Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease

The accurate diagnosis of Alzheimer’s disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is essential in order to slow its progression through timely treatment. Recent achievements have shown that fusing multimodal neuroimaging data effect...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 34; no. 22; pp. 19585 - 19598
Main Authors Jia, Hongfei, Lao, Huan
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-022-07501-0

Cover

Loading…
Abstract The accurate diagnosis of Alzheimer’s disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is essential in order to slow its progression through timely treatment. Recent achievements have shown that fusing multimodal neuroimaging data effectively facilitates AD diagnosis. However, most proposed fusion methods simply add or concatenate multimodal features and do not make full use of nonlinear features and texture features across the range of modalities. This paper proposes a diagnostic model that effectively diagnoses AD in different stages by fusing functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) information. First, fMRI and sMRI scans are preprocessed, and mean regional homogeneity (mReHo) transformation is performed for the preprocessed fMRI scans. Then, 3DMR-PCANet extracts features of mReHo images. The basic ResNet module is stacked to build a 3DResNet-10 model for feature extraction of sMRI scans. Next, two image features are fused by kernel canonical correlation analysis. Finally, a support vector machine (SVM) is utilized for the classification of fused features. Experimental results on the Alzheimer's Disease Neuroimaging dataset demonstrate the effectiveness of the proposed method. Specifically, this method improves on the accuracy, specificity, sensitivity, F1 value and area under the curve (AUC) of existing methods in comparisons of the normal control (NC) versus SMC, NC versus MCI, NC versus AD, SMC versus MCI, SMC versus AD, and MCI versus AD groups, which confirms that the proposed method can mine information on the correlation between fMRI and sMRI data of the same subject and can effectively classify AD patients in different stages.
AbstractList The accurate diagnosis of Alzheimer’s disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is essential in order to slow its progression through timely treatment. Recent achievements have shown that fusing multimodal neuroimaging data effectively facilitates AD diagnosis. However, most proposed fusion methods simply add or concatenate multimodal features and do not make full use of nonlinear features and texture features across the range of modalities. This paper proposes a diagnostic model that effectively diagnoses AD in different stages by fusing functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) information. First, fMRI and sMRI scans are preprocessed, and mean regional homogeneity (mReHo) transformation is performed for the preprocessed fMRI scans. Then, 3DMR-PCANet extracts features of mReHo images. The basic ResNet module is stacked to build a 3DResNet-10 model for feature extraction of sMRI scans. Next, two image features are fused by kernel canonical correlation analysis. Finally, a support vector machine (SVM) is utilized for the classification of fused features. Experimental results on the Alzheimer's Disease Neuroimaging dataset demonstrate the effectiveness of the proposed method. Specifically, this method improves on the accuracy, specificity, sensitivity, F1 value and area under the curve (AUC) of existing methods in comparisons of the normal control (NC) versus SMC, NC versus MCI, NC versus AD, SMC versus MCI, SMC versus AD, and MCI versus AD groups, which confirms that the proposed method can mine information on the correlation between fMRI and sMRI data of the same subject and can effectively classify AD patients in different stages.
Author Jia, Hongfei
Lao, Huan
Author_xml – sequence: 1
  givenname: Hongfei
  orcidid: 0000-0002-5732-2487
  surname: Jia
  fullname: Jia, Hongfei
  email: 1930401017@st.btbu.edu.cn
  organization: Beijing Key Laboratory of Big Data Technology for Food Safety, School of Artificial Intelligence, Beijing Technology and Business University
– sequence: 2
  givenname: Huan
  surname: Lao
  fullname: Lao, Huan
  organization: School of Artificial Intelligence, Guangxi Minzu University
BookMark eNp9kDtPwzAQgC1UJNrCH2CyxMAU8CN2mrEqT6kSCywslhOfW1epXexkgF-PS5GQGDrd6e6-u9M3QSMfPCB0SckNJaS6TYQIRgvCWEEqQXJ2gsa05LzgRMxGaEzqMhdlyc_QJKUNIaSUMzFG73cAO9yBjt75Fdbe4O3Q9W4bjO6wBd0PEbAdkgse2xBxvwasnQGDjdMrH5JLOFg8777W4LYQr1NuJNAJztGp1V2Ci984RW8P96-Lp2L58vi8mC-LltO6LxorGsuZAG5AStm0FKTYRytsIxrgNWOa05ZrW9dNXWlTQdVIk7FW88rwKbo67N3F8DFA6tUmDNHnk4pVTEoqJWF5ih2m2hhSimDVLrqtjp-KErV3qA4OVXaofhwqkqHZP6h1ve6ziz5q1x1H-QFN-Y5fQfz76gj1DacTiT4
CitedBy_id crossref_primary_10_3390_make6010024
crossref_primary_10_1007_s11571_023_09993_5
crossref_primary_10_1016_j_compbiomed_2024_108000
crossref_primary_10_3390_bioengineering11121233
crossref_primary_10_1016_j_compbiomed_2024_108993
crossref_primary_10_1016_j_compbiomed_2024_108611
crossref_primary_10_1016_j_artmed_2024_102928
crossref_primary_10_1016_j_inffus_2024_102917
crossref_primary_10_1016_j_compbiomed_2023_106788
crossref_primary_10_4103_jmss_jmss_11_24
crossref_primary_10_1016_j_compbiomed_2023_107304
crossref_primary_10_3389_fncom_2024_1393849
crossref_primary_10_1007_s12553_024_00823_0
crossref_primary_10_55525_tjst_1396312
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_3389_fnins_2023_1194190
Cites_doi 10.1016/j.cortex.2020.04.008
10.3390/brainsci10050319
10.1016/j.bpsc.2020.10.006
10.2174/1573405615666191021123854
10.1117/1.NPh.7.4.045004
10.1016/S1474-4422(16)00062-4
10.1016/j.cogsys.2018.12.015
10.1016/j.neuroimage.2014.05.078
10.1109/ACCESS.2019.2920241
10.1109/ISBI.2017.7950647
10.1016/j.jalz.2017.12.006
10.1097/RMR.0000000000000223
10.1097/BRS.0000000000003245
10.3390/app9245544
10.1186/s12916-019-1488-1
10.1007/978-3-319-46493-0_38
10.1111/acps.12336
10.1111/ene.14609
10.1038/s41598-020-74459-1
10.1016/j.bspc.2020.102098
10.1016/j.jalz.2009.10.002
10.1109/TIP.2015.2475625
10.1007/s12021-018-9370-4
10.3389/fnins.2019.00509
10.1016/j.nicl.2020.102303
10.1002/alz.046163
10.1016/j.acra.2020.01.006
10.1007/s10916-019-1475-2
10.1016/j.cger.2017.02.005
10.1111/j.1745-7599.2009.00436.x
10.7326/0003-4819-138-5-200303040-00010
10.1007/s12559-019-09688-2
10.1111/jgs.13611
10.1007/s41133-020-00042-y
10.1177/1073858415595004
10.3390/s20113243
10.1109/TCBB.2017.2776910
10.3233/JAD-161080
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-022-07501-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 19598
ExternalDocumentID 10_1007_s00521_022_07501_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-bf5bf325e3de666bc1e6566bcf5fb5be3922a31c3af99b97ad7e7b6df5bca37d3
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 09:19:54 EDT 2025
Tue Jul 01 01:47:07 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 21 02:47:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Functional magnetic resonance imaging
3DResNet-10
3DMR-PCANet
Alzheimer's disease
Structure magnetic resonance imaging
Kernel canonical correlation analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bf5bf325e3de666bc1e6566bcf5fb5be3922a31c3af99b97ad7e7b6df5bca37d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5732-2487
PQID 2726616602
PQPubID 2043988
PageCount 14
ParticipantIDs proquest_journals_2726616602
crossref_primary_10_1007_s00521_022_07501_0
crossref_citationtrail_10_1007_s00521_022_07501_0
springer_journals_10_1007_s00521_022_07501_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221100
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Clark, Karlawish (CR4) 2003; 138
Sanford (CR8) 2017; 33
Chung, Yang, Kim (CR1) 2021; 2021
Woo, Roussos, Haroutunian (CR17) 2020; 18
Winblad, Amouyel, Andrieu (CR10) 2016; 15
Leifer (CR3) 2009; 21
CR39
Yamanakkanavar, Choi, Lee (CR15) 2020; 20
CR38
Ju, Hu, Zhou (CR25) 2017; 16
Chan, Jia, Gao (CR33) 2015; 24
CR32
Jiang, Zuo (CR30) 2016; 22
Weiner, Veitch, Aisen (CR9) 2013; 8
Choi, Madusanka, Choi (CR11) 2020; 16
Tong, Bin, Sheng (CR34) 2018; 45
Scarpelli, Healey, Mehta (CR16) 2020; 10
Yu, Nho, Risacher (CR28) 2020; 16
Ren, Yang, Qiu (CR45) 2019; 7
Chen, Zhao, Wang (CR24) 2020; 5
Faria, Marques, Balardin (CR19) 2020; 7
Ning, Zhao, Lan (CR40) 2019; 9
Wang, Xie, Chen (CR14) 2021; 8
Yoa, Tia, Ts (CR36) 2020; 129
Cai, He, Zhong (CR37) 2020; 27
Reisberg, Shulman, Torossian (CR5) 2010; 6
Huang, Xu, Zhou (CR31) 2010; 13
Jain, Jain, Aggarwal (CR12) 2019; 2019
Zhu, Suk, Shen (CR13) 2014; 100
CR26
Provenzano, Washington, Rao (CR18) 2020; 10
Ronnlund, Sundstro, Adolfsson (CR7) 2015; 63
CR22
CR44
CR21
Jalilianhasanpour, Beheshtian, Sherbaf (CR29) 2019; 28
CR43
Jia, Wei, Chen (CR2) 2018; 14
CR42
Sun, Ding, Zhao (CR23) 2020; 10
Mitchell, Beaumont, Ferguson (CR6) 2015; 130
Acm, Tb, Gw (CR20) 2021; 6
Lee, Kim (CR35) 2020; 28
Bi, Zhao, Huang (CR27) 2020; 12
Ashkan, Dalboni, Nagaraju (CR41) 2017; 11
7501_CR39
7501_CR38
MW Weiner (7501_CR9) 2013; 8
X Zhu (7501_CR13) 2014; 100
N Yamanakkanavar (7501_CR15) 2020; 20
TH Chan (7501_CR33) 2015; 24
J Jia (7501_CR2) 2018; 14
B Winblad (7501_CR10) 2016; 15
D Faria (7501_CR19) 2020; 7
X Bi (7501_CR27) 2020; 12
ML Scarpelli (7501_CR16) 2020; 10
LS Tong (7501_CR34) 2018; 45
D Provenzano (7501_CR18) 2020; 10
B Yoa (7501_CR36) 2020; 129
AJ Mitchell (7501_CR6) 2015; 130
R Ju (7501_CR25) 2017; 16
7501_CR32
J Ning (7501_CR40) 2019; 9
J Sun (7501_CR23) 2020; 10
L Jiang (7501_CR30) 2016; 22
R Jalilianhasanpour (7501_CR29) 2019; 28
E Ashkan (7501_CR41) 2017; 11
F Ren (7501_CR45) 2019; 7
YJ Woo (7501_CR17) 2020; 18
BK Choi (7501_CR11) 2020; 16
Y Huang (7501_CR31) 2010; 13
7501_CR26
S Chung (7501_CR1) 2021; 2021
BP Leifer (7501_CR3) 2009; 21
Z Chen (7501_CR24) 2020; 5
R Jain (7501_CR12) 2019; 2019
CM Clark (7501_CR4) 2003; 138
S Lee (7501_CR35) 2020; 28
XY Wang (7501_CR14) 2021; 8
B Reisberg (7501_CR5) 2010; 6
7501_CR42
A Acm (7501_CR20) 2021; 6
AM Sanford (7501_CR8) 2017; 33
7501_CR22
7501_CR44
7501_CR21
7501_CR43
M Ronnlund (7501_CR7) 2015; 63
M Yu (7501_CR28) 2020; 16
JH Cai (7501_CR37) 2020; 27
References_xml – ident: CR22
– volume: 24
  start-page: 5017
  issue: 12
  year: 2015
  end-page: 5032
  ident: CR33
  article-title: PCANet: a simple deep learning baseline for image classification?
  publication-title: IEEE Trans Image Process
– volume: 22
  start-page: 486
  issue: 5
  year: 2016
  end-page: 505
  ident: CR30
  article-title: Regional homogeneity
  publication-title: Neuroscientist
– ident: CR43
– volume: 130
  start-page: 439
  issue: 6
  year: 2015
  end-page: 451
  ident: CR6
  article-title: Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis
  publication-title: Acta Psychiatr Scand
– volume: 12
  start-page: 513
  issue: 2
  year: 2020
  end-page: 527
  ident: CR27
  article-title: Functional brain network classification for Alzheimer's disease detection with deep features and extreme learning machine
  publication-title: Cogn Comput
– volume: 28
  start-page: 317
  issue: 6
  year: 2019
  end-page: 324
  ident: CR29
  article-title: Functional connectivity in neurodegenerative disorders: Alzheimer's disease and frontotemporal dementia
  publication-title: Top Magn Reson Imaging
– volume: 14
  start-page: 483
  issue: 4
  year: 2018
  end-page: 491
  ident: CR2
  article-title: The cost of Alzheimer's disease in China and re-estimation of costs worldwide
  publication-title: Alzheimers Dement
– volume: 63
  start-page: 1766
  issue: 9
  year: 2015
  end-page: 1773
  ident: CR7
  article-title: Self-Reported Memory Failures: Associations with Future Dementia in a Population-Based Study with Long-Term Follow-Up
  publication-title: J Am Geriatr Soc
– volume: 2019
  start-page: 147
  issue: 57
  year: 2019
  end-page: 159
  ident: CR12
  article-title: Convolutional neural network based Alzheimer's disease classification from magnetic resonance brain images
  publication-title: Cogn Syst Res
– ident: CR39
– volume: 20
  start-page: 3243
  issue: 11
  year: 2020
  ident: CR15
  article-title: MRI segmentation and classification of human brain using deep learning for diagnosis of alzheimer's disease: a survey
  publication-title: Sensors
– volume: 33
  start-page: 325
  issue: 3
  year: 2017
  end-page: 337
  ident: CR8
  article-title: Mild Cognitive Impairment
  publication-title: Clin Geriatr Med
– volume: 129
  start-page: 23
  year: 2020
  end-page: 32
  ident: CR36
  article-title: Visual texture agnosia influences object identification in dementia with Lewy bodies and Alzheimer's disease - ScienceDirect
  publication-title: Cortex
– volume: 45
  start-page: 153
  issue: 6
  year: 2018
  end-page: 155
  ident: CR34
  article-title: Aided diagnosis of Alzheimer's disease based on 3D-PCANET
  publication-title: Comput Sci
– volume: 7
  start-page: 45004
  issue: 4
  year: 2020
  end-page: 45001
  ident: CR19
  article-title: Task-related brain activity and functional connectivity in upper limb dystonia: a functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) study
  publication-title: Neurophotonics
– volume: 8
  start-page: 1
  issue: 1
  year: 2013
  end-page: 68
  ident: CR9
  article-title: The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception
  publication-title: Alzheimers Dement
– volume: 6
  start-page: 11
  issue: 1
  year: 2010
  end-page: 24
  ident: CR5
  article-title: Outcome over seven years of healthy adults with and without subjective cognitive impairment
  publication-title: Alzheimer’s Dementia
– volume: 7
  start-page: 181423
  issue: 99
  year: 2019
  end-page: 181433
  ident: CR45
  article-title: Exploiting discriminative regions of brain slices based on 2D CNNs for Alzheimer's disease classification
  publication-title: IEEE Access
– volume: 9
  start-page: 5544
  issue: 24
  year: 2019
  ident: CR40
  article-title: A computer-aided detection system for the detection of lung nodules based on 3D-ResNet
  publication-title: Appl Sci
– volume: 138
  start-page: 400
  issue: 5
  year: 2003
  end-page: 410
  ident: CR4
  article-title: Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies
  publication-title: Ann Intern Med
– volume: 27
  start-page: 1774
  issue: 12
  year: 2020
  end-page: 1783
  ident: CR37
  article-title: Magnetic Resonance Texture Analysis in Alzheimer's disease
  publication-title: Acad Radiol
– volume: 10
  start-page: 17324
  issue: 1
  year: 2020
  ident: CR16
  article-title: A practical method for multimodal registration and assessment of whole-brain disease burden using PET, MRI, and optical imaging
  publication-title: Sci Rep
– volume: 10
  start-page: 667
  issue: 3
  year: 2020
  end-page: 671
  ident: CR23
  article-title: Predicting Alzheimer's disease based on network topological latent representations
  publication-title: J Med Imag Health Inf
– volume: 28
  start-page: 735
  issue: 3
  year: 2020
  end-page: 744
  ident: CR35
  article-title: Associations between texture of T1-weighted magnetic resonance imaging and radiographic pathologies in Alzheimer's disease
  publication-title: Eur J Neurol
– ident: CR42
– volume: 13
  start-page: 509
  year: 2010
  ident: CR31
  article-title: Diagnosis of alzheimer's disease via multi-modality 3d convolutional neural network
  publication-title: Front Neurosci
– volume: 16
  start-page: 1
  issue: S3
  year: 2020
  end-page: 3
  ident: CR28
  article-title: Transcriptomic profiles underlying functional brain networks at different stages of Alzheimer's disease: Genetics/genetic factors of Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 10
  start-page: 319
  issue: 5
  year: 2020
  ident: CR18
  article-title: logistic regression algorithm differentiates gulf war illness (GWI) functional magnetic resonance imaging (fMRI) data from a sedentary control
  publication-title: Brain Sci
– ident: CR21
– volume: 15
  start-page: 455
  issue: 5
  year: 2016
  end-page: 532
  ident: CR10
  article-title: Defeating Alzheimer's disease and other dementias: a priority for European science and society
  publication-title: The Lancet Neurology
– volume: 18
  start-page: 23
  issue: 1
  year: 2020
  ident: CR17
  article-title: Comparison of brain connectomes by MRI and genomics and its implication in Alzheimer's disease
  publication-title: BMC Med
– ident: CR44
– volume: 5
  start-page: 272
  issue: 45
  year: 2020
  end-page: 279
  ident: CR24
  article-title: Functional connectivity changes of the visual cortex in the cervical spondylotic myelopathy patients: a resting-state fMRI study
  publication-title: Spine
– volume: 21
  start-page: 588
  issue: 11
  year: 2009
  end-page: 595
  ident: CR3
  article-title: Alzheimer's disease: Seeing the signs early
  publication-title: J Am Acad Nurse Pract
– volume: 16
  start-page: 27
  issue: 1
  year: 2020
  end-page: 35
  ident: CR11
  article-title: Convolutional Neural Network-based MR Image Analysis for Alzheimer's Disease Classification
  publication-title: Current Medical Imaging Reviews
– ident: CR38
– volume: 6
  start-page: 490
  issue: 4
  year: 2021
  end-page: 497
  ident: CR20
  article-title: Cloud-based functional magnetic resonance imaging neurofeedback to reduce the negative attentional bias in depression: a proof-of-concept study - sciencedirect
  publication-title: Biol Psychiatry Cognitive Neurosci Neuroimag
– volume: 2021
  start-page: 3592
  issue: 203
  year: 2021
  end-page: 3604
  ident: CR1
  article-title: Plexin-A4 mediates amyloid-β–induced tau pathology in Alzheimer's disease animal model
  publication-title: Prog Neurobiol
– volume: 16
  start-page: 244
  issue: 1
  year: 2017
  end-page: 257
  ident: CR25
  article-title: Early diagnosis of Alzheimer's disease based on resting-state brain networks and deep learning
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
– ident: CR32
– volume: 11
  start-page: 11
  year: 2017
  end-page: 56
  ident: CR41
  article-title: Ensemble classification of Alzheimer's disease and mild cognitive impairment based on complex graph measures from diffusion tensor images
  publication-title: Frontiers in Neuroence
– volume: 100
  start-page: 91
  year: 2014
  end-page: 105
  ident: CR13
  article-title: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
  publication-title: Neuroimage
– volume: 8
  start-page: 651
  year: 2021
  end-page: 804
  ident: CR14
  article-title: Applications of non-invasive and novel methods of low-field nuclear magnetic resonance and magnetic resonance imaging in aquatic products
  publication-title: Front Nutr
– ident: CR26
– volume: 2021
  start-page: 3592
  issue: 203
  year: 2021
  ident: 7501_CR1
  publication-title: Prog Neurobiol
– volume: 129
  start-page: 23
  year: 2020
  ident: 7501_CR36
  publication-title: Cortex
  doi: 10.1016/j.cortex.2020.04.008
– volume: 10
  start-page: 319
  issue: 5
  year: 2020
  ident: 7501_CR18
  publication-title: Brain Sci
  doi: 10.3390/brainsci10050319
– volume: 6
  start-page: 490
  issue: 4
  year: 2021
  ident: 7501_CR20
  publication-title: Biol Psychiatry Cognitive Neurosci Neuroimag
  doi: 10.1016/j.bpsc.2020.10.006
– volume: 16
  start-page: 27
  issue: 1
  year: 2020
  ident: 7501_CR11
  publication-title: Current Medical Imaging Reviews
  doi: 10.2174/1573405615666191021123854
– volume: 7
  start-page: 45004
  issue: 4
  year: 2020
  ident: 7501_CR19
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.7.4.045004
– volume: 11
  start-page: 11
  year: 2017
  ident: 7501_CR41
  publication-title: Frontiers in Neuroence
– volume: 8
  start-page: 651
  year: 2021
  ident: 7501_CR14
  publication-title: Front Nutr
– volume: 15
  start-page: 455
  issue: 5
  year: 2016
  ident: 7501_CR10
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(16)00062-4
– volume: 2019
  start-page: 147
  issue: 57
  year: 2019
  ident: 7501_CR12
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.12.015
– volume: 100
  start-page: 91
  year: 2014
  ident: 7501_CR13
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.05.078
– volume: 7
  start-page: 181423
  issue: 99
  year: 2019
  ident: 7501_CR45
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920241
– ident: 7501_CR44
  doi: 10.1109/ISBI.2017.7950647
– volume: 14
  start-page: 483
  issue: 4
  year: 2018
  ident: 7501_CR2
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2017.12.006
– volume: 28
  start-page: 317
  issue: 6
  year: 2019
  ident: 7501_CR29
  publication-title: Top Magn Reson Imaging
  doi: 10.1097/RMR.0000000000000223
– volume: 8
  start-page: 1
  issue: 1
  year: 2013
  ident: 7501_CR9
  publication-title: Alzheimers Dement
– volume: 5
  start-page: 272
  issue: 45
  year: 2020
  ident: 7501_CR24
  publication-title: Spine
  doi: 10.1097/BRS.0000000000003245
– volume: 9
  start-page: 5544
  issue: 24
  year: 2019
  ident: 7501_CR40
  publication-title: Appl Sci
  doi: 10.3390/app9245544
– volume: 18
  start-page: 23
  issue: 1
  year: 2020
  ident: 7501_CR17
  publication-title: BMC Med
  doi: 10.1186/s12916-019-1488-1
– ident: 7501_CR39
  doi: 10.1007/978-3-319-46493-0_38
– volume: 130
  start-page: 439
  issue: 6
  year: 2015
  ident: 7501_CR6
  publication-title: Acta Psychiatr Scand
  doi: 10.1111/acps.12336
– volume: 28
  start-page: 735
  issue: 3
  year: 2020
  ident: 7501_CR35
  publication-title: Eur J Neurol
  doi: 10.1111/ene.14609
– volume: 10
  start-page: 17324
  issue: 1
  year: 2020
  ident: 7501_CR16
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-74459-1
– ident: 7501_CR38
  doi: 10.1016/j.bspc.2020.102098
– volume: 6
  start-page: 11
  issue: 1
  year: 2010
  ident: 7501_CR5
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2009.10.002
– volume: 24
  start-page: 5017
  issue: 12
  year: 2015
  ident: 7501_CR33
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2475625
– ident: 7501_CR32
  doi: 10.1007/s12021-018-9370-4
– volume: 45
  start-page: 153
  issue: 6
  year: 2018
  ident: 7501_CR34
  publication-title: Comput Sci
– volume: 13
  start-page: 509
  year: 2010
  ident: 7501_CR31
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.00509
– ident: 7501_CR43
  doi: 10.1016/j.nicl.2020.102303
– volume: 10
  start-page: 667
  issue: 3
  year: 2020
  ident: 7501_CR23
  publication-title: J Med Imag Health Inf
– volume: 16
  start-page: 1
  issue: S3
  year: 2020
  ident: 7501_CR28
  publication-title: Alzheimers Dement
  doi: 10.1002/alz.046163
– volume: 27
  start-page: 1774
  issue: 12
  year: 2020
  ident: 7501_CR37
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2020.01.006
– ident: 7501_CR21
  doi: 10.1007/s10916-019-1475-2
– volume: 33
  start-page: 325
  issue: 3
  year: 2017
  ident: 7501_CR8
  publication-title: Clin Geriatr Med
  doi: 10.1016/j.cger.2017.02.005
– volume: 21
  start-page: 588
  issue: 11
  year: 2009
  ident: 7501_CR3
  publication-title: J Am Acad Nurse Pract
  doi: 10.1111/j.1745-7599.2009.00436.x
– volume: 138
  start-page: 400
  issue: 5
  year: 2003
  ident: 7501_CR4
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-138-5-200303040-00010
– volume: 12
  start-page: 513
  issue: 2
  year: 2020
  ident: 7501_CR27
  publication-title: Cogn Comput
  doi: 10.1007/s12559-019-09688-2
– volume: 63
  start-page: 1766
  issue: 9
  year: 2015
  ident: 7501_CR7
  publication-title: J Am Geriatr Soc
  doi: 10.1111/jgs.13611
– ident: 7501_CR22
  doi: 10.1007/s41133-020-00042-y
– volume: 22
  start-page: 486
  issue: 5
  year: 2016
  ident: 7501_CR30
  publication-title: Neuroscientist
  doi: 10.1177/1073858415595004
– volume: 20
  start-page: 3243
  issue: 11
  year: 2020
  ident: 7501_CR15
  publication-title: Sensors
  doi: 10.3390/s20113243
– volume: 16
  start-page: 244
  issue: 1
  year: 2017
  ident: 7501_CR25
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2017.2776910
– ident: 7501_CR42
  doi: 10.3233/JAD-161080
– ident: 7501_CR26
SSID ssj0004685
Score 2.3951547
Snippet The accurate diagnosis of Alzheimer’s disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19585
SubjectTerms Alzheimer's disease
Artificial Intelligence
Biomedical
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Concept Analysis
Correlation analysis
Data Mining and Knowledge Discovery
Deep learning
Diagnosis
Feature extraction
Finance
Homogeneity
Image analysis
Image Processing and Computer Vision
Machine learning
Magnetic resonance imaging
Medical imaging
Neuroimaging
Probability and Statistics in Computer Science
Recommendation
S.I: Deep learning modelling in real life: (Anomaly Detection
Special Issue on Deep Learning Modeling in Real Life: (Anomaly Detection
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL158i9UqOQgedKGbx645FrUUQU8WipeweWmhbku3vfjrnaTZVkUFz5vJYR4732ReCJ0zpsEPOA7ITdCEgQ4lSgiTcOezdqAA3Phu5IfHrNdn9wM-iE1hVV3tXqckw5962ezmXzAh9CW-WpL7IHgdbXAfu4MW90nnUzdkWMQJcYuv6WE0tsr8fMdXd7TCmN_SosHbdHfQVoSJuLOQ6y5as-Ue2q5XMOBokfvo-dbaCY6rH15wURocSgTfxgbInQ1jO7Gb-zcxDPgUA97DfiqkwWZRZDes8Njhzuj91Q7f7PSiwjFnc4D63bunm14S1yUkGuxolijHlaOEW2osBCVKp9aDNaUdd4orC0iIFDTVtHBCKJEXJre5ygyQ6YLmhh6iRjku7RHCOhcFcxn4T63ZNQRRhAElIBmRC9tOTROlNdekjrPE_UqLkVxOQQ6clsBpGTgt2010uaSZLCZp_Hm6VQtDRquqJMk9nMiyNmmiq1pAq8-_33b8v-MnaJN4HQkthy3UmE3n9hSwx0ydBVX7AMJYznk
  priority: 102
  providerName: Springer Nature
Title Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease
URI https://link.springer.com/article/10.1007/s00521-022-07501-0
https://www.proquest.com/docview/2726616602
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdmHhjSiUygMSA0S0SZzUEyrQh0BUCFGpsETxC5Dogz4Wfj1n12kBia5OzsP57PvuDXAShgL1gKaI3FjghShDHmdMelSbqB0KAJWmGvm-E7W74W2P9pzDbeLSKrM30T7UciiMj_zCj40qiaKKfzn69MzUKBNddSM0clDAJ7iGxlfhqtF5ePxRGWmHcqINY_J7wsCVzdjiOeMRxVXfZF9SY1T_Vk1LvPknRGo1T3MLNhxkJPX5GW_DmhrswGY2joG427kLLzdKjYgbA_FK0oEkNl2wP5RIrpVt4Un0zPjHCGJVgtiPmA6Rksh5wt37hAw1qX98van3vhqfToiL3-xBt9l4um57bnSCJ_BOTT2uKdeBT1UgFRooXFSVAW5caKo55QpRkZ8GVRGkmjHO4lTGKuaRRDKRBrEM9iE_GA7UARARszTUEepSIcIaGlR-iJSIaljMVKUqi1DNuJYI11fcjLf4SBYdkS2nE-R0YjmdVIpwtqAZzbtqrPy7lB1G4m7YJFnKQxHOswNafv5_t8PVux3Bum9kwpYbliA_Hc_UMeKOKS9DrtZslaFQbz3fNcpO1HC169e_ASpR1nc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4BPZQLUFpEINA9FHFoLZJ92NkDQgiahucJJMTFeF-ABEkgQYj-qP5GZjY2oZXKjavt2cPs551vdl4A36S0aAeCQuamRSIRQ4nR2iUqUNQOAaAcVSMfHaedU7l_ps4m4E9VC0NpldWZGA9q17N0R77BMzIladrgW_27hKZGUXS1GqExgsWBf3pEl22wubeL-7vGefvnyU4nKacKJBbhNkxMUCYIrrxwHrm7sU1PnMbYoIJRxiNh4IVoWlEErY3OCpf5zKQOxWwhMidw3Un4IIXQ9Ee12r9e1WHGEaDoMVE2kRRlkU4s1aP7V3zKKddTkQv_tyEcs9t_ArLRzrXnYKYkqGx7hKhPMOG78zBbDX9g5VnwGc53ve-zcujEJSu6jsXkxNueQ_HgY8NQFh7oNo4hM2bINBn1o3TMjdL7rgesF9j2ze8rf33r79cHrIwWfYHTd1HpAkx1e12_CMxmupAhRcttrWyh-8YlSiKH0pn2jaarQbPSWm7LLuY0TOMmf-m_HDWdo6bzqOm8UYPvLzL9UQ-PN7-uV5uRl__zIB-jrwY_qg0av_7_aktvr_YVPnZOjg7zw73jg2WY5oSPWOhYh6nh_YNfQcYzNKsRZgwu3hvXz1aREYM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE-PFtxFF7cHEg25gH921RyISfBEPkhAvzfalJLAQWC7-eqelC2jUxPN2ephOd77pzDeD0HkUCfADmgByo6EXgQ15nFLpEW2ydmAARBo28lM7bnWi-y7pLrH4bbV7kZKccRpMl6Ysr46krs6Jb-Y1E8LgwFROEhMQr6I1-B37xq47QX2JGWmHckIMY-p7otDRZn7e46trWuDNbylS63ma22jTQUZcn53xDlpR2S7aKsYxYHc799BrQ6kRdmMg3nCaSWzLBQdDCeJa2RaeWE_N-xgGrIoB-2HTIVJiOSu4603wUON6_-Nd9QZqfDHBLn-zjzrN25ebludGJ3gClJB7XBOuw4CoUCoIULjwlQFuXGiiOeEKUFGQhr4IU00pp0kqE5XwWIKYSMNEhgeolA0zdYiwSGga6Rh8qRDRNQRUQQSSgGpoQlXNl2XkF1pjwvUVN-Mt-mzeEdlqmoGmmdU0q5XR5VxmNOuq8efqSnEYzN2wCQsSAy3iuBaU0VVxQIvPv-929L_lZ2j9udFkj3fth2O0ERhzsUzECirl46k6AUiS81NrdZ_9KtWo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+and+multimodal+feature+fusion+for+the+aided+diagnosis+of+Alzheimer%27s+disease&rft.jtitle=Neural+computing+%26+applications&rft.au=Jia%2C+Hongfei&rft.au=Lao%2C+Huan&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=22&rft.spage=19585&rft.epage=19598&rft_id=info:doi/10.1007%2Fs00521-022-07501-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon