Asymmetric Mach–Zehnder interferometer-based optical sensor with characteristics of both wavelength and temperature independence

Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the accuracy of measured parameters. An optical sensor based on dual AMZIs, which is independent of both optical source wavelength and ambient temperat...

Full description

Saved in:
Bibliographic Details
Published inJournal of optics (New Delhi) Vol. 52; no. 3; pp. 1008 - 1021
Main Authors Luo, Yanxia, Yin, Rui, Lu, Lin, Huang, Qingjie, Jiang, Shouzhen, Liu, Fengyu, Liu, Qiang, Li, Qiang
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the accuracy of measured parameters. An optical sensor based on dual AMZIs, which is independent of both optical source wavelength and ambient temperature, is presented. The designed optical sensor consists of two AMZIs cascaded, one as sensing AMZI and the other as compensating AMZI. When the wavelength and temperature change, the sensing curve of the sensing AMZI shifts, and the compensating AMZI reverses the sensing curve where it reaches a new balance without being affected by the wavelength and temperature. In this paper, the center wavelength of the optical source is 1550 nm, the shift is ± 0.1 nm, and the temperature compensation range is 5 ~ 45 °C. After compensation, the error is reduced by 2–3 orders of magnitude, and the maximum sensing error is reduced to < 0.2%. The designed sensor reduces the requirements on the optical source and ambient temperature, and greatly reduces the cost of the optical sensing system. Moreover, this compensation mechanism can be used not only for optical sensors, but also for other optical devices based on interference.
AbstractList Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the accuracy of measured parameters. An optical sensor based on dual AMZIs, which is independent of both optical source wavelength and ambient temperature, is presented. The designed optical sensor consists of two AMZIs cascaded, one as sensing AMZI and the other as compensating AMZI. When the wavelength and temperature change, the sensing curve of the sensing AMZI shifts, and the compensating AMZI reverses the sensing curve where it reaches a new balance without being affected by the wavelength and temperature. In this paper, the center wavelength of the optical source is 1550 nm, the shift is ± 0.1 nm, and the temperature compensation range is 5 ~ 45 °C. After compensation, the error is reduced by 2–3 orders of magnitude, and the maximum sensing error is reduced to < 0.2%. The designed sensor reduces the requirements on the optical source and ambient temperature, and greatly reduces the cost of the optical sensing system. Moreover, this compensation mechanism can be used not only for optical sensors, but also for other optical devices based on interference.
Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the accuracy of measured parameters. An optical sensor based on dual AMZIs, which is independent of both optical source wavelength and ambient temperature, is presented. The designed optical sensor consists of two AMZIs cascaded, one as sensing AMZI and the other as compensating AMZI. When the wavelength and temperature change, the sensing curve of the sensing AMZI shifts, and the compensating AMZI reverses the sensing curve where it reaches a new balance without being affected by the wavelength and temperature. In this paper, the center wavelength of the optical source is 1550 nm, the shift is ± 0.1 nm, and the temperature compensation range is 5 ~ 45 °C. After compensation, the error is reduced by 2–3 orders of magnitude, and the maximum sensing error is reduced to < 0.2%. The designed sensor reduces the requirements on the optical source and ambient temperature, and greatly reduces the cost of the optical sensing system. Moreover, this compensation mechanism can be used not only for optical sensors, but also for other optical devices based on interference.
Author Li, Qiang
Luo, Yanxia
Yin, Rui
Huang, Qingjie
Lu, Lin
Liu, Qiang
Jiang, Shouzhen
Liu, Fengyu
Author_xml – sequence: 1
  givenname: Yanxia
  surname: Luo
  fullname: Luo, Yanxia
  organization: School of Information Science and Engineering, Shandong University
– sequence: 2
  givenname: Rui
  surname: Yin
  fullname: Yin, Rui
  email: yinrui@sdu.edu.cn
  organization: School of Information Science and Engineering, Shandong University
– sequence: 3
  givenname: Lin
  surname: Lu
  fullname: Lu, Lin
  email: llu@sdu.edu.cn
  organization: School of Computer Science and Technology, Shandong University
– sequence: 4
  givenname: Qingjie
  surname: Huang
  fullname: Huang, Qingjie
  organization: School of Information Science and Engineering, Shandong University
– sequence: 5
  givenname: Shouzhen
  surname: Jiang
  fullname: Jiang, Shouzhen
  organization: Collaborative Innovation Center of Optical Manipulations and Applications, Shandong Normal University
– sequence: 6
  givenname: Fengyu
  surname: Liu
  fullname: Liu, Fengyu
  organization: School of Information Science and Engineering, Shandong University
– sequence: 7
  givenname: Qiang
  surname: Liu
  fullname: Liu, Qiang
  organization: School of Information Science and Engineering, Shandong University
– sequence: 8
  givenname: Qiang
  surname: Li
  fullname: Li, Qiang
  organization: School of Information Science and Engineering, Shandong University
BookMark eNp9kM1OHDEMx6MKpFLgBXqKxDltkplkZo4I8VEJ1Eu5cIk8WQ-bajcZnCwfN9RX6Bv2SZqySJU4cLEt-_-zk_8nthNTRMY-K_lFSdl9zUqbwQqptZByUFY8fmB7cuhaYQcpd15qLfpeq4_sMOcwSiOtVNIMe-zXcX5ar7FQ8PwK_PLP8-8bXMYFEg-xIE1IqY6RxAgZFzzNJXhY8YwxJ-IPoSy5XwKBr5qQ6zDzNPEx1f4D3OMK420tIS54wfWMBGVDWHcvcMYaoscDtjvBKuPha95n12enP04uxOX3828nx5fCN2oowssWJba2tXqwvYFe-c4MfWv6TltpTTO2DWio3546DQaUaQyC1p2eGj2OU7PPjrZ7Z0p3G8zF_UwbivWk072xrbJdp6tKb1WeUs6Ek5sprIGenJLun91ua7erdrsXu91jhfo3kA8FSkixEITV-2izRXO9E2-R_r_qHeovSU2aXA
CitedBy_id crossref_primary_10_3390_photonics11050472
Cites_doi 10.1016/j.yofte.2020.102239
10.1021/acssensors.7b00808
10.1364/AO.55.003566
10.1364/OE.20.004032
10.1109/JLT.2017.2765278
10.1364/OL.41.002867
10.1117/1.OE.54.9.097104
10.1364/OE.22.008856
10.1109/LSENS.2018.2849750
10.1364/OL.44.000299
10.1088/1361-6439/aab461
10.1364/OE.26.026057
10.1039/C8TA02767F
10.1109/JLT.2016.2532877
10.3390/s18072176
10.1109/JSEN.2020.2988774
10.1109/JSEN.2018.2869273
10.1109/LPT.2016.2573322
10.1364/OE.22.027910
10.3390/s19183820
10.1016/j.sna.2019.111615
10.1364/OL.30.001138
10.1016/j.measurement.2018.11.036
10.1117/1.JMM.16.2.025502
10.1016/j.measurement.2020.108705
10.1117/1.600961
10.1016/j.sna.2018.08.019
10.1016/j.snb.2018.01.015
10.1364/OL.39.005590
10.1109/LPT.2019.2922230
10.1109/ACP.2018.8596215
10.1109/OECC.2009.5212971
10.1109/EuroSimE.2016.7463357
10.1155/2015/854945
10.1109/TRANSDUCERS.2017.7994208
10.1109/PIERS-Fall48861.2019.9021593
10.1109/SCORED.2018.8711018
10.1109/ACP.2018.8596131
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Optical Society of India 2022
The Author(s), under exclusive licence to The Optical Society of India 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to The Optical Society of India 2022
– notice: The Author(s), under exclusive licence to The Optical Society of India 2022.
DBID AAYXX
CITATION
DOI 10.1007/s12596-022-00916-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 0974-6900
EndPage 1021
ExternalDocumentID 10_1007_s12596_022_00916_x
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31430031; 61972232; 12074226
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29L
29~
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
95.
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABLLD
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
AXYYD
AYJHY
BA0
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-c04e0e464629685a81c75984587260653b43a2a974f72a5a1535ea2272f32bbf3
IEDL.DBID U2A
ISSN 0972-8821
IngestDate Sun Jul 13 03:38:09 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Tue Jul 01 02:41:34 EDT 2025
Fri Feb 21 02:43:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Wavelength and temperature independence
Optical sensor
Fabrication tolerance analysis
Asymmetric Mach–Zehnder interferometer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c04e0e464629685a81c75984587260653b43a2a974f72a5a1535ea2272f32bbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2856416772
PQPubID 2043793
PageCount 14
ParticipantIDs proquest_journals_2856416772
crossref_primary_10_1007_s12596_022_00916_x
crossref_citationtrail_10_1007_s12596_022_00916_x
springer_journals_10_1007_s12596_022_00916_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationTitle Journal of optics (New Delhi)
PublicationTitleAbbrev J Opt
PublicationYear 2023
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Zhang, Dai (CR28) 2019; 31
Chen, Reano (CR27) 2012; 20
Zhang, Duan, Zhao, He (CR37) 2018; 18
Yin, Song, Huang, Ji, Luo, Liu, Yang (CR30) 2021; 170
Hu, Tong, Zhao, Deng, Guo, Mao, Wang (CR35) 2015; 54
CR19
Niu, Zhang, Wang, Lian, Jiang, Sun, Li, Wang (CR26) 2019; 299
CR38
Bianchetti, Avila-Garcia, Mata-Chavez, Sierra-Hernandez, Zendejas-Andrade, Jauregui-Vazquez, Estudillo-Ayala, Rojas-Laguna (CR18) 2017; 29
CR36
Liu, Kim, Gu, Kee, Park (CR5) 2014; 22
Deng, Liu, Li, Zhou (CR40) 2014; 39
Ganji, Asadi (CR1) 2017; 16
Müller, Quan, Lenner, Yang, Frank, Bohnert (CR33) 2016; 41
Zhang, Zou, Cao, He (CR34) 2019; 44
Zong, Thirstrup, Sørensen (CR32) 2005; 30
Li, Hou, Ran, Kang, Yang (CR39) 2019; 19
Xiao, Hofmann, Wang, Sherman, Zappe (CR25) 2016; 55
Zhang, Zou, He (CR10) 2018; 26
Kim, Lu, Culp, Ohodnicki (CR17) 2018; 3
Schenato, Galtarossa, Pasuto, Palmieri (CR3) 2020; 58
CR6
Misiakos, Raptis, Salapatas, Makarona, Botsialas, Hoekman, Stoffer, Jobst (CR14) 2014; 22
Chocarro-Ruiz, Pérez-Carvajal, Avci, Calvo-Lozano, Alonso, Maspoch, Lechuga (CR13) 2018; 6
CR7
CR29
Mishra, Zou, Chiang (CR15) 2016; 28
Ma, Huang, Meng, Huang (CR2) 2017; 35
Xie, Zhang, Liu, Liu, Liu, Wang (CR11) 2018; 18
Wang, Liu, Wang, Liao, Wang, Wen (CR12) 2019; 135
CR22
CR21
Booysen, Swart, Lacquet, Spammer (CR31) 1996; 35
CR20
Rochus, Jansen, Goyvaerts, Neutens, O’Callaghan, Rottenberg (CR8) 2018; 28
Ma, Liu, Liu, Jiang, Ding, Pan, Tian (CR24) 2016; 34
Li, Huang, Yin, Ji, Gong, Song (CR9) 2020; 20
Liu, Meng, Deng, Wei, Wang, Tan (CR23) 2018; 2
Hromadka, Tokay, Correia, Morgan, Korposh (CR16) 2018; 260
Ganji, Asadi (CR4) 2018; 280
916_CR7
916_CR6
916_CR29
916_CR22
D Niu (916_CR26) 2019; 299
Z Li (916_CR39) 2019; 19
R Yin (916_CR30) 2021; 170
V Rochus (916_CR8) 2018; 28
KJ Kim (916_CR17) 2018; 3
L Chen (916_CR27) 2012; 20
Y Zhang (916_CR10) 2018; 26
K Misiakos (916_CR14) 2014; 22
916_CR20
S Wang (916_CR12) 2019; 135
916_CR21
Y Zhang (916_CR34) 2019; 44
N Xie (916_CR11) 2018; 18
S Liu (916_CR23) 2018; 2
916_CR38
A Booysen (916_CR31) 1996; 35
R Zhang (916_CR37) 2018; 18
M Bianchetti (916_CR18) 2017; 29
916_CR36
L Zhang (916_CR28) 2019; 31
J Hromadka (916_CR16) 2018; 260
Q Liu (916_CR5) 2014; 22
B Chocarro-Ruiz (916_CR13) 2018; 6
916_CR19
J Li (916_CR9) 2020; 20
C Ma (916_CR24) 2016; 34
P Hu (916_CR35) 2015; 54
MAA Ganji (916_CR1) 2017; 16
L Schenato (916_CR3) 2020; 58
SK Mishra (916_CR15) 2016; 28
MAA Ganji (916_CR4) 2018; 280
Y Xiao (916_CR25) 2016; 55
GM Müller (916_CR33) 2016; 41
ZM Ma (916_CR2) 2017; 35
Q Deng (916_CR40) 2014; 39
W Zong (916_CR32) 2005; 30
References_xml – ident: CR22
– volume: 58
  year: 2020
  ident: CR3
  article-title: Distributed optical fiber pressure sensors
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2020.102239
– volume: 3
  start-page: 386
  year: 2018
  end-page: 394
  ident: CR17
  article-title: Metal-organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00808
– volume: 55
  start-page: 3566
  year: 2016
  end-page: 3573
  ident: CR25
  article-title: Design of all-polymer asymmetric Mach-Zehnder interferometer sensors
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.003566
– volume: 20
  start-page: 4032
  year: 2012
  end-page: 4038
  ident: CR27
  article-title: Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings
  publication-title: Opt. Express
  doi: 10.1364/OE.20.004032
– volume: 35
  start-page: 4924
  year: 2017
  end-page: 4929
  ident: CR2
  article-title: Simultaneous measurement of temperature and pressure by utilizing an integrated Mach-Zehnder
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2765278
– volume: 41
  start-page: 2867
  year: 2016
  end-page: 2870
  ident: CR33
  article-title: Fiber-optic current sensor with self-compensation of source wavelength changes
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002867
– ident: CR6
– ident: CR29
– volume: 29
  start-page: 1521
  year: 2017
  end-page: 1524
  ident: CR18
  article-title: Symmetric and asymmetric core-offset mach-zehnder interferometer torsion sensors
  publication-title: IEEE Photon. Technol. Lett.
– volume: 54
  year: 2015
  ident: CR35
  article-title: Study on high temperature Fabry-Perot fiber acoustic sensor with temperature self-compensation
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.54.9.097104
– volume: 22
  start-page: 8856
  year: 2014
  end-page: 8870
  ident: CR14
  article-title: Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation
  publication-title: Opt. Express
  doi: 10.1364/OE.22.008856
– volume: 2
  start-page: 5000904
  year: 2018
  ident: CR23
  article-title: Fiber humidity sensor based on a graphene-coated core-offset mach-zehnder interferometer
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2018.2849750
– volume: 44
  start-page: 299
  year: 2019
  end-page: 302
  ident: CR34
  article-title: Temperature-insensitive waveguide sensor using a ring cascaded with a Mach-Zehnder interferometer
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000299
– volume: 28
  year: 2018
  ident: CR8
  article-title: Fast analytical model of MZI micro-opto-mechanical pressure sensor
  publication-title: J. Micromech. Microeng
  doi: 10.1088/1361-6439/aab461
– volume: 26
  start-page: 26057
  year: 2018
  end-page: 26064
  ident: CR10
  article-title: Temperature sensor with enhanced sensitivity based on silicon Mach-Zehnder interferometer with waveguide group index engineering
  publication-title: Opt. Express
  doi: 10.1364/OE.26.026057
– volume: 6
  start-page: 13171
  year: 2018
  ident: CR13
  article-title: A CO optical sensor based on self-assembled metal-organic framework nanoparticles
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02767F
– volume: 34
  start-page: 2235
  year: 2016
  end-page: 2239
  ident: CR24
  article-title: Long-range distributed fiber vibration sensor using an asymmetric dual mach-zehnder interferometers
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2532877
– volume: 18
  start-page: 2176
  year: 2018
  ident: CR37
  article-title: Temperature compensation of elasto-magneto-electric (EME) sensors in cable force monitoring using BP neural network
  publication-title: Sensors
  doi: 10.3390/s18072176
– ident: CR21
– volume: 20
  start-page: 8903
  year: 2020
  end-page: 8911
  ident: CR9
  article-title: Customizable optical pressure sensor based on optimized asymmetric Mach-Zehnder interferometer: a review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2988774
– volume: 18
  start-page: 8767
  year: 2018
  end-page: 8772
  ident: CR11
  article-title: In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2869273
– volume: 28
  start-page: 1835
  year: 2016
  end-page: 1838
  ident: CR15
  article-title: Surface-plasmon-resonance refractive-index sensor with cu-coated polymer waveguide
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2016.2573322
– ident: CR19
– volume: 22
  start-page: 27910
  year: 2014
  end-page: 27920
  ident: CR5
  article-title: Single-channel Mach-Zehnder interferometric biochemical sensor based on two-lateral-mode spiral waveguide
  publication-title: Opt. Express
  doi: 10.1364/OE.22.027910
– volume: 19
  start-page: 3820
  year: 2019
  ident: CR39
  article-title: Ultra-sensitive fiber refractive index sensor with intensity modulation and self-temperature compensation
  publication-title: Sensors
  doi: 10.3390/s19183820
– volume: 299
  year: 2019
  ident: CR26
  article-title: High-resolution and fast-response optical waveguide temperature sensor using asymmetric Mach-Zehnder interferometer structure
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2019.111615
– volume: 30
  start-page: 1138
  year: 2005
  end-page: 1140
  ident: CR32
  article-title: Optical biosensor with dispersion compensation
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.001138
– ident: CR38
– volume: 135
  start-page: 527
  year: 2019
  end-page: 536
  ident: CR12
  article-title: Hybrid structure Mach-Zehnder interferometer based on silica and fluorinated polyimide microfibers for temperature or salinity sensing in seawater
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.11.036
– volume: 16
  year: 2017
  ident: CR1
  article-title: Theoretical and experimental study of the photoelastic effect in channel waveguides in a diaphragm of LiNbO
  publication-title: J. Micro/Nanolithogr. MEMS MOEMS
  doi: 10.1117/1.JMM.16.2.025502
– volume: 170
  year: 2021
  ident: CR30
  article-title: Integrated pressure sensor with large range and linear measurement based on SiO arrayed waveguide grating (AWG)
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108705
– ident: CR36
– volume: 35
  start-page: 2788
  year: 1996
  end-page: 2792
  ident: CR31
  article-title: Wavelength insensitive fiber optic sensor based on an axially strained fused coupler
  publication-title: Opt. Eng.
  doi: 10.1117/1.600961
– volume: 280
  start-page: 521
  year: 2018
  end-page: 524
  ident: CR4
  article-title: Pressure sensor based on polarization rotation in z-cut LiNbO optical waveguide
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2018.08.019
– ident: CR7
– volume: 260
  start-page: 685
  year: 2018
  end-page: 692
  ident: CR16
  article-title: Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2018.01.015
– volume: 39
  start-page: 5590
  year: 2014
  end-page: 5593
  ident: CR40
  article-title: Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.005590
– ident: CR20
– volume: 31
  start-page: 1209
  year: 2019
  end-page: 1212
  ident: CR28
  article-title: Silicon subwavelength-grating microdisks for optical sensing
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2019.2922230
– ident: 916_CR20
  doi: 10.1109/ACP.2018.8596215
– volume: 55
  start-page: 3566
  year: 2016
  ident: 916_CR25
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.003566
– volume: 260
  start-page: 685
  year: 2018
  ident: 916_CR16
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2018.01.015
– volume: 54
  year: 2015
  ident: 916_CR35
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.54.9.097104
– volume: 170
  year: 2021
  ident: 916_CR30
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108705
– volume: 34
  start-page: 2235
  year: 2016
  ident: 916_CR24
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2532877
– ident: 916_CR29
  doi: 10.1109/OECC.2009.5212971
– volume: 58
  year: 2020
  ident: 916_CR3
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2020.102239
– volume: 6
  start-page: 13171
  year: 2018
  ident: 916_CR13
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02767F
– volume: 26
  start-page: 26057
  year: 2018
  ident: 916_CR10
  publication-title: Opt. Express
  doi: 10.1364/OE.26.026057
– volume: 3
  start-page: 386
  year: 2018
  ident: 916_CR17
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00808
– ident: 916_CR7
  doi: 10.1109/EuroSimE.2016.7463357
– volume: 22
  start-page: 8856
  year: 2014
  ident: 916_CR14
  publication-title: Opt. Express
  doi: 10.1364/OE.22.008856
– ident: 916_CR38
  doi: 10.1155/2015/854945
– volume: 19
  start-page: 3820
  year: 2019
  ident: 916_CR39
  publication-title: Sensors
  doi: 10.3390/s19183820
– volume: 29
  start-page: 1521
  year: 2017
  ident: 916_CR18
  publication-title: IEEE Photon. Technol. Lett.
– volume: 135
  start-page: 527
  year: 2019
  ident: 916_CR12
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.11.036
– volume: 299
  year: 2019
  ident: 916_CR26
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2019.111615
– ident: 916_CR36
– volume: 18
  start-page: 2176
  year: 2018
  ident: 916_CR37
  publication-title: Sensors
  doi: 10.3390/s18072176
– volume: 31
  start-page: 1209
  year: 2019
  ident: 916_CR28
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2019.2922230
– ident: 916_CR6
  doi: 10.1109/TRANSDUCERS.2017.7994208
– volume: 41
  start-page: 2867
  year: 2016
  ident: 916_CR33
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002867
– volume: 39
  start-page: 5590
  year: 2014
  ident: 916_CR40
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.005590
– volume: 22
  start-page: 27910
  year: 2014
  ident: 916_CR5
  publication-title: Opt. Express
  doi: 10.1364/OE.22.027910
– volume: 16
  year: 2017
  ident: 916_CR1
  publication-title: J. Micro/Nanolithogr. MEMS MOEMS
  doi: 10.1117/1.JMM.16.2.025502
– volume: 28
  year: 2018
  ident: 916_CR8
  publication-title: J. Micromech. Microeng
  doi: 10.1088/1361-6439/aab461
– volume: 18
  start-page: 8767
  year: 2018
  ident: 916_CR11
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2869273
– volume: 2
  start-page: 5000904
  year: 2018
  ident: 916_CR23
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2018.2849750
– volume: 44
  start-page: 299
  year: 2019
  ident: 916_CR34
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000299
– volume: 28
  start-page: 1835
  year: 2016
  ident: 916_CR15
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2016.2573322
– volume: 35
  start-page: 2788
  year: 1996
  ident: 916_CR31
  publication-title: Opt. Eng.
  doi: 10.1117/1.600961
– ident: 916_CR22
  doi: 10.1109/PIERS-Fall48861.2019.9021593
– volume: 20
  start-page: 4032
  year: 2012
  ident: 916_CR27
  publication-title: Opt. Express
  doi: 10.1364/OE.20.004032
– volume: 20
  start-page: 8903
  year: 2020
  ident: 916_CR9
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2988774
– ident: 916_CR21
  doi: 10.1109/SCORED.2018.8711018
– volume: 35
  start-page: 4924
  year: 2017
  ident: 916_CR2
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2765278
– volume: 30
  start-page: 1138
  year: 2005
  ident: 916_CR32
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.001138
– ident: 916_CR19
  doi: 10.1109/ACP.2018.8596131
– volume: 280
  start-page: 521
  year: 2018
  ident: 916_CR4
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2018.08.019
SSID ssib050601059
ssj0000313918
Score 2.27531
Snippet Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1008
SubjectTerms Ambient temperature
Asymmetry
Error reduction
Lasers
Mach-Zehnder interferometers
Optical Devices
Optical measuring instruments
Optics
Photonics
Physics
Physics and Astronomy
Research Article
Sensors
Temperature compensation
Title Asymmetric Mach–Zehnder interferometer-based optical sensor with characteristics of both wavelength and temperature independence
URI https://link.springer.com/article/10.1007/s12596-022-00916-x
https://www.proquest.com/docview/2856416772
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA7SIngRf7FaJQdvGuhmk-z2WMQflHqyUL0sSZpYwW5Lt6LexFfwDX0SZ7a7LRUVvAU2G5adSeabycw3hByK2AAIBeSmAqeYsKrJDBgOFvMo8M47gPgYh2xfq4uOuOzKblEUlpXZ7uWVZH5Sz4vdAKljwixngAsCxQA5ViX67qDFHd4qtQgZ82agIT-PQ0A5eaAPqWoYQMqgqJ75edlFCzWHnd9uSnMDdLZGVgvkSFtTUa-TJZdukOU8g9Nmm-S9lb0OBtgfy9K2tv3Pt48718fSFYqUEGPvkJgABgwNV48OR3kUm2bgxw7HFOOx1C6yN9OhpwYkSZ81tqdI72Go0x5FOquCi5k-zNroWrdFOmenNycXrGiwwCzsvAmzDeEaTiiheFPFUseBjWQzFjKOwM1RMjQi1FyDy-EjrqWG01E6zXnEfciN8eE2qaTD1O0QKlyzYbQNnUd7JwTCDK-clUr0TBCpGgnKn5rYgn0cm2A8JnPeZBREAoJIckEkLzVyNHtnNOXe-HN2vZRVUuzDLOExfECgwIWokeNSfvPHv6-2-7_pe2QF-9BPk8_qpDIZP7l9QCsTc0CqrfPbq9ODXEm_AN8j4hI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwEA-iiL6If3E6NQ--aWBN07R9HOKYf7YnB-JLSbJEBdeNdaK-iV_Bb-gn8a5rVxQVfAs0DaWX3P3ucvc7Qg5FpAGEAnKTnpVMGBkzDYaDRTz0nHUWID7GITtd2e6J8-vguigKy8ps9_JKMtfUVbEbIHVMmOUMcIEnGSDHBQADESZy9Xiz3EXImDcDDbk-9gHl5IE-pKphACm9onrm52W_WqgKdn67Kc0NUGuVrBTIkTanol4jczZdJ4t5BqfJNshbM3sZDLA_lqEdZe4-Xt9v7B2WrlCkhBg7i8QEMGBouPp0OMqj2DQDP3Y4phiPpeYrezMdOqpBkvRJYXuK9BaGKu1TpLMquJjp_ayNrrGbpNc6vTpps6LBAjNw8ibMNIRtWCGF5LGMAhV5JgziSARRCG6ODHwtfMUVuBwu5CpQoB0DqzgPufO51s7fIvPpMLXbhAobN7QyvnVo74RAmOGkNYEUfe2Fska88qcmpmAfxyYYD0nFm4yCSEAQSS6I5LlGjmbvjKbcG3_OrpeySopzmCU8gg_wJLgQNXJcyq96_PtqO_-bfkCW2ledy-TyrHuxS5axJ_00Ea1O5ifjR7sHyGWi9_ON-gmTwONx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA6iKF7EX6xWzcGbBptsNrs9FrX4jwcL4mVJ0sQKdlvainoTX8E39Emc2e62Kip4C2w2LJnZzDeTmW8I2ZaxARAKyE1xp5i0qsoMGA4Wi4h75x1AfIxDnl-oo4Y8uQ6vP1XxZ9nuxZXksKYBWZrSwV636ffGhW-A2jF5VjDACFwxQJFTcBxz1OuGqBUahex5IwCRnc0BIJ4s6Ie0NQzgJc8raX5e9qu1GkPQb7emmTGqz5O5HEXS2lDsC2TCpYtkOsvmtP0l8lrrP7fb2CvL0nNtW-8vbzeuhWUsFOkhet4hSQEMGBqxJu10s4g27YNP2-lRjM1S-5XJmXY8NSBV-qixVUV6C0OdNilSW-W8zPRu1FLXumXSqB9e7R-xvNkCs7BtA2Yr0lWcVFKJqopDHXMbhdVYhnEELo8KAyMDLTS4Hz4SOtRwUoZOCxEJHwhjfLBCJtNO6lYJla5aMdoGzqPtkxIhh1fOhko2DY9UifBiUxObM5FjQ4z7ZMyhjIJIQBBJJojkqUR2Ru90hzwcf84uF7JK8n-yn4gYPoArcCdKZLeQ3_jx76ut_W_6Fpm5PKgnZ8cXp-tkFtvTD3PSymRy0HtwGwBiBmYz09MPvdLnrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+Mach%E2%80%93Zehnder+interferometer-based+optical+sensor+with+characteristics+of+both+wavelength+and+temperature+independence&rft.jtitle=Journal+of+optics+%28New+Delhi%29&rft.au=Luo%2C+Yanxia&rft.au=Yin%2C+Rui&rft.au=Lu%2C+Lin&rft.au=Huang%2C+Qingjie&rft.date=2023-09-01&rft.issn=0972-8821&rft.eissn=0974-6900&rft.volume=52&rft.issue=3&rft.spage=1008&rft.epage=1021&rft_id=info:doi/10.1007%2Fs12596-022-00916-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12596_022_00916_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0972-8821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0972-8821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0972-8821&client=summon