Subject-Wise Cognitive Load Detection Using Time–Frequency EEG and Bi-LSTM
Cognitive load detection using electroencephalogram (EEG) signals is a technique employed to understand and measure the mental workload or cognitive demands placed on an individual while performing a task. EEG is a noninvasive method that records fluctuations in brain activity at different cognitive...
Saved in:
Published in | Arabian journal for science and engineering (2011) Vol. 49; no. 3; pp. 4445 - 4457 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cognitive load detection using electroencephalogram (EEG) signals is a technique employed to understand and measure the mental workload or cognitive demands placed on an individual while performing a task. EEG is a noninvasive method that records fluctuations in brain activity at different cognitive load levels. The publicly available multi-arithmetic task EEG dataset was used. This study introduces a novel approach to detecting cognitive load by utilizing both the 1D-EEG signal and its various time–frequency (T–F) representations as 2D images. The signal underwent preprocessing, including artifact-free segmentation using filters and subsequent normalization, before being fed into a bidirectional long short-term memory (Bi-LSTM) model with different optimizers for classification. It was trained and fine-tuned to achieve high accuracy. Remarkably, our proposed method demonstrates promising performance even with short EEG segments as 4 s. Through 10-fold cross-validation, we achieved an accuracy (Ac%) of 99.55 and 99.88 using 5:5 and 8:2 data splits, respectively. Furthermore, this manuscript includes subject-wise cognitive load detection, providing valuable insights into individual cognitive processes. This approach enables targeted interventions, performance optimization, and mental health monitoring across various domains. For 36 subjects, an average Ac% of 85.22 was attained. Notably, the spectrogram T–F conversion-based 2D image, coupled with a Bi-LSTM classifier and Adam optimizer, outperformed previous state-of-the-art techniques in terms of evaluation metrics. |
---|---|
AbstractList | Cognitive load detection using electroencephalogram (EEG) signals is a technique employed to understand and measure the mental workload or cognitive demands placed on an individual while performing a task. EEG is a noninvasive method that records fluctuations in brain activity at different cognitive load levels. The publicly available multi-arithmetic task EEG dataset was used. This study introduces a novel approach to detecting cognitive load by utilizing both the 1D-EEG signal and its various time–frequency (T–F) representations as 2D images. The signal underwent preprocessing, including artifact-free segmentation using filters and subsequent normalization, before being fed into a bidirectional long short-term memory (Bi-LSTM) model with different optimizers for classification. It was trained and fine-tuned to achieve high accuracy. Remarkably, our proposed method demonstrates promising performance even with short EEG segments as 4 s. Through 10-fold cross-validation, we achieved an accuracy (Ac%) of 99.55 and 99.88 using 5:5 and 8:2 data splits, respectively. Furthermore, this manuscript includes subject-wise cognitive load detection, providing valuable insights into individual cognitive processes. This approach enables targeted interventions, performance optimization, and mental health monitoring across various domains. For 36 subjects, an average Ac% of 85.22 was attained. Notably, the spectrogram T–F conversion-based 2D image, coupled with a Bi-LSTM classifier and Adam optimizer, outperformed previous state-of-the-art techniques in terms of evaluation metrics. Cognitive load detection using electroencephalogram (EEG) signals is a technique employed to understand and measure the mental workload or cognitive demands placed on an individual while performing a task. EEG is a noninvasive method that records fluctuations in brain activity at different cognitive load levels. The publicly available multi-arithmetic task EEG dataset was used. This study introduces a novel approach to detecting cognitive load by utilizing both the 1D-EEG signal and its various time–frequency (T–F) representations as 2D images. The signal underwent preprocessing, including artifact-free segmentation using filters and subsequent normalization, before being fed into a bidirectional long short-term memory (Bi-LSTM) model with different optimizers for classification. It was trained and fine-tuned to achieve high accuracy. Remarkably, our proposed method demonstrates promising performance even with short EEG segments as 4 s. Through 10-fold cross-validation, we achieved an accuracy (Ac%) of 99.55 and 99.88 using 5:5 and 8:2 data splits, respectively. Furthermore, this manuscript includes subject-wise cognitive load detection, providing valuable insights into individual cognitive processes. This approach enables targeted interventions, performance optimization, and mental health monitoring across various domains. For 36 subjects, an average Ac% of 85.22 was attained. Notably, the spectrogram T–F conversion-based 2D image, coupled with a Bi-LSTM classifier and Adam optimizer, outperformed previous state-of-the-art techniques in terms of evaluation metrics. |
Author | Sharma, Diksha Yedukondalu, Jammisetty Sharma, Lakhan Dev |
Author_xml | – sequence: 1 givenname: Jammisetty surname: Yedukondalu fullname: Yedukondalu, Jammisetty organization: School of Electronics Engineering, VIT-AP University – sequence: 2 givenname: Diksha surname: Sharma fullname: Sharma, Diksha organization: Department of Nanoscience and Technology, Central University of Jharkhand – sequence: 3 givenname: Lakhan Dev surname: Sharma fullname: Sharma, Lakhan Dev email: devsharmalakhan@gmail.com organization: School of Electronics Engineering, VIT-AP University |
BookMark | eNp9kM1KAzEQx4NUsNa-gKeA52g-9iM5aq1VWPHQFr2FJJstKW22JluhN9_BN_RJ3HYFwUNPMzD_38zwOwc9X3sLwCXB1wTj_CYSxjKBMGUI80QkiJyAPiWCoIRy0jv0DKVZ_nYGhjE6jRPOREoI64NiutVLaxr06qKFo3rhXeM-LCxqVcJ727QjV3s4j84v4Myt7ffn10Ow71vrzQ6OxxOofAnvHCqms-cLcFqpVbTD3zoA84fxbPSIipfJ0-i2QIYR0SBdaq1KanFZZYrrXHNSco2zkuXCppqVotI4N4mgiaFpwjNicqUNN4ZoIjBnA3DV7d2Euv0kNnJZb4NvT0oqWM7SnB9StEuZUMcYbCU3wa1V2EmC5V6c7MTJVpw8iJOkhfg_yLhG7R00QbnVcZR1aGzv-IUNf18doX4AzD2EVw |
CitedBy_id | crossref_primary_10_3389_fnhum_2024_1357900 crossref_primary_10_1038_s41598_024_84429_6 crossref_primary_10_1007_s13369_024_09230_z crossref_primary_10_1088_2631_8695_ad9b6f crossref_primary_10_3390_s24237856 crossref_primary_10_1088_1361_6501_ad8df4 |
Cites_doi | 10.1109/JSEN.2019.2917850 10.1016/j.compbiomed.2020.103753 10.1007/s13369-022-06617-8 10.55730/1300-0632.4017 10.1109/TNSRE.2018.2884641 10.1016/j.compbiomed.2018.03.016 10.1007/s00521-022-07540-7 10.1109/TNSRE.2012.2236576 10.1007/s11042-022-14219-7 10.1016/j.bspc.2022.104006 10.1080/13803611.2014.997140 10.1007/s11517-017-1733-8 10.1016/j.neunet.2005.06.042 10.1109/JIOT.2022.3232481 10.3390/diagnostics13111936 10.1111/j.0001-5172.2004.00323.x 10.1146/annurev.bioeng.5.040202.121601 10.1016/j.bspc.2018.12.028 10.3390/data4010014 10.1016/j.bbe.2020.04.007 10.1007/s11760-021-01927-0 10.1207/S15326985EP3801_1 10.1016/j.dajour.2023.100211 10.1080/13682199.2023.2173543 10.1016/j.eswa.2022.116634 10.1155/2020/8860841 10.1016/j.smhl.2019.100085 10.1007/s13369-021-05695-4 10.1207/S15327108IJAP1201_2 10.1109/ACCESS.2017.2731784 10.1016/j.bbe.2020.04.004 10.1109/ACCESS.2017.2723622 10.1016/0003-6870(92)90152-L 10.1162/neco.1997.9.8.1735 10.1016/j.bspc.2018.08.035 10.1109/5.135376 10.1016/B978-0-12-815553-0.00013-6 10.1007/978-981-10-0266-3_4 10.1109/TCDS.2021.3090217 10.1109/ACCESS.2017.2787673 10.23919/ChiCC.2017.8029107 10.1145/1240866.1241057 10.1109/ic-ETITE47903.2020.401 10.1186/s40708-021-00133-5 10.1109/IRI54793.2022.00016 10.1002/eng2.12678 10.1109/ICASSP.2008.4518041 10.1109/CICT56698.2022.9997949 10.1016/j.bspc.2020.101989 10.3115/v1/P15-1033 10.1007/s13369-023-07786-w 10.3389/fnbot.2022.873239 10.1007/978-3-030-20473-0_22 10.1007/s10586-023-04008-8 10.1007/s11042-023-16138-7 10.1109/CW.2018.00056 10.1109/ICASSP.2018.8462243 10.1109/VLSIDCS47293.2020.9179949 10.3390/bioengineering10030361 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13369-023-08494-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 4457 |
ExternalDocumentID | 10_1007_s13369_023_08494_1 |
GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
ID | FETCH-LOGICAL-c319t-bdbbad2e0df6a8b7b81d8b06d379e5b3d9fb07c4924c254861c7abc8cc1b19083 |
ISSN | 2193-567X 1319-8025 |
IngestDate | Mon Jun 30 09:02:29 EDT 2025 Tue Jul 01 01:34:34 EDT 2025 Thu Apr 24 23:13:54 EDT 2025 Fri Feb 21 02:41:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Bi-LSTM Subject-wise Cognitive load T–F methods EEG |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-bdbbad2e0df6a8b7b81d8b06d379e5b3d9fb07c4924c254861c7abc8cc1b19083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2937357808 |
PQPubID | 2044268 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2937357808 crossref_primary_10_1007_s13369_023_08494_1 crossref_citationtrail_10_1007_s13369_023_08494_1 springer_journals_10_1007_s13369_023_08494_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian journal for science and engineering (2011) |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Bhatnagar, Khandelwal, Jain, Vyawahare (CR59) 2023; 7 CR39 Backs, Walrath (CR9) 1992; 23 CR35 Zhao, Mao, Chen (CR53) 2019; 47 Graves, Schmidhuber (CR52) 2005; 18 Roy, Malviya, Kumar, Mal, Kumar, Bhowmik, Hu (CR29) 2023; 13 CR31 Sharma, Bohat, Habib, Ala’M, Faris, Aljarah (CR47) 2022; 197 Dehzangi, Sahu, Rajendra, Taherisadr (CR43) 2019; 14 Paas, Renkl, Sweller (CR1) 2003; 38 Yedukondalu, Sharma (CR49) 2023; 31 Yaribeygi, Panahi, Sahraei, Johnston, Sahebkar (CR7) 2017; 16 CR6 Subhani, Mumtaz, Saad, Kamel, Malik (CR40) 2017; 5 CR5 CR8 Budak, Bajaj, Akbulut, Atila, Sengur (CR24) 2019; 19 CR45 Saini, Satija, Upadhayay (CR56) 2022; 10 Thakor, Tong (CR10) 2004; 6 CR41 Zhang, Wang, Zhang, Chen (CR22) 2018; 27 Gupta, Alam, Agarwal (CR48) 2020; 2020 Kang, Shin, Jung, Kim (CR62) 2021; 2021 Mühl, Jeunet, Lotte (CR4) 2014; 8 Martin (CR2) 2014; 20 Aldayel, Ykhlef, Al-Nafjan (CR11) 2021; 46 Malviya, Mal (CR21) 2022; 34 Zyma, Tukaev, Seleznov, Kiyono, Popov, Chernykh, Shpenkov (CR30) 2019; 4 CR19 Hochreiter, Schmidhuber (CR51) 1997; 9 CR18 CR58 CR13 CR57 CR12 Yenurkar, Mal (CR26) 2023; 82 Boashash (CR32) 1992; 80 CR55 Yedukondalu, Sharma (CR46) 2023; 79 CR54 Vakkuri, Yli-Hankala, Talja, Mustola, Tolvanen-Laakso, Sampson, Viertiö-Oja (CR33) 2004; 48 CR50 Kaya, Kuncan, Tekin (CR14) 2022; 47 Mazher, Aziz, Malik, Amin (CR3) 2017; 5 Al-Shargie, Tang, Badruddin, Kiguchi (CR17) 2018; 56 Wang, Sourina (CR16) 2013; 21 Sharma, Garg, Patidar, Tan, Acharya (CR38) 2020; 120 Yildirim (CR37) 2018; 96 Sharma, Saraswat, Sunkaria (CR42) 2021; 15 Wilson (CR15) 2002; 12 CR27 CR25 CR23 Hosny, Zhu, Gao, Fu (CR34) 2020; 40 Cheema, Singh (CR44) 2019; 49 CR20 Yenurkar, Mal (CR28) 2022; 70 CR61 Altuve, Lizarazo, Villamizar (CR36) 2020; 40 CR60 Q Wang (8494_CR16) 2013; 21 M Saini (8494_CR56) 2022; 10 8494_CR27 8494_CR25 8494_CR23 8494_CR20 M Altuve (8494_CR36) 2020; 40 P Zhang (8494_CR22) 2018; 27 8494_CR61 F Paas (8494_CR1) 2003; 38 8494_CR60 A Vakkuri (8494_CR33) 2004; 48 I Zyma (8494_CR30) 2019; 4 F Al-Shargie (8494_CR17) 2018; 56 8494_CR6 GK Yenurkar (8494_CR28) 2022; 70 8494_CR5 G Yenurkar (8494_CR26) 2023; 82 LD Sharma (8494_CR47) 2022; 197 M Mazher (8494_CR3) 2017; 5 8494_CR39 M Kang (8494_CR62) 2021; 2021 GF Wilson (8494_CR15) 2002; 12 8494_CR35 J Zhao (8494_CR53) 2019; 47 8494_CR31 Ö Yildirim (8494_CR37) 2018; 96 M Hosny (8494_CR34) 2020; 40 NV Thakor (8494_CR10) 2004; 6 A Graves (8494_CR52) 2005; 18 M Aldayel (8494_CR11) 2021; 46 J Yedukondalu (8494_CR46) 2023; 79 H Yaribeygi (8494_CR7) 2017; 16 Y Kaya (8494_CR14) 2022; 47 A Sharma (8494_CR38) 2020; 120 C Mühl (8494_CR4) 2014; 8 RW Backs (8494_CR9) 1992; 23 L Malviya (8494_CR21) 2022; 34 8494_CR8 B Boashash (8494_CR32) 1992; 80 8494_CR45 U Budak (8494_CR24) 2019; 19 J Yedukondalu (8494_CR49) 2023; 31 S Bhatnagar (8494_CR59) 2023; 7 8494_CR41 S Martin (8494_CR2) 2014; 20 LD Sharma (8494_CR42) 2021; 15 O Dehzangi (8494_CR43) 2019; 14 A Cheema (8494_CR44) 2019; 49 8494_CR18 8494_CR19 8494_CR58 AR Subhani (8494_CR40) 2017; 5 8494_CR12 8494_CR13 8494_CR57 8494_CR54 B Roy (8494_CR29) 2023; 13 8494_CR55 8494_CR50 R Gupta (8494_CR48) 2020; 2020 S Hochreiter (8494_CR51) 1997; 9 |
References_xml | – volume: 19 start-page: 7624 issue: 17 year: 2019 end-page: 7631 ident: CR24 article-title: An effective hybrid model for EEG-based drowsiness detection publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2917850 – volume: 120 year: 2020 ident: CR38 article-title: Automated pre-screening of arrhythmia using hybrid combination of Fourier-Bessel expansion and LSTM publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103753 – ident: CR45 – volume: 47 start-page: 10497 issue: 8 year: 2022 end-page: 10513 ident: CR14 article-title: A new approach for congestive heart failure and arrhythmia classification using angle transformation with lSTM publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-06617-8 – volume: 31 start-page: 771 issue: 5 year: 2023 end-page: 791 ident: CR49 article-title: Cognitive load detection using Ci-SSA for EEG signal decomposition and nature-inspired feature selection publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.55730/1300-0632.4017 – volume: 27 start-page: 31 issue: 1 year: 2018 end-page: 42 ident: CR22 article-title: Learning spatial-spectral-temporal EEG features with recurrent 3d convolutional neural networks for cross-task mental workload assessment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2884641 – ident: CR39 – volume: 96 start-page: 189 year: 2018 end-page: 202 ident: CR37 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.016 – ident: CR12 – volume: 34 start-page: 19819 issue: 22 year: 2022 end-page: 19830 ident: CR21 article-title: A novel technique for stress detection from EEG signal using hybrid deep learning model publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07540-7 – volume: 21 start-page: 225 issue: 2 year: 2013 end-page: 232 ident: CR16 article-title: Real-time mental arithmetic task recognition from EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2236576 – ident: CR35 – ident: CR54 – ident: CR61 – ident: CR8 – volume: 82 start-page: 22497 issue: 15 year: 2023 end-page: 22523 ident: CR26 article-title: Future forecasting prediction of covid-19 using hybrid deep learning algorithm publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-14219-7 – ident: CR58 – volume: 79 year: 2023 ident: CR46 article-title: Cognitive load detection using circulant singular spectrum analysis and binary Harris Hawks optimization based feature selection publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104006 – volume: 20 start-page: 592 issue: 7–8 year: 2014 end-page: 621 ident: CR2 article-title: Measuring cognitive load and cognition: metrics for technology-enhanced learning publication-title: Educ. Res. Eval. doi: 10.1080/13803611.2014.997140 – volume: 56 start-page: 125 year: 2018 end-page: 136 ident: CR17 article-title: Towards multilevel mental stress assessment using SVM with ECOC: an EEG approach publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-017-1733-8 – ident: CR25 – volume: 18 start-page: 602 issue: 5–6 year: 2005 end-page: 610 ident: CR52 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 – volume: 10 start-page: 8944 issue: 10 year: 2022 end-page: 8957 ident: CR56 article-title: DSCNN-CAU: deep-learning-based mental activity classification for IoT implementation toward portable BCI publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3232481 – ident: CR19 – volume: 13 start-page: 1936 issue: 11 year: 2023 ident: CR29 article-title: Hybrid deep learning approach for stress detection using decomposed EEG signals publication-title: Diagnostics doi: 10.3390/diagnostics13111936 – volume: 48 start-page: 145 issue: 2 year: 2004 end-page: 153 ident: CR33 article-title: Time–frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia publication-title: Acta Anaesthesiol. Scand. doi: 10.1111/j.0001-5172.2004.00323.x – ident: CR50 – volume: 16 start-page: 1057 year: 2017 ident: CR7 article-title: The impact of stress on body function: a review publication-title: EXCLI J. – volume: 6 start-page: 453 year: 2004 end-page: 495 ident: CR10 article-title: Advances in quantitative electroencephalogram analysis methods publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.5.040202.121601 – volume: 49 start-page: 493 year: 2019 end-page: 505 ident: CR44 article-title: Psychological stress detection using phonocardiography signal: An empirical mode decomposition approach publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.12.028 – volume: 4 start-page: 14 issue: 1 year: 2019 ident: CR30 article-title: Electroencephalograms during mental arithmetic task performance publication-title: Data doi: 10.3390/data4010014 – ident: CR57 – ident: CR60 – volume: 8 start-page: 114 year: 2014 ident: CR4 article-title: EEG-based workload estimation across affective contexts publication-title: Front. Neurosci. – ident: CR5 – volume: 40 start-page: 901 issue: 3 year: 2020 end-page: 909 ident: CR36 article-title: Human activity recognition using improved complete ensemble EMD with adaptive noise and long short-term memory neural networks publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.04.007 – volume: 15 start-page: 1821 issue: 8 year: 2021 end-page: 1828 ident: CR42 article-title: Cognitive performance detection using entropy-based features and lead-specific approach publication-title: SIViP doi: 10.1007/s11760-021-01927-0 – volume: 38 start-page: 1 issue: 1 year: 2003 end-page: 4 ident: CR1 article-title: Cognitive load theory and instructional design: recent developments publication-title: Educ. Psychol. doi: 10.1207/S15326985EP3801_1 – volume: 7 year: 2023 ident: CR59 article-title: A deep learning approach for assessing stress levels in patients using electroencephalogram signals publication-title: Decis. Anal. J. doi: 10.1016/j.dajour.2023.100211 – ident: CR18 – volume: 70 start-page: 535 issue: 8 year: 2022 end-page: 555 ident: CR28 article-title: Effective detection of COVID-19 outbreak in chest x-rays using fusionnet model publication-title: Imaging Sci. J. doi: 10.1080/13682199.2023.2173543 – volume: 197 year: 2022 ident: CR47 article-title: Evolutionary inspired approach for mental stress detection using EEG signal publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116634 – volume: 2020 start-page: 1 year: 2020 end-page: 14 ident: CR48 article-title: Modified support vector machine for detecting stress level using EEG signals publication-title: Comput. Intell. Neurosci. doi: 10.1155/2020/8860841 – volume: 14 year: 2019 ident: CR43 article-title: GSR-based distracted driving identification using discrete & continuous decomposition and wavelet packet transform publication-title: Smart Health doi: 10.1016/j.smhl.2019.100085 – volume: 46 start-page: 8983 issue: 9 year: 2021 end-page: 8997 ident: CR11 article-title: Consumers’ preference recognition based on brain-computer interfaces: advances, trends, and applications publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05695-4 – volume: 12 start-page: 3 issue: 1 year: 2002 end-page: 18 ident: CR15 article-title: An analysis of mental workload in pilots during flight using multiple psychophysiological measures publication-title: Int. J. Aviat. Psychol. doi: 10.1207/S15327108IJAP1201_2 – volume: 5 start-page: 14819 year: 2017 end-page: 14829 ident: CR3 article-title: An EEG-based cognitive load assessment in multimedia learning using feature extraction and partial directed coherence publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2731784 – ident: CR6 – ident: CR27 – ident: CR23 – volume: 2021 start-page: 1 year: 2021 end-page: 11 ident: CR62 article-title: Classification of mental stress using CNN-LSTM algorithms with electrocardiogram signals publication-title: J. Healthc. Eng. – volume: 40 start-page: 1052 issue: 3 year: 2020 end-page: 1063 ident: CR34 article-title: A novel deep LSTM network for artifacts detection in microelectrode recordings publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.04.004 – volume: 5 start-page: 13545 year: 2017 end-page: 13556 ident: CR40 article-title: Machine learning framework for the detection of mental stress at multiple levels publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2723622 – ident: CR31 – ident: CR13 – volume: 23 start-page: 243 issue: 4 year: 1992 end-page: 254 ident: CR9 article-title: Eye movement and pupillary response indices of mental workload during visual search of symbolic displays publication-title: Appl. Ergon. doi: 10.1016/0003-6870(92)90152-L – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR51 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: CR55 – ident: CR41 – volume: 47 start-page: 312 year: 2019 end-page: 323 ident: CR53 article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.08.035 – ident: CR20 – volume: 80 start-page: 520 issue: 4 year: 1992 end-page: 538 ident: CR32 article-title: Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals publication-title: Proc. IEEE doi: 10.1109/5.135376 – ident: 8494_CR31 doi: 10.1016/B978-0-12-815553-0.00013-6 – volume: 19 start-page: 7624 issue: 17 year: 2019 ident: 8494_CR24 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2917850 – volume: 34 start-page: 19819 issue: 22 year: 2022 ident: 8494_CR21 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07540-7 – volume: 40 start-page: 901 issue: 3 year: 2020 ident: 8494_CR36 publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.04.007 – volume: 23 start-page: 243 issue: 4 year: 1992 ident: 8494_CR9 publication-title: Appl. Ergon. doi: 10.1016/0003-6870(92)90152-L – volume: 12 start-page: 3 issue: 1 year: 2002 ident: 8494_CR15 publication-title: Int. J. Aviat. Psychol. doi: 10.1207/S15327108IJAP1201_2 – ident: 8494_CR41 doi: 10.1007/978-981-10-0266-3_4 – volume: 20 start-page: 592 issue: 7–8 year: 2014 ident: 8494_CR2 publication-title: Educ. Res. Eval. doi: 10.1080/13803611.2014.997140 – volume: 18 start-page: 602 issue: 5–6 year: 2005 ident: 8494_CR52 publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 – volume: 82 start-page: 22497 issue: 15 year: 2023 ident: 8494_CR26 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-14219-7 – volume: 31 start-page: 771 issue: 5 year: 2023 ident: 8494_CR49 publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.55730/1300-0632.4017 – volume: 5 start-page: 14819 year: 2017 ident: 8494_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2731784 – volume: 14 year: 2019 ident: 8494_CR43 publication-title: Smart Health doi: 10.1016/j.smhl.2019.100085 – ident: 8494_CR13 doi: 10.1109/TCDS.2021.3090217 – ident: 8494_CR6 doi: 10.1109/ACCESS.2017.2787673 – ident: 8494_CR23 doi: 10.23919/ChiCC.2017.8029107 – ident: 8494_CR8 doi: 10.1145/1240866.1241057 – volume: 6 start-page: 453 year: 2004 ident: 8494_CR10 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.5.040202.121601 – ident: 8494_CR39 doi: 10.1109/ic-ETITE47903.2020.401 – ident: 8494_CR57 doi: 10.1186/s40708-021-00133-5 – ident: 8494_CR55 doi: 10.1109/IRI54793.2022.00016 – volume: 8 start-page: 114 year: 2014 ident: 8494_CR4 publication-title: Front. Neurosci. – volume: 13 start-page: 1936 issue: 11 year: 2023 ident: 8494_CR29 publication-title: Diagnostics doi: 10.3390/diagnostics13111936 – volume: 40 start-page: 1052 issue: 3 year: 2020 ident: 8494_CR34 publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.04.004 – ident: 8494_CR27 doi: 10.1002/eng2.12678 – volume: 10 start-page: 8944 issue: 10 year: 2022 ident: 8494_CR56 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3232481 – volume: 70 start-page: 535 issue: 8 year: 2022 ident: 8494_CR28 publication-title: Imaging Sci. J. doi: 10.1080/13682199.2023.2173543 – volume: 80 start-page: 520 issue: 4 year: 1992 ident: 8494_CR32 publication-title: Proc. IEEE doi: 10.1109/5.135376 – volume: 46 start-page: 8983 issue: 9 year: 2021 ident: 8494_CR11 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05695-4 – volume: 21 start-page: 225 issue: 2 year: 2013 ident: 8494_CR16 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2236576 – volume: 96 start-page: 189 year: 2018 ident: 8494_CR37 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.016 – ident: 8494_CR5 doi: 10.1109/ICASSP.2008.4518041 – ident: 8494_CR45 doi: 10.1109/CICT56698.2022.9997949 – ident: 8494_CR58 doi: 10.1016/j.bspc.2020.101989 – ident: 8494_CR50 doi: 10.3115/v1/P15-1033 – ident: 8494_CR12 doi: 10.1007/s13369-023-07786-w – ident: 8494_CR61 doi: 10.3389/fnbot.2022.873239 – volume: 27 start-page: 31 issue: 1 year: 2018 ident: 8494_CR22 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2884641 – volume: 48 start-page: 145 issue: 2 year: 2004 ident: 8494_CR33 publication-title: Acta Anaesthesiol. Scand. doi: 10.1111/j.0001-5172.2004.00323.x – ident: 8494_CR19 doi: 10.1007/978-3-030-20473-0_22 – volume: 79 year: 2023 ident: 8494_CR46 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104006 – volume: 15 start-page: 1821 issue: 8 year: 2021 ident: 8494_CR42 publication-title: SIViP doi: 10.1007/s11760-021-01927-0 – ident: 8494_CR25 doi: 10.1007/s10586-023-04008-8 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 8494_CR51 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 38 start-page: 1 issue: 1 year: 2003 ident: 8494_CR1 publication-title: Educ. Psychol. doi: 10.1207/S15326985EP3801_1 – volume: 197 year: 2022 ident: 8494_CR47 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116634 – ident: 8494_CR35 doi: 10.1007/s11042-023-16138-7 – volume: 47 start-page: 10497 issue: 8 year: 2022 ident: 8494_CR14 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-06617-8 – volume: 47 start-page: 312 year: 2019 ident: 8494_CR53 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.08.035 – volume: 4 start-page: 14 issue: 1 year: 2019 ident: 8494_CR30 publication-title: Data doi: 10.3390/data4010014 – volume: 120 year: 2020 ident: 8494_CR38 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103753 – volume: 49 start-page: 493 year: 2019 ident: 8494_CR44 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.12.028 – volume: 56 start-page: 125 year: 2018 ident: 8494_CR17 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-017-1733-8 – ident: 8494_CR18 doi: 10.1109/CW.2018.00056 – volume: 2021 start-page: 1 year: 2021 ident: 8494_CR62 publication-title: J. Healthc. Eng. – ident: 8494_CR20 doi: 10.1109/ICASSP.2018.8462243 – volume: 5 start-page: 13545 year: 2017 ident: 8494_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2723622 – volume: 2020 start-page: 1 year: 2020 ident: 8494_CR48 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2020/8860841 – ident: 8494_CR54 doi: 10.1109/VLSIDCS47293.2020.9179949 – volume: 7 year: 2023 ident: 8494_CR59 publication-title: Decis. Anal. J. doi: 10.1016/j.dajour.2023.100211 – volume: 16 start-page: 1057 year: 2017 ident: 8494_CR7 publication-title: EXCLI J. – ident: 8494_CR60 doi: 10.3390/bioengineering10030361 |
SSID | ssib048395113 ssj0001916267 ssj0061873 |
Score | 2.363959 |
Snippet | Cognitive load detection using electroencephalogram (EEG) signals is a technique employed to understand and measure the mental workload or cognitive demands... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4445 |
SubjectTerms | Cognitive load Electroencephalography Engineering Humanities and Social Sciences multidisciplinary Research Article-Computer Engineering and Computer Science Science Time-frequency analysis |
Title | Subject-Wise Cognitive Load Detection Using Time–Frequency EEG and Bi-LSTM |
URI | https://link.springer.com/article/10.1007/s13369-023-08494-1 https://www.proquest.com/docview/2937357808 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZCeuGCQIAIlMoHbsVod72_xwSSVij00lSE08p_UaNWaZVskODEO3Dl6XgSZtb27hJaRLmsEifrTTyfxzP2zDeEvLJne1qwKBWaxSbULJdSM6N4qE0isFINRlucpMdn8ft5Mu_1fnSilraVfKO-3phX8j9ShTaQK2bJ3kGyTafQAK9BvnAFCcP1n2QMsx63UdjH5Qarz_lAoOmVwPDiytgy4DYqAHM9fGQDn6xtBPWXw_H4qD4_GC3Z9HT2oWurDtcCCckbcgkMSPRZQHiLaakM0U7FNb6zr_AJ1jAwPrW43LpoXECUqapmC_-0Js2udd7yYnMu_myfiotzeP4787m7NxHFbXCWVWGgDjlL0mxuVxvfBl5rZAu1eB1saUsd1nhHocaxZZt0izO8y25U_IFLhOY8LRjYIchXW8QsbJc5f7S_s_o1MYktfzP2UUIfZd1HCb71XgROSNQne8PJaHTi9VUMxiXYq7zd0wNbO6qLFjd_3OVp2WzN3R_3uy3UOjg7Z_K1qTN7SB44H4UOLeAekZ5ZPSbTLthoAzaKYKMN2GgNNopg-_ntewMzCjCjgBnqYPaEnE3Gs7fHzJXiYDBni4pJLaXQkQn0IhW5zCS4ObkMUs2zwiSS62Ihg0zF4M2rCJzgNFSZkCpXKpRgcub8KemvrlbmGaGSFzlSDOkCLFluojwJFgKGMVkgUbzKBiT0g1Iqx1OP5VIuy9slNCCHzT3XlqXlr9_e92Nduim0KcHszZD5KcgH5LUf__bj23t7fqdnvyD324myT_rVemtegllbyQOHrgNy72ge_gJKLJgA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Wise+Cognitive+Load+Detection+Using+Time%E2%80%93Frequency+EEG+and+Bi-LSTM&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Yedukondalu%2C+Jammisetty&rft.au=Sharma%2C+Diksha&rft.au=Sharma%2C+Lakhan+Dev&rft.date=2024-03-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=49&rft.issue=3&rft.spage=4445&rft.epage=4457&rft_id=info:doi/10.1007%2Fs13369-023-08494-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_023_08494_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |