Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease
The accurate diagnosis of Alzheimer’s disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is essential in order to slow its progression through timely treatment. Recent achievements have shown that fusing multimodal neuroimaging data effect...
Saved in:
Published in | Neural computing & applications Vol. 34; no. 22; pp. 19585 - 19598 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0941-0643 1433-3058 |
DOI | 10.1007/s00521-022-07501-0 |
Cover
Loading…
Abstract | The accurate diagnosis of Alzheimer’s disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is essential in order to slow its progression through timely treatment. Recent achievements have shown that fusing multimodal neuroimaging data effectively facilitates AD diagnosis. However, most proposed fusion methods simply add or concatenate multimodal features and do not make full use of nonlinear features and texture features across the range of modalities. This paper proposes a diagnostic model that effectively diagnoses AD in different stages by fusing functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) information. First, fMRI and sMRI scans are preprocessed, and mean regional homogeneity (mReHo) transformation is performed for the preprocessed fMRI scans. Then, 3DMR-PCANet extracts features of mReHo images. The basic ResNet module is stacked to build a 3DResNet-10 model for feature extraction of sMRI scans. Next, two image features are fused by kernel canonical correlation analysis. Finally, a support vector machine (SVM) is utilized for the classification of fused features. Experimental results on the Alzheimer's Disease Neuroimaging dataset demonstrate the effectiveness of the proposed method. Specifically, this method improves on the accuracy, specificity, sensitivity, F1 value and area under the curve (AUC) of existing methods in comparisons of the normal control (NC) versus SMC, NC versus MCI, NC versus AD, SMC versus MCI, SMC versus AD, and MCI versus AD groups, which confirms that the proposed method can mine information on the correlation between fMRI and sMRI data of the same subject and can effectively classify AD patients in different stages. |
---|---|
AbstractList | The accurate diagnosis of Alzheimer’s disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is essential in order to slow its progression through timely treatment. Recent achievements have shown that fusing multimodal neuroimaging data effectively facilitates AD diagnosis. However, most proposed fusion methods simply add or concatenate multimodal features and do not make full use of nonlinear features and texture features across the range of modalities. This paper proposes a diagnostic model that effectively diagnoses AD in different stages by fusing functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) information. First, fMRI and sMRI scans are preprocessed, and mean regional homogeneity (mReHo) transformation is performed for the preprocessed fMRI scans. Then, 3DMR-PCANet extracts features of mReHo images. The basic ResNet module is stacked to build a 3DResNet-10 model for feature extraction of sMRI scans. Next, two image features are fused by kernel canonical correlation analysis. Finally, a support vector machine (SVM) is utilized for the classification of fused features. Experimental results on the Alzheimer's Disease Neuroimaging dataset demonstrate the effectiveness of the proposed method. Specifically, this method improves on the accuracy, specificity, sensitivity, F1 value and area under the curve (AUC) of existing methods in comparisons of the normal control (NC) versus SMC, NC versus MCI, NC versus AD, SMC versus MCI, SMC versus AD, and MCI versus AD groups, which confirms that the proposed method can mine information on the correlation between fMRI and sMRI data of the same subject and can effectively classify AD patients in different stages. |
Author | Jia, Hongfei Lao, Huan |
Author_xml | – sequence: 1 givenname: Hongfei orcidid: 0000-0002-5732-2487 surname: Jia fullname: Jia, Hongfei email: 1930401017@st.btbu.edu.cn organization: Beijing Key Laboratory of Big Data Technology for Food Safety, School of Artificial Intelligence, Beijing Technology and Business University – sequence: 2 givenname: Huan surname: Lao fullname: Lao, Huan organization: School of Artificial Intelligence, Guangxi Minzu University |
BookMark | eNp9kDtPwzAQgC1UJNrCH2CyxMAU8CN2mrEqT6kSCywslhOfW1epXexkgF-PS5GQGDrd6e6-u9M3QSMfPCB0SckNJaS6TYQIRgvCWEEqQXJ2gsa05LzgRMxGaEzqMhdlyc_QJKUNIaSUMzFG73cAO9yBjt75Fdbe4O3Q9W4bjO6wBd0PEbAdkgse2xBxvwasnQGDjdMrH5JLOFg8777W4LYQr1NuJNAJztGp1V2Ci984RW8P96-Lp2L58vi8mC-LltO6LxorGsuZAG5AStm0FKTYRytsIxrgNWOa05ZrW9dNXWlTQdVIk7FW88rwKbo67N3F8DFA6tUmDNHnk4pVTEoqJWF5ih2m2hhSimDVLrqtjp-KErV3qA4OVXaofhwqkqHZP6h1ve6ziz5q1x1H-QFN-Y5fQfz76gj1DacTiT4 |
CitedBy_id | crossref_primary_10_3390_make6010024 crossref_primary_10_1007_s11571_023_09993_5 crossref_primary_10_1016_j_compbiomed_2024_108000 crossref_primary_10_3390_bioengineering11121233 crossref_primary_10_1016_j_compbiomed_2024_108993 crossref_primary_10_1016_j_compbiomed_2024_108611 crossref_primary_10_1016_j_artmed_2024_102928 crossref_primary_10_1016_j_inffus_2024_102917 crossref_primary_10_1016_j_compbiomed_2023_106788 crossref_primary_10_4103_jmss_jmss_11_24 crossref_primary_10_1016_j_compbiomed_2023_107304 crossref_primary_10_3389_fncom_2024_1393849 crossref_primary_10_1007_s12553_024_00823_0 crossref_primary_10_55525_tjst_1396312 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_3389_fnins_2023_1194190 |
Cites_doi | 10.1016/j.cortex.2020.04.008 10.3390/brainsci10050319 10.1016/j.bpsc.2020.10.006 10.2174/1573405615666191021123854 10.1117/1.NPh.7.4.045004 10.1016/S1474-4422(16)00062-4 10.1016/j.cogsys.2018.12.015 10.1016/j.neuroimage.2014.05.078 10.1109/ACCESS.2019.2920241 10.1109/ISBI.2017.7950647 10.1016/j.jalz.2017.12.006 10.1097/RMR.0000000000000223 10.1097/BRS.0000000000003245 10.3390/app9245544 10.1186/s12916-019-1488-1 10.1007/978-3-319-46493-0_38 10.1111/acps.12336 10.1111/ene.14609 10.1038/s41598-020-74459-1 10.1016/j.bspc.2020.102098 10.1016/j.jalz.2009.10.002 10.1109/TIP.2015.2475625 10.1007/s12021-018-9370-4 10.3389/fnins.2019.00509 10.1016/j.nicl.2020.102303 10.1002/alz.046163 10.1016/j.acra.2020.01.006 10.1007/s10916-019-1475-2 10.1016/j.cger.2017.02.005 10.1111/j.1745-7599.2009.00436.x 10.7326/0003-4819-138-5-200303040-00010 10.1007/s12559-019-09688-2 10.1111/jgs.13611 10.1007/s41133-020-00042-y 10.1177/1073858415595004 10.3390/s20113243 10.1109/TCBB.2017.2776910 10.3233/JAD-161080 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-022-07501-0 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 19598 |
ExternalDocumentID | 10_1007_s00521_022_07501_0 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-bf5bf325e3de666bc1e6566bcf5fb5be3922a31c3af99b97ad7e7b6df5bca37d3 |
IEDL.DBID | BENPR |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 09:19:54 EDT 2025 Tue Jul 01 01:47:07 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Fri Feb 21 02:47:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Functional magnetic resonance imaging 3DResNet-10 3DMR-PCANet Alzheimer's disease Structure magnetic resonance imaging Kernel canonical correlation analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-bf5bf325e3de666bc1e6566bcf5fb5be3922a31c3af99b97ad7e7b6df5bca37d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5732-2487 |
PQID | 2726616602 |
PQPubID | 2043988 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2726616602 crossref_primary_10_1007_s00521_022_07501_0 crossref_citationtrail_10_1007_s00521_022_07501_0 springer_journals_10_1007_s00521_022_07501_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221100 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Clark, Karlawish (CR4) 2003; 138 Sanford (CR8) 2017; 33 Chung, Yang, Kim (CR1) 2021; 2021 Woo, Roussos, Haroutunian (CR17) 2020; 18 Winblad, Amouyel, Andrieu (CR10) 2016; 15 Leifer (CR3) 2009; 21 CR39 Yamanakkanavar, Choi, Lee (CR15) 2020; 20 CR38 Ju, Hu, Zhou (CR25) 2017; 16 Chan, Jia, Gao (CR33) 2015; 24 CR32 Jiang, Zuo (CR30) 2016; 22 Weiner, Veitch, Aisen (CR9) 2013; 8 Choi, Madusanka, Choi (CR11) 2020; 16 Tong, Bin, Sheng (CR34) 2018; 45 Scarpelli, Healey, Mehta (CR16) 2020; 10 Yu, Nho, Risacher (CR28) 2020; 16 Ren, Yang, Qiu (CR45) 2019; 7 Chen, Zhao, Wang (CR24) 2020; 5 Faria, Marques, Balardin (CR19) 2020; 7 Ning, Zhao, Lan (CR40) 2019; 9 Wang, Xie, Chen (CR14) 2021; 8 Yoa, Tia, Ts (CR36) 2020; 129 Cai, He, Zhong (CR37) 2020; 27 Reisberg, Shulman, Torossian (CR5) 2010; 6 Huang, Xu, Zhou (CR31) 2010; 13 Jain, Jain, Aggarwal (CR12) 2019; 2019 Zhu, Suk, Shen (CR13) 2014; 100 CR26 Provenzano, Washington, Rao (CR18) 2020; 10 Ronnlund, Sundstro, Adolfsson (CR7) 2015; 63 CR22 CR44 CR21 Jalilianhasanpour, Beheshtian, Sherbaf (CR29) 2019; 28 CR43 Jia, Wei, Chen (CR2) 2018; 14 CR42 Sun, Ding, Zhao (CR23) 2020; 10 Mitchell, Beaumont, Ferguson (CR6) 2015; 130 Acm, Tb, Gw (CR20) 2021; 6 Lee, Kim (CR35) 2020; 28 Bi, Zhao, Huang (CR27) 2020; 12 Ashkan, Dalboni, Nagaraju (CR41) 2017; 11 7501_CR39 7501_CR38 MW Weiner (7501_CR9) 2013; 8 X Zhu (7501_CR13) 2014; 100 N Yamanakkanavar (7501_CR15) 2020; 20 TH Chan (7501_CR33) 2015; 24 J Jia (7501_CR2) 2018; 14 B Winblad (7501_CR10) 2016; 15 D Faria (7501_CR19) 2020; 7 X Bi (7501_CR27) 2020; 12 ML Scarpelli (7501_CR16) 2020; 10 LS Tong (7501_CR34) 2018; 45 D Provenzano (7501_CR18) 2020; 10 B Yoa (7501_CR36) 2020; 129 AJ Mitchell (7501_CR6) 2015; 130 R Ju (7501_CR25) 2017; 16 7501_CR32 J Ning (7501_CR40) 2019; 9 J Sun (7501_CR23) 2020; 10 L Jiang (7501_CR30) 2016; 22 R Jalilianhasanpour (7501_CR29) 2019; 28 E Ashkan (7501_CR41) 2017; 11 F Ren (7501_CR45) 2019; 7 YJ Woo (7501_CR17) 2020; 18 BK Choi (7501_CR11) 2020; 16 Y Huang (7501_CR31) 2010; 13 7501_CR26 S Chung (7501_CR1) 2021; 2021 BP Leifer (7501_CR3) 2009; 21 Z Chen (7501_CR24) 2020; 5 R Jain (7501_CR12) 2019; 2019 CM Clark (7501_CR4) 2003; 138 S Lee (7501_CR35) 2020; 28 XY Wang (7501_CR14) 2021; 8 B Reisberg (7501_CR5) 2010; 6 7501_CR42 A Acm (7501_CR20) 2021; 6 AM Sanford (7501_CR8) 2017; 33 7501_CR22 7501_CR44 7501_CR21 7501_CR43 M Ronnlund (7501_CR7) 2015; 63 M Yu (7501_CR28) 2020; 16 JH Cai (7501_CR37) 2020; 27 |
References_xml | – ident: CR22 – volume: 24 start-page: 5017 issue: 12 year: 2015 end-page: 5032 ident: CR33 article-title: PCANet: a simple deep learning baseline for image classification? publication-title: IEEE Trans Image Process – volume: 22 start-page: 486 issue: 5 year: 2016 end-page: 505 ident: CR30 article-title: Regional homogeneity publication-title: Neuroscientist – ident: CR43 – volume: 130 start-page: 439 issue: 6 year: 2015 end-page: 451 ident: CR6 article-title: Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis publication-title: Acta Psychiatr Scand – volume: 12 start-page: 513 issue: 2 year: 2020 end-page: 527 ident: CR27 article-title: Functional brain network classification for Alzheimer's disease detection with deep features and extreme learning machine publication-title: Cogn Comput – volume: 28 start-page: 317 issue: 6 year: 2019 end-page: 324 ident: CR29 article-title: Functional connectivity in neurodegenerative disorders: Alzheimer's disease and frontotemporal dementia publication-title: Top Magn Reson Imaging – volume: 14 start-page: 483 issue: 4 year: 2018 end-page: 491 ident: CR2 article-title: The cost of Alzheimer's disease in China and re-estimation of costs worldwide publication-title: Alzheimers Dement – volume: 63 start-page: 1766 issue: 9 year: 2015 end-page: 1773 ident: CR7 article-title: Self-Reported Memory Failures: Associations with Future Dementia in a Population-Based Study with Long-Term Follow-Up publication-title: J Am Geriatr Soc – volume: 2019 start-page: 147 issue: 57 year: 2019 end-page: 159 ident: CR12 article-title: Convolutional neural network based Alzheimer's disease classification from magnetic resonance brain images publication-title: Cogn Syst Res – ident: CR39 – volume: 20 start-page: 3243 issue: 11 year: 2020 ident: CR15 article-title: MRI segmentation and classification of human brain using deep learning for diagnosis of alzheimer's disease: a survey publication-title: Sensors – volume: 33 start-page: 325 issue: 3 year: 2017 end-page: 337 ident: CR8 article-title: Mild Cognitive Impairment publication-title: Clin Geriatr Med – volume: 129 start-page: 23 year: 2020 end-page: 32 ident: CR36 article-title: Visual texture agnosia influences object identification in dementia with Lewy bodies and Alzheimer's disease - ScienceDirect publication-title: Cortex – volume: 45 start-page: 153 issue: 6 year: 2018 end-page: 155 ident: CR34 article-title: Aided diagnosis of Alzheimer's disease based on 3D-PCANET publication-title: Comput Sci – volume: 7 start-page: 45004 issue: 4 year: 2020 end-page: 45001 ident: CR19 article-title: Task-related brain activity and functional connectivity in upper limb dystonia: a functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) study publication-title: Neurophotonics – volume: 8 start-page: 1 issue: 1 year: 2013 end-page: 68 ident: CR9 article-title: The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception publication-title: Alzheimers Dement – volume: 6 start-page: 11 issue: 1 year: 2010 end-page: 24 ident: CR5 article-title: Outcome over seven years of healthy adults with and without subjective cognitive impairment publication-title: Alzheimer’s Dementia – volume: 7 start-page: 181423 issue: 99 year: 2019 end-page: 181433 ident: CR45 article-title: Exploiting discriminative regions of brain slices based on 2D CNNs for Alzheimer's disease classification publication-title: IEEE Access – volume: 9 start-page: 5544 issue: 24 year: 2019 ident: CR40 article-title: A computer-aided detection system for the detection of lung nodules based on 3D-ResNet publication-title: Appl Sci – volume: 138 start-page: 400 issue: 5 year: 2003 end-page: 410 ident: CR4 article-title: Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies publication-title: Ann Intern Med – volume: 27 start-page: 1774 issue: 12 year: 2020 end-page: 1783 ident: CR37 article-title: Magnetic Resonance Texture Analysis in Alzheimer's disease publication-title: Acad Radiol – volume: 10 start-page: 17324 issue: 1 year: 2020 ident: CR16 article-title: A practical method for multimodal registration and assessment of whole-brain disease burden using PET, MRI, and optical imaging publication-title: Sci Rep – volume: 10 start-page: 667 issue: 3 year: 2020 end-page: 671 ident: CR23 article-title: Predicting Alzheimer's disease based on network topological latent representations publication-title: J Med Imag Health Inf – volume: 28 start-page: 735 issue: 3 year: 2020 end-page: 744 ident: CR35 article-title: Associations between texture of T1-weighted magnetic resonance imaging and radiographic pathologies in Alzheimer's disease publication-title: Eur J Neurol – ident: CR42 – volume: 13 start-page: 509 year: 2010 ident: CR31 article-title: Diagnosis of alzheimer's disease via multi-modality 3d convolutional neural network publication-title: Front Neurosci – volume: 16 start-page: 1 issue: S3 year: 2020 end-page: 3 ident: CR28 article-title: Transcriptomic profiles underlying functional brain networks at different stages of Alzheimer's disease: Genetics/genetic factors of Alzheimer's disease publication-title: Alzheimers Dement – volume: 10 start-page: 319 issue: 5 year: 2020 ident: CR18 article-title: logistic regression algorithm differentiates gulf war illness (GWI) functional magnetic resonance imaging (fMRI) data from a sedentary control publication-title: Brain Sci – ident: CR21 – volume: 15 start-page: 455 issue: 5 year: 2016 end-page: 532 ident: CR10 article-title: Defeating Alzheimer's disease and other dementias: a priority for European science and society publication-title: The Lancet Neurology – volume: 18 start-page: 23 issue: 1 year: 2020 ident: CR17 article-title: Comparison of brain connectomes by MRI and genomics and its implication in Alzheimer's disease publication-title: BMC Med – ident: CR44 – volume: 5 start-page: 272 issue: 45 year: 2020 end-page: 279 ident: CR24 article-title: Functional connectivity changes of the visual cortex in the cervical spondylotic myelopathy patients: a resting-state fMRI study publication-title: Spine – volume: 21 start-page: 588 issue: 11 year: 2009 end-page: 595 ident: CR3 article-title: Alzheimer's disease: Seeing the signs early publication-title: J Am Acad Nurse Pract – volume: 16 start-page: 27 issue: 1 year: 2020 end-page: 35 ident: CR11 article-title: Convolutional Neural Network-based MR Image Analysis for Alzheimer's Disease Classification publication-title: Current Medical Imaging Reviews – ident: CR38 – volume: 6 start-page: 490 issue: 4 year: 2021 end-page: 497 ident: CR20 article-title: Cloud-based functional magnetic resonance imaging neurofeedback to reduce the negative attentional bias in depression: a proof-of-concept study - sciencedirect publication-title: Biol Psychiatry Cognitive Neurosci Neuroimag – volume: 2021 start-page: 3592 issue: 203 year: 2021 end-page: 3604 ident: CR1 article-title: Plexin-A4 mediates amyloid-β–induced tau pathology in Alzheimer's disease animal model publication-title: Prog Neurobiol – volume: 16 start-page: 244 issue: 1 year: 2017 end-page: 257 ident: CR25 article-title: Early diagnosis of Alzheimer's disease based on resting-state brain networks and deep learning publication-title: IEEE/ACM Trans Comput Biol Bioinf – ident: CR32 – volume: 11 start-page: 11 year: 2017 end-page: 56 ident: CR41 article-title: Ensemble classification of Alzheimer's disease and mild cognitive impairment based on complex graph measures from diffusion tensor images publication-title: Frontiers in Neuroence – volume: 100 start-page: 91 year: 2014 end-page: 105 ident: CR13 article-title: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis publication-title: Neuroimage – volume: 8 start-page: 651 year: 2021 end-page: 804 ident: CR14 article-title: Applications of non-invasive and novel methods of low-field nuclear magnetic resonance and magnetic resonance imaging in aquatic products publication-title: Front Nutr – ident: CR26 – volume: 2021 start-page: 3592 issue: 203 year: 2021 ident: 7501_CR1 publication-title: Prog Neurobiol – volume: 129 start-page: 23 year: 2020 ident: 7501_CR36 publication-title: Cortex doi: 10.1016/j.cortex.2020.04.008 – volume: 10 start-page: 319 issue: 5 year: 2020 ident: 7501_CR18 publication-title: Brain Sci doi: 10.3390/brainsci10050319 – volume: 6 start-page: 490 issue: 4 year: 2021 ident: 7501_CR20 publication-title: Biol Psychiatry Cognitive Neurosci Neuroimag doi: 10.1016/j.bpsc.2020.10.006 – volume: 16 start-page: 27 issue: 1 year: 2020 ident: 7501_CR11 publication-title: Current Medical Imaging Reviews doi: 10.2174/1573405615666191021123854 – volume: 7 start-page: 45004 issue: 4 year: 2020 ident: 7501_CR19 publication-title: Neurophotonics doi: 10.1117/1.NPh.7.4.045004 – volume: 11 start-page: 11 year: 2017 ident: 7501_CR41 publication-title: Frontiers in Neuroence – volume: 8 start-page: 651 year: 2021 ident: 7501_CR14 publication-title: Front Nutr – volume: 15 start-page: 455 issue: 5 year: 2016 ident: 7501_CR10 publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(16)00062-4 – volume: 2019 start-page: 147 issue: 57 year: 2019 ident: 7501_CR12 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.12.015 – volume: 100 start-page: 91 year: 2014 ident: 7501_CR13 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.05.078 – volume: 7 start-page: 181423 issue: 99 year: 2019 ident: 7501_CR45 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920241 – ident: 7501_CR44 doi: 10.1109/ISBI.2017.7950647 – volume: 14 start-page: 483 issue: 4 year: 2018 ident: 7501_CR2 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2017.12.006 – volume: 28 start-page: 317 issue: 6 year: 2019 ident: 7501_CR29 publication-title: Top Magn Reson Imaging doi: 10.1097/RMR.0000000000000223 – volume: 8 start-page: 1 issue: 1 year: 2013 ident: 7501_CR9 publication-title: Alzheimers Dement – volume: 5 start-page: 272 issue: 45 year: 2020 ident: 7501_CR24 publication-title: Spine doi: 10.1097/BRS.0000000000003245 – volume: 9 start-page: 5544 issue: 24 year: 2019 ident: 7501_CR40 publication-title: Appl Sci doi: 10.3390/app9245544 – volume: 18 start-page: 23 issue: 1 year: 2020 ident: 7501_CR17 publication-title: BMC Med doi: 10.1186/s12916-019-1488-1 – ident: 7501_CR39 doi: 10.1007/978-3-319-46493-0_38 – volume: 130 start-page: 439 issue: 6 year: 2015 ident: 7501_CR6 publication-title: Acta Psychiatr Scand doi: 10.1111/acps.12336 – volume: 28 start-page: 735 issue: 3 year: 2020 ident: 7501_CR35 publication-title: Eur J Neurol doi: 10.1111/ene.14609 – volume: 10 start-page: 17324 issue: 1 year: 2020 ident: 7501_CR16 publication-title: Sci Rep doi: 10.1038/s41598-020-74459-1 – ident: 7501_CR38 doi: 10.1016/j.bspc.2020.102098 – volume: 6 start-page: 11 issue: 1 year: 2010 ident: 7501_CR5 publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2009.10.002 – volume: 24 start-page: 5017 issue: 12 year: 2015 ident: 7501_CR33 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2475625 – ident: 7501_CR32 doi: 10.1007/s12021-018-9370-4 – volume: 45 start-page: 153 issue: 6 year: 2018 ident: 7501_CR34 publication-title: Comput Sci – volume: 13 start-page: 509 year: 2010 ident: 7501_CR31 publication-title: Front Neurosci doi: 10.3389/fnins.2019.00509 – ident: 7501_CR43 doi: 10.1016/j.nicl.2020.102303 – volume: 10 start-page: 667 issue: 3 year: 2020 ident: 7501_CR23 publication-title: J Med Imag Health Inf – volume: 16 start-page: 1 issue: S3 year: 2020 ident: 7501_CR28 publication-title: Alzheimers Dement doi: 10.1002/alz.046163 – volume: 27 start-page: 1774 issue: 12 year: 2020 ident: 7501_CR37 publication-title: Acad Radiol doi: 10.1016/j.acra.2020.01.006 – ident: 7501_CR21 doi: 10.1007/s10916-019-1475-2 – volume: 33 start-page: 325 issue: 3 year: 2017 ident: 7501_CR8 publication-title: Clin Geriatr Med doi: 10.1016/j.cger.2017.02.005 – volume: 21 start-page: 588 issue: 11 year: 2009 ident: 7501_CR3 publication-title: J Am Acad Nurse Pract doi: 10.1111/j.1745-7599.2009.00436.x – volume: 138 start-page: 400 issue: 5 year: 2003 ident: 7501_CR4 publication-title: Ann Intern Med doi: 10.7326/0003-4819-138-5-200303040-00010 – volume: 12 start-page: 513 issue: 2 year: 2020 ident: 7501_CR27 publication-title: Cogn Comput doi: 10.1007/s12559-019-09688-2 – volume: 63 start-page: 1766 issue: 9 year: 2015 ident: 7501_CR7 publication-title: J Am Geriatr Soc doi: 10.1111/jgs.13611 – ident: 7501_CR22 doi: 10.1007/s41133-020-00042-y – volume: 22 start-page: 486 issue: 5 year: 2016 ident: 7501_CR30 publication-title: Neuroscientist doi: 10.1177/1073858415595004 – volume: 20 start-page: 3243 issue: 11 year: 2020 ident: 7501_CR15 publication-title: Sensors doi: 10.3390/s20113243 – volume: 16 start-page: 244 issue: 1 year: 2017 ident: 7501_CR25 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2017.2776910 – ident: 7501_CR42 doi: 10.3233/JAD-161080 – ident: 7501_CR26 |
SSID | ssj0004685 |
Score | 2.3951547 |
Snippet | The accurate diagnosis of Alzheimer’s disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19585 |
SubjectTerms | Alzheimer's disease Artificial Intelligence Biomedical Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Concept Analysis Correlation analysis Data Mining and Knowledge Discovery Deep learning Diagnosis Feature extraction Finance Homogeneity Image analysis Image Processing and Computer Vision Machine learning Magnetic resonance imaging Medical imaging Neuroimaging Probability and Statistics in Computer Science Recommendation S.I: Deep learning modelling in real life: (Anomaly Detection Special Issue on Deep Learning Modeling in Real Life: (Anomaly Detection Support vector machines |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL158i9UqOQgedKGbx645FrUUQU8WipeweWmhbku3vfjrnaTZVkUFz5vJYR4732ReCJ0zpsEPOA7ITdCEgQ4lSgiTcOezdqAA3Phu5IfHrNdn9wM-iE1hVV3tXqckw5962ezmXzAh9CW-WpL7IHgdbXAfu4MW90nnUzdkWMQJcYuv6WE0tsr8fMdXd7TCmN_SosHbdHfQVoSJuLOQ6y5as-Ue2q5XMOBokfvo-dbaCY6rH15wURocSgTfxgbInQ1jO7Gb-zcxDPgUA97DfiqkwWZRZDes8Njhzuj91Q7f7PSiwjFnc4D63bunm14S1yUkGuxolijHlaOEW2osBCVKp9aDNaUdd4orC0iIFDTVtHBCKJEXJre5ygyQ6YLmhh6iRjku7RHCOhcFcxn4T63ZNQRRhAElIBmRC9tOTROlNdekjrPE_UqLkVxOQQ6clsBpGTgt2010uaSZLCZp_Hm6VQtDRquqJMk9nMiyNmmiq1pAq8-_33b8v-MnaJN4HQkthy3UmE3n9hSwx0ydBVX7AMJYznk priority: 102 providerName: Springer Nature |
Title | Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease |
URI | https://link.springer.com/article/10.1007/s00521-022-07501-0 https://www.proquest.com/docview/2726616602 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdmHhjSiUygMSA0S0SZzUEyrQh0BUCFGpsETxC5Dogz4Wfj1n12kBia5OzsP57PvuDXAShgL1gKaI3FjghShDHmdMelSbqB0KAJWmGvm-E7W74W2P9pzDbeLSKrM30T7UciiMj_zCj40qiaKKfzn69MzUKBNddSM0clDAJ7iGxlfhqtF5ePxRGWmHcqINY_J7wsCVzdjiOeMRxVXfZF9SY1T_Vk1LvPknRGo1T3MLNhxkJPX5GW_DmhrswGY2joG427kLLzdKjYgbA_FK0oEkNl2wP5RIrpVt4Un0zPjHCGJVgtiPmA6Rksh5wt37hAw1qX98van3vhqfToiL3-xBt9l4um57bnSCJ_BOTT2uKdeBT1UgFRooXFSVAW5caKo55QpRkZ8GVRGkmjHO4lTGKuaRRDKRBrEM9iE_GA7UARARszTUEepSIcIaGlR-iJSIaljMVKUqi1DNuJYI11fcjLf4SBYdkS2nE-R0YjmdVIpwtqAZzbtqrPy7lB1G4m7YJFnKQxHOswNafv5_t8PVux3Bum9kwpYbliA_Hc_UMeKOKS9DrtZslaFQbz3fNcpO1HC169e_ASpR1nc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4BPZQLUFpEINA9FHFoLZJ92NkDQgiahucJJMTFeF-ABEkgQYj-qP5GZjY2oZXKjavt2cPs551vdl4A36S0aAeCQuamRSIRQ4nR2iUqUNQOAaAcVSMfHaedU7l_ps4m4E9VC0NpldWZGA9q17N0R77BMzIladrgW_27hKZGUXS1GqExgsWBf3pEl22wubeL-7vGefvnyU4nKacKJBbhNkxMUCYIrrxwHrm7sU1PnMbYoIJRxiNh4IVoWlEErY3OCpf5zKQOxWwhMidw3Un4IIXQ9Ee12r9e1WHGEaDoMVE2kRRlkU4s1aP7V3zKKddTkQv_tyEcs9t_ArLRzrXnYKYkqGx7hKhPMOG78zBbDX9g5VnwGc53ve-zcujEJSu6jsXkxNueQ_HgY8NQFh7oNo4hM2bINBn1o3TMjdL7rgesF9j2ze8rf33r79cHrIwWfYHTd1HpAkx1e12_CMxmupAhRcttrWyh-8YlSiKH0pn2jaarQbPSWm7LLuY0TOMmf-m_HDWdo6bzqOm8UYPvLzL9UQ-PN7-uV5uRl__zIB-jrwY_qg0av_7_aktvr_YVPnZOjg7zw73jg2WY5oSPWOhYh6nh_YNfQcYzNKsRZgwu3hvXz1aREYM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE-PFtxFF7cHEg25gH921RyISfBEPkhAvzfalJLAQWC7-eqelC2jUxPN2ephOd77pzDeD0HkUCfADmgByo6EXgQ15nFLpEW2ydmAARBo28lM7bnWi-y7pLrH4bbV7kZKccRpMl6Ysr46krs6Jb-Y1E8LgwFROEhMQr6I1-B37xq47QX2JGWmHckIMY-p7otDRZn7e46trWuDNbylS63ma22jTQUZcn53xDlpR2S7aKsYxYHc799BrQ6kRdmMg3nCaSWzLBQdDCeJa2RaeWE_N-xgGrIoB-2HTIVJiOSu4603wUON6_-Nd9QZqfDHBLn-zjzrN25ebludGJ3gClJB7XBOuw4CoUCoIULjwlQFuXGiiOeEKUFGQhr4IU00pp0kqE5XwWIKYSMNEhgeolA0zdYiwSGga6Rh8qRDRNQRUQQSSgGpoQlXNl2XkF1pjwvUVN-Mt-mzeEdlqmoGmmdU0q5XR5VxmNOuq8efqSnEYzN2wCQsSAy3iuBaU0VVxQIvPv-929L_lZ2j9udFkj3fth2O0ERhzsUzECirl46k6AUiS81NrdZ_9KtWo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+and+multimodal+feature+fusion+for+the+aided+diagnosis+of+Alzheimer%27s+disease&rft.jtitle=Neural+computing+%26+applications&rft.au=Jia%2C+Hongfei&rft.au=Lao%2C+Huan&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=22&rft.spage=19585&rft.epage=19598&rft_id=info:doi/10.1007%2Fs00521-022-07501-0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |