A universal qudit quantum processor with trapped ions

Most quantum computers use binary encoding to store information in qubits—the quantum analogue of classical bits. Yet, the underlying physical hardware consists of information carriers that are not necessarily binary, but typically exhibit a rich multilevel structure. Operating them as qubits artifi...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 18; no. 9; pp. 1053 - 1057
Main Authors Ringbauer, Martin, Meth, Michael, Postler, Lukas, Stricker, Roman, Blatt, Rainer, Schindler, Philipp, Monz, Thomas
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most quantum computers use binary encoding to store information in qubits—the quantum analogue of classical bits. Yet, the underlying physical hardware consists of information carriers that are not necessarily binary, but typically exhibit a rich multilevel structure. Operating them as qubits artificially restricts their degrees of freedom to two energy levels 1 . Meanwhile, a wide range of applications—from quantum chemistry 2 to quantum simulation 3 —would benefit from access to higher-dimensional Hilbert spaces, which qubit-based quantum computers can only emulate 4 . Here we demonstrate a universal quantum processor using trapped ions that act as qudits with a local Hilbert-space dimension of up to seven. With a performance similar to qubit quantum processors 5 , this approach enables the native simulation of high-dimensional quantum systems 3 , as well as more efficient implementation of qubit-based algorithms 6 , 7 . Qudits are generalizations of qubits that have more than two states, which gives them a performance advantage in some quantum algorithms. The operations needed for a universal qudit processor have now been demonstrated using trapped ions.
AbstractList Most quantum computers use binary encoding to store information in qubits—the quantum analogue of classical bits. Yet, the underlying physical hardware consists of information carriers that are not necessarily binary, but typically exhibit a rich multilevel structure. Operating them as qubits artificially restricts their degrees of freedom to two energy levels1. Meanwhile, a wide range of applications—from quantum chemistry2 to quantum simulation3—would benefit from access to higher-dimensional Hilbert spaces, which qubit-based quantum computers can only emulate4. Here we demonstrate a universal quantum processor using trapped ions that act as qudits with a local Hilbert-space dimension of up to seven. With a performance similar to qubit quantum processors5, this approach enables the native simulation of high-dimensional quantum systems3, as well as more efficient implementation of qubit-based algorithms6,7.Qudits are generalizations of qubits that have more than two states, which gives them a performance advantage in some quantum algorithms. The operations needed for a universal qudit processor have now been demonstrated using trapped ions.
Most quantum computers use binary encoding to store information in qubits—the quantum analogue of classical bits. Yet, the underlying physical hardware consists of information carriers that are not necessarily binary, but typically exhibit a rich multilevel structure. Operating them as qubits artificially restricts their degrees of freedom to two energy levels 1 . Meanwhile, a wide range of applications—from quantum chemistry 2 to quantum simulation 3 —would benefit from access to higher-dimensional Hilbert spaces, which qubit-based quantum computers can only emulate 4 . Here we demonstrate a universal quantum processor using trapped ions that act as qudits with a local Hilbert-space dimension of up to seven. With a performance similar to qubit quantum processors 5 , this approach enables the native simulation of high-dimensional quantum systems 3 , as well as more efficient implementation of qubit-based algorithms 6 , 7 . Qudits are generalizations of qubits that have more than two states, which gives them a performance advantage in some quantum algorithms. The operations needed for a universal qudit processor have now been demonstrated using trapped ions.
Author Monz, Thomas
Postler, Lukas
Blatt, Rainer
Meth, Michael
Stricker, Roman
Ringbauer, Martin
Schindler, Philipp
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0001-5055-6240
  surname: Ringbauer
  fullname: Ringbauer, Martin
  email: martin.ringbauer@uibk.ac.at
  organization: Institut für Experimentalphysik, Universität Innsbruck
– sequence: 2
  givenname: Michael
  surname: Meth
  fullname: Meth, Michael
  organization: Institut für Experimentalphysik, Universität Innsbruck
– sequence: 3
  givenname: Lukas
  surname: Postler
  fullname: Postler, Lukas
  organization: Institut für Experimentalphysik, Universität Innsbruck
– sequence: 4
  givenname: Roman
  orcidid: 0000-0001-8001-1487
  surname: Stricker
  fullname: Stricker, Roman
  organization: Institut für Experimentalphysik, Universität Innsbruck
– sequence: 5
  givenname: Rainer
  surname: Blatt
  fullname: Blatt, Rainer
  organization: Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Alpine Quantum Technologies GmbH
– sequence: 6
  givenname: Philipp
  orcidid: 0000-0002-9461-9650
  surname: Schindler
  fullname: Schindler, Philipp
  organization: Institut für Experimentalphysik, Universität Innsbruck
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0001-7410-4804
  surname: Monz
  fullname: Monz, Thomas
  organization: Institut für Experimentalphysik, Universität Innsbruck, Alpine Quantum Technologies GmbH
BookMark eNp9kEtLAzEUhYMo2Fb_gKsB19HcvLssxRcU3Og6pJmMprQz0ySj-O-Njii46OI-Fue793Cm6LjtWo_QBZArIExfJw5CKkwoxQSk0JgcoQkoLjDlGo5_d8VO0TSlDSGcSmATJBbV0IY3H5PdVvuhDrl02-ZhV_Wxcz6lLlbvIb9WOdq-93UVujadoZPGbpM__5kz9Hx787S8x6vHu4flYoUdg3nGa69qqmWzFg3jTlLwVs-dqonWQJ0WYCmTwK3grPHWU1vbminpFHMShGVshi7Hu8XLfvApm003xLa8NFQBSF5KFZUeVS52KUXfGBeyzcVo8Ry2Boj5CsmMIZkSkvkOyZCC0n9oH8POxo_DEBuhVMTti49_rg5QnzI0eyg
CitedBy_id crossref_primary_10_1038_s41467_024_46402_9
crossref_primary_10_1103_PhysRevLett_133_140404
crossref_primary_10_1088_1367_2630_acdf77
crossref_primary_10_1103_PhysRevApplied_18_064005
crossref_primary_10_1140_epjp_s13360_024_05751_6
crossref_primary_10_1145_3587062_3587071
crossref_primary_10_1103_PhysRevE_111_034118
crossref_primary_10_1103_PhysRevA_106_032418
crossref_primary_10_1109_TIFS_2024_3357240
crossref_primary_10_1088_2058_9565_adbf44
crossref_primary_10_1103_PhysRevA_109_022612
crossref_primary_10_1103_PRXQuantum_5_020344
crossref_primary_10_1088_2040_8986_ada0c5
crossref_primary_10_1038_s41534_024_00829_6
crossref_primary_10_1103_PRXQuantum_5_020346
crossref_primary_10_1134_S0021364022601956
crossref_primary_10_1088_1361_6404_ad06be
crossref_primary_10_1088_1751_8121_ad1ea4
crossref_primary_10_1103_PhysRevD_108_023013
crossref_primary_10_1038_s41566_024_01555_3
crossref_primary_10_1103_PhysRevApplied_22_054067
crossref_primary_10_1103_PhysRevD_106_L091502
crossref_primary_10_1126_sciadv_ado3472
crossref_primary_10_3390_e24121771
crossref_primary_10_1103_PhysRevA_109_022615
crossref_primary_10_1103_PhysRevLett_134_050601
crossref_primary_10_1103_PhysRevLett_131_170602
crossref_primary_10_3390_sym16111466
crossref_primary_10_1103_PhysRevLett_131_170201
crossref_primary_10_1103_PRXQuantum_4_030327
crossref_primary_10_1145_3656388
crossref_primary_10_22331_q_2024_02_08_1244
crossref_primary_10_1103_PhysRevResearch_6_033092
crossref_primary_10_1103_PRXQuantum_5_020355
crossref_primary_10_1088_2058_9565_ad37d4
crossref_primary_10_1103_PhysRevA_109_022441
crossref_primary_10_1103_PhysRevLett_132_110601
crossref_primary_10_1103_PRXQuantum_4_020333
crossref_primary_10_1088_2058_9565_adac06
crossref_primary_10_1103_PhysRevA_108_062609
crossref_primary_10_1103_PhysRevLett_129_160501
crossref_primary_10_1002_qute_202300135
crossref_primary_10_1007_s00023_022_01254_1
crossref_primary_10_1103_PhysRevX_15_011040
crossref_primary_10_22331_q_2022_12_29_887
crossref_primary_10_1103_PhysRevApplied_22_064002
crossref_primary_10_3390_technologies12050064
crossref_primary_10_1038_s41567_025_02797_w
crossref_primary_10_1088_2058_9565_ad085b
crossref_primary_10_1134_S0040577924120018
crossref_primary_10_1088_1751_8121_ada744
crossref_primary_10_3389_frqst_2023_1228208
crossref_primary_10_1088_1367_2630_ad6635
crossref_primary_10_1109_TIFS_2024_3402073
crossref_primary_10_3390_e26121129
crossref_primary_10_1103_PhysRevApplied_19_064024
crossref_primary_10_1039_D3SC02453A
crossref_primary_10_1146_annurev_conmatphys_032822_045619
crossref_primary_10_1088_2058_9565_ad7315
crossref_primary_10_1103_PhysRevApplied_18_034047
crossref_primary_10_1039_D4MH01512F
crossref_primary_10_1103_PhysRevLett_133_053401
crossref_primary_10_1063_5_0190629
crossref_primary_10_22331_q_2025_03_12_1661
crossref_primary_10_1103_PhysRevD_111_043038
crossref_primary_10_1007_s13222_024_00467_4
crossref_primary_10_1103_PhysRevResearch_5_023121
crossref_primary_10_1109_TIFS_2024_3432279
crossref_primary_10_1016_j_xcrp_2024_102105
crossref_primary_10_1021_jacs_3c12277
crossref_primary_10_1016_j_mrl_2023_04_001
crossref_primary_10_1103_PhysRevA_108_032606
crossref_primary_10_22331_q_2025_02_26_1647
crossref_primary_10_1103_PhysRevApplied_22_024032
crossref_primary_10_1016_j_optlastec_2025_112694
crossref_primary_10_1088_1674_1056_ad8a4c
crossref_primary_10_1038_s41467_024_54303_0
crossref_primary_10_1103_PhysRevA_110_062602
crossref_primary_10_1103_PhysRevA_110_062208
crossref_primary_10_1103_PhysRevLett_131_171902
crossref_primary_10_1063_5_0243375
crossref_primary_10_22331_q_2024_05_14_1343
crossref_primary_10_1038_s41467_022_34851_z
crossref_primary_10_1103_PRXQuantum_5_030356
crossref_primary_10_1103_PhysRevA_109_052620
crossref_primary_10_1103_PhysRevA_109_032619
crossref_primary_10_1109_TMC_2024_3373626
crossref_primary_10_1103_PhysRevLett_132_060601
crossref_primary_10_1038_s41467_024_55342_3
crossref_primary_10_1103_PhysRevA_106_022412
crossref_primary_10_1103_PhysRevA_107_042422
crossref_primary_10_1007_s42484_024_00146_3
crossref_primary_10_1103_PhysRevX_13_021028
crossref_primary_10_1140_epja_s10050_023_01141_1
crossref_primary_10_1103_PhysRevC_108_064306
crossref_primary_10_1007_JHEP09_2023_123
crossref_primary_10_1021_acs_jpclett_3c01166
crossref_primary_10_1103_PhysRevResearch_6_013027
crossref_primary_10_1038_s41534_024_00892_z
crossref_primary_10_4213_tmf10730
crossref_primary_10_1103_PhysRevResearch_6_023129
crossref_primary_10_1103_PhysRevApplied_19_034089
crossref_primary_10_1007_s42484_023_00125_0
crossref_primary_10_1103_PhysRevResearch_7_L012049
crossref_primary_10_1109_TIFS_2023_3301740
crossref_primary_10_1016_j_asoc_2024_112096
crossref_primary_10_1038_s41467_024_46830_7
crossref_primary_10_1002_qute_202400295
crossref_primary_10_1038_s41534_023_00746_0
crossref_primary_10_1103_PhysRevE_110_024127
crossref_primary_10_1007_s00220_024_05050_2
crossref_primary_10_1088_2058_9565_ad985e
crossref_primary_10_1007_s11227_024_06251_1
crossref_primary_10_1103_PhysRevLett_131_200602
crossref_primary_10_22331_q_2023_10_16_1141
crossref_primary_10_1103_PRXQuantum_5_040309
crossref_primary_10_1088_1402_4896_ad80e7
crossref_primary_10_1103_PhysRevA_108_062604
crossref_primary_10_1109_TCSI_2023_3314646
crossref_primary_10_1109_TIT_2024_3387316
crossref_primary_10_1007_s11432_022_3602_0
crossref_primary_10_3390_e25020387
crossref_primary_10_4204_EPTCS_394_4
crossref_primary_10_1103_PhysRevA_111_032408
crossref_primary_10_1073_pnas_2304294120
crossref_primary_10_1103_PhysRevA_109_052404
crossref_primary_10_1103_PhysRevA_109_012426
crossref_primary_10_1103_PhysRevLett_133_043401
crossref_primary_10_1038_s41570_024_00595_1
crossref_primary_10_1140_epjp_s13360_023_04399_y
crossref_primary_10_1103_PhysRevD_110_014507
crossref_primary_10_1103_PRXQuantum_4_040333
crossref_primary_10_1103_PhysRevResearch_6_013202
crossref_primary_10_1038_s41567_022_01865_9
crossref_primary_10_1103_PhysRevApplied_22_044072
crossref_primary_10_1145_3644823
crossref_primary_10_1103_PhysRevLett_133_090601
crossref_primary_10_1103_PhysRevLett_133_203603
crossref_primary_10_1038_s41467_024_45368_y
crossref_primary_10_1038_s41467_024_49648_5
crossref_primary_10_1063_5_0192602
crossref_primary_10_1038_s41467_024_51434_2
crossref_primary_10_1103_PhysRevA_107_062410
crossref_primary_10_1103_PhysRevResearch_4_043135
crossref_primary_10_1038_s41534_024_00898_7
crossref_primary_10_1103_PhysRevA_110_063101
crossref_primary_10_1039_D4MH00454J
crossref_primary_10_1140_epjqt_s40507_024_00250_0
crossref_primary_10_1038_s42254_023_00588_x
crossref_primary_10_1088_2632_2153_ad360d
crossref_primary_10_1126_sciadv_adq4467
crossref_primary_10_1103_PhysRevA_107_052612
crossref_primary_10_1103_PhysRevA_109_022620
crossref_primary_10_1038_s41467_023_37375_2
crossref_primary_10_1103_PhysRevLett_129_250504
crossref_primary_10_1103_PhysRevApplied_23_034046
crossref_primary_10_1038_s42005_022_01017_8
crossref_primary_10_1103_PhysRevLett_129_250501
crossref_primary_10_4204_EPTCS_384_13
crossref_primary_10_1002_andp_202400144
Cites_doi 10.1088/1367-2630/15/12/123012
10.1103/PhysRevA.97.022115
10.1038/s41534-020-00287-w
10.1103/PhysRevA.98.050102
10.1103/PhysRevLett.114.240401
10.1126/science.287.5452.463
10.22331/q-2021-06-29-487
10.1038/nature18648
10.1038/nphys1150
10.1103/PhysRevA.52.3457
10.1103/PhysRevLett.113.230501
10.1103/PhysRev.125.1067
10.1103/PhysRevA.74.032334
10.1088/0305-4470/39/11/010
10.1103/PhysRevLett.94.230502
10.1103/PhysRevLett.119.187702
10.1103/PhysRevResearch.2.033128
10.1103/PhysRevLett.126.210504
10.1039/D1SC02142G
10.1103/PhysRevA.62.022311
10.1103/PhysRevLett.110.030501
10.1103/PhysRevLett.90.143602
10.1088/2058-9565/ac2d39
10.1038/nature18318
10.3389/fphy.2020.589504
10.1103/PhysRevA.69.052330
10.1063/1.3703615
10.1103/PhysRevLett.120.180401
10.1103/PhysRevLett.114.090402
10.1103/PhysRevA.86.032324
10.1103/PhysRevLett.120.060502
10.1088/1367-2630/abb912
10.1103/PhysRevA.57.127
10.1103/PhysRevA.86.022316
10.22331/q-2022-04-13-687
10.1103/PhysRevA.85.042311
10.1103/PRXQuantum.2.020343
10.1126/sciadv.aat9304
10.1016/j.aop.2018.03.020
10.1103/PhysRevX.2.041021
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022
The Author(s), under exclusive licence to Springer Nature Limited 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2022.
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/s41567-022-01658-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 1057
ExternalDocumentID 10_1038_s41567_022_01658_0
GrantInformation_xml – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: 840450
  funderid: https://doi.org/10.13039/100010661
– fundername: Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
  grantid: F7109; F7109; F7109; F7109; F7109; F7109; F7109
  funderid: https://doi.org/10.13039/501100002428
– fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  grantid: FA9550-19-1-7044; FA9550-19-1-7044; FA9550-19-1-7044; FA9550-19-1-7044; FA9550-19-1-7044; FA9550-19-1-7044; FA9550-19-1-7044
  funderid: https://doi.org/10.13039/100000181
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070
  funderid: https://doi.org/10.13039/100000183
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-be7d286fb5f34c621ea89c7d08812c851a23614a543feae2adad376c73c615a33
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Sat Aug 16 19:51:06 EDT 2025
Thu Apr 24 22:50:25 EDT 2025
Tue Jul 01 00:25:41 EDT 2025
Fri Feb 21 02:38:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-be7d286fb5f34c621ea89c7d08812c851a23614a543feae2adad376c73c615a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9461-9650
0000-0001-8001-1487
0000-0001-7410-4804
0000-0001-5055-6240
PQID 2711641167
PQPubID 27545
PageCount 5
ParticipantIDs proquest_journals_2711641167
crossref_citationtrail_10_1038_s41567_022_01658_0
crossref_primary_10_1038_s41567_022_01658_0
springer_journals_10_1038_s41567_022_01658_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Schindler (CR1) 2013; 15
Martinez (CR8) 2016; 534
Huber, de Vicente (CR24) 2013; 110
Joshi (CR27) 2020; 22
Bullock, O’Leary, Brennen (CR4) 2005; 94
Senko (CR9) 2015; 5
Gell-Mann (CR31) 1962; 125
Gottesman (CR32) 1998; 57
Ahn, Weinacht, Bucksbaum (CR12) 2000; 287
Debnath (CR41) 2016; 536
Shlyakhov (CR22) 2018; 97
Clark (CR33) 2006; 39
Magesan, Gambetta, Emerson (CR35) 2012; 85
O’Leary, Brennen, Bullock (CR43) 2006; 74
Sorensen, Molmer (CR29) 2000; 62
Kraft, Ritz, Brunner, Huber, Gühne (CR20) 2018; 120
Malinowski (CR11) 2018; 98
Morvan (CR15) 2021; 126
Ringbauer (CR44) 2015; 114
Campbell (CR25) 2014; 113
Kasper (CR18) 2022; 7
Lanyon (CR6) 2008; 5
Ferrie, Blume-Kohout (CR45) 2012; 1443
Häffner (CR42) 2003; 90
MacDonell (CR2) 2021; 12
Wang, Hu, Sanders, Kais (CR7) 2020; 8
CR3
Godfrin (CR13) 2017; 119
Weggemans (CR17) 2022; 6
Hu (CR16) 2018; 4
CR26
Scott (CR21) 2004; 69
Barenco (CR28) 1995; 52
Fowler, Mariantoni, Martinis, Cleland (CR36) 2012; 86
Brennen, Bullock, O’Leary (CR30) 2005; 6
CR40
Leupold (CR10) 2018; 120
Ringbauer (CR19) 2018; 8
Pogorelov (CR38) 2021; 2
Anderson, Sosa-Martinez, Riofrío, Deutsch, Jessen (CR14) 2015; 114
Low, White, Cox, Day, Senko (CR37) 2020; 2
Parrado-Rodríguez, Ryan-Anderson, Bermudez, Müller (CR39) 2021; 5
Bermudez (CR5) 2017; 7
Kristen (CR23) 2020; 6
Howard, Vala (CR34) 2012; 86
DP O’Leary (1658_CR43) 2006; 74
RJ MacDonell (1658_CR2) 2021; 12
MK Joshi (1658_CR27) 2020; 22
P Schindler (1658_CR1) 2013; 15
E Magesan (1658_CR35) 2012; 85
I Pogorelov (1658_CR38) 2021; 2
P Parrado-Rodríguez (1658_CR39) 2021; 5
M Malinowski (1658_CR11) 2018; 98
AJ Scott (1658_CR21) 2004; 69
S Debnath (1658_CR41) 2016; 536
J Ahn (1658_CR12) 2000; 287
M Gell-Mann (1658_CR31) 1962; 125
M Ringbauer (1658_CR19) 2018; 8
A Bermudez (1658_CR5) 2017; 7
Y Wang (1658_CR7) 2020; 8
BE Anderson (1658_CR14) 2015; 114
PJ Low (1658_CR37) 2020; 2
A Morvan (1658_CR15) 2021; 126
FM Leupold (1658_CR10) 2018; 120
A Barenco (1658_CR28) 1995; 52
GK Brennen (1658_CR30) 2005; 6
D Gottesman (1658_CR32) 1998; 57
C Senko (1658_CR9) 2015; 5
1658_CR26
A Sorensen (1658_CR29) 2000; 62
M Howard (1658_CR34) 2012; 86
H Häffner (1658_CR42) 2003; 90
C Ferrie (1658_CR45) 2012; 1443
AR Shlyakhov (1658_CR22) 2018; 97
M Kristen (1658_CR23) 2020; 6
M Huber (1658_CR24) 2013; 110
1658_CR40
S Clark (1658_CR33) 2006; 39
1658_CR3
BP Lanyon (1658_CR6) 2008; 5
C Godfrin (1658_CR13) 2017; 119
JR Weggemans (1658_CR17) 2022; 6
V Kasper (1658_CR18) 2022; 7
T Kraft (1658_CR20) 2018; 120
M Ringbauer (1658_CR44) 2015; 114
AG Fowler (1658_CR36) 2012; 86
EA Martinez (1658_CR8) 2016; 534
ET Campbell (1658_CR25) 2014; 113
X-M Hu (1658_CR16) 2018; 4
S Bullock (1658_CR4) 2005; 94
References_xml – volume: 15
  start-page: 123012
  year: 2013
  ident: CR1
  article-title: A quantum information processor with trapped ions
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/12/123012
– volume: 97
  start-page: 022115
  year: 2018
  ident: CR22
  article-title: Quantum metrology with a transmon qutrit
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022115
– volume: 6
  year: 2020
  ident: CR23
  article-title: Amplitude and frequency sensing of microwave fields with a superconducting transmon qudit
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-020-00287-w
– volume: 98
  start-page: 050102
  year: 2018
  ident: CR11
  article-title: Probing the limits of correlations in an indivisible quantum system
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.050102
– volume: 114
  start-page: 240401
  year: 2015
  ident: CR14
  article-title: Accurate and robust unitary transformations of a high-dimensional quantum system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.240401
– volume: 287
  start-page: 463
  year: 2000
  end-page: 465
  ident: CR12
  article-title: Information storage and retrieval through quantum phase
  publication-title: Science
  doi: 10.1126/science.287.5452.463
– volume: 5
  start-page: 487
  year: 2021
  ident: CR39
  article-title: Crosstalk suppression for fault-tolerant quantum error correction with trapped ions
  publication-title: Quantum
  doi: 10.22331/q-2021-06-29-487
– volume: 536
  start-page: 63
  year: 2016
  end-page: 66
  ident: CR41
  article-title: Demonstration of a small programmable quantum computer with atomic qubits
  publication-title: Nature
  doi: 10.1038/nature18648
– volume: 5
  start-page: 134
  year: 2008
  end-page: 140
  ident: CR6
  article-title: Simplifying quantum logic using higher-dimensional Hilbert spaces
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1150
– volume: 52
  start-page: 3457
  year: 1995
  end-page: 3467
  ident: CR28
  article-title: Elementary gates for quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.3457
– volume: 113
  start-page: 230501
  year: 2014
  ident: CR25
  article-title: Enhanced fault-tolerant quantum computing in -level systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.230501
– volume: 125
  start-page: 1067
  year: 1962
  end-page: 1084
  ident: CR31
  article-title: Symmetries of baryons and mesons
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.125.1067
– volume: 74
  start-page: 032334
  year: 2006
  ident: CR43
  article-title: Parallelism for quantum computation with qudits
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.032334
– volume: 39
  start-page: 2701
  year: 2006
  end-page: 2721
  ident: CR33
  article-title: Valence bond solid formalism for -level one-way quantum computation
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/39/11/010
– volume: 94
  start-page: 230502
  year: 2005
  ident: CR4
  article-title: Asymptotically optimal quantum circuits for -level systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.230502
– volume: 7
  start-page: 041061
  year: 2017
  ident: CR5
  article-title: Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation
  publication-title: Phys. Rev. X
– volume: 119
  start-page: 187702
  year: 2017
  ident: CR13
  article-title: Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.187702
– volume: 2
  start-page: 033128
  year: 2020
  ident: CR37
  article-title: Practical trapped-ion protocols for universal qudit-based quantum computing
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033128
– volume: 126
  start-page: 210504
  year: 2021
  ident: CR15
  article-title: Qutrit randomized benchmarking
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.210504
– ident: CR40
– volume: 12
  start-page: 9794
  year: 2021
  end-page: 9805
  ident: CR2
  article-title: Analog quantum simulation of chemical dynamics
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC02142G
– volume: 8
  start-page: 041007
  year: 2018
  ident: CR19
  article-title: Certification and quantification of multilevel quantum coherence
  publication-title: Phys. Rev. X
– volume: 62
  start-page: 022311
  year: 2000
  ident: CR29
  article-title: Entanglement and quantum computation with ions in thermal motion
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.62.022311
– volume: 110
  start-page: 030501
  year: 2013
  ident: CR24
  article-title: Structure of multidimensional entanglement in multipartite systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.030501
– volume: 90
  start-page: 143602
  year: 2003
  ident: CR42
  article-title: Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.143602
– volume: 7
  start-page: 015008
  year: 2022
  ident: CR18
  article-title: Universal quantum computation and quantum error correction with ultracold atomic mixtures
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ac2d39
– ident: CR3
– volume: 534
  start-page: 516
  year: 2016
  end-page: 519
  ident: CR8
  article-title: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
  publication-title: Nature
  doi: 10.1038/nature18318
– volume: 8
  year: 2020
  ident: CR7
  article-title: Qudits and high-dimensional quantum computing
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.589504
– volume: 69
  start-page: 052330
  year: 2004
  ident: CR21
  article-title: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.052330
– volume: 1443
  start-page: 14
  year: 2012
  end-page: 21
  ident: CR45
  article-title: Estimating the bias of a noisy coin
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3703615
– volume: 120
  start-page: 180401
  year: 2018
  ident: CR10
  article-title: Sustained state-independent quantum contextual correlations from a single ion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.180401
– volume: 114
  start-page: 090402
  year: 2015
  ident: CR44
  article-title: Characterizing quantum dynamics with initial system-environment correlations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.090402
– volume: 6
  start-page: 436
  year: 2005
  end-page: 454
  ident: CR30
  article-title: Efficient circuits for exact-universal computations with qudits
  publication-title: Quantum Inf. Comput.
– volume: 86
  start-page: 032324
  year: 2012
  ident: CR36
  article-title: Surface codes: towards practical large-scale quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.032324
– volume: 120
  start-page: 060502
  year: 2018
  ident: CR20
  article-title: Characterizing genuine multilevel entanglement
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.060502
– volume: 22
  start-page: 103013
  year: 2020
  ident: CR27
  article-title: Polarization-gradient cooling of 1D and 2D ion Coulomb crystals
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/abb912
– volume: 57
  start-page: 127
  year: 1998
  end-page: 137
  ident: CR32
  article-title: Theory of fault-tolerant quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.127
– volume: 86
  start-page: 022316
  year: 2012
  ident: CR34
  article-title: Qudit versions of the qubit π/8 gate
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.022316
– volume: 6
  start-page: 687
  year: 2022
  ident: CR17
  article-title: Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach
  publication-title: Quantum
  doi: 10.22331/q-2022-04-13-687
– volume: 85
  start-page: 042311
  year: 2012
  ident: CR35
  article-title: Characterizing quantum gates via randomized benchmarking
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.042311
– volume: 5
  start-page: 021026
  year: 2015
  ident: CR9
  article-title: Realization of a quantum integer-spin chain with controllable interactions
  publication-title: Phys. Rev. X
– ident: CR26
– volume: 2
  start-page: 020343
  year: 2021
  ident: CR38
  article-title: Compact ion-trap quantum computing demonstrator
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.020343
– volume: 4
  start-page: eaat9304
  year: 2018
  ident: CR16
  article-title: Beating the channel capacity limit for superdense coding with entangled ququarts
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat9304
– volume: 114
  start-page: 240401
  year: 2015
  ident: 1658_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.240401
– volume: 113
  start-page: 230501
  year: 2014
  ident: 1658_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.230501
– volume: 114
  start-page: 090402
  year: 2015
  ident: 1658_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.090402
– volume: 536
  start-page: 63
  year: 2016
  ident: 1658_CR41
  publication-title: Nature
  doi: 10.1038/nature18648
– volume: 69
  start-page: 052330
  year: 2004
  ident: 1658_CR21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.052330
– volume: 1443
  start-page: 14
  year: 2012
  ident: 1658_CR45
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3703615
– volume: 62
  start-page: 022311
  year: 2000
  ident: 1658_CR29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.62.022311
– volume: 74
  start-page: 032334
  year: 2006
  ident: 1658_CR43
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.032334
– volume: 5
  start-page: 134
  year: 2008
  ident: 1658_CR6
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1150
– volume: 2
  start-page: 020343
  year: 2021
  ident: 1658_CR38
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.020343
– ident: 1658_CR40
– volume: 86
  start-page: 032324
  year: 2012
  ident: 1658_CR36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.032324
– volume: 86
  start-page: 022316
  year: 2012
  ident: 1658_CR34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.022316
– volume: 7
  start-page: 041061
  year: 2017
  ident: 1658_CR5
  publication-title: Phys. Rev. X
– volume: 22
  start-page: 103013
  year: 2020
  ident: 1658_CR27
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/abb912
– volume: 125
  start-page: 1067
  year: 1962
  ident: 1658_CR31
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.125.1067
– volume: 57
  start-page: 127
  year: 1998
  ident: 1658_CR32
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.127
– volume: 90
  start-page: 143602
  year: 2003
  ident: 1658_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.143602
– volume: 2
  start-page: 033128
  year: 2020
  ident: 1658_CR37
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033128
– volume: 97
  start-page: 022115
  year: 2018
  ident: 1658_CR22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022115
– volume: 98
  start-page: 050102
  year: 2018
  ident: 1658_CR11
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.050102
– volume: 5
  start-page: 021026
  year: 2015
  ident: 1658_CR9
  publication-title: Phys. Rev. X
– volume: 7
  start-page: 015008
  year: 2022
  ident: 1658_CR18
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ac2d39
– volume: 6
  start-page: 687
  year: 2022
  ident: 1658_CR17
  publication-title: Quantum
  doi: 10.22331/q-2022-04-13-687
– volume: 120
  start-page: 060502
  year: 2018
  ident: 1658_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.060502
– volume: 52
  start-page: 3457
  year: 1995
  ident: 1658_CR28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.3457
– volume: 85
  start-page: 042311
  year: 2012
  ident: 1658_CR35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.042311
– volume: 15
  start-page: 123012
  year: 2013
  ident: 1658_CR1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/12/123012
– volume: 6
  start-page: 436
  year: 2005
  ident: 1658_CR30
  publication-title: Quantum Inf. Comput.
– volume: 4
  start-page: eaat9304
  year: 2018
  ident: 1658_CR16
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat9304
– volume: 287
  start-page: 463
  year: 2000
  ident: 1658_CR12
  publication-title: Science
  doi: 10.1126/science.287.5452.463
– volume: 8
  start-page: 041007
  year: 2018
  ident: 1658_CR19
  publication-title: Phys. Rev. X
– volume: 119
  start-page: 187702
  year: 2017
  ident: 1658_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.187702
– volume: 12
  start-page: 9794
  year: 2021
  ident: 1658_CR2
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC02142G
– volume: 5
  start-page: 487
  year: 2021
  ident: 1658_CR39
  publication-title: Quantum
  doi: 10.22331/q-2021-06-29-487
– volume: 534
  start-page: 516
  year: 2016
  ident: 1658_CR8
  publication-title: Nature
  doi: 10.1038/nature18318
– ident: 1658_CR3
  doi: 10.1016/j.aop.2018.03.020
– volume: 94
  start-page: 230502
  year: 2005
  ident: 1658_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.230502
– volume: 8
  year: 2020
  ident: 1658_CR7
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.589504
– volume: 110
  start-page: 030501
  year: 2013
  ident: 1658_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.030501
– volume: 126
  start-page: 210504
  year: 2021
  ident: 1658_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.210504
– volume: 6
  year: 2020
  ident: 1658_CR23
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-020-00287-w
– volume: 39
  start-page: 2701
  year: 2006
  ident: 1658_CR33
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/39/11/010
– volume: 120
  start-page: 180401
  year: 2018
  ident: 1658_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.180401
– ident: 1658_CR26
  doi: 10.1103/PhysRevX.2.041021
SSID ssj0042613
Score 2.7231233
Snippet Most quantum computers use binary encoding to store information in qubits—the quantum analogue of classical bits. Yet, the underlying physical hardware...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1053
SubjectTerms 639/766/259
639/766/36
639/766/483/3926
639/766/483/481
Algorithms
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Hilbert space
Ions
Letter
Mathematical and Computational Physics
Microprocessors
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum computers
Quantum computing
Qubits (quantum computing)
Theoretical
Title A universal qudit quantum processor with trapped ions
URI https://link.springer.com/article/10.1038/s41567-022-01658-0
https://www.proquest.com/docview/2711641167
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDLXYJiQuiE8xGFMP3CBam7RNekIbWpmQmBBi0m5VmnQn2Lq1-_84bcoEErv00iSH59h-ie0Y4E6HKHTNKEE6GhE_5ZRE6OaNXsmUuSqsy8dep-Fk5r_Mg7m9cCtsWmVjEytDrVfK3JEPKPeQ2ZuowWO-JqZrlImu2hYaLeigCRZ4-OqMxtO398YWm_MBq0siA0J9zmzZjMvEoDBHF05MNrsp6RHE_e2adnzzT4i08jzxCRxbyugMaxmfwkG2PIPDKnVTFecQDJ1tnV2Bg9amyAK_iNf2y8nrKoDVxjHXrU65kXmeacfstAuYxeOPpwmxzRCIQi0pSZpxTUW4SIMF81VIvUyKSHGNVsKjCnmTNM-o-DLw2SKTGZVaajQeijOFpEUydgnt5WqZXYGDq3ChlBei-_eRoKVUpciDNNfc05JGXfAaHBJlXwo3DSs-kypizURSY5cgdkmFXeJ24f5nTl6_k7F3dK-BN7E6UyQ7CXfhoYF89_v_1a73r3YDR7SSskkM60G73GyzW2QSZdqHloif-9AZxqPRtG83zzcapcOy
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4hEIIF8RSFAhlgAovGTuJkQKgCSnl1KhKbcWx3gjZ9CfGn-I3c5UEFEmwsWZJ4-O712XfnAzi0EQrdCs6QjiYsSCVnCYZ5siudioaJivaxh07Ufgxun8KnOfioemGorLLyibmjtgNDZ-SnXPrI7ClrcJ4NGU2NouxqNUKjUIs79_6GW7bx2c0lyveI89ZV96LNyqkCzKC6TVjqpOVx1EvDnghMxH2n48RIi-bmc4MERNN9JIEOA9Fz2nFttUUrNFIYjP6aDkDR5S8EQiRkUXHruvL8tBsRRQNmyHggRdmk0xDx6Zg2SpJR7Tw1EMWs8T0Qztjtj4RsHudaq7BSElSvWWjUGsy5_jos5oWiZrwBYdObFrUc-NGQWjrwidKZvnpZ0XMwGHl0uOtNRjrLnPVIrzfh8V9A2oL5_qDvtsHDVWRsjB8h2QiQDqbcpMi6rLTSt5onNfArHJQp7yWn8RgvKs-Pi1gV2CnETuXYqUYNjr_-yYpbOf78ul7Bq0oLHauZPtXgpIJ89vr31Xb-Xu0Altrdh3t1f9O524VlnkucStLqMD8ZTd0ecphJup8rjgfP_62pn7QZ_OY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbQEIgL4inGswc4QbQ2aZvugBCvieeEEEjcQppkJ9i6lxB_jV-H3QcTSHDj0kvbHOzP8efYjgF2bYxKt4IzpKNNFqaSsya6ebIrnQrfxEX72G07vngMr56ipyn4qHphqKyy2hPzjdr2DJ2RN7gMkNlT1qDRKcsi7s5aR1mf0QQpyrRW4zQKiFy79zcM34aHl2eo6z3OW-cPpxesnDDADEJvxFInLU_iThp1RGhiHjidNI20aHoBN0hGNN1NEuooFB2nHddWW7RII4VBJqDpMBS3_2mJUZFfg-mT8_bdfeUHKDYRRTtmxHgoRdmy44ukMaSwSTKqpKd2ooT5393ihOv-SM_mXq-1APMlXfWOC3wtwpTrLsFMXjZqhssQHXvjorIDP-pTgwc-UVfjVy8rOhB6A4-Oer3RQGeZsx6hfAUe_0VMq1Dr9rpuDTxcRSbGBDFSjxDJYcpNihzMSisDq3mzDkElB2XKW8ppWMaLyrPlIlGF7BTKTuWyU34d9r_-yYo7Ov78erMSryrtdagm6KrDQSXyyevfV1v_e7UdmEWUqpvL9vUGzPFc4VSftgm10WDstpDQjNLtEjkePP83WD8B5egChw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+qudit+quantum+processor+with+trapped+ions&rft.jtitle=Nature+physics&rft.au=Ringbauer%2C+Martin&rft.au=Meth%2C+Michael&rft.au=Postler%2C+Lukas&rft.au=Stricker%2C+Roman&rft.date=2022-09-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=18&rft.issue=9&rft.spage=1053&rft.epage=1057&rft_id=info:doi/10.1038%2Fs41567-022-01658-0&rft.externalDocID=10_1038_s41567_022_01658_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon