A universal qudit quantum processor with trapped ions
Most quantum computers use binary encoding to store information in qubits—the quantum analogue of classical bits. Yet, the underlying physical hardware consists of information carriers that are not necessarily binary, but typically exhibit a rich multilevel structure. Operating them as qubits artifi...
Saved in:
Published in | Nature physics Vol. 18; no. 9; pp. 1053 - 1057 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most quantum computers use binary encoding to store information in qubits—the quantum analogue of classical bits. Yet, the underlying physical hardware consists of information carriers that are not necessarily binary, but typically exhibit a rich multilevel structure. Operating them as qubits artificially restricts their degrees of freedom to two energy levels
1
. Meanwhile, a wide range of applications—from quantum chemistry
2
to quantum simulation
3
—would benefit from access to higher-dimensional Hilbert spaces, which qubit-based quantum computers can only emulate
4
. Here we demonstrate a universal quantum processor using trapped ions that act as qudits with a local Hilbert-space dimension of up to seven. With a performance similar to qubit quantum processors
5
, this approach enables the native simulation of high-dimensional quantum systems
3
, as well as more efficient implementation of qubit-based algorithms
6
,
7
.
Qudits are generalizations of qubits that have more than two states, which gives them a performance advantage in some quantum algorithms. The operations needed for a universal qudit processor have now been demonstrated using trapped ions. |
---|---|
AbstractList | Most quantum computers use binary encoding to store information in qubits—the quantum analogue of classical bits. Yet, the underlying physical hardware consists of information carriers that are not necessarily binary, but typically exhibit a rich multilevel structure. Operating them as qubits artificially restricts their degrees of freedom to two energy levels1. Meanwhile, a wide range of applications—from quantum chemistry2 to quantum simulation3—would benefit from access to higher-dimensional Hilbert spaces, which qubit-based quantum computers can only emulate4. Here we demonstrate a universal quantum processor using trapped ions that act as qudits with a local Hilbert-space dimension of up to seven. With a performance similar to qubit quantum processors5, this approach enables the native simulation of high-dimensional quantum systems3, as well as more efficient implementation of qubit-based algorithms6,7.Qudits are generalizations of qubits that have more than two states, which gives them a performance advantage in some quantum algorithms. The operations needed for a universal qudit processor have now been demonstrated using trapped ions. Most quantum computers use binary encoding to store information in qubits—the quantum analogue of classical bits. Yet, the underlying physical hardware consists of information carriers that are not necessarily binary, but typically exhibit a rich multilevel structure. Operating them as qubits artificially restricts their degrees of freedom to two energy levels 1 . Meanwhile, a wide range of applications—from quantum chemistry 2 to quantum simulation 3 —would benefit from access to higher-dimensional Hilbert spaces, which qubit-based quantum computers can only emulate 4 . Here we demonstrate a universal quantum processor using trapped ions that act as qudits with a local Hilbert-space dimension of up to seven. With a performance similar to qubit quantum processors 5 , this approach enables the native simulation of high-dimensional quantum systems 3 , as well as more efficient implementation of qubit-based algorithms 6 , 7 . Qudits are generalizations of qubits that have more than two states, which gives them a performance advantage in some quantum algorithms. The operations needed for a universal qudit processor have now been demonstrated using trapped ions. |
Author | Monz, Thomas Postler, Lukas Blatt, Rainer Meth, Michael Stricker, Roman Ringbauer, Martin Schindler, Philipp |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0001-5055-6240 surname: Ringbauer fullname: Ringbauer, Martin email: martin.ringbauer@uibk.ac.at organization: Institut für Experimentalphysik, Universität Innsbruck – sequence: 2 givenname: Michael surname: Meth fullname: Meth, Michael organization: Institut für Experimentalphysik, Universität Innsbruck – sequence: 3 givenname: Lukas surname: Postler fullname: Postler, Lukas organization: Institut für Experimentalphysik, Universität Innsbruck – sequence: 4 givenname: Roman orcidid: 0000-0001-8001-1487 surname: Stricker fullname: Stricker, Roman organization: Institut für Experimentalphysik, Universität Innsbruck – sequence: 5 givenname: Rainer surname: Blatt fullname: Blatt, Rainer organization: Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Alpine Quantum Technologies GmbH – sequence: 6 givenname: Philipp orcidid: 0000-0002-9461-9650 surname: Schindler fullname: Schindler, Philipp organization: Institut für Experimentalphysik, Universität Innsbruck – sequence: 7 givenname: Thomas orcidid: 0000-0001-7410-4804 surname: Monz fullname: Monz, Thomas organization: Institut für Experimentalphysik, Universität Innsbruck, Alpine Quantum Technologies GmbH |
BookMark | eNp9kEtLAzEUhYMo2Fb_gKsB19HcvLssxRcU3Og6pJmMprQz0ySj-O-Njii46OI-Fue793Cm6LjtWo_QBZArIExfJw5CKkwoxQSk0JgcoQkoLjDlGo5_d8VO0TSlDSGcSmATJBbV0IY3H5PdVvuhDrl02-ZhV_Wxcz6lLlbvIb9WOdq-93UVujadoZPGbpM__5kz9Hx787S8x6vHu4flYoUdg3nGa69qqmWzFg3jTlLwVs-dqonWQJ0WYCmTwK3grPHWU1vbminpFHMShGVshi7Hu8XLfvApm003xLa8NFQBSF5KFZUeVS52KUXfGBeyzcVo8Ry2Boj5CsmMIZkSkvkOyZCC0n9oH8POxo_DEBuhVMTti49_rg5QnzI0eyg |
CitedBy_id | crossref_primary_10_1038_s41467_024_46402_9 crossref_primary_10_1103_PhysRevLett_133_140404 crossref_primary_10_1088_1367_2630_acdf77 crossref_primary_10_1103_PhysRevApplied_18_064005 crossref_primary_10_1140_epjp_s13360_024_05751_6 crossref_primary_10_1145_3587062_3587071 crossref_primary_10_1103_PhysRevE_111_034118 crossref_primary_10_1103_PhysRevA_106_032418 crossref_primary_10_1109_TIFS_2024_3357240 crossref_primary_10_1088_2058_9565_adbf44 crossref_primary_10_1103_PhysRevA_109_022612 crossref_primary_10_1103_PRXQuantum_5_020344 crossref_primary_10_1088_2040_8986_ada0c5 crossref_primary_10_1038_s41534_024_00829_6 crossref_primary_10_1103_PRXQuantum_5_020346 crossref_primary_10_1134_S0021364022601956 crossref_primary_10_1088_1361_6404_ad06be crossref_primary_10_1088_1751_8121_ad1ea4 crossref_primary_10_1103_PhysRevD_108_023013 crossref_primary_10_1038_s41566_024_01555_3 crossref_primary_10_1103_PhysRevApplied_22_054067 crossref_primary_10_1103_PhysRevD_106_L091502 crossref_primary_10_1126_sciadv_ado3472 crossref_primary_10_3390_e24121771 crossref_primary_10_1103_PhysRevA_109_022615 crossref_primary_10_1103_PhysRevLett_134_050601 crossref_primary_10_1103_PhysRevLett_131_170602 crossref_primary_10_3390_sym16111466 crossref_primary_10_1103_PhysRevLett_131_170201 crossref_primary_10_1103_PRXQuantum_4_030327 crossref_primary_10_1145_3656388 crossref_primary_10_22331_q_2024_02_08_1244 crossref_primary_10_1103_PhysRevResearch_6_033092 crossref_primary_10_1103_PRXQuantum_5_020355 crossref_primary_10_1088_2058_9565_ad37d4 crossref_primary_10_1103_PhysRevA_109_022441 crossref_primary_10_1103_PhysRevLett_132_110601 crossref_primary_10_1103_PRXQuantum_4_020333 crossref_primary_10_1088_2058_9565_adac06 crossref_primary_10_1103_PhysRevA_108_062609 crossref_primary_10_1103_PhysRevLett_129_160501 crossref_primary_10_1002_qute_202300135 crossref_primary_10_1007_s00023_022_01254_1 crossref_primary_10_1103_PhysRevX_15_011040 crossref_primary_10_22331_q_2022_12_29_887 crossref_primary_10_1103_PhysRevApplied_22_064002 crossref_primary_10_3390_technologies12050064 crossref_primary_10_1038_s41567_025_02797_w crossref_primary_10_1088_2058_9565_ad085b crossref_primary_10_1134_S0040577924120018 crossref_primary_10_1088_1751_8121_ada744 crossref_primary_10_3389_frqst_2023_1228208 crossref_primary_10_1088_1367_2630_ad6635 crossref_primary_10_1109_TIFS_2024_3402073 crossref_primary_10_3390_e26121129 crossref_primary_10_1103_PhysRevApplied_19_064024 crossref_primary_10_1039_D3SC02453A crossref_primary_10_1146_annurev_conmatphys_032822_045619 crossref_primary_10_1088_2058_9565_ad7315 crossref_primary_10_1103_PhysRevApplied_18_034047 crossref_primary_10_1039_D4MH01512F crossref_primary_10_1103_PhysRevLett_133_053401 crossref_primary_10_1063_5_0190629 crossref_primary_10_22331_q_2025_03_12_1661 crossref_primary_10_1103_PhysRevD_111_043038 crossref_primary_10_1007_s13222_024_00467_4 crossref_primary_10_1103_PhysRevResearch_5_023121 crossref_primary_10_1109_TIFS_2024_3432279 crossref_primary_10_1016_j_xcrp_2024_102105 crossref_primary_10_1021_jacs_3c12277 crossref_primary_10_1016_j_mrl_2023_04_001 crossref_primary_10_1103_PhysRevA_108_032606 crossref_primary_10_22331_q_2025_02_26_1647 crossref_primary_10_1103_PhysRevApplied_22_024032 crossref_primary_10_1016_j_optlastec_2025_112694 crossref_primary_10_1088_1674_1056_ad8a4c crossref_primary_10_1038_s41467_024_54303_0 crossref_primary_10_1103_PhysRevA_110_062602 crossref_primary_10_1103_PhysRevA_110_062208 crossref_primary_10_1103_PhysRevLett_131_171902 crossref_primary_10_1063_5_0243375 crossref_primary_10_22331_q_2024_05_14_1343 crossref_primary_10_1038_s41467_022_34851_z crossref_primary_10_1103_PRXQuantum_5_030356 crossref_primary_10_1103_PhysRevA_109_052620 crossref_primary_10_1103_PhysRevA_109_032619 crossref_primary_10_1109_TMC_2024_3373626 crossref_primary_10_1103_PhysRevLett_132_060601 crossref_primary_10_1038_s41467_024_55342_3 crossref_primary_10_1103_PhysRevA_106_022412 crossref_primary_10_1103_PhysRevA_107_042422 crossref_primary_10_1007_s42484_024_00146_3 crossref_primary_10_1103_PhysRevX_13_021028 crossref_primary_10_1140_epja_s10050_023_01141_1 crossref_primary_10_1103_PhysRevC_108_064306 crossref_primary_10_1007_JHEP09_2023_123 crossref_primary_10_1021_acs_jpclett_3c01166 crossref_primary_10_1103_PhysRevResearch_6_013027 crossref_primary_10_1038_s41534_024_00892_z crossref_primary_10_4213_tmf10730 crossref_primary_10_1103_PhysRevResearch_6_023129 crossref_primary_10_1103_PhysRevApplied_19_034089 crossref_primary_10_1007_s42484_023_00125_0 crossref_primary_10_1103_PhysRevResearch_7_L012049 crossref_primary_10_1109_TIFS_2023_3301740 crossref_primary_10_1016_j_asoc_2024_112096 crossref_primary_10_1038_s41467_024_46830_7 crossref_primary_10_1002_qute_202400295 crossref_primary_10_1038_s41534_023_00746_0 crossref_primary_10_1103_PhysRevE_110_024127 crossref_primary_10_1007_s00220_024_05050_2 crossref_primary_10_1088_2058_9565_ad985e crossref_primary_10_1007_s11227_024_06251_1 crossref_primary_10_1103_PhysRevLett_131_200602 crossref_primary_10_22331_q_2023_10_16_1141 crossref_primary_10_1103_PRXQuantum_5_040309 crossref_primary_10_1088_1402_4896_ad80e7 crossref_primary_10_1103_PhysRevA_108_062604 crossref_primary_10_1109_TCSI_2023_3314646 crossref_primary_10_1109_TIT_2024_3387316 crossref_primary_10_1007_s11432_022_3602_0 crossref_primary_10_3390_e25020387 crossref_primary_10_4204_EPTCS_394_4 crossref_primary_10_1103_PhysRevA_111_032408 crossref_primary_10_1073_pnas_2304294120 crossref_primary_10_1103_PhysRevA_109_052404 crossref_primary_10_1103_PhysRevA_109_012426 crossref_primary_10_1103_PhysRevLett_133_043401 crossref_primary_10_1038_s41570_024_00595_1 crossref_primary_10_1140_epjp_s13360_023_04399_y crossref_primary_10_1103_PhysRevD_110_014507 crossref_primary_10_1103_PRXQuantum_4_040333 crossref_primary_10_1103_PhysRevResearch_6_013202 crossref_primary_10_1038_s41567_022_01865_9 crossref_primary_10_1103_PhysRevApplied_22_044072 crossref_primary_10_1145_3644823 crossref_primary_10_1103_PhysRevLett_133_090601 crossref_primary_10_1103_PhysRevLett_133_203603 crossref_primary_10_1038_s41467_024_45368_y crossref_primary_10_1038_s41467_024_49648_5 crossref_primary_10_1063_5_0192602 crossref_primary_10_1038_s41467_024_51434_2 crossref_primary_10_1103_PhysRevA_107_062410 crossref_primary_10_1103_PhysRevResearch_4_043135 crossref_primary_10_1038_s41534_024_00898_7 crossref_primary_10_1103_PhysRevA_110_063101 crossref_primary_10_1039_D4MH00454J crossref_primary_10_1140_epjqt_s40507_024_00250_0 crossref_primary_10_1038_s42254_023_00588_x crossref_primary_10_1088_2632_2153_ad360d crossref_primary_10_1126_sciadv_adq4467 crossref_primary_10_1103_PhysRevA_107_052612 crossref_primary_10_1103_PhysRevA_109_022620 crossref_primary_10_1038_s41467_023_37375_2 crossref_primary_10_1103_PhysRevLett_129_250504 crossref_primary_10_1103_PhysRevApplied_23_034046 crossref_primary_10_1038_s42005_022_01017_8 crossref_primary_10_1103_PhysRevLett_129_250501 crossref_primary_10_4204_EPTCS_384_13 crossref_primary_10_1002_andp_202400144 |
Cites_doi | 10.1088/1367-2630/15/12/123012 10.1103/PhysRevA.97.022115 10.1038/s41534-020-00287-w 10.1103/PhysRevA.98.050102 10.1103/PhysRevLett.114.240401 10.1126/science.287.5452.463 10.22331/q-2021-06-29-487 10.1038/nature18648 10.1038/nphys1150 10.1103/PhysRevA.52.3457 10.1103/PhysRevLett.113.230501 10.1103/PhysRev.125.1067 10.1103/PhysRevA.74.032334 10.1088/0305-4470/39/11/010 10.1103/PhysRevLett.94.230502 10.1103/PhysRevLett.119.187702 10.1103/PhysRevResearch.2.033128 10.1103/PhysRevLett.126.210504 10.1039/D1SC02142G 10.1103/PhysRevA.62.022311 10.1103/PhysRevLett.110.030501 10.1103/PhysRevLett.90.143602 10.1088/2058-9565/ac2d39 10.1038/nature18318 10.3389/fphy.2020.589504 10.1103/PhysRevA.69.052330 10.1063/1.3703615 10.1103/PhysRevLett.120.180401 10.1103/PhysRevLett.114.090402 10.1103/PhysRevA.86.032324 10.1103/PhysRevLett.120.060502 10.1088/1367-2630/abb912 10.1103/PhysRevA.57.127 10.1103/PhysRevA.86.022316 10.22331/q-2022-04-13-687 10.1103/PhysRevA.85.042311 10.1103/PRXQuantum.2.020343 10.1126/sciadv.aat9304 10.1016/j.aop.2018.03.020 10.1103/PhysRevX.2.041021 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 The Author(s), under exclusive licence to Springer Nature Limited 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1038/s41567-022-01658-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 1057 |
ExternalDocumentID | 10_1038_s41567_022_01658_0 |
GrantInformation_xml | – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 840450 funderid: https://doi.org/10.13039/100010661 – fundername: Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung) grantid: F7109; F7109; F7109; F7109; F7109; F7109; F7109 funderid: https://doi.org/10.13039/501100002428 – fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research) grantid: FA9550-19-1-7044; FA9550-19-1-7044; FA9550-19-1-7044; FA9550-19-1-7044; FA9550-19-1-7044; FA9550-19-1-7044; FA9550-19-1-7044 funderid: https://doi.org/10.13039/100000181 – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO) grantid: W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070; W911NF-21-1-0007; W911NF-16-1-0070 funderid: https://doi.org/10.13039/100000183 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-be7d286fb5f34c621ea89c7d08812c851a23614a543feae2adad376c73c615a33 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Sat Aug 16 19:51:06 EDT 2025 Thu Apr 24 22:50:25 EDT 2025 Tue Jul 01 00:25:41 EDT 2025 Fri Feb 21 02:38:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-be7d286fb5f34c621ea89c7d08812c851a23614a543feae2adad376c73c615a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9461-9650 0000-0001-8001-1487 0000-0001-7410-4804 0000-0001-5055-6240 |
PQID | 2711641167 |
PQPubID | 27545 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2711641167 crossref_citationtrail_10_1038_s41567_022_01658_0 crossref_primary_10_1038_s41567_022_01658_0 springer_journals_10_1038_s41567_022_01658_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Schindler (CR1) 2013; 15 Martinez (CR8) 2016; 534 Huber, de Vicente (CR24) 2013; 110 Joshi (CR27) 2020; 22 Bullock, O’Leary, Brennen (CR4) 2005; 94 Senko (CR9) 2015; 5 Gell-Mann (CR31) 1962; 125 Gottesman (CR32) 1998; 57 Ahn, Weinacht, Bucksbaum (CR12) 2000; 287 Debnath (CR41) 2016; 536 Shlyakhov (CR22) 2018; 97 Clark (CR33) 2006; 39 Magesan, Gambetta, Emerson (CR35) 2012; 85 O’Leary, Brennen, Bullock (CR43) 2006; 74 Sorensen, Molmer (CR29) 2000; 62 Kraft, Ritz, Brunner, Huber, Gühne (CR20) 2018; 120 Malinowski (CR11) 2018; 98 Morvan (CR15) 2021; 126 Ringbauer (CR44) 2015; 114 Campbell (CR25) 2014; 113 Kasper (CR18) 2022; 7 Lanyon (CR6) 2008; 5 Ferrie, Blume-Kohout (CR45) 2012; 1443 Häffner (CR42) 2003; 90 MacDonell (CR2) 2021; 12 Wang, Hu, Sanders, Kais (CR7) 2020; 8 CR3 Godfrin (CR13) 2017; 119 Weggemans (CR17) 2022; 6 Hu (CR16) 2018; 4 CR26 Scott (CR21) 2004; 69 Barenco (CR28) 1995; 52 Fowler, Mariantoni, Martinis, Cleland (CR36) 2012; 86 Brennen, Bullock, O’Leary (CR30) 2005; 6 CR40 Leupold (CR10) 2018; 120 Ringbauer (CR19) 2018; 8 Pogorelov (CR38) 2021; 2 Anderson, Sosa-Martinez, Riofrío, Deutsch, Jessen (CR14) 2015; 114 Low, White, Cox, Day, Senko (CR37) 2020; 2 Parrado-Rodríguez, Ryan-Anderson, Bermudez, Müller (CR39) 2021; 5 Bermudez (CR5) 2017; 7 Kristen (CR23) 2020; 6 Howard, Vala (CR34) 2012; 86 DP O’Leary (1658_CR43) 2006; 74 RJ MacDonell (1658_CR2) 2021; 12 MK Joshi (1658_CR27) 2020; 22 P Schindler (1658_CR1) 2013; 15 E Magesan (1658_CR35) 2012; 85 I Pogorelov (1658_CR38) 2021; 2 P Parrado-Rodríguez (1658_CR39) 2021; 5 M Malinowski (1658_CR11) 2018; 98 AJ Scott (1658_CR21) 2004; 69 S Debnath (1658_CR41) 2016; 536 J Ahn (1658_CR12) 2000; 287 M Gell-Mann (1658_CR31) 1962; 125 M Ringbauer (1658_CR19) 2018; 8 A Bermudez (1658_CR5) 2017; 7 Y Wang (1658_CR7) 2020; 8 BE Anderson (1658_CR14) 2015; 114 PJ Low (1658_CR37) 2020; 2 A Morvan (1658_CR15) 2021; 126 FM Leupold (1658_CR10) 2018; 120 A Barenco (1658_CR28) 1995; 52 GK Brennen (1658_CR30) 2005; 6 D Gottesman (1658_CR32) 1998; 57 C Senko (1658_CR9) 2015; 5 1658_CR26 A Sorensen (1658_CR29) 2000; 62 M Howard (1658_CR34) 2012; 86 H Häffner (1658_CR42) 2003; 90 C Ferrie (1658_CR45) 2012; 1443 AR Shlyakhov (1658_CR22) 2018; 97 M Kristen (1658_CR23) 2020; 6 M Huber (1658_CR24) 2013; 110 1658_CR40 S Clark (1658_CR33) 2006; 39 1658_CR3 BP Lanyon (1658_CR6) 2008; 5 C Godfrin (1658_CR13) 2017; 119 JR Weggemans (1658_CR17) 2022; 6 V Kasper (1658_CR18) 2022; 7 T Kraft (1658_CR20) 2018; 120 M Ringbauer (1658_CR44) 2015; 114 AG Fowler (1658_CR36) 2012; 86 EA Martinez (1658_CR8) 2016; 534 ET Campbell (1658_CR25) 2014; 113 X-M Hu (1658_CR16) 2018; 4 S Bullock (1658_CR4) 2005; 94 |
References_xml | – volume: 15 start-page: 123012 year: 2013 ident: CR1 article-title: A quantum information processor with trapped ions publication-title: New J. Phys. doi: 10.1088/1367-2630/15/12/123012 – volume: 97 start-page: 022115 year: 2018 ident: CR22 article-title: Quantum metrology with a transmon qutrit publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.022115 – volume: 6 year: 2020 ident: CR23 article-title: Amplitude and frequency sensing of microwave fields with a superconducting transmon qudit publication-title: npj Quantum Inf. doi: 10.1038/s41534-020-00287-w – volume: 98 start-page: 050102 year: 2018 ident: CR11 article-title: Probing the limits of correlations in an indivisible quantum system publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.050102 – volume: 114 start-page: 240401 year: 2015 ident: CR14 article-title: Accurate and robust unitary transformations of a high-dimensional quantum system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.240401 – volume: 287 start-page: 463 year: 2000 end-page: 465 ident: CR12 article-title: Information storage and retrieval through quantum phase publication-title: Science doi: 10.1126/science.287.5452.463 – volume: 5 start-page: 487 year: 2021 ident: CR39 article-title: Crosstalk suppression for fault-tolerant quantum error correction with trapped ions publication-title: Quantum doi: 10.22331/q-2021-06-29-487 – volume: 536 start-page: 63 year: 2016 end-page: 66 ident: CR41 article-title: Demonstration of a small programmable quantum computer with atomic qubits publication-title: Nature doi: 10.1038/nature18648 – volume: 5 start-page: 134 year: 2008 end-page: 140 ident: CR6 article-title: Simplifying quantum logic using higher-dimensional Hilbert spaces publication-title: Nat. Phys. doi: 10.1038/nphys1150 – volume: 52 start-page: 3457 year: 1995 end-page: 3467 ident: CR28 article-title: Elementary gates for quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.3457 – volume: 113 start-page: 230501 year: 2014 ident: CR25 article-title: Enhanced fault-tolerant quantum computing in -level systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.230501 – volume: 125 start-page: 1067 year: 1962 end-page: 1084 ident: CR31 article-title: Symmetries of baryons and mesons publication-title: Phys. Rev. doi: 10.1103/PhysRev.125.1067 – volume: 74 start-page: 032334 year: 2006 ident: CR43 article-title: Parallelism for quantum computation with qudits publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.032334 – volume: 39 start-page: 2701 year: 2006 end-page: 2721 ident: CR33 article-title: Valence bond solid formalism for -level one-way quantum computation publication-title: J. Phys. A doi: 10.1088/0305-4470/39/11/010 – volume: 94 start-page: 230502 year: 2005 ident: CR4 article-title: Asymptotically optimal quantum circuits for -level systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.230502 – volume: 7 start-page: 041061 year: 2017 ident: CR5 article-title: Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation publication-title: Phys. Rev. X – volume: 119 start-page: 187702 year: 2017 ident: CR13 article-title: Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.187702 – volume: 2 start-page: 033128 year: 2020 ident: CR37 article-title: Practical trapped-ion protocols for universal qudit-based quantum computing publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033128 – volume: 126 start-page: 210504 year: 2021 ident: CR15 article-title: Qutrit randomized benchmarking publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.210504 – ident: CR40 – volume: 12 start-page: 9794 year: 2021 end-page: 9805 ident: CR2 article-title: Analog quantum simulation of chemical dynamics publication-title: Chem. Sci. doi: 10.1039/D1SC02142G – volume: 8 start-page: 041007 year: 2018 ident: CR19 article-title: Certification and quantification of multilevel quantum coherence publication-title: Phys. Rev. X – volume: 62 start-page: 022311 year: 2000 ident: CR29 article-title: Entanglement and quantum computation with ions in thermal motion publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.62.022311 – volume: 110 start-page: 030501 year: 2013 ident: CR24 article-title: Structure of multidimensional entanglement in multipartite systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.030501 – volume: 90 start-page: 143602 year: 2003 ident: CR42 article-title: Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.143602 – volume: 7 start-page: 015008 year: 2022 ident: CR18 article-title: Universal quantum computation and quantum error correction with ultracold atomic mixtures publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ac2d39 – ident: CR3 – volume: 534 start-page: 516 year: 2016 end-page: 519 ident: CR8 article-title: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer publication-title: Nature doi: 10.1038/nature18318 – volume: 8 year: 2020 ident: CR7 article-title: Qudits and high-dimensional quantum computing publication-title: Front. Phys. doi: 10.3389/fphy.2020.589504 – volume: 69 start-page: 052330 year: 2004 ident: CR21 article-title: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.052330 – volume: 1443 start-page: 14 year: 2012 end-page: 21 ident: CR45 article-title: Estimating the bias of a noisy coin publication-title: AIP Conf. Proc. doi: 10.1063/1.3703615 – volume: 120 start-page: 180401 year: 2018 ident: CR10 article-title: Sustained state-independent quantum contextual correlations from a single ion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.180401 – volume: 114 start-page: 090402 year: 2015 ident: CR44 article-title: Characterizing quantum dynamics with initial system-environment correlations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.090402 – volume: 6 start-page: 436 year: 2005 end-page: 454 ident: CR30 article-title: Efficient circuits for exact-universal computations with qudits publication-title: Quantum Inf. Comput. – volume: 86 start-page: 032324 year: 2012 ident: CR36 article-title: Surface codes: towards practical large-scale quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.032324 – volume: 120 start-page: 060502 year: 2018 ident: CR20 article-title: Characterizing genuine multilevel entanglement publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.060502 – volume: 22 start-page: 103013 year: 2020 ident: CR27 article-title: Polarization-gradient cooling of 1D and 2D ion Coulomb crystals publication-title: New J. Phys. doi: 10.1088/1367-2630/abb912 – volume: 57 start-page: 127 year: 1998 end-page: 137 ident: CR32 article-title: Theory of fault-tolerant quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.57.127 – volume: 86 start-page: 022316 year: 2012 ident: CR34 article-title: Qudit versions of the qubit π/8 gate publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.022316 – volume: 6 start-page: 687 year: 2022 ident: CR17 article-title: Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach publication-title: Quantum doi: 10.22331/q-2022-04-13-687 – volume: 85 start-page: 042311 year: 2012 ident: CR35 article-title: Characterizing quantum gates via randomized benchmarking publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.042311 – volume: 5 start-page: 021026 year: 2015 ident: CR9 article-title: Realization of a quantum integer-spin chain with controllable interactions publication-title: Phys. Rev. X – ident: CR26 – volume: 2 start-page: 020343 year: 2021 ident: CR38 article-title: Compact ion-trap quantum computing demonstrator publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.020343 – volume: 4 start-page: eaat9304 year: 2018 ident: CR16 article-title: Beating the channel capacity limit for superdense coding with entangled ququarts publication-title: Sci. Adv. doi: 10.1126/sciadv.aat9304 – volume: 114 start-page: 240401 year: 2015 ident: 1658_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.240401 – volume: 113 start-page: 230501 year: 2014 ident: 1658_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.230501 – volume: 114 start-page: 090402 year: 2015 ident: 1658_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.090402 – volume: 536 start-page: 63 year: 2016 ident: 1658_CR41 publication-title: Nature doi: 10.1038/nature18648 – volume: 69 start-page: 052330 year: 2004 ident: 1658_CR21 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.052330 – volume: 1443 start-page: 14 year: 2012 ident: 1658_CR45 publication-title: AIP Conf. Proc. doi: 10.1063/1.3703615 – volume: 62 start-page: 022311 year: 2000 ident: 1658_CR29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.62.022311 – volume: 74 start-page: 032334 year: 2006 ident: 1658_CR43 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.032334 – volume: 5 start-page: 134 year: 2008 ident: 1658_CR6 publication-title: Nat. Phys. doi: 10.1038/nphys1150 – volume: 2 start-page: 020343 year: 2021 ident: 1658_CR38 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.020343 – ident: 1658_CR40 – volume: 86 start-page: 032324 year: 2012 ident: 1658_CR36 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.032324 – volume: 86 start-page: 022316 year: 2012 ident: 1658_CR34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.022316 – volume: 7 start-page: 041061 year: 2017 ident: 1658_CR5 publication-title: Phys. Rev. X – volume: 22 start-page: 103013 year: 2020 ident: 1658_CR27 publication-title: New J. Phys. doi: 10.1088/1367-2630/abb912 – volume: 125 start-page: 1067 year: 1962 ident: 1658_CR31 publication-title: Phys. Rev. doi: 10.1103/PhysRev.125.1067 – volume: 57 start-page: 127 year: 1998 ident: 1658_CR32 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.57.127 – volume: 90 start-page: 143602 year: 2003 ident: 1658_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.143602 – volume: 2 start-page: 033128 year: 2020 ident: 1658_CR37 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033128 – volume: 97 start-page: 022115 year: 2018 ident: 1658_CR22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.022115 – volume: 98 start-page: 050102 year: 2018 ident: 1658_CR11 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.050102 – volume: 5 start-page: 021026 year: 2015 ident: 1658_CR9 publication-title: Phys. Rev. X – volume: 7 start-page: 015008 year: 2022 ident: 1658_CR18 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ac2d39 – volume: 6 start-page: 687 year: 2022 ident: 1658_CR17 publication-title: Quantum doi: 10.22331/q-2022-04-13-687 – volume: 120 start-page: 060502 year: 2018 ident: 1658_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.060502 – volume: 52 start-page: 3457 year: 1995 ident: 1658_CR28 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.3457 – volume: 85 start-page: 042311 year: 2012 ident: 1658_CR35 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.042311 – volume: 15 start-page: 123012 year: 2013 ident: 1658_CR1 publication-title: New J. Phys. doi: 10.1088/1367-2630/15/12/123012 – volume: 6 start-page: 436 year: 2005 ident: 1658_CR30 publication-title: Quantum Inf. Comput. – volume: 4 start-page: eaat9304 year: 2018 ident: 1658_CR16 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat9304 – volume: 287 start-page: 463 year: 2000 ident: 1658_CR12 publication-title: Science doi: 10.1126/science.287.5452.463 – volume: 8 start-page: 041007 year: 2018 ident: 1658_CR19 publication-title: Phys. Rev. X – volume: 119 start-page: 187702 year: 2017 ident: 1658_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.187702 – volume: 12 start-page: 9794 year: 2021 ident: 1658_CR2 publication-title: Chem. Sci. doi: 10.1039/D1SC02142G – volume: 5 start-page: 487 year: 2021 ident: 1658_CR39 publication-title: Quantum doi: 10.22331/q-2021-06-29-487 – volume: 534 start-page: 516 year: 2016 ident: 1658_CR8 publication-title: Nature doi: 10.1038/nature18318 – ident: 1658_CR3 doi: 10.1016/j.aop.2018.03.020 – volume: 94 start-page: 230502 year: 2005 ident: 1658_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.230502 – volume: 8 year: 2020 ident: 1658_CR7 publication-title: Front. Phys. doi: 10.3389/fphy.2020.589504 – volume: 110 start-page: 030501 year: 2013 ident: 1658_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.030501 – volume: 126 start-page: 210504 year: 2021 ident: 1658_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.210504 – volume: 6 year: 2020 ident: 1658_CR23 publication-title: npj Quantum Inf. doi: 10.1038/s41534-020-00287-w – volume: 39 start-page: 2701 year: 2006 ident: 1658_CR33 publication-title: J. Phys. A doi: 10.1088/0305-4470/39/11/010 – volume: 120 start-page: 180401 year: 2018 ident: 1658_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.180401 – ident: 1658_CR26 doi: 10.1103/PhysRevX.2.041021 |
SSID | ssj0042613 |
Score | 2.7231233 |
Snippet | Most quantum computers use binary encoding to store information in qubits—the quantum analogue of classical bits. Yet, the underlying physical hardware... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1053 |
SubjectTerms | 639/766/259 639/766/36 639/766/483/3926 639/766/483/481 Algorithms Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Hilbert space Ions Letter Mathematical and Computational Physics Microprocessors Molecular Optical and Plasma Physics Physics Physics and Astronomy Quantum computers Quantum computing Qubits (quantum computing) Theoretical |
Title | A universal qudit quantum processor with trapped ions |
URI | https://link.springer.com/article/10.1038/s41567-022-01658-0 https://www.proquest.com/docview/2711641167 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDLXYJiQuiE8xGFMP3CBam7RNekIbWpmQmBBi0m5VmnQn2Lq1-_84bcoEErv00iSH59h-ie0Y4E6HKHTNKEE6GhE_5ZRE6OaNXsmUuSqsy8dep-Fk5r_Mg7m9cCtsWmVjEytDrVfK3JEPKPeQ2ZuowWO-JqZrlImu2hYaLeigCRZ4-OqMxtO398YWm_MBq0siA0J9zmzZjMvEoDBHF05MNrsp6RHE_e2adnzzT4i08jzxCRxbyugMaxmfwkG2PIPDKnVTFecQDJ1tnV2Bg9amyAK_iNf2y8nrKoDVxjHXrU65kXmeacfstAuYxeOPpwmxzRCIQi0pSZpxTUW4SIMF81VIvUyKSHGNVsKjCnmTNM-o-DLw2SKTGZVaajQeijOFpEUydgnt5WqZXYGDq3ChlBei-_eRoKVUpciDNNfc05JGXfAaHBJlXwo3DSs-kypizURSY5cgdkmFXeJ24f5nTl6_k7F3dK-BN7E6UyQ7CXfhoYF89_v_1a73r3YDR7SSskkM60G73GyzW2QSZdqHloif-9AZxqPRtG83zzcapcOy |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4hEIIF8RSFAhlgAovGTuJkQKgCSnl1KhKbcWx3gjZ9CfGn-I3c5UEFEmwsWZJ4-O712XfnAzi0EQrdCs6QjiYsSCVnCYZ5siudioaJivaxh07Ufgxun8KnOfioemGorLLyibmjtgNDZ-SnXPrI7ClrcJ4NGU2NouxqNUKjUIs79_6GW7bx2c0lyveI89ZV96LNyqkCzKC6TVjqpOVx1EvDnghMxH2n48RIi-bmc4MERNN9JIEOA9Fz2nFttUUrNFIYjP6aDkDR5S8EQiRkUXHruvL8tBsRRQNmyHggRdmk0xDx6Zg2SpJR7Tw1EMWs8T0Qztjtj4RsHudaq7BSElSvWWjUGsy5_jos5oWiZrwBYdObFrUc-NGQWjrwidKZvnpZ0XMwGHl0uOtNRjrLnPVIrzfh8V9A2oL5_qDvtsHDVWRsjB8h2QiQDqbcpMi6rLTSt5onNfArHJQp7yWn8RgvKs-Pi1gV2CnETuXYqUYNjr_-yYpbOf78ul7Bq0oLHauZPtXgpIJ89vr31Xb-Xu0Altrdh3t1f9O524VlnkucStLqMD8ZTd0ecphJup8rjgfP_62pn7QZ_OY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbQEIgL4inGswc4QbQ2aZvugBCvieeEEEjcQppkJ9i6lxB_jV-H3QcTSHDj0kvbHOzP8efYjgF2bYxKt4IzpKNNFqaSsya6ebIrnQrfxEX72G07vngMr56ipyn4qHphqKyy2hPzjdr2DJ2RN7gMkNlT1qDRKcsi7s5aR1mf0QQpyrRW4zQKiFy79zcM34aHl2eo6z3OW-cPpxesnDDADEJvxFInLU_iThp1RGhiHjidNI20aHoBN0hGNN1NEuooFB2nHddWW7RII4VBJqDpMBS3_2mJUZFfg-mT8_bdfeUHKDYRRTtmxHgoRdmy44ukMaSwSTKqpKd2ooT5393ihOv-SM_mXq-1APMlXfWOC3wtwpTrLsFMXjZqhssQHXvjorIDP-pTgwc-UVfjVy8rOhB6A4-Oer3RQGeZsx6hfAUe_0VMq1Dr9rpuDTxcRSbGBDFSjxDJYcpNihzMSisDq3mzDkElB2XKW8ppWMaLyrPlIlGF7BTKTuWyU34d9r_-yYo7Ov78erMSryrtdagm6KrDQSXyyevfV1v_e7UdmEWUqpvL9vUGzPFc4VSftgm10WDstpDQjNLtEjkePP83WD8B5egChw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+qudit+quantum+processor+with+trapped+ions&rft.jtitle=Nature+physics&rft.au=Ringbauer%2C+Martin&rft.au=Meth%2C+Michael&rft.au=Postler%2C+Lukas&rft.au=Stricker%2C+Roman&rft.date=2022-09-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=18&rft.issue=9&rft.spage=1053&rft.epage=1057&rft_id=info:doi/10.1038%2Fs41567-022-01658-0&rft.externalDocID=10_1038_s41567_022_01658_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |