Asymmetric Mach–Zehnder interferometer-based optical sensor with characteristics of both wavelength and temperature independence
Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the accuracy of measured parameters. An optical sensor based on dual AMZIs, which is independent of both optical source wavelength and ambient temperat...
Saved in:
Published in | Journal of optics (New Delhi) Vol. 52; no. 3; pp. 1008 - 1021 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the accuracy of measured parameters. An optical sensor based on dual AMZIs, which is independent of both optical source wavelength and ambient temperature, is presented. The designed optical sensor consists of two AMZIs cascaded, one as sensing AMZI and the other as compensating AMZI. When the wavelength and temperature change, the sensing curve of the sensing AMZI shifts, and the compensating AMZI reverses the sensing curve where it reaches a new balance without being affected by the wavelength and temperature. In this paper, the center wavelength of the optical source is 1550 nm, the shift is ± 0.1 nm, and the temperature compensation range is 5 ~ 45 °C. After compensation, the error is reduced by 2–3 orders of magnitude, and the maximum sensing error is reduced to < 0.2%. The designed sensor reduces the requirements on the optical source and ambient temperature, and greatly reduces the cost of the optical sensing system. Moreover, this compensation mechanism can be used not only for optical sensors, but also for other optical devices based on interference. |
---|---|
AbstractList | Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the accuracy of measured parameters. An optical sensor based on dual AMZIs, which is independent of both optical source wavelength and ambient temperature, is presented. The designed optical sensor consists of two AMZIs cascaded, one as sensing AMZI and the other as compensating AMZI. When the wavelength and temperature change, the sensing curve of the sensing AMZI shifts, and the compensating AMZI reverses the sensing curve where it reaches a new balance without being affected by the wavelength and temperature. In this paper, the center wavelength of the optical source is 1550 nm, the shift is ± 0.1 nm, and the temperature compensation range is 5 ~ 45 °C. After compensation, the error is reduced by 2–3 orders of magnitude, and the maximum sensing error is reduced to < 0.2%. The designed sensor reduces the requirements on the optical source and ambient temperature, and greatly reduces the cost of the optical sensing system. Moreover, this compensation mechanism can be used not only for optical sensors, but also for other optical devices based on interference. Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the accuracy of measured parameters. An optical sensor based on dual AMZIs, which is independent of both optical source wavelength and ambient temperature, is presented. The designed optical sensor consists of two AMZIs cascaded, one as sensing AMZI and the other as compensating AMZI. When the wavelength and temperature change, the sensing curve of the sensing AMZI shifts, and the compensating AMZI reverses the sensing curve where it reaches a new balance without being affected by the wavelength and temperature. In this paper, the center wavelength of the optical source is 1550 nm, the shift is ± 0.1 nm, and the temperature compensation range is 5 ~ 45 °C. After compensation, the error is reduced by 2–3 orders of magnitude, and the maximum sensing error is reduced to < 0.2%. The designed sensor reduces the requirements on the optical source and ambient temperature, and greatly reduces the cost of the optical sensing system. Moreover, this compensation mechanism can be used not only for optical sensors, but also for other optical devices based on interference. |
Author | Li, Qiang Luo, Yanxia Yin, Rui Huang, Qingjie Lu, Lin Liu, Qiang Jiang, Shouzhen Liu, Fengyu |
Author_xml | – sequence: 1 givenname: Yanxia surname: Luo fullname: Luo, Yanxia organization: School of Information Science and Engineering, Shandong University – sequence: 2 givenname: Rui surname: Yin fullname: Yin, Rui email: yinrui@sdu.edu.cn organization: School of Information Science and Engineering, Shandong University – sequence: 3 givenname: Lin surname: Lu fullname: Lu, Lin email: llu@sdu.edu.cn organization: School of Computer Science and Technology, Shandong University – sequence: 4 givenname: Qingjie surname: Huang fullname: Huang, Qingjie organization: School of Information Science and Engineering, Shandong University – sequence: 5 givenname: Shouzhen surname: Jiang fullname: Jiang, Shouzhen organization: Collaborative Innovation Center of Optical Manipulations and Applications, Shandong Normal University – sequence: 6 givenname: Fengyu surname: Liu fullname: Liu, Fengyu organization: School of Information Science and Engineering, Shandong University – sequence: 7 givenname: Qiang surname: Liu fullname: Liu, Qiang organization: School of Information Science and Engineering, Shandong University – sequence: 8 givenname: Qiang surname: Li fullname: Li, Qiang organization: School of Information Science and Engineering, Shandong University |
BookMark | eNp9kM1OHDEMx6MKpFLgBXqKxDltkplkZo4I8VEJ1Eu5cIk8WQ-bajcZnCwfN9RX6Bv2SZqySJU4cLEt-_-zk_8nthNTRMY-K_lFSdl9zUqbwQqptZByUFY8fmB7cuhaYQcpd15qLfpeq4_sMOcwSiOtVNIMe-zXcX5ar7FQ8PwK_PLP8-8bXMYFEg-xIE1IqY6RxAgZFzzNJXhY8YwxJ-IPoSy5XwKBr5qQ6zDzNPEx1f4D3OMK420tIS54wfWMBGVDWHcvcMYaoscDtjvBKuPha95n12enP04uxOX3828nx5fCN2oowssWJba2tXqwvYFe-c4MfWv6TltpTTO2DWio3546DQaUaQyC1p2eGj2OU7PPjrZ7Z0p3G8zF_UwbivWk072xrbJdp6tKb1WeUs6Ek5sprIGenJLun91ua7erdrsXu91jhfo3kA8FSkixEITV-2izRXO9E2-R_r_qHeovSU2aXA |
CitedBy_id | crossref_primary_10_3390_photonics11050472 |
Cites_doi | 10.1016/j.yofte.2020.102239 10.1021/acssensors.7b00808 10.1364/AO.55.003566 10.1364/OE.20.004032 10.1109/JLT.2017.2765278 10.1364/OL.41.002867 10.1117/1.OE.54.9.097104 10.1364/OE.22.008856 10.1109/LSENS.2018.2849750 10.1364/OL.44.000299 10.1088/1361-6439/aab461 10.1364/OE.26.026057 10.1039/C8TA02767F 10.1109/JLT.2016.2532877 10.3390/s18072176 10.1109/JSEN.2020.2988774 10.1109/JSEN.2018.2869273 10.1109/LPT.2016.2573322 10.1364/OE.22.027910 10.3390/s19183820 10.1016/j.sna.2019.111615 10.1364/OL.30.001138 10.1016/j.measurement.2018.11.036 10.1117/1.JMM.16.2.025502 10.1016/j.measurement.2020.108705 10.1117/1.600961 10.1016/j.sna.2018.08.019 10.1016/j.snb.2018.01.015 10.1364/OL.39.005590 10.1109/LPT.2019.2922230 10.1109/ACP.2018.8596215 10.1109/OECC.2009.5212971 10.1109/EuroSimE.2016.7463357 10.1155/2015/854945 10.1109/TRANSDUCERS.2017.7994208 10.1109/PIERS-Fall48861.2019.9021593 10.1109/SCORED.2018.8711018 10.1109/ACP.2018.8596131 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to The Optical Society of India 2022 The Author(s), under exclusive licence to The Optical Society of India 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to The Optical Society of India 2022 – notice: The Author(s), under exclusive licence to The Optical Society of India 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12596-022-00916-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0974-6900 |
EndPage | 1021 |
ExternalDocumentID | 10_1007_s12596_022_00916_x |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31430031; 61972232; 12074226 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29L 29~ 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 95. 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABLLD ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ AXYYD AYJHY BA0 BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9T PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-c04e0e464629685a81c75984587260653b43a2a974f72a5a1535ea2272f32bbf3 |
IEDL.DBID | U2A |
ISSN | 0972-8821 |
IngestDate | Sun Jul 13 03:38:09 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Tue Jul 01 02:41:34 EDT 2025 Fri Feb 21 02:43:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Wavelength and temperature independence Optical sensor Fabrication tolerance analysis Asymmetric Mach–Zehnder interferometer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-c04e0e464629685a81c75984587260653b43a2a974f72a5a1535ea2272f32bbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2856416772 |
PQPubID | 2043793 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2856416772 crossref_primary_10_1007_s12596_022_00916_x crossref_citationtrail_10_1007_s12596_022_00916_x springer_journals_10_1007_s12596_022_00916_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
PublicationTitle | Journal of optics (New Delhi) |
PublicationTitleAbbrev | J Opt |
PublicationYear | 2023 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | Zhang, Dai (CR28) 2019; 31 Chen, Reano (CR27) 2012; 20 Zhang, Duan, Zhao, He (CR37) 2018; 18 Yin, Song, Huang, Ji, Luo, Liu, Yang (CR30) 2021; 170 Hu, Tong, Zhao, Deng, Guo, Mao, Wang (CR35) 2015; 54 CR19 Niu, Zhang, Wang, Lian, Jiang, Sun, Li, Wang (CR26) 2019; 299 CR38 Bianchetti, Avila-Garcia, Mata-Chavez, Sierra-Hernandez, Zendejas-Andrade, Jauregui-Vazquez, Estudillo-Ayala, Rojas-Laguna (CR18) 2017; 29 CR36 Liu, Kim, Gu, Kee, Park (CR5) 2014; 22 Deng, Liu, Li, Zhou (CR40) 2014; 39 Ganji, Asadi (CR1) 2017; 16 Müller, Quan, Lenner, Yang, Frank, Bohnert (CR33) 2016; 41 Zhang, Zou, Cao, He (CR34) 2019; 44 Zong, Thirstrup, Sørensen (CR32) 2005; 30 Li, Hou, Ran, Kang, Yang (CR39) 2019; 19 Xiao, Hofmann, Wang, Sherman, Zappe (CR25) 2016; 55 Zhang, Zou, He (CR10) 2018; 26 Kim, Lu, Culp, Ohodnicki (CR17) 2018; 3 Schenato, Galtarossa, Pasuto, Palmieri (CR3) 2020; 58 CR6 Misiakos, Raptis, Salapatas, Makarona, Botsialas, Hoekman, Stoffer, Jobst (CR14) 2014; 22 Chocarro-Ruiz, Pérez-Carvajal, Avci, Calvo-Lozano, Alonso, Maspoch, Lechuga (CR13) 2018; 6 CR7 CR29 Mishra, Zou, Chiang (CR15) 2016; 28 Ma, Huang, Meng, Huang (CR2) 2017; 35 Xie, Zhang, Liu, Liu, Liu, Wang (CR11) 2018; 18 Wang, Liu, Wang, Liao, Wang, Wen (CR12) 2019; 135 CR22 CR21 Booysen, Swart, Lacquet, Spammer (CR31) 1996; 35 CR20 Rochus, Jansen, Goyvaerts, Neutens, O’Callaghan, Rottenberg (CR8) 2018; 28 Ma, Liu, Liu, Jiang, Ding, Pan, Tian (CR24) 2016; 34 Li, Huang, Yin, Ji, Gong, Song (CR9) 2020; 20 Liu, Meng, Deng, Wei, Wang, Tan (CR23) 2018; 2 Hromadka, Tokay, Correia, Morgan, Korposh (CR16) 2018; 260 Ganji, Asadi (CR4) 2018; 280 916_CR7 916_CR6 916_CR29 916_CR22 D Niu (916_CR26) 2019; 299 Z Li (916_CR39) 2019; 19 R Yin (916_CR30) 2021; 170 V Rochus (916_CR8) 2018; 28 KJ Kim (916_CR17) 2018; 3 L Chen (916_CR27) 2012; 20 Y Zhang (916_CR10) 2018; 26 K Misiakos (916_CR14) 2014; 22 916_CR20 S Wang (916_CR12) 2019; 135 916_CR21 Y Zhang (916_CR34) 2019; 44 N Xie (916_CR11) 2018; 18 S Liu (916_CR23) 2018; 2 916_CR38 A Booysen (916_CR31) 1996; 35 R Zhang (916_CR37) 2018; 18 M Bianchetti (916_CR18) 2017; 29 916_CR36 L Zhang (916_CR28) 2019; 31 J Hromadka (916_CR16) 2018; 260 Q Liu (916_CR5) 2014; 22 B Chocarro-Ruiz (916_CR13) 2018; 6 916_CR19 J Li (916_CR9) 2020; 20 C Ma (916_CR24) 2016; 34 P Hu (916_CR35) 2015; 54 MAA Ganji (916_CR1) 2017; 16 L Schenato (916_CR3) 2020; 58 SK Mishra (916_CR15) 2016; 28 MAA Ganji (916_CR4) 2018; 280 Y Xiao (916_CR25) 2016; 55 GM Müller (916_CR33) 2016; 41 ZM Ma (916_CR2) 2017; 35 Q Deng (916_CR40) 2014; 39 W Zong (916_CR32) 2005; 30 |
References_xml | – ident: CR22 – volume: 58 year: 2020 ident: CR3 article-title: Distributed optical fiber pressure sensors publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2020.102239 – volume: 3 start-page: 386 year: 2018 end-page: 394 ident: CR17 article-title: Metal-organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform publication-title: ACS Sens. doi: 10.1021/acssensors.7b00808 – volume: 55 start-page: 3566 year: 2016 end-page: 3573 ident: CR25 article-title: Design of all-polymer asymmetric Mach-Zehnder interferometer sensors publication-title: Appl. Opt. doi: 10.1364/AO.55.003566 – volume: 20 start-page: 4032 year: 2012 end-page: 4038 ident: CR27 article-title: Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings publication-title: Opt. Express doi: 10.1364/OE.20.004032 – volume: 35 start-page: 4924 year: 2017 end-page: 4929 ident: CR2 article-title: Simultaneous measurement of temperature and pressure by utilizing an integrated Mach-Zehnder publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2765278 – volume: 41 start-page: 2867 year: 2016 end-page: 2870 ident: CR33 article-title: Fiber-optic current sensor with self-compensation of source wavelength changes publication-title: Opt. Lett. doi: 10.1364/OL.41.002867 – ident: CR6 – ident: CR29 – volume: 29 start-page: 1521 year: 2017 end-page: 1524 ident: CR18 article-title: Symmetric and asymmetric core-offset mach-zehnder interferometer torsion sensors publication-title: IEEE Photon. Technol. Lett. – volume: 54 year: 2015 ident: CR35 article-title: Study on high temperature Fabry-Perot fiber acoustic sensor with temperature self-compensation publication-title: Opt. Eng. doi: 10.1117/1.OE.54.9.097104 – volume: 22 start-page: 8856 year: 2014 end-page: 8870 ident: CR14 article-title: Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation publication-title: Opt. Express doi: 10.1364/OE.22.008856 – volume: 2 start-page: 5000904 year: 2018 ident: CR23 article-title: Fiber humidity sensor based on a graphene-coated core-offset mach-zehnder interferometer publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2018.2849750 – volume: 44 start-page: 299 year: 2019 end-page: 302 ident: CR34 article-title: Temperature-insensitive waveguide sensor using a ring cascaded with a Mach-Zehnder interferometer publication-title: Opt. Lett. doi: 10.1364/OL.44.000299 – volume: 28 year: 2018 ident: CR8 article-title: Fast analytical model of MZI micro-opto-mechanical pressure sensor publication-title: J. Micromech. Microeng doi: 10.1088/1361-6439/aab461 – volume: 26 start-page: 26057 year: 2018 end-page: 26064 ident: CR10 article-title: Temperature sensor with enhanced sensitivity based on silicon Mach-Zehnder interferometer with waveguide group index engineering publication-title: Opt. Express doi: 10.1364/OE.26.026057 – volume: 6 start-page: 13171 year: 2018 ident: CR13 article-title: A CO optical sensor based on self-assembled metal-organic framework nanoparticles publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02767F – volume: 34 start-page: 2235 year: 2016 end-page: 2239 ident: CR24 article-title: Long-range distributed fiber vibration sensor using an asymmetric dual mach-zehnder interferometers publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2532877 – volume: 18 start-page: 2176 year: 2018 ident: CR37 article-title: Temperature compensation of elasto-magneto-electric (EME) sensors in cable force monitoring using BP neural network publication-title: Sensors doi: 10.3390/s18072176 – ident: CR21 – volume: 20 start-page: 8903 year: 2020 end-page: 8911 ident: CR9 article-title: Customizable optical pressure sensor based on optimized asymmetric Mach-Zehnder interferometer: a review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2988774 – volume: 18 start-page: 8767 year: 2018 end-page: 8772 ident: CR11 article-title: In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2869273 – volume: 28 start-page: 1835 year: 2016 end-page: 1838 ident: CR15 article-title: Surface-plasmon-resonance refractive-index sensor with cu-coated polymer waveguide publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2016.2573322 – ident: CR19 – volume: 22 start-page: 27910 year: 2014 end-page: 27920 ident: CR5 article-title: Single-channel Mach-Zehnder interferometric biochemical sensor based on two-lateral-mode spiral waveguide publication-title: Opt. Express doi: 10.1364/OE.22.027910 – volume: 19 start-page: 3820 year: 2019 ident: CR39 article-title: Ultra-sensitive fiber refractive index sensor with intensity modulation and self-temperature compensation publication-title: Sensors doi: 10.3390/s19183820 – volume: 299 year: 2019 ident: CR26 article-title: High-resolution and fast-response optical waveguide temperature sensor using asymmetric Mach-Zehnder interferometer structure publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2019.111615 – volume: 30 start-page: 1138 year: 2005 end-page: 1140 ident: CR32 article-title: Optical biosensor with dispersion compensation publication-title: Opt. Lett. doi: 10.1364/OL.30.001138 – ident: CR38 – volume: 135 start-page: 527 year: 2019 end-page: 536 ident: CR12 article-title: Hybrid structure Mach-Zehnder interferometer based on silica and fluorinated polyimide microfibers for temperature or salinity sensing in seawater publication-title: Measurement doi: 10.1016/j.measurement.2018.11.036 – volume: 16 year: 2017 ident: CR1 article-title: Theoretical and experimental study of the photoelastic effect in channel waveguides in a diaphragm of LiNbO publication-title: J. Micro/Nanolithogr. MEMS MOEMS doi: 10.1117/1.JMM.16.2.025502 – volume: 170 year: 2021 ident: CR30 article-title: Integrated pressure sensor with large range and linear measurement based on SiO arrayed waveguide grating (AWG) publication-title: Measurement doi: 10.1016/j.measurement.2020.108705 – ident: CR36 – volume: 35 start-page: 2788 year: 1996 end-page: 2792 ident: CR31 article-title: Wavelength insensitive fiber optic sensor based on an axially strained fused coupler publication-title: Opt. Eng. doi: 10.1117/1.600961 – volume: 280 start-page: 521 year: 2018 end-page: 524 ident: CR4 article-title: Pressure sensor based on polarization rotation in z-cut LiNbO optical waveguide publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2018.08.019 – ident: CR7 – volume: 260 start-page: 685 year: 2018 end-page: 692 ident: CR16 article-title: Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8 publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2018.01.015 – volume: 39 start-page: 5590 year: 2014 end-page: 5593 ident: CR40 article-title: Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference publication-title: Opt. Lett. doi: 10.1364/OL.39.005590 – ident: CR20 – volume: 31 start-page: 1209 year: 2019 end-page: 1212 ident: CR28 article-title: Silicon subwavelength-grating microdisks for optical sensing publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2019.2922230 – ident: 916_CR20 doi: 10.1109/ACP.2018.8596215 – volume: 55 start-page: 3566 year: 2016 ident: 916_CR25 publication-title: Appl. Opt. doi: 10.1364/AO.55.003566 – volume: 260 start-page: 685 year: 2018 ident: 916_CR16 publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2018.01.015 – volume: 54 year: 2015 ident: 916_CR35 publication-title: Opt. Eng. doi: 10.1117/1.OE.54.9.097104 – volume: 170 year: 2021 ident: 916_CR30 publication-title: Measurement doi: 10.1016/j.measurement.2020.108705 – volume: 34 start-page: 2235 year: 2016 ident: 916_CR24 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2532877 – ident: 916_CR29 doi: 10.1109/OECC.2009.5212971 – volume: 58 year: 2020 ident: 916_CR3 publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2020.102239 – volume: 6 start-page: 13171 year: 2018 ident: 916_CR13 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02767F – volume: 26 start-page: 26057 year: 2018 ident: 916_CR10 publication-title: Opt. Express doi: 10.1364/OE.26.026057 – volume: 3 start-page: 386 year: 2018 ident: 916_CR17 publication-title: ACS Sens. doi: 10.1021/acssensors.7b00808 – ident: 916_CR7 doi: 10.1109/EuroSimE.2016.7463357 – volume: 22 start-page: 8856 year: 2014 ident: 916_CR14 publication-title: Opt. Express doi: 10.1364/OE.22.008856 – ident: 916_CR38 doi: 10.1155/2015/854945 – volume: 19 start-page: 3820 year: 2019 ident: 916_CR39 publication-title: Sensors doi: 10.3390/s19183820 – volume: 29 start-page: 1521 year: 2017 ident: 916_CR18 publication-title: IEEE Photon. Technol. Lett. – volume: 135 start-page: 527 year: 2019 ident: 916_CR12 publication-title: Measurement doi: 10.1016/j.measurement.2018.11.036 – volume: 299 year: 2019 ident: 916_CR26 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2019.111615 – ident: 916_CR36 – volume: 18 start-page: 2176 year: 2018 ident: 916_CR37 publication-title: Sensors doi: 10.3390/s18072176 – volume: 31 start-page: 1209 year: 2019 ident: 916_CR28 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2019.2922230 – ident: 916_CR6 doi: 10.1109/TRANSDUCERS.2017.7994208 – volume: 41 start-page: 2867 year: 2016 ident: 916_CR33 publication-title: Opt. Lett. doi: 10.1364/OL.41.002867 – volume: 39 start-page: 5590 year: 2014 ident: 916_CR40 publication-title: Opt. Lett. doi: 10.1364/OL.39.005590 – volume: 22 start-page: 27910 year: 2014 ident: 916_CR5 publication-title: Opt. Express doi: 10.1364/OE.22.027910 – volume: 16 year: 2017 ident: 916_CR1 publication-title: J. Micro/Nanolithogr. MEMS MOEMS doi: 10.1117/1.JMM.16.2.025502 – volume: 28 year: 2018 ident: 916_CR8 publication-title: J. Micromech. Microeng doi: 10.1088/1361-6439/aab461 – volume: 18 start-page: 8767 year: 2018 ident: 916_CR11 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2869273 – volume: 2 start-page: 5000904 year: 2018 ident: 916_CR23 publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2018.2849750 – volume: 44 start-page: 299 year: 2019 ident: 916_CR34 publication-title: Opt. Lett. doi: 10.1364/OL.44.000299 – volume: 28 start-page: 1835 year: 2016 ident: 916_CR15 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2016.2573322 – volume: 35 start-page: 2788 year: 1996 ident: 916_CR31 publication-title: Opt. Eng. doi: 10.1117/1.600961 – ident: 916_CR22 doi: 10.1109/PIERS-Fall48861.2019.9021593 – volume: 20 start-page: 4032 year: 2012 ident: 916_CR27 publication-title: Opt. Express doi: 10.1364/OE.20.004032 – volume: 20 start-page: 8903 year: 2020 ident: 916_CR9 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2988774 – ident: 916_CR21 doi: 10.1109/SCORED.2018.8711018 – volume: 35 start-page: 4924 year: 2017 ident: 916_CR2 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2765278 – volume: 30 start-page: 1138 year: 2005 ident: 916_CR32 publication-title: Opt. Lett. doi: 10.1364/OL.30.001138 – ident: 916_CR19 doi: 10.1109/ACP.2018.8596131 – volume: 280 start-page: 521 year: 2018 ident: 916_CR4 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2018.08.019 |
SSID | ssib050601059 ssj0000313918 |
Score | 2.27531 |
Snippet | Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1008 |
SubjectTerms | Ambient temperature Asymmetry Error reduction Lasers Mach-Zehnder interferometers Optical Devices Optical measuring instruments Optics Photonics Physics Physics and Astronomy Research Article Sensors Temperature compensation |
Title | Asymmetric Mach–Zehnder interferometer-based optical sensor with characteristics of both wavelength and temperature independence |
URI | https://link.springer.com/article/10.1007/s12596-022-00916-x https://www.proquest.com/docview/2856416772 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA7SIngRf7FaJQdvGuhmk-z2WMQflHqyUL0sSZpYwW5Lt6LexFfwDX0SZ7a7LRUVvAU2G5adSeabycw3hByK2AAIBeSmAqeYsKrJDBgOFvMo8M47gPgYh2xfq4uOuOzKblEUlpXZ7uWVZH5Sz4vdAKljwixngAsCxQA5ViX67qDFHd4qtQgZ82agIT-PQ0A5eaAPqWoYQMqgqJ75edlFCzWHnd9uSnMDdLZGVgvkSFtTUa-TJZdukOU8g9Nmm-S9lb0OBtgfy9K2tv3Pt48718fSFYqUEGPvkJgABgwNV48OR3kUm2bgxw7HFOOx1C6yN9OhpwYkSZ81tqdI72Go0x5FOquCi5k-zNroWrdFOmenNycXrGiwwCzsvAmzDeEaTiiheFPFUseBjWQzFjKOwM1RMjQi1FyDy-EjrqWG01E6zXnEfciN8eE2qaTD1O0QKlyzYbQNnUd7JwTCDK-clUr0TBCpGgnKn5rYgn0cm2A8JnPeZBREAoJIckEkLzVyNHtnNOXe-HN2vZRVUuzDLOExfECgwIWokeNSfvPHv6-2-7_pe2QF-9BPk8_qpDIZP7l9QCsTc0CqrfPbq9ODXEm_AN8j4hI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA-iiL6If3E6NQ--aWBN07R9HOKYf7YnB-JLSbJEBdeNdaK-iV_Bb-gn8a5rVxQVfAs0DaWX3P3ucvc7Qg5FpAGEAnKTnpVMGBkzDYaDRTz0nHUWID7GITtd2e6J8-vguigKy8ps9_JKMtfUVbEbIHVMmOUMcIEnGSDHBQADESZy9Xiz3EXImDcDDbk-9gHl5IE-pKphACm9onrm52W_WqgKdn67Kc0NUGuVrBTIkTanol4jczZdJ4t5BqfJNshbM3sZDLA_lqEdZe4-Xt9v7B2WrlCkhBg7i8QEMGBouPp0OMqj2DQDP3Y4phiPpeYrezMdOqpBkvRJYXuK9BaGKu1TpLMquJjp_ayNrrGbpNc6vTpps6LBAjNw8ibMNIRtWCGF5LGMAhV5JgziSARRCG6ODHwtfMUVuBwu5CpQoB0DqzgPufO51s7fIvPpMLXbhAobN7QyvnVo74RAmOGkNYEUfe2Fska88qcmpmAfxyYYD0nFm4yCSEAQSS6I5LlGjmbvjKbcG3_OrpeySopzmCU8gg_wJLgQNXJcyq96_PtqO_-bfkCW2ledy-TyrHuxS5axJ_00Ea1O5ifjR7sHyGWi9_ON-gmTwONx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA6iKF7EX6xWzcGbBptsNrs9FrX4jwcL4mVJ0sQKdlvainoTX8E39Emc2e62Kip4C2w2LJnZzDeTmW8I2ZaxARAKyE1xp5i0qsoMGA4Wi4h75x1AfIxDnl-oo4Y8uQ6vP1XxZ9nuxZXksKYBWZrSwV636ffGhW-A2jF5VjDACFwxQJFTcBxz1OuGqBUahex5IwCRnc0BIJ4s6Ie0NQzgJc8raX5e9qu1GkPQb7emmTGqz5O5HEXS2lDsC2TCpYtkOsvmtP0l8lrrP7fb2CvL0nNtW-8vbzeuhWUsFOkhet4hSQEMGBqxJu10s4g27YNP2-lRjM1S-5XJmXY8NSBV-qixVUV6C0OdNilSW-W8zPRu1FLXumXSqB9e7R-xvNkCs7BtA2Yr0lWcVFKJqopDHXMbhdVYhnEELo8KAyMDLTS4Hz4SOtRwUoZOCxEJHwhjfLBCJtNO6lYJla5aMdoGzqPtkxIhh1fOhko2DY9UifBiUxObM5FjQ4z7ZMyhjIJIQBBJJojkqUR2Ru90hzwcf84uF7JK8n-yn4gYPoArcCdKZLeQ3_jx76ut_W_6Fpm5PKgnZ8cXp-tkFtvTD3PSymRy0HtwGwBiBmYz09MPvdLnrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+Mach%E2%80%93Zehnder+interferometer-based+optical+sensor+with+characteristics+of+both+wavelength+and+temperature+independence&rft.jtitle=Journal+of+optics+%28New+Delhi%29&rft.au=Luo%2C+Yanxia&rft.au=Yin%2C+Rui&rft.au=Lu%2C+Lin&rft.au=Huang%2C+Qingjie&rft.date=2023-09-01&rft.issn=0972-8821&rft.eissn=0974-6900&rft.volume=52&rft.issue=3&rft.spage=1008&rft.epage=1021&rft_id=info:doi/10.1007%2Fs12596-022-00916-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12596_022_00916_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0972-8821&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0972-8821&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0972-8821&client=summon |