Enhanced coati optimization algorithm using elite opposition-based learning and adaptive search mechanism for feature selection
The rapid rise in volume and feature dimensions is negatively impacting machine learning and many other areas, leading to worse classification accuracy and higher computational costs. Feature Selection (FS) methods are crucial to lessen feature dimensionality, which act by removing attributes like i...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 16; no. 1; pp. 361 - 394 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-024-02222-3 |
Cover
Loading…
Abstract | The rapid rise in volume and feature dimensions is negatively impacting machine learning and many other areas, leading to worse classification accuracy and higher computational costs. Feature Selection (FS) methods are crucial to lessen feature dimensionality, which act by removing attributes like irrelevant and less informative information which may have a detrimental impact on the performance of classifiers. This paper presents an Enhanced variant of the Coati Optimization Algorithm (ECOA) that features a better search ability than the basic COA. The COA algorithm was newly evolved to imitate the behavior of coatis when they hunt and attack iguanas as well as when they try to flee from predators. Although the authors of this algorithm state that it is promising, it occasionally exhibits poor search performance and early convergence. To mitigate these issues, the ECOA algorithm was proposed that makes use of elite opposite-based learning in addition to some adaptive search mechanisms. ECOA is expected to have an improved search mechanism and can prevent trapping at local optimum, depending on the mutation, mutation neighborhood search, and rollback procedures. Moreover, it enhances population variety and convergence rate. The COA and ECOA algorithms were used to solve FS problems by selecting optimal feature subsets based on a binary version of each adopted algorithm and the k-Nearest Neighbor (k-NN) classifier. To assess the performance of the Binary ECOA (BECOA), a number of experiments was performed on 24 datasets collected from many sources. Further, six criteria-sensitivity, specificity, classification accuracy, fitness value, number of chosen features, and run time-were used to assess the performance of BECOA. Experimental findings show the excellence of BECOA over other k-NN based FS methods, including Binary COA (BCOA) and other binary optimization methods, in a number of assessment aspects. In particular, among the 24 datasets deemed, BECOA, which yielded the best overall results among all other competing binary algorithms, was able to exclusively outperform the others in 7 datasets in terms of classification accuracy, 11 datasets in terms of specificity, 5 datasets in terms of sensitivity, 10 datasets in terms of number of selected features, 4 in terms of run-time, and 14 datasets in terms of fitness values. |
---|---|
AbstractList | The rapid rise in volume and feature dimensions is negatively impacting machine learning and many other areas, leading to worse classification accuracy and higher computational costs. Feature Selection (FS) methods are crucial to lessen feature dimensionality, which act by removing attributes like irrelevant and less informative information which may have a detrimental impact on the performance of classifiers. This paper presents an Enhanced variant of the Coati Optimization Algorithm (ECOA) that features a better search ability than the basic COA. The COA algorithm was newly evolved to imitate the behavior of coatis when they hunt and attack iguanas as well as when they try to flee from predators. Although the authors of this algorithm state that it is promising, it occasionally exhibits poor search performance and early convergence. To mitigate these issues, the ECOA algorithm was proposed that makes use of elite opposite-based learning in addition to some adaptive search mechanisms. ECOA is expected to have an improved search mechanism and can prevent trapping at local optimum, depending on the mutation, mutation neighborhood search, and rollback procedures. Moreover, it enhances population variety and convergence rate. The COA and ECOA algorithms were used to solve FS problems by selecting optimal feature subsets based on a binary version of each adopted algorithm and the k-Nearest Neighbor (k-NN) classifier. To assess the performance of the Binary ECOA (BECOA), a number of experiments was performed on 24 datasets collected from many sources. Further, six criteria-sensitivity, specificity, classification accuracy, fitness value, number of chosen features, and run time-were used to assess the performance of BECOA. Experimental findings show the excellence of BECOA over other k-NN based FS methods, including Binary COA (BCOA) and other binary optimization methods, in a number of assessment aspects. In particular, among the 24 datasets deemed, BECOA, which yielded the best overall results among all other competing binary algorithms, was able to exclusively outperform the others in 7 datasets in terms of classification accuracy, 11 datasets in terms of specificity, 5 datasets in terms of sensitivity, 10 datasets in terms of number of selected features, 4 in terms of run-time, and 14 datasets in terms of fitness values. |
Author | Alshammari, Mohammad T. Qtaish, Amjad Alreshidi, Eissa Jaber Albashish, Dheeb Braik, Malik Alreshidi, Abdulrahman |
Author_xml | – sequence: 1 givenname: Amjad surname: Qtaish fullname: Qtaish, Amjad organization: Department of Information and Computer Science, University of Ha’il, Accounting Department, Applied Science Private University – sequence: 2 givenname: Malik orcidid: 0000-0003-4180-3734 surname: Braik fullname: Braik, Malik email: mbraik@bau.edu.jo organization: Computer Science Department, Al-Balqa Applied University – sequence: 3 givenname: Dheeb surname: Albashish fullname: Albashish, Dheeb organization: Computer Science Department, Al-Balqa Applied University – sequence: 4 givenname: Mohammad T. surname: Alshammari fullname: Alshammari, Mohammad T. organization: Department of Information and Computer Science, University of Ha’il – sequence: 5 givenname: Abdulrahman surname: Alreshidi fullname: Alreshidi, Abdulrahman organization: Department of Information and Computer Science, University of Ha’il – sequence: 6 givenname: Eissa Jaber surname: Alreshidi fullname: Alreshidi, Eissa Jaber organization: Department of Information and Computer Science, University of Ha’il |
BookMark | eNp9kEtLAzEUhYNUsFb_gKuA69E85pFZitQHCG4U3IU0c9OmzCQ1SQXd-NfNWFFw0Qshl9zznRvOMZo47wChM0ouKCHNZaSclKwgrMwnV8EP0JSKWhSCiJfJb9_QI3Qa45rkqgnnhE3R59ytlNPQYe1Vsthvkh3sR269w6pf-mDTasDbaN0SQ28TZMnGRzsKioWKmexBBTfOleuw6lS2eAMc86te4QF0XmDjgI0P2IBK2zAOe9CjxQk6NKqPcPpzz9Dzzfzp-q54eLy9v756KDSnbSo04U3ZEFHRtuk6KOtyURkOxjAGtFJNp01N21KYBuqOVYp3bVOzBZhFmWdty2fofOe7Cf51CzHJtd8Gl1dKTivB6rYWJKvETqWDjzGAkdqm7yxSULaXlMgxcblLXObE5XfikmeU_UM3wQ4qvO-H-A6KWeyWEP5-tYf6AtgPmCE |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3489395 crossref_primary_10_1007_s11227_025_07139_4 crossref_primary_10_1007_s00521_024_10288_x crossref_primary_10_3390_jmse12091676 |
Cites_doi | 10.1109/ACCESS.2020.2992752 10.1016/j.ins.2021.10.026 10.1016/j.eswa.2022.119303 10.1016/j.eswa.2023.121128 10.1007/s00366-021-01368-w 10.1007/s00500-020-05349-x 10.1016/j.bspc.2023.105073 10.1016/j.eswa.2018.09.015 10.1109/ACCESS.2020.3006473 10.1109/TEVC.2021.3106975 10.1016/j.swevo.2012.09.002 10.1109/CIMCA.2005.1631345 10.1109/TEVC.2021.3134804 10.1109/TETCI.2021.3074147 10.1016/j.knosys.2015.07.006 10.1080/21642583.2019.1708830 10.1080/00031305.1992.10475879 10.3934/mbe.2021016 10.1007/s00521-015-1923-y 10.1016/j.knosys.2022.108743 10.1109/ACCTHPA49271.2020.9213197 10.1016/j.engappai.2020.104079 10.1016/j.eswa.2022.118872 10.1109/TEVC.2008.919004 10.1007/s10489-022-03554-9 10.1016/j.aej.2022.10.033 10.1016/j.compbiomed.2022.105675 10.1016/j.compstruc.2016.03.001 10.1016/j.asoc.2020.107026 10.1016/j.swevo.2019.04.004 10.1007/s10462-020-09860-3 10.1145/1068009.1068177 10.3390/electronics12092042 10.1177/0165551521991037 10.3233/JIFS-210815 10.1016/j.eswa.2021.114685 10.1016/j.procs.2019.11.167 10.1016/j.compbiomed.2021.105152 10.1016/j.knosys.2022.110011 10.1016/j.ins.2011.08.006 10.1016/j.enconman.2020.112660 10.1109/TEVC.2015.2504420 10.1016/j.knosys.2022.108320 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 corrected publication 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jan 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 corrected publication 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jan 2025 |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s13042-024-02222-3 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 394 |
ExternalDocumentID | 10_1007_s13042_024_02222_3 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ JQ2 |
ID | FETCH-LOGICAL-c319t-c03747085197dde464b5f3eff22e15a7dcf61948f7e6d25a3d9762befb47dc993 |
IEDL.DBID | AGYKE |
ISSN | 1868-8071 |
IngestDate | Sun Jul 13 04:17:03 EDT 2025 Tue Jul 01 03:51:05 EDT 2025 Thu Apr 24 23:13:53 EDT 2025 Fri Feb 21 02:37:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Coati optimization algorithm Feature selection Opposition-based learning Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-c03747085197dde464b5f3eff22e15a7dcf61948f7e6d25a3d9762befb47dc993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4180-3734 |
PQID | 3158269680 |
PQPubID | 2043904 |
PageCount | 34 |
ParticipantIDs | proquest_journals_3158269680 crossref_citationtrail_10_1007_s13042_024_02222_3 crossref_primary_10_1007_s13042_024_02222_3 springer_journals_10_1007_s13042_024_02222_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250100 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | B Parlak (2222_CR15) 2023; 49 OAM Salem (2222_CR9) 2021; 18 RV Rao (2222_CR40) 2012; 183 M Kelidari (2222_CR45) 2021; 25 2222_CR37 2222_CR31 SK Joshi (2222_CR51) 2023; 53 M Dehghani (2222_CR34) 2023; 259 MS Braik (2222_CR36) 2021; 174 AA Ewees (2222_CR16) 2023; 213 H Ying (2222_CR17) 2023; 260 Y Xue (2222_CR21) 2021; 227 MS Braik (2222_CR2) 2023; 85 C Zhong (2222_CR50) 2023; 215 L Sun (2222_CR10) 2020; 192 R Sihwail (2222_CR46) 2020; 8 D Simon (2222_CR38) 2008; 12 Z Sadeghian (2222_CR33) 2021; 97 RR Mostafa (2222_CR25) 2022; 246 2222_CR24 2222_CR26 2222_CR27 Yu Xue (2222_CR4) 2021; 6 2222_CR23 A Qtaish (2222_CR12) 2023; 12 M Braik (2222_CR5) 2024; 235 S Mirjalili (2222_CR53) 2013; 9 J Wan (2222_CR1) 2021; 581 K Chen (2222_CR19) 2021; 26 NS Altman (2222_CR54) 1992; 46 J Xue (2222_CR41) 2020; 8 BS Yildiz (2222_CR47) 2022; 38 2222_CR55 2222_CR56 2222_CR3 Y Zhang (2222_CR18) 2021; 26 NA Firdausanti (2222_CR28) 2019; 161 2222_CR52 2222_CR7 Y Xiaobing (2222_CR48) 2021; 226 2222_CR6 2222_CR8 M Abdel-Basset (2222_CR32) 2021; 54 HM Ridha (2222_CR49) 2020; 209 R Yadav (2222_CR14) 2023; 65 G-G Wang (2222_CR29) 2019; 31 B Xue (2222_CR35) 2016; 20 2222_CR43 2222_CR44 Hong Wang (2222_CR13) 2019; 48 L Sun (2222_CR11) 2023; 53 M Mafarja (2222_CR20) 2019; 117 J Luo (2222_CR22) 2021; 41 A Askarzadeh (2222_CR42) 2016; 169 S Mirjalili (2222_CR39) 2015; 89 D Albashish (2222_CR30) 2021; 101 |
References_xml | – ident: 2222_CR27 doi: 10.1109/ACCESS.2020.2992752 – volume: 581 start-page: 891 year: 2021 ident: 2222_CR1 publication-title: Inform Sci doi: 10.1016/j.ins.2021.10.026 – ident: 2222_CR43 – ident: 2222_CR8 – volume: 215 year: 2023 ident: 2222_CR50 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119303 – volume: 235 year: 2024 ident: 2222_CR5 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121128 – volume: 38 start-page: 4207 issue: 5 year: 2022 ident: 2222_CR47 publication-title: Eng Comput doi: 10.1007/s00366-021-01368-w – volume: 25 start-page: 2911 issue: 4 year: 2021 ident: 2222_CR45 publication-title: Soft Comput doi: 10.1007/s00500-020-05349-x – volume: 85 start-page: 105073 year: 2023 ident: 2222_CR2 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105073 – ident: 2222_CR7 – volume: 117 start-page: 267 year: 2019 ident: 2222_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.09.015 – volume: 8 start-page: 121127 year: 2020 ident: 2222_CR46 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006473 – volume: 26 start-page: 616 issue: 4 year: 2021 ident: 2222_CR18 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2021.3106975 – volume: 9 start-page: 1 year: 2013 ident: 2222_CR53 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2012.09.002 – ident: 2222_CR44 doi: 10.1109/CIMCA.2005.1631345 – volume: 26 start-page: 1015 issue: 5 year: 2021 ident: 2222_CR19 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2021.3134804 – ident: 2222_CR3 – volume: 6 start-page: 355 issue: 2 year: 2021 ident: 2222_CR4 publication-title: IEEE Trans Emerging Topics Computational Intell doi: 10.1109/TETCI.2021.3074147 – volume: 89 start-page: 228 year: 2015 ident: 2222_CR39 publication-title: Knowle-Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 192 year: 2020 ident: 2222_CR10 publication-title: Knowledge-Based Systems – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 2222_CR41 publication-title: Syst Sci Control Eng doi: 10.1080/21642583.2019.1708830 – volume: 226 year: 2021 ident: 2222_CR48 publication-title: Knowl-Based Syst – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 2222_CR54 publication-title: Am Stat doi: 10.1080/00031305.1992.10475879 – volume: 260 year: 2023 ident: 2222_CR17 publication-title: Knowl-Based Syst – volume: 18 start-page: 305 issue: 1 year: 2021 ident: 2222_CR9 publication-title: Math Biosci Eng doi: 10.3934/mbe.2021016 – volume: 31 start-page: 1995 year: 2019 ident: 2222_CR29 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1923-y – ident: 2222_CR56 – volume: 246 start-page: 108743 year: 2022 ident: 2222_CR25 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.108743 – ident: 2222_CR31 doi: 10.1109/ACCTHPA49271.2020.9213197 – ident: 2222_CR6 – volume: 97 year: 2021 ident: 2222_CR33 publication-title: Eng Appl Artificial Intell doi: 10.1016/j.engappai.2020.104079 – volume: 213 start-page: 118872 year: 2023 ident: 2222_CR16 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118872 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 2222_CR38 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.919004 – volume: 53 start-page: 706 issue: 1 year: 2023 ident: 2222_CR11 publication-title: Appl Intell doi: 10.1007/s10489-022-03554-9 – volume: 65 start-page: 461 year: 2023 ident: 2222_CR14 publication-title: Alexandria Eng J doi: 10.1016/j.aej.2022.10.033 – ident: 2222_CR23 doi: 10.1016/j.compbiomed.2022.105675 – volume: 169 start-page: 1 year: 2016 ident: 2222_CR42 publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.03.001 – volume: 227 year: 2021 ident: 2222_CR21 publication-title: Knowl-Based Syst – ident: 2222_CR26 – volume: 101 start-page: 107026 year: 2021 ident: 2222_CR30 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.107026 – volume: 48 start-page: 172 year: 2019 ident: 2222_CR13 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.04.004 – ident: 2222_CR55 – volume: 54 start-page: 593 issue: 1 year: 2021 ident: 2222_CR32 publication-title: Artificial Intell Rev doi: 10.1007/s10462-020-09860-3 – ident: 2222_CR52 doi: 10.1145/1068009.1068177 – volume: 12 start-page: 2042 issue: 9 year: 2023 ident: 2222_CR12 publication-title: Electronics doi: 10.3390/electronics12092042 – volume: 49 start-page: 59 issue: 1 year: 2023 ident: 2222_CR15 publication-title: J Inform Sci doi: 10.1177/0165551521991037 – volume: 53 start-page: 5567 issue: 5 year: 2023 ident: 2222_CR51 publication-title: Appl Intell – volume: 41 start-page: 3463 issue: 2 year: 2021 ident: 2222_CR22 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-210815 – volume: 174 year: 2021 ident: 2222_CR36 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114685 – volume: 161 start-page: 638 year: 2019 ident: 2222_CR28 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2019.11.167 – ident: 2222_CR24 doi: 10.1016/j.compbiomed.2021.105152 – volume: 259 year: 2023 ident: 2222_CR34 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.110011 – volume: 183 start-page: 1 issue: 1 year: 2012 ident: 2222_CR40 publication-title: Inform Sci doi: 10.1016/j.ins.2011.08.006 – volume: 209 start-page: 112660 year: 2020 ident: 2222_CR49 publication-title: Energy Conversion Manag doi: 10.1016/j.enconman.2020.112660 – volume: 20 start-page: 606 issue: 4 year: 2016 ident: 2222_CR35 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2015.2504420 – ident: 2222_CR37 doi: 10.1016/j.knosys.2022.108320 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.367195 |
Snippet | The rapid rise in volume and feature dimensions is negatively impacting machine learning and many other areas, leading to worse classification accuracy and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 361 |
SubjectTerms | Accuracy Adaptive algorithms Adaptive search techniques Algorithms Artificial Intelligence Basic converters Classification Complex Systems Computational Intelligence Control Convergence Datasets Engineering Feature selection Genetic algorithms Heuristic Machine learning Mechatronics Methods Mutation Optimization Optimization algorithms Original Article Pattern Recognition Robotics Searching Support vector machines Systems Biology |
Title | Enhanced coati optimization algorithm using elite opposition-based learning and adaptive search mechanism for feature selection |
URI | https://link.springer.com/article/10.1007/s13042-024-02222-3 https://www.proquest.com/docview/3158269680 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFH6C4dIeKNBWDKUjH3oAUaPES5bjUM2AWokTI8Ep8pYBwWQQCRcu_HVsxyEF0Upc4yXy8hbb3_sewA-dCC4iSrBihmOWE4kzJmNcChFJQtM0Nh4ge5qczNjvc34egsLqDu3ePUl6Td0Hu7mTN7Y2BbtDCsF0FdZ4nOXZANbGxxd_Jt0-orFjWOnNLKXMM009371Eif3WwhGzJHN8vHGIp3n7Ry9tVu-Ivno79SZp-glm3WBaJMr14X0jD9XDK57H9452A9aDj4rG7abahBVTbcHHv5gLt2Az6IQa7QXi6v3P8DipLj2gAKmlXXC0tOpoEeI8kbiZL--umssFclD7OTIu-NlW6VBj2NlTjUIWizkSlUZCi1unjlErj2hhXJzyVb1A1tVGpfGkpKj2qXxsF19gNp2c_TrBIcEDVlbyG6wc-U3qnL48tWqWJUzykpqyJMTEXKRale6SJStTk2jCBdXWeSLSlJLZMutZfYVBtazMNqBUcC6IkJoqx3inJItExnMmaJoTncghxN0SFiqwn7skHDdFz9vsZrywM174GS_oEA6e29y23B__rb3b7Ywi6IG6oDG357c8yaIh_OwWui_-d28776v-DT4Ql5jY3w3twqC5uzffrbfUyJEVjunR0ekoCMkIVmdk_ARsOwlS |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6120PbA2J5iOVVHzi0KpYSP_I4rtCibbtw2pW4RXbsLEhsFpHtmb-Ox-uQFgES19hxpIxn5rNn5huAE5MoqSLOaCmspCJnmmZCx7RSKtKMp2lsfYLsZTKeid9X8ioUhTVttnsbkvSWuit2w5M3dT6F4iGFUf4RPjkwkGHfghkbtruIx8iv0jlZzoXnmXq6eYkS92ydjJglGbLxxqGa5uXP_O-xOhj6LHLqHdL5JmwEJEmGa9H34YOtt-DrP_yCW9APmtuQ74Fe-sc2PIzqax_2J-XSiYUsndFYhGpMom7ny_ub1fWCYEL8nFgsUXZT2twuil7PkNBrYk5UbYgy6g6NJllrDVlYrCa-aRbEAWJSWU8dShrfcMctsQOz89H0bExDGwZaOv1c0RIpalKEZnnqjKFIhJYVt1XFmI2lSk1Z4VVIVqU2MUwqbhzEYdpWWrgxh392oVcva7sHJFVSKqa04SXy0pVaRCqTuVA8zZlJ9ADi9lcXZeAox1YZt0XHroziKZx4Ci-egg_g59M7d2uGjjdnH7YSLIK2NgWPpTtl5UkWDeC0lWo3_Ppq---b_g0-j6cXk2Ly6_LPAXxh2ErY3-YcQm91_9ceOXyz0sd-Oz8CkhPs2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAcULeAuvSBDxxAYDXxI49jRbtaHqo4sFJvkR3b25V2s6tuOPPX63GcpiCo1GvsOFLm9dme-QbgncmUVAlntBZWUlEyTQuhU-qUSjTjeZ7akCB7kU1n4uulvLxTxR-y3fsrya6mAVmamvZkY9zJUPiGu3Dq4wvFDQuj_DE88e44RU2fsdNeo3iKXCtDwOVcBM6p21OYJPPPusTEIiuQmTeNlTX__syf0WuApH_doobgNNmFFxFVktNODUbwyDZ78PwO1-AejKIVb8n7SDX94SX8Pm-uQgoAqddeRGTtHcgqVmYStZyvrxft1YpgcvycWCxX9lP6PC-KEdCQ2HdiTlRjiDJqgw6UdBZEVhYrixfbFfHgmDgbaETJNjTf8Uu8gtnk_OfnKY0tGWjtbbWlNdLV5AjTytw7RpEJLR23zjFmU6lyUzs8FilcbjPDpOLGwx2mrdPCj3ks9Bp2mnVj94HkSkrFlDa8Ro66WotEFbIUiuclM5keQ9r_6qqOfOXYNmNZDUzLKJ7Ki6cK4qn4GD7evrPp2DrunX3YS7CKlruteCr9jqvMimQMn3qpDsP_X-3Nw6a_hac_zibV9y8X3w7gGcOuwuFg5xB22utf9shDnVYfB22-AWg78RQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+coati+optimization+algorithm+using+elite+opposition-based+learning+and+adaptive+search+mechanism+for+feature+selection&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=16&rft.issue=1&rft.spage=361&rft.epage=394&rft_id=info:doi/10.1007%2Fs13042-024-02222-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |