Two-phase analysis on radiative solar pump applications using MHD Eyring–Powell hybrid nanofluid flow with the non-Fourier heat flux model

This analysis aims to determine the two-phase analysis of thermal transmission on MHD Eyring–Powell dusty hybrid nanofluid flow over a stretching cylinder with non-Fourier heat flux model and the influence of a uniform heat source and thermal radiation. The hybrid nanofluid was formulated by the mix...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering mathematics Vol. 144; no. 1
Main Authors Reddy, Seethi Reddy Reddisekhar, Jakeer, Shaik, Rupa, Maduru Lakshmi, Sekhar, Kuppala R.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-0833
1573-2703
DOI10.1007/s10665-023-10306-2

Cover

Loading…
Abstract This analysis aims to determine the two-phase analysis of thermal transmission on MHD Eyring–Powell dusty hybrid nanofluid flow over a stretching cylinder with non-Fourier heat flux model and the influence of a uniform heat source and thermal radiation. The hybrid nanofluid was formulated by the mixture of Silicone oil-based Iron Oxide ( Fe 3 O 4 ) and Silver (Ag) nanoparticles flow properties after the mechanism has been filled with dusty particles. The increasing demand for sustainable sources of heat and electricity has inspired significant interest towards the conversion of solar radiation into thermal energy. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. The non-linear equations for the velocity, energy, skin friction coefficient, and Nusselt number are solved using Bvp4c with MATLAB solver. Tables and graphs are used to show how essential parameters affect fluid transport properties. The temperature profile is decreased with greater Eyring–Powell fluid parameter values. The curvature parameter is intensified for the higher values of the velocity profile. The temperature is influenced by increasing values in the thermal radiation, while it is reduced by rising values in the thermal relaxation parameter. Increasing the value of the curvature parameter leads to a reduction in the skin friction factor. It is revealed that improving the values of the fluid–particle interaction for temperature and curvature parameter decrements for the Nusselt number.
AbstractList This analysis aims to determine the two-phase analysis of thermal transmission on MHD Eyring–Powell dusty hybrid nanofluid flow over a stretching cylinder with non-Fourier heat flux model and the influence of a uniform heat source and thermal radiation. The hybrid nanofluid was formulated by the mixture of Silicone oil-based Iron Oxide (Fe3O4) and Silver (Ag) nanoparticles flow properties after the mechanism has been filled with dusty particles. The increasing demand for sustainable sources of heat and electricity has inspired significant interest towards the conversion of solar radiation into thermal energy. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. The non-linear equations for the velocity, energy, skin friction coefficient, and Nusselt number are solved using Bvp4c with MATLAB solver. Tables and graphs are used to show how essential parameters affect fluid transport properties. The temperature profile is decreased with greater Eyring–Powell fluid parameter values. The curvature parameter is intensified for the higher values of the velocity profile. The temperature is influenced by increasing values in the thermal radiation, while it is reduced by rising values in the thermal relaxation parameter. Increasing the value of the curvature parameter leads to a reduction in the skin friction factor. It is revealed that improving the values of the fluid–particle interaction for temperature and curvature parameter decrements for the Nusselt number.
This analysis aims to determine the two-phase analysis of thermal transmission on MHD Eyring–Powell dusty hybrid nanofluid flow over a stretching cylinder with non-Fourier heat flux model and the influence of a uniform heat source and thermal radiation. The hybrid nanofluid was formulated by the mixture of Silicone oil-based Iron Oxide ( Fe 3 O 4 ) and Silver (Ag) nanoparticles flow properties after the mechanism has been filled with dusty particles. The increasing demand for sustainable sources of heat and electricity has inspired significant interest towards the conversion of solar radiation into thermal energy. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. The non-linear equations for the velocity, energy, skin friction coefficient, and Nusselt number are solved using Bvp4c with MATLAB solver. Tables and graphs are used to show how essential parameters affect fluid transport properties. The temperature profile is decreased with greater Eyring–Powell fluid parameter values. The curvature parameter is intensified for the higher values of the velocity profile. The temperature is influenced by increasing values in the thermal radiation, while it is reduced by rising values in the thermal relaxation parameter. Increasing the value of the curvature parameter leads to a reduction in the skin friction factor. It is revealed that improving the values of the fluid–particle interaction for temperature and curvature parameter decrements for the Nusselt number.
ArticleNumber 7
Author Jakeer, Shaik
Rupa, Maduru Lakshmi
Reddy, Seethi Reddy Reddisekhar
Sekhar, Kuppala R.
Author_xml – sequence: 1
  givenname: Seethi Reddy Reddisekhar
  surname: Reddy
  fullname: Reddy, Seethi Reddy Reddisekhar
  organization: Department of Mathematics, Koneru Lakshmaiah Education Foundation
– sequence: 2
  givenname: Shaik
  surname: Jakeer
  fullname: Jakeer, Shaik
  email: shaik_j@apollouniversity.edu.in
  organization: School of Technology, The Apollo University
– sequence: 3
  givenname: Maduru Lakshmi
  surname: Rupa
  fullname: Rupa, Maduru Lakshmi
  organization: Department of Mathematics, S.A.S., Vellore Institute of Technology
– sequence: 4
  givenname: Kuppala R.
  surname: Sekhar
  fullname: Sekhar, Kuppala R.
  organization: School of Technology, The Apollo University
BookMark eNp9kM9O3DAQh60KpC5LX6AnS5xdxuONnRwr_pRKoHKAs-UkTmPkjYOddNlbH4Bb37BPUi-LhNQDJ488841-8x2RgyEMlpDPHL5wAHWaOEhZMEDBOAiQDD-QBS-UYKhAHJAFACKDUoiP5CilBwCoyhUuyPPdJrCxN8lSMxi_TS7RMNBoWmcm98vSFLyJdJzXIzXj6F2Tv8OQ6Jzc8JPeXJ3Ti23M5d_ff27DxnpP-20dXUsHM4TOz7nqfNjQjZt6OvWW5uTsMszR2Uh7a6bcnp_oOrTWH5PDzvhkP72-S3J_eXF3dsWuf3z7fvb1mjWCVxOr67qQtUGDXIkCFbcoUQlZtUbVBZZKAbarlagKbFreVGXVoiy55V1nGqVqsSQn-71jDI-zTZN-yIHy-UljBSsJhcwml6TcTzUxpBRtpxs3vVw_ReO85qB37vXevc6EfnGvdyj-h47RrU3cvg-JPZTGnVAb31K9Q_0DfFObOQ
CitedBy_id crossref_primary_10_1007_s12668_024_01524_8
crossref_primary_10_1016_j_csite_2024_104988
crossref_primary_10_1007_s10665_024_10369_9
crossref_primary_10_1016_j_jrras_2025_101334
Cites_doi 10.1080/17455030.2022.2066734
10.1177/09544062221130018
10.1177/09544089221115271
10.1016/j.cjph.2021.12.012
10.1038/s41598-021-81747-x
10.1038/154427a0
10.3389/fphy.2022.920372
10.1615/SpecialTopicsRevPorousMedia.2021035431
10.1016/j.arabjc.2023.104698
10.1007/s10973-020-10210-2
10.1016/j.icheatmasstransfer.2022.106180
10.1007/s10973-020-10234-8
10.1016/j.molliq.2022.119608
10.1103/PhysRevE.75.026403
10.1038/s41598-021-99269-x
10.1016/j.csite.2023.102838
10.1007/s40819-022-01444-9
10.1177/0958305X211073806
10.1016/j.icheatmasstransfer.2022.106413
10.1016/j.csite.2021.101160
10.1140/epjp/s13360-022-03313-2
10.1016/j.cjph.2021.09.015
10.1016/j.aej.2022.03.069
10.1038/s41598-022-23025-y
10.3390/nano12234177
10.1016/j.csite.2021.100932
10.1080/17455030.2022.2089369
10.1080/17455030.2022.2150333
10.1177/09544089211048993
10.1140/epjp/s13360-022-02361-y
10.3390/math10162877
10.1007/s10973-021-10983-0
10.1177/09544089231153356
10.1016/j.pnsc.2018.09.003
10.1038/s41598-022-22308-8
10.1016/j.csite.2022.102358
10.1016/j.csite.2022.102140
10.1016/j.csite.2020.100689
10.3390/pr10061065
10.1016/j.finmec.2023.100177
10.1016/j.icheatmasstransfer.2021.105671
10.1177/09544062211072457
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10665-023-10306-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1573-2703
ExternalDocumentID 10_1007_s10665_023_10306_2
GrantInformation_xml – fundername: Center for Computational Modeling, Chennai Institute of Technology, India
  grantid: CIT/CCM/2023/RP/017
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z86
Z8M
Z8S
ZMTXR
ZWQNP
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-bbb56ba2a21735271e2627369da7b5287702d443952cd1c989d2681e1ffac77b3
IEDL.DBID U2A
ISSN 0022-0833
IngestDate Fri Jul 25 11:16:59 EDT 2025
Tue Jul 01 03:43:57 EDT 2025
Thu Apr 24 22:59:26 EDT 2025
Fri Feb 21 02:40:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Powell–Eyring
Non-Fourier heat flux
Duty fluid
Solar energy
thermal radiation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bbb56ba2a21735271e2627369da7b5287702d443952cd1c989d2681e1ffac77b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2904605602
PQPubID 2043778
ParticipantIDs proquest_journals_2904605602
crossref_citationtrail_10_1007_s10665_023_10306_2
crossref_primary_10_1007_s10665_023_10306_2
springer_journals_10_1007_s10665_023_10306_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of engineering mathematics
PublicationTitleAbbrev J Eng Math
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Vajravelu, Prasad, Santhi (CR43) 2012; 219
Bhattacharyya, Sharma, Hussain (CR4) 2022; 77
CR14
CR13
Jakeer, Reddy (CR25) 2022; 236
Javed, Faisal, Ahmad, Faisal (CR36) 2020; 21
Roy, Hossain, Pop (CR27) 2022; 77
CR31
Islam, Pasha, Jamshed (CR37) 2022; 138
Sajid, Jamshed, Safdar (CR28) 2022; 136
Arshad, Hassan, Haider (CR39) 2022; 12
Rehman, Fatima, Ali (CR23) 2022; 10
Ramzan, Shaheen, Chung (CR42) 2021; 11
Chu, Jakeer, Reddy (CR32) 2023; 44
Garvandha, Nagaraju, Kumar, Chamkha (CR26) 2022; 8
Fortov, Vaulina, Petrov (CR18) 2007; 75
Jakeer, Anki Reddy (CR11) 2021; 12
Arshad, Hussain, Hassan (CR33) 2022; 36
Hussain, Ali, Ghaffar, Inc (CR2) 2022; 147
Jamshed, Eid, Al-Hossainy (CR7) 2022; 12
Ahmad, Ali, Rizwan, Ashraf (CR20) 2021; 25
CR5
Waqas, Gulshan, Asghar (CR15) 2021; 143
CR8
Shaik, Polu, Mohamed Ahmed, Ahmed Mohamed (CR10) 2022; 137
Arshad, Hussain, Shah (CR3) 2022; 61
CR9
Salawu, Obalalu, Fatunmbi, Oderinu (CR16) 2022; 361
Hassan, Hussain, Arshad (CR19) 2022; 10
Hussain, Jamshed (CR40) 2021; 129
Tao, Shu, Zhang (CR1) 2018; 28
CR24
Jamshed, Uma Devi, Goodarzi (CR30) 2021; 26
Jakeer, Reddy, Rashad (CR12) 2023; 10
El Din, Darvesh, Ayub (CR17) 2022; 12
CR21
Aziz, Jamshed, Aziz (CR35) 2021; 143
CR41
Powell, Eyring (CR34) 1944; 154
Umeshaiah, Madhukesh, Khan (CR22) 2022; 10
Hussain (CR29) 2022; 12
Arshad, Hassan (CR38) 2022; 137
Bouslimi, Alkathiri, Althagafi (CR6) 2022; 39
SM El Din (10306_CR17) 2022; 12
T Sajid (10306_CR28) 2022; 136
SM Hussain (10306_CR29) 2022; 12
P Tao (10306_CR1) 2018; 28
VE Fortov (10306_CR18) 2007; 75
M Garvandha (10306_CR26) 2022; 8
W Jamshed (10306_CR7) 2022; 12
YM Chu (10306_CR32) 2023; 44
S Ahmad (10306_CR20) 2021; 25
SO Salawu (10306_CR16) 2022; 361
SU Rehman (10306_CR23) 2022; 10
M Arshad (10306_CR39) 2022; 12
S Jakeer (10306_CR25) 2022; 236
10306_CR9
10306_CR31
SM Hussain (10306_CR40) 2021; 129
10306_CR8
T Javed (10306_CR36) 2020; 21
10306_CR5
10306_CR13
10306_CR14
M Arshad (10306_CR3) 2022; 61
J Bouslimi (10306_CR6) 2022; 39
M Waqas (10306_CR15) 2021; 143
K Vajravelu (10306_CR43) 2012; 219
M Ramzan (10306_CR42) 2021; 11
RE Powell (10306_CR34) 1944; 154
M Arshad (10306_CR38) 2022; 137
M Arshad (10306_CR33) 2022; 36
A Bhattacharyya (10306_CR4) 2022; 77
NC Roy (10306_CR27) 2022; 77
A Aziz (10306_CR35) 2021; 143
A Hassan (10306_CR19) 2022; 10
J Shaik (10306_CR10) 2022; 137
M Hussain (10306_CR2) 2022; 147
W Jamshed (10306_CR30) 2021; 26
M Umeshaiah (10306_CR22) 2022; 10
N Islam (10306_CR37) 2022; 138
S Jakeer (10306_CR12) 2023; 10
10306_CR21
S Jakeer (10306_CR11) 2021; 12
10306_CR41
10306_CR24
References_xml – volume: 39
  year: 2022
  ident: CR6
  article-title: Thermal properties, flow and comparison between Cu and Ag nanoparticles suspended in sodium alginate as Sutterby nanofluids in solar collector
  publication-title: Case Stud Therm Eng
– volume: 10
  year: 2023
  ident: CR12
  article-title: Nonlinear analysis of Darcy–Forchheimer flow in EMHD ternary hybrid nanofluid (Cu–CNT–Ti/water) with radiation effect
  publication-title: Forces Mech
– volume: 10
  start-page: 1
  year: 2022
  end-page: 16
  ident: CR19
  article-title: Insight into the significance of viscous dissipation and heat generation/absorption in magneto-hydrodynamic radiative Casson fluid flow with first-order chemical reaction
  publication-title: Front Phys
– volume: 10
  start-page: 1065
  year: 2022
  ident: CR22
  article-title: Dusty nanoliquid flow through a stretching cylinder in a porous medium with the influence of the melting effect
  publication-title: Process
– volume: 28
  start-page: 554
  year: 2018
  end-page: 562
  ident: CR1
  article-title: Silicone oil-based solar-thermal fluids dispersed with PDMS-modified Fe3O4@graphene hybrid nanoparticles
  publication-title: Prog Nat Sci Mater Int
– volume: 77
  start-page: 1278
  year: 2022
  end-page: 1290
  ident: CR4
  article-title: A numerical and statistical approach to capture the flow characteristics of Maxwell hybrid nanofluid containing copper and graphene nanoparticles
  publication-title: Chin J Phys
– volume: 12
  start-page: 1
  year: 2022
  end-page: 20
  ident: CR39
  article-title: Rotating hybrid nanofluid flow with chemical reaction and thermal radiation between parallel plates
  publication-title: Nanomaterials
– volume: 12
  start-page: 1
  year: 2022
  end-page: 23
  ident: CR7
  article-title: Experimental and TDDFT materials simulation of thermal characteristics and entropy optimized of Williamson Cu-methanol and Al O -methanol nanofluid flowing through solar collector
  publication-title: Sci Rep
– ident: CR14
– volume: 26
  year: 2021
  ident: CR30
  article-title: Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: an optimal case study
  publication-title: Case Stud Therm Eng
– volume: 236
  start-page: 1
  year: 2022
  end-page: 14
  ident: CR25
  article-title: Entropy generation on the variable magnetic field and magnetohydrodynamic stagnation point flow of Eyring–Powell hybrid dusty nanofluid: solar thermal application
  publication-title: Proc Inst Mech Eng Part C J Mech Eng Sci
– volume: 137
  start-page: 1
  year: 2022
  end-page: 13
  ident: CR38
  article-title: A numerical study on the hybrid nanofluid flow between a permeable rotating system
  publication-title: Eur Phys J Plus
– volume: 143
  start-page: 2577
  year: 2021
  end-page: 2584
  ident: CR15
  article-title: Visualization of stratification based Eyring–Powell material flow capturing nonlinear convection effects
  publication-title: J Therm Anal Calorim
– volume: 61
  start-page: 10453
  year: 2022
  end-page: 10462
  ident: CR3
  article-title: Thermal energy investigation of magneto-hydrodynamic nano-material liquid flow over a stretching sheet: comparison of single and composite particles
  publication-title: Alexandria Eng J
– volume: 12
  start-page: 91
  year: 2021
  end-page: 107
  ident: CR11
  article-title: Competence of magnetic dipole and radiation on permeable surface using prescribed heat flux/prescribed surface temperature and homogeneousheterogeneous reactions
  publication-title: Spec Top Rev Porous Media
– ident: CR8
– volume: 12
  start-page: 1
  year: 2022
  end-page: 23
  ident: CR29
  article-title: Dynamics of radiative Williamson hybrid nanofluid with entropy generation: significance in solar aircraft
  publication-title: Sci Rep
– volume: 138
  year: 2022
  ident: CR37
  article-title: On Powell–Eyring hybridity nanofluidic flow based carboxy-methyl-cellulose (CMC) with solar thermal radiation: a quadratic regression estimation
  publication-title: Int Commun Heat Mass Transf
– volume: 10
  start-page: 2877
  year: 2022
  ident: CR23
  article-title: The Casson dusty nanofluid: significance of Darcy–Forchheimer law, magnetic field, and non-Fourier heat flux model subject to stretch surface
  publication-title: Mathematics
– volume: 129
  year: 2021
  ident: CR40
  article-title: A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: implementing finite difference method
  publication-title: Int Commun Heat Mass Transf
– ident: CR21
– volume: 75
  start-page: 26403
  year: 2007
  ident: CR18
  article-title: Experimental study of the heat transport processes in dusty plasma fluid
  publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys
– volume: 154
  start-page: 427
  year: 1944
  end-page: 428
  ident: CR34
  article-title: Mechanisms for the relaxation theory of viscosity
  publication-title: Nature
– volume: 147
  start-page: 6959
  year: 2022
  end-page: 6969
  ident: CR2
  article-title: Squeezing flow of Casson fluid between two circular plates under the impact of solar radiation
  publication-title: J Therm Anal Calorim
– volume: 25
  year: 2021
  ident: CR20
  article-title: Case studies in thermal engineering heat and mass transfer attributes of copper–aluminum oxide hybrid nanoparticles flow through a porous medium
  publication-title: Case Stud Therm Eng
– volume: 77
  start-page: 1342
  year: 2022
  end-page: 1356
  ident: CR27
  article-title: Flow and heat transfer of MHD dusty hybrid nanofluids over a shrinking sheet
  publication-title: Chin J Phys
– volume: 44
  year: 2023
  ident: CR32
  article-title: Double diffusion effect on the bio-convective magnetized flow of tangent hyperbolic liquid by a stretched nano-material with Arrhenius catalysts
  publication-title: Case Stud Therm Eng
– ident: CR31
– ident: CR13
– volume: 137
  start-page: 1
  year: 2022
  end-page: 16
  ident: CR10
  article-title: Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid
  publication-title: Eur Phys J Plus
– ident: CR9
– volume: 11
  start-page: 1
  year: 2021
  end-page: 19
  ident: CR42
  article-title: Impact of Newtonian heating and Fourier and Fick’s laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder
  publication-title: Sci Rep
– volume: 8
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR26
  article-title: Study of different heating effects on two-phase flow of magnetized couple stresses over a permeable stretching cylinder with velocity slip and radiation
  publication-title: Int J Appl Comput Math
– ident: CR5
– volume: 361
  year: 2022
  ident: CR16
  article-title: Thermal Prandtl–Eyring hybridized MoS -SiO /C H O and SiO –C H O nanofluids for effective solar energy absorber and entropy optimization: a solar water pump implementation
  publication-title: J Mol Liq
– volume: 136
  year: 2022
  ident: CR28
  article-title: Features and aspects of radioactive flow and slippage velocity on rotating two-phase Prandtl nanofluid with zero mass fluxing and convective constraints
  publication-title: Int Commun Heat Mass Transf
– volume: 12
  start-page: 1
  year: 2022
  end-page: 18
  ident: CR17
  article-title: Quadratic multiple regression model and spectral relaxation approach for Carreau nanofluid inclined magnetized dipole along stagnation point geometry
  publication-title: Sci Rep
– volume: 143
  start-page: 1331
  year: 2021
  end-page: 1343
  ident: CR35
  article-title: Features and aspects of radioactive flow and slippage velocity on rotating two-phase Prandtl nanofluid with zero mass fluxing and convective constraints
  publication-title: J Therm Anal Calorim
– ident: CR41
– ident: CR24
– volume: 21
  year: 2020
  ident: CR36
  article-title: Dynamisms of solar radiation and prescribed heat sources on bidirectional flow of magnetized Eyring–Powell nanofluid
  publication-title: Case Stud Therm Eng
– volume: 36
  year: 2022
  ident: CR33
  article-title: Heat and mass transfer analysis above an unsteady infinite porous surface with chemical reaction
  publication-title: Case Stud Therm Eng
– volume: 219
  start-page: 3993
  year: 2012
  end-page: 4005
  ident: CR43
  article-title: Axisymmetric magneto-hydrodynamic (MHD) flow and heat transfer at a non-isothermal stretching cylinder
  publication-title: Appl Math Comput
– volume: 219
  start-page: 3993
  year: 2012
  ident: 10306_CR43
  publication-title: Appl Math Comput
– ident: 10306_CR5
  doi: 10.1080/17455030.2022.2066734
– ident: 10306_CR9
  doi: 10.1177/09544062221130018
– ident: 10306_CR21
  doi: 10.1177/09544089221115271
– volume: 77
  start-page: 1342
  year: 2022
  ident: 10306_CR27
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2021.12.012
– volume: 11
  start-page: 1
  year: 2021
  ident: 10306_CR42
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-81747-x
– volume: 154
  start-page: 427
  year: 1944
  ident: 10306_CR34
  publication-title: Nature
  doi: 10.1038/154427a0
– volume: 10
  start-page: 1
  year: 2022
  ident: 10306_CR19
  publication-title: Front Phys
  doi: 10.3389/fphy.2022.920372
– volume: 12
  start-page: 91
  year: 2021
  ident: 10306_CR11
  publication-title: Spec Top Rev Porous Media
  doi: 10.1615/SpecialTopicsRevPorousMedia.2021035431
– ident: 10306_CR24
  doi: 10.1016/j.arabjc.2023.104698
– volume: 143
  start-page: 1331
  year: 2021
  ident: 10306_CR35
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-10210-2
– volume: 136
  year: 2022
  ident: 10306_CR28
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106180
– volume: 143
  start-page: 2577
  year: 2021
  ident: 10306_CR15
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-10234-8
– volume: 361
  year: 2022
  ident: 10306_CR16
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2022.119608
– volume: 75
  start-page: 26403
  year: 2007
  ident: 10306_CR18
  publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys
  doi: 10.1103/PhysRevE.75.026403
– volume: 12
  start-page: 1
  year: 2022
  ident: 10306_CR29
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-99269-x
– volume: 44
  year: 2023
  ident: 10306_CR32
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2023.102838
– volume: 8
  start-page: 1
  year: 2022
  ident: 10306_CR26
  publication-title: Int J Appl Comput Math
  doi: 10.1007/s40819-022-01444-9
– ident: 10306_CR14
  doi: 10.1177/0958305X211073806
– volume: 138
  year: 2022
  ident: 10306_CR37
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106413
– volume: 26
  year: 2021
  ident: 10306_CR30
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.101160
– volume: 137
  start-page: 1
  year: 2022
  ident: 10306_CR38
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-022-03313-2
– volume: 77
  start-page: 1278
  year: 2022
  ident: 10306_CR4
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2021.09.015
– volume: 61
  start-page: 10453
  year: 2022
  ident: 10306_CR3
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2022.03.069
– volume: 12
  start-page: 1
  year: 2022
  ident: 10306_CR7
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-23025-y
– volume: 12
  start-page: 1
  year: 2022
  ident: 10306_CR39
  publication-title: Nanomaterials
  doi: 10.3390/nano12234177
– volume: 25
  year: 2021
  ident: 10306_CR20
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.100932
– ident: 10306_CR41
  doi: 10.1080/17455030.2022.2089369
– ident: 10306_CR8
  doi: 10.1080/17455030.2022.2150333
– ident: 10306_CR31
  doi: 10.1177/09544089211048993
– volume: 137
  start-page: 1
  year: 2022
  ident: 10306_CR10
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-022-02361-y
– volume: 10
  start-page: 2877
  year: 2022
  ident: 10306_CR23
  publication-title: Mathematics
  doi: 10.3390/math10162877
– volume: 147
  start-page: 6959
  year: 2022
  ident: 10306_CR2
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-021-10983-0
– ident: 10306_CR13
  doi: 10.1177/09544089231153356
– volume: 28
  start-page: 554
  year: 2018
  ident: 10306_CR1
  publication-title: Prog Nat Sci Mater Int
  doi: 10.1016/j.pnsc.2018.09.003
– volume: 12
  start-page: 1
  year: 2022
  ident: 10306_CR17
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-22308-8
– volume: 39
  year: 2022
  ident: 10306_CR6
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.102358
– volume: 36
  year: 2022
  ident: 10306_CR33
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.102140
– volume: 21
  year: 2020
  ident: 10306_CR36
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2020.100689
– volume: 10
  start-page: 1065
  year: 2022
  ident: 10306_CR22
  publication-title: Process
  doi: 10.3390/pr10061065
– volume: 10
  year: 2023
  ident: 10306_CR12
  publication-title: Forces Mech
  doi: 10.1016/j.finmec.2023.100177
– volume: 129
  year: 2021
  ident: 10306_CR40
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2021.105671
– volume: 236
  start-page: 1
  year: 2022
  ident: 10306_CR25
  publication-title: Proc Inst Mech Eng Part C J Mech Eng Sci
  doi: 10.1177/09544062211072457
SSID ssj0009842
Score 2.3636281
Snippet This analysis aims to determine the two-phase analysis of thermal transmission on MHD Eyring–Powell dusty hybrid nanofluid flow over a stretching cylinder with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Coefficient of friction
Computational Mathematics and Numerical Analysis
Curvature
Fluid flow
Friction factor
Heat
Heat flux
Heat transfer
Heat transmission
Iron oxides
Magnetohydrodynamics
Mathematical and Computational Engineering
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Nanofluids
Nonlinear equations
Nonlinear systems
Nusselt number
Parameters
Particle interactions
Radiation
Skin friction
Solar radiation
Temperature profiles
Theoretical and Applied Mechanics
Thermal energy
Thermal radiation
Thermal relaxation
Transport properties
Velocity distribution
Title Two-phase analysis on radiative solar pump applications using MHD Eyring–Powell hybrid nanofluid flow with the non-Fourier heat flux model
URI https://link.springer.com/article/10.1007/s10665-023-10306-2
https://www.proquest.com/docview/2904605602
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELYQLDDwj_jXDWxgKUltJx5baKlARQxUgilynASGKqmaVtCNB2DjDXkSzqnTFgRITElkxx4-3_nOd_eZkBOXq0RylDR01ALKNBdUOnFKHc21SFXMWMmu37kR7S67uuf3tiisqLLdq5Bkqannit2EMNXEJpcKDV2KineJo-9u1nXXq8-odgM25QhHA6NmS2V-HuPrdjSzMb-FRcvdprVOVq2ZCPUJrhtkIck2yZo1GcEKZLFJVub4BPGrMyVhLbbI291zTvtPuE2BstQjkGcwMGwERslBYdxa6COgMB_HBpML_wid9gU0x2bgj9f329wc8sHT2BR4QaayPO2N8C3t5c9gznIBJ4Ysz2hrcgkeGCWPzaMXKC_b2SbdVvPuvE3t5QtUo1QOaRRFXETKU-izoJHmu4kn0NQRMlZ-xNHP8h0PkaxJ7unY1TKQsScCN3HTVGnfj2o7ZBFnTXYJBIbEj8dSJK5mXPnScRIm01S4OmaBkHvErTAItWUmNxdk9MIZp7LBLUTcwhK30Nsjp9N_-hNejj97H1bQhlZGi9CTZVBYONh8VsE9a_59tP3_dT8gy7hK2STV-5AsDgej5AgtmWF0TJbqrUbjxjwvH66bx-VC_gRMbe0T
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5V2wNwoFBAFEo7B27gKsnaTnys6G63P1tx2JXKKXKcpJVYJatmV_058QDceEOepOPE2V0qQOotkR0nkWc839gz3wB89IXOlCBNI0ctYtwIyZSX5swzwshcp5zX7PrDMzkY8-Nzce6Swqo22r09kqxX6pVkNyltNrGNpSKgy2jhXefkg4sOrO8ffjvpLcl2I75gCSeI0XXJMn8f5U-DtESZDw5Ga3vT34Bx-6VNmMn3vfks2TN3D0gcH_srL-C5A6C430jMS1jLik3YcGAUnapXm_BshamQ7oYLetfqFfwcXZdsekkGELUjNcGywCvLc2CXT6ysw4xTEhVcPSFHG2V_gcPBAfZu7cC_f_z6WtrtQ7y8taljWOiizCdzuson5TXaXWKkF2NRFqzflNdDaz6oeX6DdRmf1zDu90ZfBsyVdWCG9H3GkiQRMtGBJm-I4F_oZ4EkECVVqsNEkAcXegHJSFeJwKS-UZFKAxn5mZ_n2oRh0n0DHXpr9hYwsvSAIlUy8w0XOlSel3GV59I3KY-k2gK_ndvYOM5zW3pjEi_Zmu1UxDQVcT0VcbAFnxbPTBvGj__23m5FJnbaX8WBqo-bpUfNn1sJWDb_e7R3j-u-C08Go-FpfHp0dvIengaEt5qA8m3ozK7m2QfCS7Nkx6nHPZmWCfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQSAgG3og3N7CBRezGTjwioCqPIgYqsUWOE9OhSiraCtj4AWz8Q34J5yR9gACJLZEde_hy58--u8-EHDChUyXQ0nCjFlLfCEmVl1jqGWGk1YnvF-r6zRvZaPmX9-J-ooq_yHYfhiTLmgan0pT1j7uJPZ4ofJPSVRa7vCokvRSd8Ay6Y-aSulr8ZCy7G_ojvXAkG7WqbObnMb4uTWO--S1EWqw89SWyUFFGOCkxXiZTabZCFiv6CJVx9lbI_IS2IL41R4KsvVXydveU024blyzQlQwJ5Bk8OmUC5_Cg57a40EVwYTKmDS4v_gGajTM4f3EDf7y-3-buwA_aL67YCzKd5bYzwCfbyZ_AnesCTgxZntF6eSEeOIePzYNnKC7eWSOt-vndaYNWFzFQgxbap3EcCxlrrnH_goQtYCmXSHukSnQQC9xzBR5HVGtKcJMwo0KVcBmylFmrTRDEtXUyjbOmGwRCJ-gnEiVTZnyhA-V5qa-slcwkfijVJmFDDCJTqZS7yzI60Vhf2eEWIW5RgVvEN8nh6JtuqdHxZ--dIbRRZa-9iKsiQCw9bD4awj1u_n20rf913yezt2f16Pri5mqbzHEkSGUG-A6Z7j8O0l0kOP14r_iHPwFuQfEy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-phase+analysis+on+radiative+solar+pump+applications+using+MHD+Eyring%E2%80%93Powell+hybrid+nanofluid+flow+with+the+non-Fourier+heat+flux+model&rft.jtitle=Journal+of+engineering+mathematics&rft.au=Reddy+Seethi+Reddy+Reddisekhar&rft.au=Shaik%2C+Jakeer&rft.au=Lakshmi%2C+Rupa+Maduru&rft.au=Sekhar%2C+Kuppala+R&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-0833&rft.eissn=1573-2703&rft.volume=144&rft.issue=1&rft_id=info:doi/10.1007%2Fs10665-023-10306-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0833&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0833&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0833&client=summon