Enhanced coati optimization algorithm using elite opposition-based learning and adaptive search mechanism for feature selection

The rapid rise in volume and feature dimensions is negatively impacting machine learning and many other areas, leading to worse classification accuracy and higher computational costs. Feature Selection (FS) methods are crucial to lessen feature dimensionality, which act by removing attributes like i...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 16; no. 1; pp. 361 - 394
Main Authors Qtaish, Amjad, Braik, Malik, Albashish, Dheeb, Alshammari, Mohammad T., Alreshidi, Abdulrahman, Alreshidi, Eissa Jaber
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-024-02222-3

Cover

Loading…
Abstract The rapid rise in volume and feature dimensions is negatively impacting machine learning and many other areas, leading to worse classification accuracy and higher computational costs. Feature Selection (FS) methods are crucial to lessen feature dimensionality, which act by removing attributes like irrelevant and less informative information which may have a detrimental impact on the performance of classifiers. This paper presents an Enhanced variant of the Coati Optimization Algorithm (ECOA) that features a better search ability than the basic COA. The COA algorithm was newly evolved to imitate the behavior of coatis when they hunt and attack iguanas as well as when they try to flee from predators. Although the authors of this algorithm state that it is promising, it occasionally exhibits poor search performance and early convergence. To mitigate these issues, the ECOA algorithm was proposed that makes use of elite opposite-based learning in addition to some adaptive search mechanisms. ECOA is expected to have an improved search mechanism and can prevent trapping at local optimum, depending on the mutation, mutation neighborhood search, and rollback procedures. Moreover, it enhances population variety and convergence rate. The COA and ECOA algorithms were used to solve FS problems by selecting optimal feature subsets based on a binary version of each adopted algorithm and the k-Nearest Neighbor (k-NN) classifier. To assess the performance of the Binary ECOA (BECOA), a number of experiments was performed on 24 datasets collected from many sources. Further, six criteria-sensitivity, specificity, classification accuracy, fitness value, number of chosen features, and run time-were used to assess the performance of BECOA. Experimental findings show the excellence of BECOA over other k-NN based FS methods, including Binary COA (BCOA) and other binary optimization methods, in a number of assessment aspects. In particular, among the 24 datasets deemed, BECOA, which yielded the best overall results among all other competing binary algorithms, was able to exclusively outperform the others in 7 datasets in terms of classification accuracy, 11 datasets in terms of specificity, 5 datasets in terms of sensitivity, 10 datasets in terms of number of selected features, 4 in terms of run-time, and 14 datasets in terms of fitness values.
AbstractList The rapid rise in volume and feature dimensions is negatively impacting machine learning and many other areas, leading to worse classification accuracy and higher computational costs. Feature Selection (FS) methods are crucial to lessen feature dimensionality, which act by removing attributes like irrelevant and less informative information which may have a detrimental impact on the performance of classifiers. This paper presents an Enhanced variant of the Coati Optimization Algorithm (ECOA) that features a better search ability than the basic COA. The COA algorithm was newly evolved to imitate the behavior of coatis when they hunt and attack iguanas as well as when they try to flee from predators. Although the authors of this algorithm state that it is promising, it occasionally exhibits poor search performance and early convergence. To mitigate these issues, the ECOA algorithm was proposed that makes use of elite opposite-based learning in addition to some adaptive search mechanisms. ECOA is expected to have an improved search mechanism and can prevent trapping at local optimum, depending on the mutation, mutation neighborhood search, and rollback procedures. Moreover, it enhances population variety and convergence rate. The COA and ECOA algorithms were used to solve FS problems by selecting optimal feature subsets based on a binary version of each adopted algorithm and the k-Nearest Neighbor (k-NN) classifier. To assess the performance of the Binary ECOA (BECOA), a number of experiments was performed on 24 datasets collected from many sources. Further, six criteria-sensitivity, specificity, classification accuracy, fitness value, number of chosen features, and run time-were used to assess the performance of BECOA. Experimental findings show the excellence of BECOA over other k-NN based FS methods, including Binary COA (BCOA) and other binary optimization methods, in a number of assessment aspects. In particular, among the 24 datasets deemed, BECOA, which yielded the best overall results among all other competing binary algorithms, was able to exclusively outperform the others in 7 datasets in terms of classification accuracy, 11 datasets in terms of specificity, 5 datasets in terms of sensitivity, 10 datasets in terms of number of selected features, 4 in terms of run-time, and 14 datasets in terms of fitness values.
Author Alshammari, Mohammad T.
Qtaish, Amjad
Alreshidi, Eissa Jaber
Albashish, Dheeb
Braik, Malik
Alreshidi, Abdulrahman
Author_xml – sequence: 1
  givenname: Amjad
  surname: Qtaish
  fullname: Qtaish, Amjad
  organization: Department of Information and Computer Science, University of Ha’il, Accounting Department, Applied Science Private University
– sequence: 2
  givenname: Malik
  orcidid: 0000-0003-4180-3734
  surname: Braik
  fullname: Braik, Malik
  email: mbraik@bau.edu.jo
  organization: Computer Science Department, Al-Balqa Applied University
– sequence: 3
  givenname: Dheeb
  surname: Albashish
  fullname: Albashish, Dheeb
  organization: Computer Science Department, Al-Balqa Applied University
– sequence: 4
  givenname: Mohammad T.
  surname: Alshammari
  fullname: Alshammari, Mohammad T.
  organization: Department of Information and Computer Science, University of Ha’il
– sequence: 5
  givenname: Abdulrahman
  surname: Alreshidi
  fullname: Alreshidi, Abdulrahman
  organization: Department of Information and Computer Science, University of Ha’il
– sequence: 6
  givenname: Eissa Jaber
  surname: Alreshidi
  fullname: Alreshidi, Eissa Jaber
  organization: Department of Information and Computer Science, University of Ha’il
BookMark eNp9kEtLAzEUhYNUsFb_gKuA69E85pFZitQHCG4U3IU0c9OmzCQ1SQXd-NfNWFFw0Qshl9zznRvOMZo47wChM0ouKCHNZaSclKwgrMwnV8EP0JSKWhSCiJfJb9_QI3Qa45rkqgnnhE3R59ytlNPQYe1Vsthvkh3sR269w6pf-mDTasDbaN0SQ28TZMnGRzsKioWKmexBBTfOleuw6lS2eAMc86te4QF0XmDjgI0P2IBK2zAOe9CjxQk6NKqPcPpzz9Dzzfzp-q54eLy9v756KDSnbSo04U3ZEFHRtuk6KOtyURkOxjAGtFJNp01N21KYBuqOVYp3bVOzBZhFmWdty2fofOe7Cf51CzHJtd8Gl1dKTivB6rYWJKvETqWDjzGAkdqm7yxSULaXlMgxcblLXObE5XfikmeU_UM3wQ4qvO-H-A6KWeyWEP5-tYf6AtgPmCE
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3489395
crossref_primary_10_1007_s11227_025_07139_4
crossref_primary_10_1007_s00521_024_10288_x
crossref_primary_10_3390_jmse12091676
Cites_doi 10.1109/ACCESS.2020.2992752
10.1016/j.ins.2021.10.026
10.1016/j.eswa.2022.119303
10.1016/j.eswa.2023.121128
10.1007/s00366-021-01368-w
10.1007/s00500-020-05349-x
10.1016/j.bspc.2023.105073
10.1016/j.eswa.2018.09.015
10.1109/ACCESS.2020.3006473
10.1109/TEVC.2021.3106975
10.1016/j.swevo.2012.09.002
10.1109/CIMCA.2005.1631345
10.1109/TEVC.2021.3134804
10.1109/TETCI.2021.3074147
10.1016/j.knosys.2015.07.006
10.1080/21642583.2019.1708830
10.1080/00031305.1992.10475879
10.3934/mbe.2021016
10.1007/s00521-015-1923-y
10.1016/j.knosys.2022.108743
10.1109/ACCTHPA49271.2020.9213197
10.1016/j.engappai.2020.104079
10.1016/j.eswa.2022.118872
10.1109/TEVC.2008.919004
10.1007/s10489-022-03554-9
10.1016/j.aej.2022.10.033
10.1016/j.compbiomed.2022.105675
10.1016/j.compstruc.2016.03.001
10.1016/j.asoc.2020.107026
10.1016/j.swevo.2019.04.004
10.1007/s10462-020-09860-3
10.1145/1068009.1068177
10.3390/electronics12092042
10.1177/0165551521991037
10.3233/JIFS-210815
10.1016/j.eswa.2021.114685
10.1016/j.procs.2019.11.167
10.1016/j.compbiomed.2021.105152
10.1016/j.knosys.2022.110011
10.1016/j.ins.2011.08.006
10.1016/j.enconman.2020.112660
10.1109/TEVC.2015.2504420
10.1016/j.knosys.2022.108320
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 corrected publication 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 corrected publication 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jan 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13042-024-02222-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 394
ExternalDocumentID 10_1007_s13042_024_02222_3
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
JQ2
ID FETCH-LOGICAL-c319t-c03747085197dde464b5f3eff22e15a7dcf61948f7e6d25a3d9762befb47dc993
IEDL.DBID AGYKE
ISSN 1868-8071
IngestDate Sun Jul 13 04:17:03 EDT 2025
Tue Jul 01 03:51:05 EDT 2025
Thu Apr 24 23:13:53 EDT 2025
Fri Feb 21 02:37:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Coati optimization algorithm
Feature selection
Opposition-based learning
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c03747085197dde464b5f3eff22e15a7dcf61948f7e6d25a3d9762befb47dc993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4180-3734
PQID 3158269680
PQPubID 2043904
PageCount 34
ParticipantIDs proquest_journals_3158269680
crossref_citationtrail_10_1007_s13042_024_02222_3
crossref_primary_10_1007_s13042_024_02222_3
springer_journals_10_1007_s13042_024_02222_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References B Parlak (2222_CR15) 2023; 49
OAM Salem (2222_CR9) 2021; 18
RV Rao (2222_CR40) 2012; 183
M Kelidari (2222_CR45) 2021; 25
2222_CR37
2222_CR31
SK Joshi (2222_CR51) 2023; 53
M Dehghani (2222_CR34) 2023; 259
MS Braik (2222_CR36) 2021; 174
AA Ewees (2222_CR16) 2023; 213
H Ying (2222_CR17) 2023; 260
Y Xue (2222_CR21) 2021; 227
MS Braik (2222_CR2) 2023; 85
C Zhong (2222_CR50) 2023; 215
L Sun (2222_CR10) 2020; 192
R Sihwail (2222_CR46) 2020; 8
D Simon (2222_CR38) 2008; 12
Z Sadeghian (2222_CR33) 2021; 97
RR Mostafa (2222_CR25) 2022; 246
2222_CR24
2222_CR26
2222_CR27
Yu Xue (2222_CR4) 2021; 6
2222_CR23
A Qtaish (2222_CR12) 2023; 12
M Braik (2222_CR5) 2024; 235
S Mirjalili (2222_CR53) 2013; 9
J Wan (2222_CR1) 2021; 581
K Chen (2222_CR19) 2021; 26
NS Altman (2222_CR54) 1992; 46
J Xue (2222_CR41) 2020; 8
BS Yildiz (2222_CR47) 2022; 38
2222_CR55
2222_CR56
2222_CR3
Y Zhang (2222_CR18) 2021; 26
NA Firdausanti (2222_CR28) 2019; 161
2222_CR52
2222_CR7
Y Xiaobing (2222_CR48) 2021; 226
2222_CR6
2222_CR8
M Abdel-Basset (2222_CR32) 2021; 54
HM Ridha (2222_CR49) 2020; 209
R Yadav (2222_CR14) 2023; 65
G-G Wang (2222_CR29) 2019; 31
B Xue (2222_CR35) 2016; 20
2222_CR43
2222_CR44
Hong Wang (2222_CR13) 2019; 48
L Sun (2222_CR11) 2023; 53
M Mafarja (2222_CR20) 2019; 117
J Luo (2222_CR22) 2021; 41
A Askarzadeh (2222_CR42) 2016; 169
S Mirjalili (2222_CR39) 2015; 89
D Albashish (2222_CR30) 2021; 101
References_xml – ident: 2222_CR27
  doi: 10.1109/ACCESS.2020.2992752
– volume: 581
  start-page: 891
  year: 2021
  ident: 2222_CR1
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2021.10.026
– ident: 2222_CR43
– ident: 2222_CR8
– volume: 215
  year: 2023
  ident: 2222_CR50
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119303
– volume: 235
  year: 2024
  ident: 2222_CR5
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121128
– volume: 38
  start-page: 4207
  issue: 5
  year: 2022
  ident: 2222_CR47
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01368-w
– volume: 25
  start-page: 2911
  issue: 4
  year: 2021
  ident: 2222_CR45
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05349-x
– volume: 85
  start-page: 105073
  year: 2023
  ident: 2222_CR2
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105073
– ident: 2222_CR7
– volume: 117
  start-page: 267
  year: 2019
  ident: 2222_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.09.015
– volume: 8
  start-page: 121127
  year: 2020
  ident: 2222_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006473
– volume: 26
  start-page: 616
  issue: 4
  year: 2021
  ident: 2222_CR18
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2021.3106975
– volume: 9
  start-page: 1
  year: 2013
  ident: 2222_CR53
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2012.09.002
– ident: 2222_CR44
  doi: 10.1109/CIMCA.2005.1631345
– volume: 26
  start-page: 1015
  issue: 5
  year: 2021
  ident: 2222_CR19
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2021.3134804
– ident: 2222_CR3
– volume: 6
  start-page: 355
  issue: 2
  year: 2021
  ident: 2222_CR4
  publication-title: IEEE Trans Emerging Topics Computational Intell
  doi: 10.1109/TETCI.2021.3074147
– volume: 89
  start-page: 228
  year: 2015
  ident: 2222_CR39
  publication-title: Knowle-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 192
  year: 2020
  ident: 2222_CR10
  publication-title: Knowledge-Based Systems
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 2222_CR41
  publication-title: Syst Sci Control Eng
  doi: 10.1080/21642583.2019.1708830
– volume: 226
  year: 2021
  ident: 2222_CR48
  publication-title: Knowl-Based Syst
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 2222_CR54
  publication-title: Am Stat
  doi: 10.1080/00031305.1992.10475879
– volume: 260
  year: 2023
  ident: 2222_CR17
  publication-title: Knowl-Based Syst
– volume: 18
  start-page: 305
  issue: 1
  year: 2021
  ident: 2222_CR9
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2021016
– volume: 31
  start-page: 1995
  year: 2019
  ident: 2222_CR29
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1923-y
– ident: 2222_CR56
– volume: 246
  start-page: 108743
  year: 2022
  ident: 2222_CR25
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.108743
– ident: 2222_CR31
  doi: 10.1109/ACCTHPA49271.2020.9213197
– ident: 2222_CR6
– volume: 97
  year: 2021
  ident: 2222_CR33
  publication-title: Eng Appl Artificial Intell
  doi: 10.1016/j.engappai.2020.104079
– volume: 213
  start-page: 118872
  year: 2023
  ident: 2222_CR16
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118872
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 2222_CR38
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.919004
– volume: 53
  start-page: 706
  issue: 1
  year: 2023
  ident: 2222_CR11
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03554-9
– volume: 65
  start-page: 461
  year: 2023
  ident: 2222_CR14
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2022.10.033
– ident: 2222_CR23
  doi: 10.1016/j.compbiomed.2022.105675
– volume: 169
  start-page: 1
  year: 2016
  ident: 2222_CR42
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 227
  year: 2021
  ident: 2222_CR21
  publication-title: Knowl-Based Syst
– ident: 2222_CR26
– volume: 101
  start-page: 107026
  year: 2021
  ident: 2222_CR30
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.107026
– volume: 48
  start-page: 172
  year: 2019
  ident: 2222_CR13
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.04.004
– ident: 2222_CR55
– volume: 54
  start-page: 593
  issue: 1
  year: 2021
  ident: 2222_CR32
  publication-title: Artificial Intell Rev
  doi: 10.1007/s10462-020-09860-3
– ident: 2222_CR52
  doi: 10.1145/1068009.1068177
– volume: 12
  start-page: 2042
  issue: 9
  year: 2023
  ident: 2222_CR12
  publication-title: Electronics
  doi: 10.3390/electronics12092042
– volume: 49
  start-page: 59
  issue: 1
  year: 2023
  ident: 2222_CR15
  publication-title: J Inform Sci
  doi: 10.1177/0165551521991037
– volume: 53
  start-page: 5567
  issue: 5
  year: 2023
  ident: 2222_CR51
  publication-title: Appl Intell
– volume: 41
  start-page: 3463
  issue: 2
  year: 2021
  ident: 2222_CR22
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-210815
– volume: 174
  year: 2021
  ident: 2222_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114685
– volume: 161
  start-page: 638
  year: 2019
  ident: 2222_CR28
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2019.11.167
– ident: 2222_CR24
  doi: 10.1016/j.compbiomed.2021.105152
– volume: 259
  year: 2023
  ident: 2222_CR34
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.110011
– volume: 183
  start-page: 1
  issue: 1
  year: 2012
  ident: 2222_CR40
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2011.08.006
– volume: 209
  start-page: 112660
  year: 2020
  ident: 2222_CR49
  publication-title: Energy Conversion Manag
  doi: 10.1016/j.enconman.2020.112660
– volume: 20
  start-page: 606
  issue: 4
  year: 2016
  ident: 2222_CR35
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2015.2504420
– ident: 2222_CR37
  doi: 10.1016/j.knosys.2022.108320
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.367195
Snippet The rapid rise in volume and feature dimensions is negatively impacting machine learning and many other areas, leading to worse classification accuracy and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 361
SubjectTerms Accuracy
Adaptive algorithms
Adaptive search techniques
Algorithms
Artificial Intelligence
Basic converters
Classification
Complex Systems
Computational Intelligence
Control
Convergence
Datasets
Engineering
Feature selection
Genetic algorithms
Heuristic
Machine learning
Mechatronics
Methods
Mutation
Optimization
Optimization algorithms
Original Article
Pattern Recognition
Robotics
Searching
Support vector machines
Systems Biology
Title Enhanced coati optimization algorithm using elite opposition-based learning and adaptive search mechanism for feature selection
URI https://link.springer.com/article/10.1007/s13042-024-02222-3
https://www.proquest.com/docview/3158269680
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFH6C4dIeKNBWDKUjH3oAUaPES5bjUM2AWokTI8Ep8pYBwWQQCRcu_HVsxyEF0Upc4yXy8hbb3_sewA-dCC4iSrBihmOWE4kzJmNcChFJQtM0Nh4ge5qczNjvc34egsLqDu3ePUl6Td0Hu7mTN7Y2BbtDCsF0FdZ4nOXZANbGxxd_Jt0-orFjWOnNLKXMM009371Eif3WwhGzJHN8vHGIp3n7Ry9tVu-Ivno79SZp-glm3WBaJMr14X0jD9XDK57H9452A9aDj4rG7abahBVTbcHHv5gLt2Az6IQa7QXi6v3P8DipLj2gAKmlXXC0tOpoEeI8kbiZL--umssFclD7OTIu-NlW6VBj2NlTjUIWizkSlUZCi1unjlErj2hhXJzyVb1A1tVGpfGkpKj2qXxsF19gNp2c_TrBIcEDVlbyG6wc-U3qnL48tWqWJUzykpqyJMTEXKRale6SJStTk2jCBdXWeSLSlJLZMutZfYVBtazMNqBUcC6IkJoqx3inJItExnMmaJoTncghxN0SFiqwn7skHDdFz9vsZrywM174GS_oEA6e29y23B__rb3b7Ywi6IG6oDG357c8yaIh_OwWui_-d28776v-DT4Ql5jY3w3twqC5uzffrbfUyJEVjunR0ekoCMkIVmdk_ARsOwlS
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6120PbA2J5iOVVHzi0KpYSP_I4rtCibbtw2pW4RXbsLEhsFpHtmb-Ox-uQFgES19hxpIxn5rNn5huAE5MoqSLOaCmspCJnmmZCx7RSKtKMp2lsfYLsZTKeid9X8ioUhTVttnsbkvSWuit2w5M3dT6F4iGFUf4RPjkwkGHfghkbtruIx8iv0jlZzoXnmXq6eYkS92ydjJglGbLxxqGa5uXP_O-xOhj6LHLqHdL5JmwEJEmGa9H34YOtt-DrP_yCW9APmtuQ74Fe-sc2PIzqax_2J-XSiYUsndFYhGpMom7ny_ub1fWCYEL8nFgsUXZT2twuil7PkNBrYk5UbYgy6g6NJllrDVlYrCa-aRbEAWJSWU8dShrfcMctsQOz89H0bExDGwZaOv1c0RIpalKEZnnqjKFIhJYVt1XFmI2lSk1Z4VVIVqU2MUwqbhzEYdpWWrgxh392oVcva7sHJFVSKqa04SXy0pVaRCqTuVA8zZlJ9ADi9lcXZeAox1YZt0XHroziKZx4Ci-egg_g59M7d2uGjjdnH7YSLIK2NgWPpTtl5UkWDeC0lWo3_Ppq---b_g0-j6cXk2Ly6_LPAXxh2ErY3-YcQm91_9ceOXyz0sd-Oz8CkhPs2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAcULeAuvSBDxxAYDXxI49jRbtaHqo4sFJvkR3b25V2s6tuOPPX63GcpiCo1GvsOFLm9dme-QbgncmUVAlntBZWUlEyTQuhU-qUSjTjeZ7akCB7kU1n4uulvLxTxR-y3fsrya6mAVmamvZkY9zJUPiGu3Dq4wvFDQuj_DE88e44RU2fsdNeo3iKXCtDwOVcBM6p21OYJPPPusTEIiuQmTeNlTX__syf0WuApH_doobgNNmFFxFVktNODUbwyDZ78PwO1-AejKIVb8n7SDX94SX8Pm-uQgoAqddeRGTtHcgqVmYStZyvrxft1YpgcvycWCxX9lP6PC-KEdCQ2HdiTlRjiDJqgw6UdBZEVhYrixfbFfHgmDgbaETJNjTf8Uu8gtnk_OfnKY0tGWjtbbWlNdLV5AjTytw7RpEJLR23zjFmU6lyUzs8FilcbjPDpOLGwx2mrdPCj3ks9Bp2mnVj94HkSkrFlDa8Ro66WotEFbIUiuclM5keQ9r_6qqOfOXYNmNZDUzLKJ7Ki6cK4qn4GD7evrPp2DrunX3YS7CKlruteCr9jqvMimQMn3qpDsP_X-3Nw6a_hac_zibV9y8X3w7gGcOuwuFg5xB22utf9shDnVYfB22-AWg78RQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+coati+optimization+algorithm+using+elite+opposition-based+learning+and+adaptive+search+mechanism+for+feature+selection&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=16&rft.issue=1&rft.spage=361&rft.epage=394&rft_id=info:doi/10.1007%2Fs13042-024-02222-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon