Subject-Wise Cognitive Load Detection Using Time–Frequency EEG and Bi-LSTM

Cognitive load detection using electroencephalogram (EEG) signals is a technique employed to understand and measure the mental workload or cognitive demands placed on an individual while performing a task. EEG is a noninvasive method that records fluctuations in brain activity at different cognitive...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 49; no. 3; pp. 4445 - 4457
Main Authors Yedukondalu, Jammisetty, Sharma, Diksha, Sharma, Lakhan Dev
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cognitive load detection using electroencephalogram (EEG) signals is a technique employed to understand and measure the mental workload or cognitive demands placed on an individual while performing a task. EEG is a noninvasive method that records fluctuations in brain activity at different cognitive load levels. The publicly available multi-arithmetic task EEG dataset was used. This study introduces a novel approach to detecting cognitive load by utilizing both the 1D-EEG signal and its various time–frequency (T–F) representations as 2D images. The signal underwent preprocessing, including artifact-free segmentation using filters and subsequent normalization, before being fed into a bidirectional long short-term memory (Bi-LSTM) model with different optimizers for classification. It was trained and fine-tuned to achieve high accuracy. Remarkably, our proposed method demonstrates promising performance even with short EEG segments as 4 s. Through 10-fold cross-validation, we achieved an accuracy (Ac%) of 99.55 and 99.88 using 5:5 and 8:2 data splits, respectively. Furthermore, this manuscript includes subject-wise cognitive load detection, providing valuable insights into individual cognitive processes. This approach enables targeted interventions, performance optimization, and mental health monitoring across various domains. For 36 subjects, an average Ac% of 85.22 was attained. Notably, the spectrogram T–F conversion-based 2D image, coupled with a Bi-LSTM classifier and Adam optimizer, outperformed previous state-of-the-art techniques in terms of evaluation metrics.
AbstractList Cognitive load detection using electroencephalogram (EEG) signals is a technique employed to understand and measure the mental workload or cognitive demands placed on an individual while performing a task. EEG is a noninvasive method that records fluctuations in brain activity at different cognitive load levels. The publicly available multi-arithmetic task EEG dataset was used. This study introduces a novel approach to detecting cognitive load by utilizing both the 1D-EEG signal and its various time–frequency (T–F) representations as 2D images. The signal underwent preprocessing, including artifact-free segmentation using filters and subsequent normalization, before being fed into a bidirectional long short-term memory (Bi-LSTM) model with different optimizers for classification. It was trained and fine-tuned to achieve high accuracy. Remarkably, our proposed method demonstrates promising performance even with short EEG segments as 4 s. Through 10-fold cross-validation, we achieved an accuracy (Ac%) of 99.55 and 99.88 using 5:5 and 8:2 data splits, respectively. Furthermore, this manuscript includes subject-wise cognitive load detection, providing valuable insights into individual cognitive processes. This approach enables targeted interventions, performance optimization, and mental health monitoring across various domains. For 36 subjects, an average Ac% of 85.22 was attained. Notably, the spectrogram T–F conversion-based 2D image, coupled with a Bi-LSTM classifier and Adam optimizer, outperformed previous state-of-the-art techniques in terms of evaluation metrics.
Cognitive load detection using electroencephalogram (EEG) signals is a technique employed to understand and measure the mental workload or cognitive demands placed on an individual while performing a task. EEG is a noninvasive method that records fluctuations in brain activity at different cognitive load levels. The publicly available multi-arithmetic task EEG dataset was used. This study introduces a novel approach to detecting cognitive load by utilizing both the 1D-EEG signal and its various time–frequency (T–F) representations as 2D images. The signal underwent preprocessing, including artifact-free segmentation using filters and subsequent normalization, before being fed into a bidirectional long short-term memory (Bi-LSTM) model with different optimizers for classification. It was trained and fine-tuned to achieve high accuracy. Remarkably, our proposed method demonstrates promising performance even with short EEG segments as 4 s. Through 10-fold cross-validation, we achieved an accuracy (Ac%) of 99.55 and 99.88 using 5:5 and 8:2 data splits, respectively. Furthermore, this manuscript includes subject-wise cognitive load detection, providing valuable insights into individual cognitive processes. This approach enables targeted interventions, performance optimization, and mental health monitoring across various domains. For 36 subjects, an average Ac% of 85.22 was attained. Notably, the spectrogram T–F conversion-based 2D image, coupled with a Bi-LSTM classifier and Adam optimizer, outperformed previous state-of-the-art techniques in terms of evaluation metrics.
Author Sharma, Diksha
Yedukondalu, Jammisetty
Sharma, Lakhan Dev
Author_xml – sequence: 1
  givenname: Jammisetty
  surname: Yedukondalu
  fullname: Yedukondalu, Jammisetty
  organization: School of Electronics Engineering, VIT-AP University
– sequence: 2
  givenname: Diksha
  surname: Sharma
  fullname: Sharma, Diksha
  organization: Department of Nanoscience and Technology, Central University of Jharkhand
– sequence: 3
  givenname: Lakhan Dev
  surname: Sharma
  fullname: Sharma, Lakhan Dev
  email: devsharmalakhan@gmail.com
  organization: School of Electronics Engineering, VIT-AP University
BookMark eNp9kM1KAzEQx4NUsNa-gKeA52g-9iM5aq1VWPHQFr2FJJstKW22JluhN9_BN_RJ3HYFwUNPMzD_38zwOwc9X3sLwCXB1wTj_CYSxjKBMGUI80QkiJyAPiWCoIRy0jv0DKVZ_nYGhjE6jRPOREoI64NiutVLaxr06qKFo3rhXeM-LCxqVcJ727QjV3s4j84v4Myt7ffn10Ow71vrzQ6OxxOofAnvHCqms-cLcFqpVbTD3zoA84fxbPSIipfJ0-i2QIYR0SBdaq1KanFZZYrrXHNSco2zkuXCppqVotI4N4mgiaFpwjNicqUNN4ZoIjBnA3DV7d2Euv0kNnJZb4NvT0oqWM7SnB9StEuZUMcYbCU3wa1V2EmC5V6c7MTJVpw8iJOkhfg_yLhG7R00QbnVcZR1aGzv-IUNf18doX4AzD2EVw
CitedBy_id crossref_primary_10_3389_fnhum_2024_1357900
crossref_primary_10_1038_s41598_024_84429_6
crossref_primary_10_1007_s13369_024_09230_z
crossref_primary_10_1088_2631_8695_ad9b6f
crossref_primary_10_3390_s24237856
crossref_primary_10_1088_1361_6501_ad8df4
Cites_doi 10.1109/JSEN.2019.2917850
10.1016/j.compbiomed.2020.103753
10.1007/s13369-022-06617-8
10.55730/1300-0632.4017
10.1109/TNSRE.2018.2884641
10.1016/j.compbiomed.2018.03.016
10.1007/s00521-022-07540-7
10.1109/TNSRE.2012.2236576
10.1007/s11042-022-14219-7
10.1016/j.bspc.2022.104006
10.1080/13803611.2014.997140
10.1007/s11517-017-1733-8
10.1016/j.neunet.2005.06.042
10.1109/JIOT.2022.3232481
10.3390/diagnostics13111936
10.1111/j.0001-5172.2004.00323.x
10.1146/annurev.bioeng.5.040202.121601
10.1016/j.bspc.2018.12.028
10.3390/data4010014
10.1016/j.bbe.2020.04.007
10.1007/s11760-021-01927-0
10.1207/S15326985EP3801_1
10.1016/j.dajour.2023.100211
10.1080/13682199.2023.2173543
10.1016/j.eswa.2022.116634
10.1155/2020/8860841
10.1016/j.smhl.2019.100085
10.1007/s13369-021-05695-4
10.1207/S15327108IJAP1201_2
10.1109/ACCESS.2017.2731784
10.1016/j.bbe.2020.04.004
10.1109/ACCESS.2017.2723622
10.1016/0003-6870(92)90152-L
10.1162/neco.1997.9.8.1735
10.1016/j.bspc.2018.08.035
10.1109/5.135376
10.1016/B978-0-12-815553-0.00013-6
10.1007/978-981-10-0266-3_4
10.1109/TCDS.2021.3090217
10.1109/ACCESS.2017.2787673
10.23919/ChiCC.2017.8029107
10.1145/1240866.1241057
10.1109/ic-ETITE47903.2020.401
10.1186/s40708-021-00133-5
10.1109/IRI54793.2022.00016
10.1002/eng2.12678
10.1109/ICASSP.2008.4518041
10.1109/CICT56698.2022.9997949
10.1016/j.bspc.2020.101989
10.3115/v1/P15-1033
10.1007/s13369-023-07786-w
10.3389/fnbot.2022.873239
10.1007/978-3-030-20473-0_22
10.1007/s10586-023-04008-8
10.1007/s11042-023-16138-7
10.1109/CW.2018.00056
10.1109/ICASSP.2018.8462243
10.1109/VLSIDCS47293.2020.9179949
10.3390/bioengineering10030361
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13369-023-08494-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 4457
ExternalDocumentID 10_1007_s13369_023_08494_1
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-bdbbad2e0df6a8b7b81d8b06d379e5b3d9fb07c4924c254861c7abc8cc1b19083
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:02:29 EDT 2025
Tue Jul 01 01:34:34 EDT 2025
Thu Apr 24 23:13:54 EDT 2025
Fri Feb 21 02:41:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Bi-LSTM
Subject-wise
Cognitive load
T–F methods
EEG
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-bdbbad2e0df6a8b7b81d8b06d379e5b3d9fb07c4924c254861c7abc8cc1b19083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2937357808
PQPubID 2044268
PageCount 13
ParticipantIDs proquest_journals_2937357808
crossref_primary_10_1007_s13369_023_08494_1
crossref_citationtrail_10_1007_s13369_023_08494_1
springer_journals_10_1007_s13369_023_08494_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bhatnagar, Khandelwal, Jain, Vyawahare (CR59) 2023; 7
CR39
Backs, Walrath (CR9) 1992; 23
CR35
Zhao, Mao, Chen (CR53) 2019; 47
Graves, Schmidhuber (CR52) 2005; 18
Roy, Malviya, Kumar, Mal, Kumar, Bhowmik, Hu (CR29) 2023; 13
CR31
Sharma, Bohat, Habib, Ala’M, Faris, Aljarah (CR47) 2022; 197
Dehzangi, Sahu, Rajendra, Taherisadr (CR43) 2019; 14
Paas, Renkl, Sweller (CR1) 2003; 38
Yedukondalu, Sharma (CR49) 2023; 31
Yaribeygi, Panahi, Sahraei, Johnston, Sahebkar (CR7) 2017; 16
CR6
Subhani, Mumtaz, Saad, Kamel, Malik (CR40) 2017; 5
CR5
CR8
Budak, Bajaj, Akbulut, Atila, Sengur (CR24) 2019; 19
CR45
Saini, Satija, Upadhayay (CR56) 2022; 10
Thakor, Tong (CR10) 2004; 6
CR41
Zhang, Wang, Zhang, Chen (CR22) 2018; 27
Gupta, Alam, Agarwal (CR48) 2020; 2020
Kang, Shin, Jung, Kim (CR62) 2021; 2021
Mühl, Jeunet, Lotte (CR4) 2014; 8
Martin (CR2) 2014; 20
Aldayel, Ykhlef, Al-Nafjan (CR11) 2021; 46
Malviya, Mal (CR21) 2022; 34
Zyma, Tukaev, Seleznov, Kiyono, Popov, Chernykh, Shpenkov (CR30) 2019; 4
CR19
Hochreiter, Schmidhuber (CR51) 1997; 9
CR18
CR58
CR13
CR57
CR12
Yenurkar, Mal (CR26) 2023; 82
Boashash (CR32) 1992; 80
CR55
Yedukondalu, Sharma (CR46) 2023; 79
CR54
Vakkuri, Yli-Hankala, Talja, Mustola, Tolvanen-Laakso, Sampson, Viertiö-Oja (CR33) 2004; 48
CR50
Kaya, Kuncan, Tekin (CR14) 2022; 47
Mazher, Aziz, Malik, Amin (CR3) 2017; 5
Al-Shargie, Tang, Badruddin, Kiguchi (CR17) 2018; 56
Wang, Sourina (CR16) 2013; 21
Sharma, Garg, Patidar, Tan, Acharya (CR38) 2020; 120
Yildirim (CR37) 2018; 96
Sharma, Saraswat, Sunkaria (CR42) 2021; 15
Wilson (CR15) 2002; 12
CR27
CR25
CR23
Hosny, Zhu, Gao, Fu (CR34) 2020; 40
Cheema, Singh (CR44) 2019; 49
CR20
Yenurkar, Mal (CR28) 2022; 70
CR61
Altuve, Lizarazo, Villamizar (CR36) 2020; 40
CR60
Q Wang (8494_CR16) 2013; 21
M Saini (8494_CR56) 2022; 10
8494_CR27
8494_CR25
8494_CR23
8494_CR20
M Altuve (8494_CR36) 2020; 40
P Zhang (8494_CR22) 2018; 27
8494_CR61
F Paas (8494_CR1) 2003; 38
8494_CR60
A Vakkuri (8494_CR33) 2004; 48
I Zyma (8494_CR30) 2019; 4
F Al-Shargie (8494_CR17) 2018; 56
8494_CR6
GK Yenurkar (8494_CR28) 2022; 70
8494_CR5
G Yenurkar (8494_CR26) 2023; 82
LD Sharma (8494_CR47) 2022; 197
M Mazher (8494_CR3) 2017; 5
8494_CR39
M Kang (8494_CR62) 2021; 2021
GF Wilson (8494_CR15) 2002; 12
8494_CR35
J Zhao (8494_CR53) 2019; 47
8494_CR31
Ö Yildirim (8494_CR37) 2018; 96
M Hosny (8494_CR34) 2020; 40
NV Thakor (8494_CR10) 2004; 6
A Graves (8494_CR52) 2005; 18
M Aldayel (8494_CR11) 2021; 46
J Yedukondalu (8494_CR46) 2023; 79
H Yaribeygi (8494_CR7) 2017; 16
Y Kaya (8494_CR14) 2022; 47
A Sharma (8494_CR38) 2020; 120
C Mühl (8494_CR4) 2014; 8
RW Backs (8494_CR9) 1992; 23
L Malviya (8494_CR21) 2022; 34
8494_CR8
B Boashash (8494_CR32) 1992; 80
8494_CR45
U Budak (8494_CR24) 2019; 19
J Yedukondalu (8494_CR49) 2023; 31
S Bhatnagar (8494_CR59) 2023; 7
8494_CR41
S Martin (8494_CR2) 2014; 20
LD Sharma (8494_CR42) 2021; 15
O Dehzangi (8494_CR43) 2019; 14
A Cheema (8494_CR44) 2019; 49
8494_CR18
8494_CR19
8494_CR58
AR Subhani (8494_CR40) 2017; 5
8494_CR12
8494_CR13
8494_CR57
8494_CR54
B Roy (8494_CR29) 2023; 13
8494_CR55
8494_CR50
R Gupta (8494_CR48) 2020; 2020
S Hochreiter (8494_CR51) 1997; 9
References_xml – volume: 19
  start-page: 7624
  issue: 17
  year: 2019
  end-page: 7631
  ident: CR24
  article-title: An effective hybrid model for EEG-based drowsiness detection
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2917850
– volume: 120
  year: 2020
  ident: CR38
  article-title: Automated pre-screening of arrhythmia using hybrid combination of Fourier-Bessel expansion and LSTM
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103753
– ident: CR45
– volume: 47
  start-page: 10497
  issue: 8
  year: 2022
  end-page: 10513
  ident: CR14
  article-title: A new approach for congestive heart failure and arrhythmia classification using angle transformation with lSTM
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-06617-8
– volume: 31
  start-page: 771
  issue: 5
  year: 2023
  end-page: 791
  ident: CR49
  article-title: Cognitive load detection using Ci-SSA for EEG signal decomposition and nature-inspired feature selection
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.55730/1300-0632.4017
– volume: 27
  start-page: 31
  issue: 1
  year: 2018
  end-page: 42
  ident: CR22
  article-title: Learning spatial-spectral-temporal EEG features with recurrent 3d convolutional neural networks for cross-task mental workload assessment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2884641
– ident: CR39
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: CR37
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.016
– ident: CR12
– volume: 34
  start-page: 19819
  issue: 22
  year: 2022
  end-page: 19830
  ident: CR21
  article-title: A novel technique for stress detection from EEG signal using hybrid deep learning model
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07540-7
– volume: 21
  start-page: 225
  issue: 2
  year: 2013
  end-page: 232
  ident: CR16
  article-title: Real-time mental arithmetic task recognition from EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2236576
– ident: CR35
– ident: CR54
– ident: CR61
– ident: CR8
– volume: 82
  start-page: 22497
  issue: 15
  year: 2023
  end-page: 22523
  ident: CR26
  article-title: Future forecasting prediction of covid-19 using hybrid deep learning algorithm
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-14219-7
– ident: CR58
– volume: 79
  year: 2023
  ident: CR46
  article-title: Cognitive load detection using circulant singular spectrum analysis and binary Harris Hawks optimization based feature selection
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104006
– volume: 20
  start-page: 592
  issue: 7–8
  year: 2014
  end-page: 621
  ident: CR2
  article-title: Measuring cognitive load and cognition: metrics for technology-enhanced learning
  publication-title: Educ. Res. Eval.
  doi: 10.1080/13803611.2014.997140
– volume: 56
  start-page: 125
  year: 2018
  end-page: 136
  ident: CR17
  article-title: Towards multilevel mental stress assessment using SVM with ECOC: an EEG approach
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1733-8
– ident: CR25
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2005
  end-page: 610
  ident: CR52
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
– volume: 10
  start-page: 8944
  issue: 10
  year: 2022
  end-page: 8957
  ident: CR56
  article-title: DSCNN-CAU: deep-learning-based mental activity classification for IoT implementation toward portable BCI
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3232481
– ident: CR19
– volume: 13
  start-page: 1936
  issue: 11
  year: 2023
  ident: CR29
  article-title: Hybrid deep learning approach for stress detection using decomposed EEG signals
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13111936
– volume: 48
  start-page: 145
  issue: 2
  year: 2004
  end-page: 153
  ident: CR33
  article-title: Time–frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia
  publication-title: Acta Anaesthesiol. Scand.
  doi: 10.1111/j.0001-5172.2004.00323.x
– ident: CR50
– volume: 16
  start-page: 1057
  year: 2017
  ident: CR7
  article-title: The impact of stress on body function: a review
  publication-title: EXCLI J.
– volume: 6
  start-page: 453
  year: 2004
  end-page: 495
  ident: CR10
  article-title: Advances in quantitative electroencephalogram analysis methods
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.5.040202.121601
– volume: 49
  start-page: 493
  year: 2019
  end-page: 505
  ident: CR44
  article-title: Psychological stress detection using phonocardiography signal: An empirical mode decomposition approach
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.12.028
– volume: 4
  start-page: 14
  issue: 1
  year: 2019
  ident: CR30
  article-title: Electroencephalograms during mental arithmetic task performance
  publication-title: Data
  doi: 10.3390/data4010014
– ident: CR57
– ident: CR60
– volume: 8
  start-page: 114
  year: 2014
  ident: CR4
  article-title: EEG-based workload estimation across affective contexts
  publication-title: Front. Neurosci.
– ident: CR5
– volume: 40
  start-page: 901
  issue: 3
  year: 2020
  end-page: 909
  ident: CR36
  article-title: Human activity recognition using improved complete ensemble EMD with adaptive noise and long short-term memory neural networks
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.04.007
– volume: 15
  start-page: 1821
  issue: 8
  year: 2021
  end-page: 1828
  ident: CR42
  article-title: Cognitive performance detection using entropy-based features and lead-specific approach
  publication-title: SIViP
  doi: 10.1007/s11760-021-01927-0
– volume: 38
  start-page: 1
  issue: 1
  year: 2003
  end-page: 4
  ident: CR1
  article-title: Cognitive load theory and instructional design: recent developments
  publication-title: Educ. Psychol.
  doi: 10.1207/S15326985EP3801_1
– volume: 7
  year: 2023
  ident: CR59
  article-title: A deep learning approach for assessing stress levels in patients using electroencephalogram signals
  publication-title: Decis. Anal. J.
  doi: 10.1016/j.dajour.2023.100211
– ident: CR18
– volume: 70
  start-page: 535
  issue: 8
  year: 2022
  end-page: 555
  ident: CR28
  article-title: Effective detection of COVID-19 outbreak in chest x-rays using fusionnet model
  publication-title: Imaging Sci. J.
  doi: 10.1080/13682199.2023.2173543
– volume: 197
  year: 2022
  ident: CR47
  article-title: Evolutionary inspired approach for mental stress detection using EEG signal
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116634
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR48
  article-title: Modified support vector machine for detecting stress level using EEG signals
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/8860841
– volume: 14
  year: 2019
  ident: CR43
  article-title: GSR-based distracted driving identification using discrete & continuous decomposition and wavelet packet transform
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2019.100085
– volume: 46
  start-page: 8983
  issue: 9
  year: 2021
  end-page: 8997
  ident: CR11
  article-title: Consumers’ preference recognition based on brain-computer interfaces: advances, trends, and applications
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05695-4
– volume: 12
  start-page: 3
  issue: 1
  year: 2002
  end-page: 18
  ident: CR15
  article-title: An analysis of mental workload in pilots during flight using multiple psychophysiological measures
  publication-title: Int. J. Aviat. Psychol.
  doi: 10.1207/S15327108IJAP1201_2
– volume: 5
  start-page: 14819
  year: 2017
  end-page: 14829
  ident: CR3
  article-title: An EEG-based cognitive load assessment in multimedia learning using feature extraction and partial directed coherence
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2731784
– ident: CR6
– ident: CR27
– ident: CR23
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR62
  article-title: Classification of mental stress using CNN-LSTM algorithms with electrocardiogram signals
  publication-title: J. Healthc. Eng.
– volume: 40
  start-page: 1052
  issue: 3
  year: 2020
  end-page: 1063
  ident: CR34
  article-title: A novel deep LSTM network for artifacts detection in microelectrode recordings
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.04.004
– volume: 5
  start-page: 13545
  year: 2017
  end-page: 13556
  ident: CR40
  article-title: Machine learning framework for the detection of mental stress at multiple levels
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2723622
– ident: CR31
– ident: CR13
– volume: 23
  start-page: 243
  issue: 4
  year: 1992
  end-page: 254
  ident: CR9
  article-title: Eye movement and pupillary response indices of mental workload during visual search of symbolic displays
  publication-title: Appl. Ergon.
  doi: 10.1016/0003-6870(92)90152-L
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR51
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: CR55
– ident: CR41
– volume: 47
  start-page: 312
  year: 2019
  end-page: 323
  ident: CR53
  article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.035
– ident: CR20
– volume: 80
  start-page: 520
  issue: 4
  year: 1992
  end-page: 538
  ident: CR32
  article-title: Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals
  publication-title: Proc. IEEE
  doi: 10.1109/5.135376
– ident: 8494_CR31
  doi: 10.1016/B978-0-12-815553-0.00013-6
– volume: 19
  start-page: 7624
  issue: 17
  year: 2019
  ident: 8494_CR24
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2917850
– volume: 34
  start-page: 19819
  issue: 22
  year: 2022
  ident: 8494_CR21
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07540-7
– volume: 40
  start-page: 901
  issue: 3
  year: 2020
  ident: 8494_CR36
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.04.007
– volume: 23
  start-page: 243
  issue: 4
  year: 1992
  ident: 8494_CR9
  publication-title: Appl. Ergon.
  doi: 10.1016/0003-6870(92)90152-L
– volume: 12
  start-page: 3
  issue: 1
  year: 2002
  ident: 8494_CR15
  publication-title: Int. J. Aviat. Psychol.
  doi: 10.1207/S15327108IJAP1201_2
– ident: 8494_CR41
  doi: 10.1007/978-981-10-0266-3_4
– volume: 20
  start-page: 592
  issue: 7–8
  year: 2014
  ident: 8494_CR2
  publication-title: Educ. Res. Eval.
  doi: 10.1080/13803611.2014.997140
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2005
  ident: 8494_CR52
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
– volume: 82
  start-page: 22497
  issue: 15
  year: 2023
  ident: 8494_CR26
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-14219-7
– volume: 31
  start-page: 771
  issue: 5
  year: 2023
  ident: 8494_CR49
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.55730/1300-0632.4017
– volume: 5
  start-page: 14819
  year: 2017
  ident: 8494_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2731784
– volume: 14
  year: 2019
  ident: 8494_CR43
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2019.100085
– ident: 8494_CR13
  doi: 10.1109/TCDS.2021.3090217
– ident: 8494_CR6
  doi: 10.1109/ACCESS.2017.2787673
– ident: 8494_CR23
  doi: 10.23919/ChiCC.2017.8029107
– ident: 8494_CR8
  doi: 10.1145/1240866.1241057
– volume: 6
  start-page: 453
  year: 2004
  ident: 8494_CR10
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.5.040202.121601
– ident: 8494_CR39
  doi: 10.1109/ic-ETITE47903.2020.401
– ident: 8494_CR57
  doi: 10.1186/s40708-021-00133-5
– ident: 8494_CR55
  doi: 10.1109/IRI54793.2022.00016
– volume: 8
  start-page: 114
  year: 2014
  ident: 8494_CR4
  publication-title: Front. Neurosci.
– volume: 13
  start-page: 1936
  issue: 11
  year: 2023
  ident: 8494_CR29
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13111936
– volume: 40
  start-page: 1052
  issue: 3
  year: 2020
  ident: 8494_CR34
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.04.004
– ident: 8494_CR27
  doi: 10.1002/eng2.12678
– volume: 10
  start-page: 8944
  issue: 10
  year: 2022
  ident: 8494_CR56
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3232481
– volume: 70
  start-page: 535
  issue: 8
  year: 2022
  ident: 8494_CR28
  publication-title: Imaging Sci. J.
  doi: 10.1080/13682199.2023.2173543
– volume: 80
  start-page: 520
  issue: 4
  year: 1992
  ident: 8494_CR32
  publication-title: Proc. IEEE
  doi: 10.1109/5.135376
– volume: 46
  start-page: 8983
  issue: 9
  year: 2021
  ident: 8494_CR11
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05695-4
– volume: 21
  start-page: 225
  issue: 2
  year: 2013
  ident: 8494_CR16
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2236576
– volume: 96
  start-page: 189
  year: 2018
  ident: 8494_CR37
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.016
– ident: 8494_CR5
  doi: 10.1109/ICASSP.2008.4518041
– ident: 8494_CR45
  doi: 10.1109/CICT56698.2022.9997949
– ident: 8494_CR58
  doi: 10.1016/j.bspc.2020.101989
– ident: 8494_CR50
  doi: 10.3115/v1/P15-1033
– ident: 8494_CR12
  doi: 10.1007/s13369-023-07786-w
– ident: 8494_CR61
  doi: 10.3389/fnbot.2022.873239
– volume: 27
  start-page: 31
  issue: 1
  year: 2018
  ident: 8494_CR22
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2884641
– volume: 48
  start-page: 145
  issue: 2
  year: 2004
  ident: 8494_CR33
  publication-title: Acta Anaesthesiol. Scand.
  doi: 10.1111/j.0001-5172.2004.00323.x
– ident: 8494_CR19
  doi: 10.1007/978-3-030-20473-0_22
– volume: 79
  year: 2023
  ident: 8494_CR46
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104006
– volume: 15
  start-page: 1821
  issue: 8
  year: 2021
  ident: 8494_CR42
  publication-title: SIViP
  doi: 10.1007/s11760-021-01927-0
– ident: 8494_CR25
  doi: 10.1007/s10586-023-04008-8
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 8494_CR51
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 38
  start-page: 1
  issue: 1
  year: 2003
  ident: 8494_CR1
  publication-title: Educ. Psychol.
  doi: 10.1207/S15326985EP3801_1
– volume: 197
  year: 2022
  ident: 8494_CR47
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116634
– ident: 8494_CR35
  doi: 10.1007/s11042-023-16138-7
– volume: 47
  start-page: 10497
  issue: 8
  year: 2022
  ident: 8494_CR14
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-06617-8
– volume: 47
  start-page: 312
  year: 2019
  ident: 8494_CR53
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.035
– volume: 4
  start-page: 14
  issue: 1
  year: 2019
  ident: 8494_CR30
  publication-title: Data
  doi: 10.3390/data4010014
– volume: 120
  year: 2020
  ident: 8494_CR38
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103753
– volume: 49
  start-page: 493
  year: 2019
  ident: 8494_CR44
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.12.028
– volume: 56
  start-page: 125
  year: 2018
  ident: 8494_CR17
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1733-8
– ident: 8494_CR18
  doi: 10.1109/CW.2018.00056
– volume: 2021
  start-page: 1
  year: 2021
  ident: 8494_CR62
  publication-title: J. Healthc. Eng.
– ident: 8494_CR20
  doi: 10.1109/ICASSP.2018.8462243
– volume: 5
  start-page: 13545
  year: 2017
  ident: 8494_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2723622
– volume: 2020
  start-page: 1
  year: 2020
  ident: 8494_CR48
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/8860841
– ident: 8494_CR54
  doi: 10.1109/VLSIDCS47293.2020.9179949
– volume: 7
  year: 2023
  ident: 8494_CR59
  publication-title: Decis. Anal. J.
  doi: 10.1016/j.dajour.2023.100211
– volume: 16
  start-page: 1057
  year: 2017
  ident: 8494_CR7
  publication-title: EXCLI J.
– ident: 8494_CR60
  doi: 10.3390/bioengineering10030361
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.363959
Snippet Cognitive load detection using electroencephalogram (EEG) signals is a technique employed to understand and measure the mental workload or cognitive demands...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4445
SubjectTerms Cognitive load
Electroencephalography
Engineering
Humanities and Social Sciences
multidisciplinary
Research Article-Computer Engineering and Computer Science
Science
Time-frequency analysis
Title Subject-Wise Cognitive Load Detection Using Time–Frequency EEG and Bi-LSTM
URI https://link.springer.com/article/10.1007/s13369-023-08494-1
https://www.proquest.com/docview/2937357808
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZCeuGCQIAIlMoHbsVod72_xwSSVij00lSE08p_UaNWaZVskODEO3Dl6XgSZtb27hJaRLmsEifrTTyfxzP2zDeEvLJne1qwKBWaxSbULJdSM6N4qE0isFINRlucpMdn8ft5Mu_1fnSilraVfKO-3phX8j9ShTaQK2bJ3kGyTafQAK9BvnAFCcP1n2QMsx63UdjH5Qarz_lAoOmVwPDiytgy4DYqAHM9fGQDn6xtBPWXw_H4qD4_GC3Z9HT2oWurDtcCCckbcgkMSPRZQHiLaakM0U7FNb6zr_AJ1jAwPrW43LpoXECUqapmC_-0Js2udd7yYnMu_myfiotzeP4787m7NxHFbXCWVWGgDjlL0mxuVxvfBl5rZAu1eB1saUsd1nhHocaxZZt0izO8y25U_IFLhOY8LRjYIchXW8QsbJc5f7S_s_o1MYktfzP2UUIfZd1HCb71XgROSNQne8PJaHTi9VUMxiXYq7zd0wNbO6qLFjd_3OVp2WzN3R_3uy3UOjg7Z_K1qTN7SB44H4UOLeAekZ5ZPSbTLthoAzaKYKMN2GgNNopg-_ntewMzCjCjgBnqYPaEnE3Gs7fHzJXiYDBni4pJLaXQkQn0IhW5zCS4ObkMUs2zwiSS62Ihg0zF4M2rCJzgNFSZkCpXKpRgcub8KemvrlbmGaGSFzlSDOkCLFluojwJFgKGMVkgUbzKBiT0g1Iqx1OP5VIuy9slNCCHzT3XlqXlr9_e92Nduim0KcHszZD5KcgH5LUf__bj23t7fqdnvyD324myT_rVemtegllbyQOHrgNy72ge_gJKLJgA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Wise+Cognitive+Load+Detection+Using+Time%E2%80%93Frequency+EEG+and+Bi-LSTM&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Yedukondalu%2C+Jammisetty&rft.au=Sharma%2C+Diksha&rft.au=Sharma%2C+Lakhan+Dev&rft.date=2024-03-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=49&rft.issue=3&rft.spage=4445&rft.epage=4457&rft_id=info:doi/10.1007%2Fs13369-023-08494-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_023_08494_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon