A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network

One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study of the subject and its effects on the environment can affect the control of flyrock hazards in the studied area. Therefore, the use of intelli...

Full description

Saved in:
Bibliographic Details
Published inEngineering with computers Vol. 36; no. 2; pp. 713 - 723
Main Authors Zhou, Jian, Aghili, Nasim, Ghaleini, Ebrahim Noroozi, Bui, Dieu Tien, Tahir, M. M., Koopialipoor, Mohammadreza
Format Journal Article
LanguageEnglish
Published London Springer London 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study of the subject and its effects on the environment can affect the control of flyrock hazards in the studied area. Therefore, the use of intelligent models and methods which are capable of predicting and simulating the risk of flyrock can be considered as an appropriate solution in this regard. The current research was conducted using nonlinear models and Monte Carlo (MC) simulation. The data used in this study consist of 260 samples of rock thrown from a mine in Malaysia. The parameters used in these models include hole’s diameter (D), hole’s depth (HD), burden to spacing (BS), stemming (ST), maximum charge per delay (MC), and powder factor (PF). At first, multiple regression analysis (MRA) and artificial neural network (ANN) models were used in order to develop a non-linear relationship between dependent and independent parameters. The ANN model was an appropriate predictor of flyrock in the mine. Then using the best implemented model of ANN, the flyrock environmental phenomenon was simulated using MC technique. MC simulation showed a proper level of accuracy of flyrock ranges in the mine. Using this simulation, it can be concluded with 90% accuracy that the Flyrock phenomenon does not exceed 331 m. Under these conditions, this simulation can be used for various areas requiring risk assessment. Finally, a sensitive analysis was carried out on data. This analysis showed MC has the greatest effect on flyrock.
AbstractList One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study of the subject and its effects on the environment can affect the control of flyrock hazards in the studied area. Therefore, the use of intelligent models and methods which are capable of predicting and simulating the risk of flyrock can be considered as an appropriate solution in this regard. The current research was conducted using nonlinear models and Monte Carlo (MC) simulation. The data used in this study consist of 260 samples of rock thrown from a mine in Malaysia. The parameters used in these models include hole’s diameter (D), hole’s depth (HD), burden to spacing (BS), stemming (ST), maximum charge per delay (MC), and powder factor (PF). At first, multiple regression analysis (MRA) and artificial neural network (ANN) models were used in order to develop a non-linear relationship between dependent and independent parameters. The ANN model was an appropriate predictor of flyrock in the mine. Then using the best implemented model of ANN, the flyrock environmental phenomenon was simulated using MC technique. MC simulation showed a proper level of accuracy of flyrock ranges in the mine. Using this simulation, it can be concluded with 90% accuracy that the Flyrock phenomenon does not exceed 331 m. Under these conditions, this simulation can be used for various areas requiring risk assessment. Finally, a sensitive analysis was carried out on data. This analysis showed MC has the greatest effect on flyrock.
One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study of the subject and its effects on the environment can affect the control of flyrock hazards in the studied area. Therefore, the use of intelligent models and methods which are capable of predicting and simulating the risk of flyrock can be considered as an appropriate solution in this regard. The current research was conducted using nonlinear models and Monte Carlo (MC) simulation. The data used in this study consist of 260 samples of rock thrown from a mine in Malaysia. The parameters used in these models include hole’s diameter (D), hole’s depth (HD), burden to spacing (BS), stemming (ST), maximum charge per delay (MC), and powder factor (PF). At first, multiple regression analysis (MRA) and artificial neural network (ANN) models were used in order to develop a non-linear relationship between dependent and independent parameters. The ANN model was an appropriate predictor of flyrock in the mine. Then using the best implemented model of ANN, the flyrock environmental phenomenon was simulated using MC technique. MC simulation showed a proper level of accuracy of flyrock ranges in the mine. Using this simulation, it can be concluded with 90% accuracy that the Flyrock phenomenon does not exceed 331 m. Under these conditions, this simulation can be used for various areas requiring risk assessment. Finally, a sensitive analysis was carried out on data. This analysis showed MC has the greatest effect on flyrock.
Author Zhou, Jian
Aghili, Nasim
Koopialipoor, Mohammadreza
Bui, Dieu Tien
Ghaleini, Ebrahim Noroozi
Tahir, M. M.
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: School of Resources and Safety Engineering, Central South University, State Key Laboratory of Safety and Health for Metal Mines
– sequence: 2
  givenname: Nasim
  surname: Aghili
  fullname: Aghili, Nasim
  organization: School of Housing, Building and Planning, Universiti Sains Malaysia (USM), Department of Real Estate, Faculty of Geo-Information and Real Estate, Universiti Teknologi Malaysia
– sequence: 3
  givenname: Ebrahim Noroozi
  surname: Ghaleini
  fullname: Ghaleini, Ebrahim Noroozi
  organization: Faculty of Mining and Metallurgy, Amirkabir University of Technology
– sequence: 4
  givenname: Dieu Tien
  surname: Bui
  fullname: Bui, Dieu Tien
  email: buitiendieu@tdtu.edu.vn
  organization: Geographic Information Science Research Group, Ton Duc Thang University, Faculty of Environment and Labour Safety, Ton Duc Thang University
– sequence: 5
  givenname: M. M.
  surname: Tahir
  fullname: Tahir, M. M.
  organization: UTM Construction Research Centre, Institute for Smart Infrastructure and Innovative Construction (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia
– sequence: 6
  givenname: Mohammadreza
  surname: Koopialipoor
  fullname: Koopialipoor, Mohammadreza
  organization: Faculty of Civil and Environmental Engineering, Amirkabir University of Technology
BookMark eNp9kE1PAjEQhhuDiYD-AU9NPK9OaffrSIhfCcaLnpuyO8WFZYudooFfbwETEw-cJpO-z3TmGbBe5zpk7FrArQDI7whAZlkCokxiO8qS3RnrCyXTJM0y2WN9EHmeQJblF2xAtAAQEqDsMxrzF9cF5BPjW8epWW1aExrXcbNee2eqD26d52gtVqH5Qm6IkGiFXeDOcttuvauWfGYIax6pJs5q22a-f6ctBVztYx1uvGljCd_OLy_ZuTUt4dVvHbL3h_u3yVMyfX18noynSSVFGZIKEHNUdQqocixUJWyR5qoWVgkBojamhqJMpZIqLleizQHQ1KmSMJPxXDlkN8e58ZDPDVLQC7fxXfxSj0RRCqlUVDRkxTFVeUfk0eqqCQcFwZum1QL0XrE-KtZRsT4o1ruIjv6ha9-sjN-ehuQRohju5uj_tjpB_QCHkZMc
CitedBy_id crossref_primary_10_1007_s00366_019_00808_y
crossref_primary_10_3390_app9061042
crossref_primary_10_1007_s00366_019_00768_3
crossref_primary_10_1007_s11053_019_09605_2
crossref_primary_10_1007_s11053_020_09730_3
crossref_primary_10_1007_s40808_023_01719_0
crossref_primary_10_1007_s00366_020_01105_9
crossref_primary_10_1080_24705314_2020_1862965
crossref_primary_10_3390_app12178468
crossref_primary_10_1016_j_eswa_2023_119555
crossref_primary_10_1007_s12517_023_11561_4
crossref_primary_10_1007_s00366_020_01231_4
crossref_primary_10_1007_s10462_023_10636_8
crossref_primary_10_3390_sym14040807
crossref_primary_10_1007_s11600_023_01247_6
crossref_primary_10_1007_s40948_021_00243_8
crossref_primary_10_1080_10589759_2019_1623214
crossref_primary_10_1007_s12517_022_10615_3
crossref_primary_10_1016_j_cscm_2024_e03416
crossref_primary_10_1007_s40996_022_00912_y
crossref_primary_10_3390_app10030869
crossref_primary_10_1007_s12597_024_00744_6
crossref_primary_10_1007_s00366_019_00868_0
crossref_primary_10_1016_j_heliyon_2024_e37876
crossref_primary_10_1007_s00521_022_06964_5
crossref_primary_10_1002_ep_14476
crossref_primary_10_1007_s00366_019_00754_9
crossref_primary_10_1007_s11053_023_10259_4
crossref_primary_10_1007_s00366_021_01305_x
crossref_primary_10_1109_ACCESS_2021_3129979
crossref_primary_10_1080_08839514_2021_1997225
crossref_primary_10_1007_s12517_021_07772_2
crossref_primary_10_1016_j_knosys_2022_109533
crossref_primary_10_1016_j_eiar_2021_106627
crossref_primary_10_1016_j_trgeo_2024_101233
crossref_primary_10_3390_su15043265
crossref_primary_10_3390_app9245372
crossref_primary_10_1007_s13762_022_04170_3
crossref_primary_10_3390_su15108424
crossref_primary_10_1007_s11053_020_09764_7
crossref_primary_10_1007_s13762_022_04096_w
crossref_primary_10_1007_s00366_019_00875_1
crossref_primary_10_3390_app10020472
crossref_primary_10_1007_s11053_020_09794_1
crossref_primary_10_1016_j_ins_2022_03_063
crossref_primary_10_1007_s11356_024_32561_1
crossref_primary_10_1016_j_istruc_2022_12_108
crossref_primary_10_1007_s00366_020_00997_x
crossref_primary_10_1007_s11053_019_09519_z
crossref_primary_10_1007_s10064_020_01788_w
crossref_primary_10_1007_s12665_020_09300_z
crossref_primary_10_1016_j_undsp_2020_05_005
crossref_primary_10_1038_s41598_020_76569_2
crossref_primary_10_1007_s00366_020_01136_2
crossref_primary_10_1016_j_advwatres_2021_104110
crossref_primary_10_1007_s42461_023_00879_y
crossref_primary_10_53501_rteufemud_986903
crossref_primary_10_1007_s11053_020_09710_7
crossref_primary_10_1007_s11053_024_10445_y
crossref_primary_10_3390_mining3020019
crossref_primary_10_1007_s10064_020_01834_7
crossref_primary_10_1007_s11053_019_09611_4
crossref_primary_10_1016_j_rineng_2024_101986
crossref_primary_10_1007_s00366_019_00752_x
crossref_primary_10_1007_s00366_019_00816_y
crossref_primary_10_1080_17480930_2020_1734151
crossref_primary_10_3390_su16031325
crossref_primary_10_1016_j_trgeo_2021_100579
crossref_primary_10_1007_s40996_022_00825_w
crossref_primary_10_2478_amns_2022_2_0052
crossref_primary_10_3390_app10051761
crossref_primary_10_1007_s11053_019_09548_8
crossref_primary_10_1108_IJPPM_04_2023_0201
crossref_primary_10_1007_s11053_020_09676_6
crossref_primary_10_1007_s00366_019_00770_9
crossref_primary_10_1016_j_mlwa_2023_100517
crossref_primary_10_1016_j_measurement_2019_06_007
crossref_primary_10_1007_s11053_019_09515_3
crossref_primary_10_3390_math10152596
crossref_primary_10_1007_s00366_019_00855_5
crossref_primary_10_3390_geosciences13100294
crossref_primary_10_1007_s00366_019_00908_9
crossref_primary_10_1155_2022_5438023
crossref_primary_10_1007_s11053_020_09697_1
crossref_primary_10_1515_geo_2022_0624
crossref_primary_10_3390_app10041403
crossref_primary_10_1007_s00366_019_00833_x
crossref_primary_10_3390_app10041486
crossref_primary_10_3390_app9081621
crossref_primary_10_1109_ACCESS_2019_2927632
crossref_primary_10_1007_s11053_019_09593_3
Cites_doi 10.1007/s12665-015-4274-1
10.1016/j.ijrmms.2012.03.011
10.1007/s00500-018-3253-3
10.1007/s10064-017-1116-2
10.1007/s10064-014-0657-x
10.1007/s00366-015-0402-5
10.1007/s00366-018-00694-w
10.1007/s00366-018-0642-2
10.1016/j.tust.2016.12.009
10.1016/j.radphyschem.2009.04.030
10.1007/s00521-017-2990-z10
10.1007/s12665-017-6864-6
10.1007/s00366-018-00700-1
10.1007/s10706-015-9970-9
10.1007/s00366-019-00711-6
10.1007/s00366-017-0545-7
10.1007/s00366-018-0658-7
10.1016/j.tust.2018.07.023
10.1007/s00366-018-0596-4
10.1007/s00366-018-0625-3
10.1007/s00521-016-2598-8
10.1007/s10064-018-1349-8
10.1016/j.measurement.2014.12.029
10.1007/s00366-019-00715-2
10.1007/s00366-016-0499-1
10.1007/s00366-019-00701-8
10.1007/s00603-016-1015-z
10.1061/(ASCE)CF.1943-5509.0001263
10.1016/j.cageo.2005.06.022
10.1260/0957456053499095
10.1016/j.ssci.2011.08.065
10.12989/sss.2015.16.3.497
10.1016/j.enggeo.2007.10.009
10.1080/014311697218719
10.1016/j.tust.2008.01.007
10.1007/s12517-010-0185-3
10.1016/S1452-3981(23)15063-2
10.1016/0893-6080(89)90020-8
10.1007/s10661-018-6719-y
10.1016/j.jsr.2003.07.003
10.1016/j.buildenv.2012.07.005
10.1061/(ASCE)GM.1943-5622.0001125
10.1007/s00521-012-0917-2
10.1016/j.petrol.2018.03.050
10.12989/scs.2016.21.3.679
10.1007/s12517-015-2057-3
10.1061/(ASCE)CP.1943-5487.0000553
10.1007/s10706-018-0459-1
10.1080/0305215X.2018.1439943
10.1007/s12517-015-1952-y
10.1007/978-1-4899-3099-6_2
10.1016/j.ijrmms.2018.08.004
10.12989/sss.2014.14.5.785
10.1007/s00521-016-2537-8
10.1007/s00603-012-0269-3
10.12989/sem.2016.60.3.471
10.1016/0925-2312(95)00039-9
10.1016/S1003-6326(11)61195-3
10.1007/s00603-018-1667-y
10.1007/s00603-017-1395-8
10.1007/s10845-017-1306-6
10.1007/s12517-013-1174-0
10.1177/1077546314568172
10.1016/j.ssci.2010.09.004
10.1016/j.tust.2018.08.029
10.12989/scs.2014.17.5.623
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00366-019-00726-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 723
ExternalDocumentID 10_1007_s00366_019_00726_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-c0ee7e4d50e47e84c1f8574d1f41101daad08953434fec9ef700ead5430b31773
IEDL.DBID U2A
ISSN 0177-0667
IngestDate Wed Aug 13 08:37:32 EDT 2025
Tue Jul 01 04:18:14 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Fri Feb 21 02:35:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ANN
Flyrock phenomenon
Sensitivity analysis
Risk assessment
Monte Carlo simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c0ee7e4d50e47e84c1f8574d1f41101daad08953434fec9ef700ead5430b31773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2189134414
PQPubID 326339
PageCount 11
ParticipantIDs proquest_journals_2189134414
crossref_citationtrail_10_1007_s00366_019_00726_z
crossref_primary_10_1007_s00366_019_00726_z
springer_journals_10_1007_s00366_019_00726_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200400
2020-4-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Shams, Monjezi, Majd, Armaghani (CR37) 2015; 8
Hasanipanah, Jahed Armaghani, Bakhshandeh Amnieh, Koopialipoor, Arab (CR45) 2018; 36
Toghroli, Suhatril, Ibrahim (CR28) 2016; 29
Yazdani Bejarbaneh, Jahed Armaghani, Mohd Amin (CR16) 2015
Bhandari (CR12) 1997; 388
Safa, Shariati, Ibrahim (CR27) 2016; 21
Moayedi, Jahed Armaghani (CR47) 2017
Zhao, Yang, Chen, Chen, Huang, Liu (CR19) 2018; 52
Zhao, Noorbakhsh, Koopialipoor (CR66) 2019
Koopialipoor, Armaghani, Hedayat (CR60) 2018
CR79
CR78
Khandelwal, Armaghani (CR59) 2016; 34
Faradonbeh, Hasanipanah, Amnieh (CR39) 2018; 190
Toghroli, Darvishmoghaddam, Zandi (CR33) 2018; 21
Shi, Zhou, Wu (CR40) 2012; 22
Armaghani, Mahdiyar, Hasanipanah (CR80) 2016; 49
Hajihassani, Jahed Armaghani, Monjezi (CR8) 2015
Koopialipoor, Ghaleini, Haghighi (CR57) 2018
CR71
Hajihassani, Jahed Armaghani, Marto, Tonnizam Mohamad (CR1) 2015
Roth (CR52) 1979
Khandelwal, Singh (CR6) 2005; 36
Zhou, Li, Mitri (CR22) 2018; 81
Liao, Khandelwal, Yang (CR65) 2019
Koopialipoor, Fallah, Armaghani (CR2) 2018
Morin, Ficarazzo (CR84) 2006; 32
Armaghani, Mohamad, Narayanasamy (CR34) 2017; 63
Asadi, Moayedi, Huat (CR50) 2011; 6
Ripley (CR69) 1993; 50, pp
Gordan, Koopialipoor, Clementking (CR62) 2018
Kanellopoulos, Wilkinson (CR73) 1997; 18
Faradonbeh, Armaghani, Amnieh, Mohamad (CR14) 2016; 29
Wang, Shi, Zhou (CR41) 2018; 110
Bianchini, Hewage (CR82) 2012; 58
Mohammadhassani, Nezamabadi-Pour, Suhatril, Shariati (CR77) 2014; 14
Ghasemi, Sari, Ataei (CR9) 2012; 52
Wang, Shi, Zhou, Qiu (CR43) 2018; 50
Dunn, Shultis (CR83) 2009; 78
Yang, Li, Jie, Zhang (CR17) 2018; 81
Khandelwal, Monjezi (CR5) 2013; 46
Bajpayee, Rehak, Mowrey, Ingram (CR11) 2004; 35
Masters (CR72) 1993
Zhou, Li, Shi (CR44) 2012; 50
Koopialipoor, Murlidhar, Hedayat (CR55) 2019
Koopialipoor, Nikouei, Marto (CR58) 2018
Moayedi, Rezaei (CR48) 2017
Hornik, Stinchcombe, White (CR64) 1989; 2
CR15
Zorlu, Gokceoglu, Ocakoglu (CR75) 2008; 96
Armaghani, Mohamad, Momeni (CR35) 2016; 9
Zhou, Shi, Li (CR21) 2016; 22
CR53
Mansouri, Shariati, Safa (CR30) 2017; 30
Jahed Armaghani, Tonnizam Mohamad, Hajihassani (CR7) 2016
Chahnasir, Zandi, Shariati (CR67) 2018; 22
Toghroli, Mohammadhassani, Suhatril (CR29) 2014; 17
Karkevandi-Talkhooncheh, Sharifi, Ahmadi (CR56) 2018; 166
Moayedi, Raftari, Sharifi (CR49) 2019
Zhou, Li, Mitri (CR20) 2016; 30
Armaghani, Hajihassani, Mohamad (CR3) 2014; 7
Little, Blair (CR10) 2010; 9
Mansouri, Safa, Ibrahim (CR31) 2016; 60
Monjezi, Mehrdanesh, Malek, Khandelwal (CR4) 2013; 23
Monjezi, Khoshalan, Varjani (CR26) 2012; 5
Shahnazar, Nikafshan Rad, Hasanipanah (CR38) 2017
Ghaleini, Koopialipoor, Momenzadeh (CR61) 2018
CR24
Mohammadhassani, Saleh, Suhatril, Safa (CR32) 2015; 16
Moayedi, Hayati (CR51) 2018; 18
CR68
Mandal, Singh (CR13) 2009; 24
Yang, Liu, Liu (CR18) 2018; 51
Koopialipoor, Fahimifar, Ghaleini (CR76) 2019
Wang, Shi, Zhou (CR42) 2019; 33
Jahed Armaghani, Hasanipanah, Mahdiyar (CR36) 2016
Paola (CR70) 1994
Kaastra, Boyd (CR74) 1996; 10
Mahdiyar, Hasanipanah, Armaghani (CR81) 2017
Koopialipoor, Armaghani, Haghighi, Ghaleini (CR63) 2017
Rezaei, Monjezi, Varjani (CR46) 2011; 49
Lundborg, Persson, Ladegaard-Pedersen, Holmberg (CR25) 1975; 176
Jimeno, Jimeno, Carcedo, De Ramiro (CR54) 1995
Roth (CR23) 1979
M Khandelwal (726_CR5) 2013; 46
N Lundborg (726_CR25) 1975; 176
K Hornik (726_CR64) 1989; 2
Roohollah Shirani Faradonbeh (726_CR14) 2016; 29
TN Little (726_CR10) 2010; 9
DJ Armaghani (726_CR34) 2017; 63
726_CR53
M Koopialipoor (726_CR58) 2018
M Koopialipoor (726_CR55) 2019
I Kaastra (726_CR74) 1996; 10
B Yazdani Bejarbaneh (726_CR16) 2015
BD Ripley (726_CR69) 1993; 50, pp
726_CR15
DJ Armaghani (726_CR35) 2016; 9
X Shi (726_CR40) 2012; 22
M Wang (726_CR42) 2019; 33
I Mansouri (726_CR30) 2017; 30
H Moayedi (726_CR47) 2017
I Kanellopoulos (726_CR73) 1997; 18
A Toghroli (726_CR33) 2018; 21
J Zhou (726_CR20) 2016; 30
J Roth (726_CR52) 1979
CL Jimeno (726_CR54) 1995
A Asadi (726_CR50) 2011; 6
A Shahnazar (726_CR38) 2017
JD Paola (726_CR70) 1994
J Zhou (726_CR21) 2016; 22
Mahdi Hasanipanah (726_CR45) 2018; 36
726_CR24
M Wang (726_CR41) 2018; 110
726_CR68
M Monjezi (726_CR4) 2013; 23
M Koopialipoor (726_CR2) 2018
M Hajihassani (726_CR8) 2015
M Hajihassani (726_CR1) 2015
H Moayedi (726_CR48) 2017
M Monjezi (726_CR26) 2012; 5
M Koopialipoor (726_CR63) 2017
J Roth (726_CR23) 1979
H Moayedi (726_CR49) 2019
T Masters (726_CR72) 1993
ES Chahnasir (726_CR67) 2018; 22
DJ Armaghani (726_CR80) 2016; 49
RS Faradonbeh (726_CR39) 2018; 190
EN Ghaleini (726_CR61) 2018
726_CR78
A Toghroli (726_CR28) 2016; 29
726_CR79
M Koopialipoor (726_CR60) 2018
M Koopialipoor (726_CR57) 2018
B Gordan (726_CR62) 2018
F Bianchini (726_CR82) 2012; 58
D Jahed Armaghani (726_CR7) 2016
M Wang (726_CR43) 2018; 50
726_CR71
S Shams (726_CR37) 2015; 8
J Zhou (726_CR22) 2018; 81
M Khandelwal (726_CR6) 2005; 36
H Yang (726_CR18) 2018; 51
M Safa (726_CR27) 2016; 21
J Zhou (726_CR44) 2012; 50
Y Zhao (726_CR66) 2019
HQ Yang (726_CR17) 2018; 81
X Liao (726_CR65) 2019
M Mohammadhassani (726_CR77) 2014; 14
A Toghroli (726_CR29) 2014; 17
H Moayedi (726_CR51) 2018; 18
K Zorlu (726_CR75) 2008; 96
WL Dunn (726_CR83) 2009; 78
MA Morin (726_CR84) 2006; 32
SK Mandal (726_CR13) 2009; 24
M Khandelwal (726_CR59) 2016; 34
TS Bajpayee (726_CR11) 2004; 35
M Koopialipoor (726_CR76) 2019
DJ Armaghani (726_CR3) 2014; 7
I Mansouri (726_CR31) 2016; 60
M Mohammadhassani (726_CR32) 2015; 16
M Rezaei (726_CR46) 2011; 49
E Ghasemi (726_CR9) 2012; 52
A Mahdiyar (726_CR81) 2017
S Bhandari (726_CR12) 1997; 388
Yanru Zhao (726_CR19) 2018; 52
D Jahed Armaghani (726_CR36) 2016
A Karkevandi-Talkhooncheh (726_CR56) 2018; 166
References_xml – volume: 190
  start-page: 351
  year: 2018
  ident: CR39
  article-title: Development of GP and GEP models to estimate an environmental issue induced by blasting operation
  publication-title: Environ Monit Assess
– volume: 10
  start-page: 215
  year: 1996
  end-page: 236
  ident: CR74
  article-title: Designing a neural network for forecasting financial and economic time series
  publication-title: Neurocomputing
– ident: CR68
– year: 2015
  ident: CR8
  article-title: Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4274-1
– volume: 52
  start-page: 163
  year: 2012
  end-page: 170
  ident: CR9
  article-title: Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2012.03.011
– volume: 36
  start-page: 2247
  issue: 4
  year: 2018
  end-page: 2260
  ident: CR45
  article-title: A Risk-Based Technique to Analyze Flyrock Results Through Rock Engineering System
  publication-title: Geotechnical and Geological Engineering
– year: 2018
  ident: CR60
  article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3253-3
– year: 2017
  ident: CR63
  article-title: A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-017-1116-2
– year: 2015
  ident: CR1
  article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-014-0657-x
– year: 2016
  ident: CR7
  article-title: Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0402-5
– year: 2019
  ident: CR49
  article-title: Optimization of ANFIS with GA and PSO estimating α ratio in driven piles
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-00694-w
– volume: 81
  start-page: 632
  year: 2018
  end-page: 659
  ident: CR22
  article-title: Evaluation method of rockburst: state-of-the-art literature review
  publication-title: Tunn Undergr Sp Technol
– year: 2018
  ident: CR62
  article-title: Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0642-2
– volume: 16
  start-page: 497
  year: 2015
  end-page: 519
  ident: CR32
  article-title: Fuzzy modelling approach for shear strength prediction of RC deep beams
  publication-title: Smart Struct Syst
– volume: 63
  start-page: 29
  year: 2017
  end-page: 43
  ident: CR34
  article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2016.12.009
– volume: 78
  start-page: 852
  year: 2009
  end-page: 858
  ident: CR83
  article-title: Monte Carlo methods for design and analysis of radiation detectors
  publication-title: Radiat Phys Chem
  doi: 10.1016/j.radphyschem.2009.04.030
– year: 2017
  ident: CR48
  article-title: An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2990-z10
– volume: 176
  start-page: 95
  year: 1975
  end-page: 100
  ident: CR25
  article-title: Keeping the lid on flyrock in open-pit blasting
  publication-title: Eng Min J
– year: 1979
  ident: CR23
  publication-title: A model for the determination of flyrock range as a function of shot conditions
– volume: 21
  start-page: 679
  year: 2016
  end-page: 688
  ident: CR27
  article-title: Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength
  publication-title: Steel Compos Struct
– volume: 22
  start-page: 3986
  year: 2016
  end-page: 3997
  ident: CR21
  article-title: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining
  publication-title: J Vib Control
– year: 2017
  ident: CR38
  article-title: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-017-6864-6
– year: 2019
  ident: CR55
  article-title: The use of new intelligent techniques in designing retaining walls
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-00700-1
– volume: 32
  start-page: 352
  year: 2006
  end-page: 359
  ident: CR84
  article-title: Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz–Ram model
  publication-title: Comput Geosci
– ident: CR71
– volume: 50
  start-page: 629
  year: 2012
  end-page: 644
  ident: CR44
  article-title: Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines
  publication-title: Saf Sci
– volume: 34
  start-page: 605
  year: 2016
  end-page: 620
  ident: CR59
  article-title: Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-015-9970-9
– volume: 52
  start-page: 1303
  issue: 5
  year: 2018
  end-page: 1313
  ident: CR19
  article-title: Effects of Jointed Rock Mass and Mixed Ground Conditions on the Cutting Efficiency and Cutter Wear of Tunnel Boring Machine
  publication-title: Rock Mechanics and Rock Engineering
– volume: 110
  start-page: 199
  year: 2018
  end-page: 209
  ident: CR41
  article-title: Charge design scheme optimization for ring blasting based on the developed Scaled Heelan model
  publication-title: Int J Rock Mech Min Sci
– volume: 50, pp
  start-page: 40
  year: 1993
  end-page: 123
  ident: CR69
  article-title: Statistical aspects of neural networks
  publication-title: Networks chaos—statistical and probabilistic aspects, vol
– ident: CR15
– volume: 96
  start-page: 141
  year: 2008
  end-page: 158
  ident: CR75
  article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models
  publication-title: Eng Geol
– volume: 60
  start-page: 471
  year: 2016
  end-page: 488
  ident: CR31
  article-title: Strength prediction of rotary brace damper using MLR and MARS
  publication-title: Struct Eng Mech
– year: 2019
  ident: CR65
  article-title: Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00711-6
– volume: 18
  start-page: 6018009
  year: 2018
  ident: CR51
  article-title: Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile
  publication-title: Int J Geomech
– ident: CR78
– year: 2017
  ident: CR47
  article-title: Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0545-7
– year: 2018
  ident: CR57
  article-title: Overbreak prediction and optimization in tunnel using neural network and bee colony techniques
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0658-7
– volume: 81
  start-page: 112
  year: 2018
  end-page: 120
  ident: CR17
  article-title: Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2018.07.023
– volume: 30
  start-page: 4016003
  year: 2016
  ident: CR20
  article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods
  publication-title: J Comput Civ Eng
– year: 2018
  ident: CR2
  article-title: Three hybrid intelligent models in estimating flyrock distance resulting from blasting
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0596-4
– volume: 8
  start-page: 10819
  year: 2015
  end-page: 10832
  ident: CR37
  article-title: Application of fuzzy inference system for prediction of rock fragmentation induced by blasting
  publication-title: Arab J Geosci
– volume: 29
  start-page: 1
  year: 2016
  end-page: 9
  ident: CR28
  article-title: Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam
  publication-title: J Intell Manuf
– year: 2018
  ident: CR61
  article-title: A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0625-3
– volume: 22
  start-page: 413
  year: 2018
  end-page: 424
  ident: CR67
  article-title: Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors
  publication-title: SMART Struct Syst
– volume: 5
  start-page: 441
  year: 2012
  end-page: 448
  ident: CR26
  article-title: Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach
  publication-title: Arab J Geosci
– year: 2016
  ident: CR36
  article-title: Airblast prediction through a hybrid genetic algorithm-ANN model
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2598-8
– volume: 49
  start-page: 298
  year: 2011
  end-page: 305
  ident: CR46
  article-title: Development of a fuzzy model to predict flyrock in surface mining
  publication-title: Saf Sci
– volume: 7
  start-page: 5383
  year: 2014
  end-page: 5396
  ident: CR3
  article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
  publication-title: Arab J Geosci
– year: 1994
  ident: CR70
  publication-title: Neural network classification of multispectral imagery
– year: 1995
  ident: CR54
  publication-title: Drilling and blasting of rocks, Geomining Technological Institute of Spain
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: CR64
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
– volume: 166
  start-page: 924
  year: 2018
  end-page: 947
  ident: CR56
  article-title: Application of hybrid adaptive neuro-fuzzy inference system in well placement optimization
  publication-title: J Pet Sci Eng
– year: 2018
  ident: CR58
  article-title: Predicting tunnel boring machine performance through a new model based on the group method of data handling
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1349-8
– year: 1979
  ident: CR52
  publication-title: A model for the determination of flyrock range as a function of shot conditions. US Bureau of Mines contract J0387242
– ident: CR53
– volume: 29
  start-page: 269
  issue: 6
  year: 2016
  end-page: 281
  ident: CR14
  article-title: Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm
  publication-title: Neural Computing and Applications
– volume: 46
  start-page: 389
  year: 2013
  end-page: 396
  ident: CR5
  article-title: Prediction of backbreak in open-pit blasting operations using the machine learning method
  publication-title: Rock Mech Rock Eng
– volume: 6
  start-page: 1146
  year: 2011
  end-page: 1158
  ident: CR50
  article-title: Prediction of zeta potential for tropical peat in the presence of different cations using artificial neural networks
  publication-title: Int J Electrochem Sci
– volume: 18
  start-page: 711
  year: 1997
  end-page: 725
  ident: CR73
  article-title: Strategies and best practice for neural network image classification
  publication-title: Int J Remote Sens
– volume: 388
  start-page: 388
  year: 1997
  ident: CR12
  article-title: Engineering rock blasting operations
  publication-title: A A Balkema
– volume: 51
  start-page: 1263
  year: 2018
  end-page: 1277
  ident: CR18
  article-title: Investigation on the cracking character of jointed rock mass beneath TBM disc cutter
  publication-title: Rock Mech Rock Eng
– volume: 33
  start-page: 4019002
  year: 2019
  ident: CR42
  article-title: Optimal charge scheme calculation for multiring blasting using modified Harries mathematical model
  publication-title: J Perform Constr Facil
– volume: 24
  start-page: 22
  year: 2009
  end-page: 36
  ident: CR13
  article-title: Evaluating extent and causes of overbreak in tunnels
  publication-title: Tunn Undergr Sp Technol
– year: 2015
  ident: CR16
  article-title: Strength characterisation of shale using Mohr-Coulomb and Hoek-Brown criteria
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2014.12.029
– volume: 21
  start-page: 525
  year: 2018
  end-page: 530
  ident: CR33
  article-title: Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method
  publication-title: Comput Concr
– ident: CR79
– year: 2019
  ident: CR66
  article-title: A new methodology for optimization and prediction of rate of penetration during drilling operations
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00715-2
– year: 2017
  ident: CR81
  article-title: A Monte Carlo technique in safety assessment of slope under seismic condition
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0499-1
– volume: 36
  start-page: 7
  year: 2005
  end-page: 16
  ident: CR6
  article-title: Prediction of blast induced air overpressure in opencast mine
  publication-title: Noise Vib Worldw
– volume: 9
  start-page: 48
  year: 2016
  ident: CR35
  article-title: Prediction of the strength and elasticity modulus of granite through an expert artificial neural network
  publication-title: Arab J Geosci
– volume: 14
  start-page: 785
  year: 2014
  end-page: 809
  ident: CR77
  article-title: An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups
  publication-title: Smart Struct Syst Int J
– volume: 50
  start-page: 2177
  year: 2018
  end-page: 2191
  ident: CR43
  article-title: Multi-planar detection optimization algorithm for the interval charging structure of large-diameter longhole blasting design based on rock fragmentation aspects
  publication-title: Eng Optim
– volume: 30
  start-page: 1247
  year: 2017
  end-page: 1257
  ident: CR30
  article-title: Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique
  publication-title: J Intell Manuf
– volume: 58
  start-page: 152
  year: 2012
  end-page: 162
  ident: CR82
  article-title: Probabilistic social cost-benefit analysis for green roofs: a lifecycle approach
  publication-title: Build Environ
– volume: 35
  start-page: 47
  year: 2004
  end-page: 57
  ident: CR11
  article-title: Blasting injuries in surface mining with emphasis on flyrock and blast area security
  publication-title: J Saf Res
– year: 1993
  ident: CR72
  publication-title: Practical neural network recipes in C++
– volume: 23
  start-page: 349
  year: 2013
  end-page: 356
  ident: CR4
  article-title: Evaluation of effect of blast design parameters on flyrock using artificial neural networks
  publication-title: Neural Comput Appl
– volume: 22
  start-page: 432
  year: 2012
  end-page: 441
  ident: CR40
  article-title: Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction
  publication-title: Trans Nonferrous Met Soc China
– year: 2019
  ident: CR76
  article-title: Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00701-8
– volume: 9
  start-page: 641
  year: 2010
  end-page: 647
  ident: CR10
  article-title: Mechanistic Monte Carlo models for analysis of flyrock risk
  publication-title: Rock Fragm Blasting
– volume: 49
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR80
  article-title: Risk assessment and prediction of flyrock distance by combined multiple regression analysis and Monte Carlo simulation of quarry blasting
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1015-z
– ident: CR24
– volume: 17
  start-page: 623
  year: 2014
  end-page: 639
  ident: CR29
  article-title: Prediction of shear capacity of channel shear connectors using the ANFIS model
  publication-title: Steel Compos Struct
– volume: 33
  start-page: 4019002
  year: 2019
  ident: 726_CR42
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001263
– year: 2018
  ident: 726_CR61
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0625-3
– year: 2018
  ident: 726_CR62
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0642-2
– volume: 32
  start-page: 352
  year: 2006
  ident: 726_CR84
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2005.06.022
– volume: 36
  start-page: 7
  year: 2005
  ident: 726_CR6
  publication-title: Noise Vib Worldw
  doi: 10.1260/0957456053499095
– volume: 50
  start-page: 629
  year: 2012
  ident: 726_CR44
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2011.08.065
– volume: 388
  start-page: 388
  year: 1997
  ident: 726_CR12
  publication-title: A A Balkema
– ident: 726_CR78
– volume: 16
  start-page: 497
  year: 2015
  ident: 726_CR32
  publication-title: Smart Struct Syst
  doi: 10.12989/sss.2015.16.3.497
– ident: 726_CR71
– year: 2016
  ident: 726_CR7
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0402-5
– volume: 96
  start-page: 141
  year: 2008
  ident: 726_CR75
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2007.10.009
– volume: 29
  start-page: 1
  year: 2016
  ident: 726_CR28
  publication-title: J Intell Manuf
– year: 2019
  ident: 726_CR49
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-00694-w
– volume-title: A model for the determination of flyrock range as a function of shot conditions. US Bureau of Mines contract J0387242
  year: 1979
  ident: 726_CR52
– volume-title: Neural network classification of multispectral imagery
  year: 1994
  ident: 726_CR70
– volume: 18
  start-page: 711
  year: 1997
  ident: 726_CR73
  publication-title: Int J Remote Sens
  doi: 10.1080/014311697218719
– volume: 24
  start-page: 22
  year: 2009
  ident: 726_CR13
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2008.01.007
– volume: 5
  start-page: 441
  year: 2012
  ident: 726_CR26
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-010-0185-3
– ident: 726_CR68
– year: 2018
  ident: 726_CR2
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0596-4
– volume: 21
  start-page: 525
  year: 2018
  ident: 726_CR33
  publication-title: Comput Concr
– volume: 6
  start-page: 1146
  year: 2011
  ident: 726_CR50
  publication-title: Int J Electrochem Sci
  doi: 10.1016/S1452-3981(23)15063-2
– year: 2015
  ident: 726_CR8
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4274-1
– volume: 2
  start-page: 359
  year: 1989
  ident: 726_CR64
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– year: 2017
  ident: 726_CR47
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0545-7
– volume: 34
  start-page: 605
  year: 2016
  ident: 726_CR59
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-015-9970-9
– volume: 190
  start-page: 351
  year: 2018
  ident: 726_CR39
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-018-6719-y
– volume: 35
  start-page: 47
  year: 2004
  ident: 726_CR11
  publication-title: J Saf Res
  doi: 10.1016/j.jsr.2003.07.003
– volume: 58
  start-page: 152
  year: 2012
  ident: 726_CR82
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2012.07.005
– volume: 176
  start-page: 95
  year: 1975
  ident: 726_CR25
  publication-title: Eng Min J
– volume: 18
  start-page: 6018009
  year: 2018
  ident: 726_CR51
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0001125
– year: 2019
  ident: 726_CR65
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00711-6
– year: 2017
  ident: 726_CR48
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2990-z10
– year: 2019
  ident: 726_CR76
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00701-8
– volume: 23
  start-page: 349
  year: 2013
  ident: 726_CR4
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0917-2
– volume: 166
  start-page: 924
  year: 2018
  ident: 726_CR56
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2018.03.050
– volume: 21
  start-page: 679
  year: 2016
  ident: 726_CR27
  publication-title: Steel Compos Struct
  doi: 10.12989/scs.2016.21.3.679
– volume: 9
  start-page: 641
  year: 2010
  ident: 726_CR10
  publication-title: Rock Fragm Blasting
– volume: 63
  start-page: 29
  year: 2017
  ident: 726_CR34
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2016.12.009
– volume: 9
  start-page: 48
  year: 2016
  ident: 726_CR35
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-2057-3
– volume: 30
  start-page: 4016003
  year: 2016
  ident: 726_CR20
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000553
– volume: 78
  start-page: 852
  year: 2009
  ident: 726_CR83
  publication-title: Radiat Phys Chem
  doi: 10.1016/j.radphyschem.2009.04.030
– volume: 36
  start-page: 2247
  issue: 4
  year: 2018
  ident: 726_CR45
  publication-title: Geotechnical and Geological Engineering
  doi: 10.1007/s10706-018-0459-1
– ident: 726_CR15
– volume: 50
  start-page: 2177
  year: 2018
  ident: 726_CR43
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2018.1439943
– ident: 726_CR53
– volume-title: Drilling and blasting of rocks, Geomining Technological Institute of Spain
  year: 1995
  ident: 726_CR54
– year: 2019
  ident: 726_CR55
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-00700-1
– year: 2018
  ident: 726_CR57
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0658-7
– volume: 8
  start-page: 10819
  year: 2015
  ident: 726_CR37
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-1952-y
– volume: 81
  start-page: 112
  year: 2018
  ident: 726_CR17
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2018.07.023
– volume: 49
  start-page: 1
  year: 2016
  ident: 726_CR80
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1015-z
– volume: 50, pp
  start-page: 40
  year: 1993
  ident: 726_CR69
  publication-title: Networks chaos—statistical and probabilistic aspects, vol
  doi: 10.1007/978-1-4899-3099-6_2
– year: 2015
  ident: 726_CR16
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2014.12.029
– volume: 52
  start-page: 163
  year: 2012
  ident: 726_CR9
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2012.03.011
– ident: 726_CR24
– year: 2017
  ident: 726_CR38
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-017-6864-6
– volume: 110
  start-page: 199
  year: 2018
  ident: 726_CR41
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.08.004
– year: 2019
  ident: 726_CR66
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00715-2
– volume-title: Practical neural network recipes in C++
  year: 1993
  ident: 726_CR72
– volume: 14
  start-page: 785
  year: 2014
  ident: 726_CR77
  publication-title: Smart Struct Syst Int J
  doi: 10.12989/sss.2014.14.5.785
– volume: 29
  start-page: 269
  issue: 6
  year: 2016
  ident: 726_CR14
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2537-8
– volume: 46
  start-page: 389
  year: 2013
  ident: 726_CR5
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-012-0269-3
– volume: 22
  start-page: 413
  year: 2018
  ident: 726_CR67
  publication-title: SMART Struct Syst
– volume: 60
  start-page: 471
  year: 2016
  ident: 726_CR31
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2016.60.3.471
– volume: 10
  start-page: 215
  year: 1996
  ident: 726_CR74
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(95)00039-9
– volume: 22
  start-page: 432
  year: 2012
  ident: 726_CR40
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(11)61195-3
– year: 2018
  ident: 726_CR60
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3253-3
– ident: 726_CR79
– year: 2017
  ident: 726_CR63
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-017-1116-2
– year: 2015
  ident: 726_CR1
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-014-0657-x
– volume: 52
  start-page: 1303
  issue: 5
  year: 2018
  ident: 726_CR19
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-018-1667-y
– year: 2017
  ident: 726_CR81
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0499-1
– volume: 51
  start-page: 1263
  year: 2018
  ident: 726_CR18
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-017-1395-8
– volume: 30
  start-page: 1247
  year: 2017
  ident: 726_CR30
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-017-1306-6
– year: 2018
  ident: 726_CR58
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1349-8
– year: 2016
  ident: 726_CR36
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2598-8
– volume: 7
  start-page: 5383
  year: 2014
  ident: 726_CR3
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-013-1174-0
– volume-title: A model for the determination of flyrock range as a function of shot conditions
  year: 1979
  ident: 726_CR23
– volume: 22
  start-page: 3986
  year: 2016
  ident: 726_CR21
  publication-title: J Vib Control
  doi: 10.1177/1077546314568172
– volume: 49
  start-page: 298
  year: 2011
  ident: 726_CR46
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2010.09.004
– volume: 81
  start-page: 632
  year: 2018
  ident: 726_CR22
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2018.08.029
– volume: 17
  start-page: 623
  year: 2014
  ident: 726_CR29
  publication-title: Steel Compos Struct
  doi: 10.12989/scs.2014.17.5.623
SSID ssj0013009
Score 2.5017023
Snippet One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 713
SubjectTerms Artificial neural networks
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Computer Science
Computer simulation
Computer-Aided Engineering (CAD
Control
Environmental effects
Hazards
Math. Applications in Chemistry
Mathematical and Computational Engineering
Mathematical models
Monte Carlo simulation
Multiple regression analysis
Neural networks
Original Article
Parameters
Risk assessment
Surface mines
Systems Theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ovOjBH1Nx_iIHbxpM16RpT6JjYwgOEQe7lbRNYDi3uc6D--t9adNNBXduEkK_5L0veS_fA7gKjEiMnzIqfSUo56lHI5VJKpvNNNIJV6JQvHnqBd0-fxyIgbtwy11aZWUTC0OdTVJ7R36LrsgGibnH76Yf1FaNstFVV0JjE7bQBIdhDbYe2r3nl1UcgZVJHp60SV6BdM9misdzVorFnqYjauWzA7r47ZpWfPNPiLTwPJ192HWUkdyXGB_Ahh7XYc_RR-I2Z16HnR_agoeQ35MnqzxFWmo2mpB8-O4KdZFKRpwgXyVlPgeaPKKWGp1kYogZfaFreyPWy2UEew2X2p1zUso_22ZWDhPnNi6TyY-g32m_trrUVVigKW69OU2Z1lLzTDDNpQ4RKRMKyTPPcKQFXqZUxsJI-NznOJlIG8kYLj3BfZYg8ZD-MdTGk7E-AeIFWidIZ0KtFDdKINASXV8aZowlUpkGeNXPjVMnP26rYIzipXByAUiMgMQFIPGiAdfLPtNSfGNt6_MKs9htxDxeLZsG3FQ4rj7_P9rp-tHOYLtpT95FDs851OazT32B9GSeXLo1-A3ZluLc
  priority: 102
  providerName: ProQuest
Title A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network
URI https://link.springer.com/article/10.1007/s00366-019-00726-z
https://www.proquest.com/docview/2189134414
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP3Q7aIHf4vzx8jBmwbSNWna45RNUSYiDvRU0jYBcW6yzoP76_3Spp2KCp4KaRJKX5Lvhby8D-A4MCIxfsqo9JWgnKcejVQmqex00kgnXInC8WZwE1wO-dWDeHCXwvJK7V4dSRYrdX3ZzVqn2N1vRK3ddUDny9AUuHe3Qq5hp7s4O2ClsMOTVtgVSHdV5uc-voajBcf8dixaRJv-Bqw5mki6Ja6bsKTHW7DuKCNxEzLHoiorQ1W2BaufLAa3Ie-SgTWgIudqOpqQ_OnF5esilZs4QdpKSlkHrnxE1VadZGKIGb1jhHsmNthlBFs91RaeM1K6QNtq1hUTP3dcasp3YNjv3Z9fUpdogaY4A2c0ZVpLzTPBNJc6RMBMKCTPPMORHXiZUhkLI-Fzn-PHRNpIxnAECu6zBPmH9HehMZ6M9R4QL9A6QVYTaqW4UQLxlhgB0zBjLJHKtMCr_necOhdymwxjFNf-yQVGMWIUFxjF8xac1G1eSw-OP2sfVjDGbj7mMRIZKzHgHm_BaQXt4vXvve3_r_oBrHTshryQ9hxCYzZ900fIWmZJG5bD_kUbmt2Lx-sePs96N7d37WLofgA4aelV
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIADb8R45gAniEjbZOkOCE2DMR7jBBK3kraJNDG2sQ6h8aP4jTh9bIAEN85Noih2_Dm1_Rlgv2JEaLyIUekpQTmPHFpVsaTSdaOqDrkSKeNN67bSvOdXD-JhCj6KWhibVlnYxNRQx73I_iM_RiiyQWLu8NP-C7Vdo2x0tWihkanFtR694ZMtObk8Q_keuG7j_K7epHlXARqhug1pxLSWmseCaS61j7szvpA8dgxHKHRipWLmV4XHPW407tdIxvC4BfdYiGArPVx3Gma4h0huK9MbF5OoBctSSnCUreyXeZFOWqpniV_s271KLVl3hb5_B8KJd_sjIJviXGMJFnIHldQyjVqGKd1dgcXcWSW5KUhWYP4Lk-EqJDXSsjxXpK4GnR5J2s95WzBSkJYT9I5Jlj2CBpaoMSMo6RliOiME0idiMTUmOKs9Zgodkoxs2g6z5Ju4t26Wur4G9_9y8utQ6va6egOIU9E6ROfJ10pxowSqlUSgjfyYsVAqUwanONwgysnObc-NTjCmaU4FEqBAglQgwXsZDsdz-hnVx5-jtwuZBfm1T4KJkpbhqJDj5PPvq23-vdoezDbvWjfBzeXt9RbMufbNn2YPbUNpOHjVO-gYDcPdVBsJPP63-n8CockeIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgSAgOvBHjmQOcICJtk6U7IMRr4jkhBBK3kraJNDE2oEMIfhq_DqdNN0CCG-cmURS7_pzY_gywXjMiNkHCqAyUoJwnHq2rVFLp-0ldx1yJnPHmolk7vuGnt-J2CD7KWhibVlnaxNxQp93EvpFvIxTZIDH3-LZxaRGXh43dxydqO0jZSGvZTqNQkTP99orXt2zn5BBlveH7jaPrg2PqOgzQBFWvRxOmtdQ8FUxzqUPcqQmF5KlnOMKilyqVsrAuAh5wo3HvRjKGRy94wGIEXhngusMwIu2tqAIj-0fNy6tBDIMVCSY4ztb5S1eykxfuWRoYe5OvU0vdXaPv32Fx4Ov-CM_mqNeYggnnrpK9Qr-mYUh3ZmDSua7EGYZsBsa_8BrOQrZHLizrFTlQz-0uyVoPrkkYKSnMCfrKpMglQXNLVJ8flHQNMe03hNV7YhE2JTir1ecN7ZGCetoOs1ScuLdOkcg-Bzf_cvbzUOl0O3oBiFfTOkZXKtRKcaMEKplE2E3ClLFYKlMFrzzcKHHU57YDRzvqkzbnAolQIFEukOi9Cpv9OY8F8cefo5dLmUXOCGTRQGWrsFXKcfD599UW_15tDUZR9aPzk-bZEoz59gEgTyVahkrv-UWvoJfUi1edOhK4--8_4BO-DyOz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Monte+Carlo+simulation+approach+for+effective+assessment+of+flyrock+based+on+intelligent+system+of+neural+network&rft.jtitle=Engineering+with+computers&rft.au=Zhou%2C+Jian&rft.au=Aghili%2C+Nasim&rft.au=Ghaleini%2C+Ebrahim+Noroozi&rft.au=Bui%2C+Dieu+Tien&rft.date=2020-04-01&rft.pub=Springer+London&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=36&rft.issue=2&rft.spage=713&rft.epage=723&rft_id=info:doi/10.1007%2Fs00366-019-00726-z&rft.externalDocID=10_1007_s00366_019_00726_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon