 publication-title: Eng Comput doi: 10.1007/s00366-019-00711-6 – year: 2017 ident: 726_CR48 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2990-z10 – year: 2019 ident: 726_CR76 publication-title: Eng Comput doi: 10.1007/s00366-019-00701-8 – volume: 23 start-page: 349 year: 2013 ident: 726_CR4 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0917-2 – volume: 166 start-page: 924 year: 2018 ident: 726_CR56 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2018.03.050 – volume: 21 start-page: 679 year: 2016 ident: 726_CR27 publication-title: Steel Compos Struct doi: 10.12989/scs.2016.21.3.679 – volume: 9 start-page: 641 year: 2010 ident: 726_CR10 publication-title: Rock Fragm Blasting – volume: 63 start-page: 29 year: 2017 ident: 726_CR34 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2016.12.009 – volume: 9 start-page: 48 year: 2016 ident: 726_CR35 publication-title: Arab J Geosci doi: 10.1007/s12517-015-2057-3 – volume: 30 start-page: 4016003 year: 2016 ident: 726_CR20 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000553 – volume: 78 start-page: 852 year: 2009 ident: 726_CR83 publication-title: Radiat Phys Chem doi: 10.1016/j.radphyschem.2009.04.030 – volume: 36 start-page: 2247 issue: 4 year: 2018 ident: 726_CR45 publication-title: Geotechnical and Geological Engineering doi: 10.1007/s10706-018-0459-1 – ident: 726_CR15 – volume: 50 start-page: 2177 year: 2018 ident: 726_CR43 publication-title: Eng Optim doi: 10.1080/0305215X.2018.1439943 – ident: 726_CR53 – volume-title: Drilling and blasting of rocks, Geomining Technological Institute of Spain year: 1995 ident: 726_CR54 – year: 2019 ident: 726_CR55 publication-title: Eng Comput doi: 10.1007/s00366-018-00700-1 – year: 2018 ident: 726_CR57 publication-title: Eng Comput doi: 10.1007/s00366-018-0658-7 – volume: 8 start-page: 10819 year: 2015 ident: 726_CR37 publication-title: Arab J Geosci doi: 10.1007/s12517-015-1952-y – volume: 81 start-page: 112 year: 2018 ident: 726_CR17 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2018.07.023 – volume: 49 start-page: 1 year: 2016 ident: 726_CR80 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1015-z – volume: 50, pp start-page: 40 year: 1993 ident: 726_CR69 publication-title: Networks chaos—statistical and probabilistic aspects, vol doi: 10.1007/978-1-4899-3099-6_2 – year: 2015 ident: 726_CR16 publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2014.12.029 – volume: 52 start-page: 163 year: 2012 ident: 726_CR9 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2012.03.011 – ident: 726_CR24 – year: 2017 ident: 726_CR38 publication-title: Environ Earth Sci doi: 10.1007/s12665-017-6864-6 – volume: 110 start-page: 199 year: 2018 ident: 726_CR41 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.08.004 – year: 2019 ident: 726_CR66 publication-title: Eng Comput doi: 10.1007/s00366-019-00715-2 – volume-title: Practical neural network recipes in C++ year: 1993 ident: 726_CR72 – volume: 14 start-page: 785 year: 2014 ident: 726_CR77 publication-title: Smart Struct Syst Int J doi: 10.12989/sss.2014.14.5.785 – volume: 29 start-page: 269 issue: 6 year: 2016 ident: 726_CR14 publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2537-8 – volume: 46 start-page: 389 year: 2013 ident: 726_CR5 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-012-0269-3 – volume: 22 start-page: 413 year: 2018 ident: 726_CR67 publication-title: SMART Struct Syst – volume: 60 start-page: 471 year: 2016 ident: 726_CR31 publication-title: Struct Eng Mech doi: 10.12989/sem.2016.60.3.471 – volume: 10 start-page: 215 year: 1996 ident: 726_CR74 publication-title: Neurocomputing doi: 10.1016/0925-2312(95)00039-9 – volume: 22 start-page: 432 year: 2012 ident: 726_CR40 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(11)61195-3 – year: 2018 ident: 726_CR60 publication-title: Soft Comput doi: 10.1007/s00500-018-3253-3 – ident: 726_CR79 – year: 2017 ident: 726_CR63 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-017-1116-2 – year: 2015 ident: 726_CR1 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-014-0657-x – volume: 52 start-page: 1303 issue: 5 year: 2018 ident: 726_CR19 publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/s00603-018-1667-y – year: 2017 ident: 726_CR81 publication-title: Eng Comput doi: 10.1007/s00366-016-0499-1 – volume: 51 start-page: 1263 year: 2018 ident: 726_CR18 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1395-8 – volume: 30 start-page: 1247 year: 2017 ident: 726_CR30 publication-title: J Intell Manuf doi: 10.1007/s10845-017-1306-6 – year: 2018 ident: 726_CR58 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1349-8 – year: 2016 ident: 726_CR36 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2598-8 – volume: 7 start-page: 5383 year: 2014 ident: 726_CR3 publication-title: Arab J Geosci doi: 10.1007/s12517-013-1174-0 – volume-title: A model for the determination of flyrock range as a function of shot conditions year: 1979 ident: 726_CR23 – volume: 22 start-page: 3986 year: 2016 ident: 726_CR21 publication-title: J Vib Control doi: 10.1177/1077546314568172 – volume: 49 start-page: 298 year: 2011 ident: 726_CR46 publication-title: Saf Sci doi: 10.1016/j.ssci.2010.09.004 – volume: 81 start-page: 632 year: 2018 ident: 726_CR22 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2018.08.029 – volume: 17 start-page: 623 year: 2014 ident: 726_CR29 publication-title: Steel Compos Struct doi: 10.12989/scs.2014.17.5.623 |
SSID | ssj0013009 |
Score | 2.5017023 |
Snippet | One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 713 |
SubjectTerms | Artificial neural networks CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Computer Science Computer simulation Computer-Aided Engineering (CAD Control Environmental effects Hazards Math. Applications in Chemistry Mathematical and Computational Engineering Mathematical models Monte Carlo simulation Multiple regression analysis Neural networks Original Article Parameters Risk assessment Surface mines Systems Theory |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ovOjBH1Nx_iIHbxpM16RpT6JjYwgOEQe7lbRNYDi3uc6D--t9adNNBXduEkK_5L0veS_fA7gKjEiMnzIqfSUo56lHI5VJKpvNNNIJV6JQvHnqBd0-fxyIgbtwy11aZWUTC0OdTVJ7R36LrsgGibnH76Yf1FaNstFVV0JjE7bQBIdhDbYe2r3nl1UcgZVJHp60SV6BdM9misdzVorFnqYjauWzA7r47ZpWfPNPiLTwPJ192HWUkdyXGB_Ahh7XYc_RR-I2Z16HnR_agoeQ35MnqzxFWmo2mpB8-O4KdZFKRpwgXyVlPgeaPKKWGp1kYogZfaFreyPWy2UEew2X2p1zUso_22ZWDhPnNi6TyY-g32m_trrUVVigKW69OU2Z1lLzTDDNpQ4RKRMKyTPPcKQFXqZUxsJI-NznOJlIG8kYLj3BfZYg8ZD-MdTGk7E-AeIFWidIZ0KtFDdKINASXV8aZowlUpkGeNXPjVMnP26rYIzipXByAUiMgMQFIPGiAdfLPtNSfGNt6_MKs9htxDxeLZsG3FQ4rj7_P9rp-tHOYLtpT95FDs851OazT32B9GSeXLo1-A3ZluLc priority: 102 providerName: ProQuest |
Title | A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network |
URI | https://link.springer.com/article/10.1007/s00366-019-00726-z https://www.proquest.com/docview/2189134414 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP3Q7aIHf4vzx8jBmwbSNWna45RNUSYiDvRU0jYBcW6yzoP76_3Spp2KCp4KaRJKX5Lvhby8D-A4MCIxfsqo9JWgnKcejVQmqex00kgnXInC8WZwE1wO-dWDeHCXwvJK7V4dSRYrdX3ZzVqn2N1vRK3ddUDny9AUuHe3Qq5hp7s4O2ClsMOTVtgVSHdV5uc-voajBcf8dixaRJv-Bqw5mki6Ja6bsKTHW7DuKCNxEzLHoiorQ1W2BaufLAa3Ie-SgTWgIudqOpqQ_OnF5esilZs4QdpKSlkHrnxE1VadZGKIGb1jhHsmNthlBFs91RaeM1K6QNtq1hUTP3dcasp3YNjv3Z9fUpdogaY4A2c0ZVpLzTPBNJc6RMBMKCTPPMORHXiZUhkLI-Fzn-PHRNpIxnAECu6zBPmH9HehMZ6M9R4QL9A6QVYTaqW4UQLxlhgB0zBjLJHKtMCr_necOhdymwxjFNf-yQVGMWIUFxjF8xac1G1eSw-OP2sfVjDGbj7mMRIZKzHgHm_BaQXt4vXvve3_r_oBrHTshryQ9hxCYzZ900fIWmZJG5bD_kUbmt2Lx-sePs96N7d37WLofgA4aelV |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIADb8R45gAniEjbZOkOCE2DMR7jBBK3kraJNDG2sQ6h8aP4jTh9bIAEN85Noih2_Dm1_Rlgv2JEaLyIUekpQTmPHFpVsaTSdaOqDrkSKeNN67bSvOdXD-JhCj6KWhibVlnYxNRQx73I_iM_RiiyQWLu8NP-C7Vdo2x0tWihkanFtR694ZMtObk8Q_keuG7j_K7epHlXARqhug1pxLSWmseCaS61j7szvpA8dgxHKHRipWLmV4XHPW407tdIxvC4BfdYiGArPVx3Gma4h0huK9MbF5OoBctSSnCUreyXeZFOWqpniV_s271KLVl3hb5_B8KJd_sjIJviXGMJFnIHldQyjVqGKd1dgcXcWSW5KUhWYP4Lk-EqJDXSsjxXpK4GnR5J2s95WzBSkJYT9I5Jlj2CBpaoMSMo6RliOiME0idiMTUmOKs9Zgodkoxs2g6z5Ju4t26Wur4G9_9y8utQ6va6egOIU9E6ROfJ10pxowSqlUSgjfyYsVAqUwanONwgysnObc-NTjCmaU4FEqBAglQgwXsZDsdz-hnVx5-jtwuZBfm1T4KJkpbhqJDj5PPvq23-vdoezDbvWjfBzeXt9RbMufbNn2YPbUNpOHjVO-gYDcPdVBsJPP63-n8CockeIQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgSAgOvBHjmQOcICJtk6U7IMRr4jkhBBK3kraJNDE2oEMIfhq_DqdNN0CCG-cmURS7_pzY_gywXjMiNkHCqAyUoJwnHq2rVFLp-0ldx1yJnPHmolk7vuGnt-J2CD7KWhibVlnaxNxQp93EvpFvIxTZIDH3-LZxaRGXh43dxydqO0jZSGvZTqNQkTP99orXt2zn5BBlveH7jaPrg2PqOgzQBFWvRxOmtdQ8FUxzqUPcqQmF5KlnOMKilyqVsrAuAh5wo3HvRjKGRy94wGIEXhngusMwIu2tqAIj-0fNy6tBDIMVCSY4ztb5S1eykxfuWRoYe5OvU0vdXaPv32Fx4Ov-CM_mqNeYggnnrpK9Qr-mYUh3ZmDSua7EGYZsBsa_8BrOQrZHLizrFTlQz-0uyVoPrkkYKSnMCfrKpMglQXNLVJ8flHQNMe03hNV7YhE2JTir1ecN7ZGCetoOs1ScuLdOkcg-Bzf_cvbzUOl0O3oBiFfTOkZXKtRKcaMEKplE2E3ClLFYKlMFrzzcKHHU57YDRzvqkzbnAolQIFEukOi9Cpv9OY8F8cefo5dLmUXOCGTRQGWrsFXKcfD599UW_15tDUZR9aPzk-bZEoz59gEgTyVahkrv-UWvoJfUi1edOhK4--8_4BO-DyOz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Monte+Carlo+simulation+approach+for+effective+assessment+of+flyrock+based+on+intelligent+system+of+neural+network&rft.jtitle=Engineering+with+computers&rft.au=Zhou%2C+Jian&rft.au=Aghili%2C+Nasim&rft.au=Ghaleini%2C+Ebrahim+Noroozi&rft.au=Bui%2C+Dieu+Tien&rft.date=2020-04-01&rft.pub=Springer+London&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=36&rft.issue=2&rft.spage=713&rft.epage=723&rft_id=info:doi/10.1007%2Fs00366-019-00726-z&rft.externalDocID=10_1007_s00366_019_00726_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |