Improvement of CIGS solar cell efficiency with graded bandgap absorber layer
There are several ways to increase the efficiency of a solar cell. In addition to increasing efficiency, the important subject is to build the cell at a lower cost and try to reduce the heat losses of the cell. In this article, research was conducted on CIGS solar cell in which some methods were pro...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 32; no. 2; pp. 2041 - 2050 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4522 1573-482X |
DOI | 10.1007/s10854-020-04971-7 |
Cover
Loading…
Abstract | There are several ways to increase the efficiency of a solar cell. In addition to increasing efficiency, the important subject is to build the cell at a lower cost and try to reduce the heat losses of the cell. In this article, research was conducted on CIGS solar cell in which some methods were proposed that in addition to reducing the losses of a CIGS solar cell, we could achieve maximum efficiency with the minimum thickness of the absorber layer. To simulate and perform mathematical calculations, the Atlas software of Silvaco was used in this research. It should be noted that in all proposed structures, the thickness of the layer is minimized, and also the absorber layer is
p
-type. In the first stage, the structure of a ZnO:Al/Zn
0.83
Mg
0.17
O/CdS/Graded CIGS/MO was simulated in which the thickness of the graded CIGS (absorber layer) is 1 µm. Graded CIGS is a structure in which the bandgap of material CuIn
1−
x
Ga
x
Se
2
changes linearly from
x
1
to
x
2
. In this study, the
x
variation is from 0.7 to 0.1, so that the decrease in
x
corresponds to the decrease in band gap linearly from 1.45 to 1.07 eV. In this stage, the cell efficiency was 17.1%. In the second stage, the buffer layer was upgraded to increase the cell efficiency, that is, instead of CdS layer with the bandgap of 2.4 eV, ZnO
0.5
S
0.5
with the bandgap of 2.8 eV was used that made the efficiency to become 19.0%. In the third stage, an electron reflector layer was added to the structure of the first stage; indeed at this stage, the effect of the electron reflector layer on the solar cell of the first stage was displayed. In the fourth stage (last stage), CGS (CGS is CuGaSe
2
) layer was used as the electron reflector layer, which caused the cell efficiency to reach 28.3%. |
---|---|
AbstractList | There are several ways to increase the efficiency of a solar cell. In addition to increasing efficiency, the important subject is to build the cell at a lower cost and try to reduce the heat losses of the cell. In this article, research was conducted on CIGS solar cell in which some methods were proposed that in addition to reducing the losses of a CIGS solar cell, we could achieve maximum efficiency with the minimum thickness of the absorber layer. To simulate and perform mathematical calculations, the Atlas software of Silvaco was used in this research. It should be noted that in all proposed structures, the thickness of the layer is minimized, and also the absorber layer is
p
-type. In the first stage, the structure of a ZnO:Al/Zn
0.83
Mg
0.17
O/CdS/Graded CIGS/MO was simulated in which the thickness of the graded CIGS (absorber layer) is 1 µm. Graded CIGS is a structure in which the bandgap of material CuIn
1−
x
Ga
x
Se
2
changes linearly from
x
1
to
x
2
. In this study, the
x
variation is from 0.7 to 0.1, so that the decrease in
x
corresponds to the decrease in band gap linearly from 1.45 to 1.07 eV. In this stage, the cell efficiency was 17.1%. In the second stage, the buffer layer was upgraded to increase the cell efficiency, that is, instead of CdS layer with the bandgap of 2.4 eV, ZnO
0.5
S
0.5
with the bandgap of 2.8 eV was used that made the efficiency to become 19.0%. In the third stage, an electron reflector layer was added to the structure of the first stage; indeed at this stage, the effect of the electron reflector layer on the solar cell of the first stage was displayed. In the fourth stage (last stage), CGS (CGS is CuGaSe
2
) layer was used as the electron reflector layer, which caused the cell efficiency to reach 28.3%. There are several ways to increase the efficiency of a solar cell. In addition to increasing efficiency, the important subject is to build the cell at a lower cost and try to reduce the heat losses of the cell. In this article, research was conducted on CIGS solar cell in which some methods were proposed that in addition to reducing the losses of a CIGS solar cell, we could achieve maximum efficiency with the minimum thickness of the absorber layer. To simulate and perform mathematical calculations, the Atlas software of Silvaco was used in this research. It should be noted that in all proposed structures, the thickness of the layer is minimized, and also the absorber layer is p-type. In the first stage, the structure of a ZnO:Al/Zn0.83Mg0.17O/CdS/Graded CIGS/MO was simulated in which the thickness of the graded CIGS (absorber layer) is 1 µm. Graded CIGS is a structure in which the bandgap of material CuIn1−xGaxSe2 changes linearly from x1 to x2. In this study, the x variation is from 0.7 to 0.1, so that the decrease in x corresponds to the decrease in band gap linearly from 1.45 to 1.07 eV. In this stage, the cell efficiency was 17.1%. In the second stage, the buffer layer was upgraded to increase the cell efficiency, that is, instead of CdS layer with the bandgap of 2.4 eV, ZnO0.5S0.5 with the bandgap of 2.8 eV was used that made the efficiency to become 19.0%. In the third stage, an electron reflector layer was added to the structure of the first stage; indeed at this stage, the effect of the electron reflector layer on the solar cell of the first stage was displayed. In the fourth stage (last stage), CGS (CGS is CuGaSe2) layer was used as the electron reflector layer, which caused the cell efficiency to reach 28.3%. |
Author | Ghods, Vahid Abbasi, Abdollah Panahi, Seyed Reza Fatemi Shariat Amirahmadi, Meysam |
Author_xml | – sequence: 1 givenname: Seyed Reza Fatemi Shariat surname: Panahi fullname: Panahi, Seyed Reza Fatemi Shariat organization: Department of Electronic Engineering, Semnan Branch, Islamic Azad University – sequence: 2 givenname: Abdollah orcidid: 0000-0001-6490-8745 surname: Abbasi fullname: Abbasi, Abdollah email: a_abbasi@semnan.ac.ir organization: Department of Electronic, Faculty of Electrical and Computer Engineering, Semnan University – sequence: 3 givenname: Vahid surname: Ghods fullname: Ghods, Vahid organization: Department of Electronic Engineering, Semnan Branch, Islamic Azad University – sequence: 4 givenname: Meysam surname: Amirahmadi fullname: Amirahmadi, Meysam organization: Department of Electronic Engineering, Semnan Branch, Islamic Azad University |
BookMark | eNp9kE1Lw0AURQepYFv9A64GXEfns5lZStFaKLhQwd3wMnlTU9KkzqRK_73RCIKLrt7mnncvZ0JGTdsgIZecXXPG8pvEmdEqY4JlTNmcZ_kJGXOdy0wZ8ToiY2Z1niktxBmZpLRhjM2UNGOyWm53sf3ALTYdbQOdLxdPNLU1ROqxrimGUPkKG3-gn1X3RtcRSixpAU25hh2FIrWxwEhrOGA8J6cB6oQXv3dKXu7vnucP2epxsZzfrjIvue2yorBWcm8xiJktBaAXAqBgUBrPhEEueTCAJigotCoNaoZWafBBlRpAyim5Gv7209_3mDq3afex6SudUJYrxeVM9ykxpHxsU4oY3C5WW4gHx5n7tuYGa6635n6subyHzD_IVx10Vdt0Ear6OCoHNPU9zRrj36oj1BfVCYQR |
CitedBy_id | crossref_primary_10_1080_10667857_2021_1964215 crossref_primary_10_1142_S021797922350114X crossref_primary_10_1002_aesr_202400203 crossref_primary_10_1016_j_rser_2022_113027 crossref_primary_10_3390_en17184758 crossref_primary_10_3390_molecules30030562 crossref_primary_10_1016_j_ceramint_2021_08_018 crossref_primary_10_1007_s11664_023_10567_8 crossref_primary_10_1007_s00339_021_04954_3 crossref_primary_10_1021_acsomega_2c06501 crossref_primary_10_1088_2631_8695_accf60 crossref_primary_10_1016_j_matlet_2023_135806 crossref_primary_10_1016_j_matpr_2023_03_356 crossref_primary_10_2109_jcersj2_21062 crossref_primary_10_1007_s10854_024_12250_y crossref_primary_10_1016_j_solmat_2024_112796 crossref_primary_10_1016_j_inoche_2024_113426 |
Cites_doi | 10.1016/0927-0248(95)00145-X 10.1155/2017/8269358 10.1016/j.dib.2017.07.054 10.1016/j.optmat.2017.09.032 10.1007/s11082-019-2000-z 10.1186/s40064-016-2256-8 10.1016/j.egypro.2013.07.071 10.4038/jnsfsr.v41i2.5702 10.1016/j.egypro.2015.07.766 10.1007/978-3-319-96667-0 10.12816/0010308 10.3390/en8054416 10.1007/s10854-020-03700-4 10.1088/0256-307X/33/10/107801 10.7567/APEX.9.072301 10.1016/j.tsf.2018.04.014 10.1016/j.egypro.2010.07.024 10.1016/j.matpr.2016.04.004 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-020-04971-7 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 2050 |
ExternalDocumentID | 10_1007_s10854_020_04971_7 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-bb9931c9ef269d2aec22aab0ad8c028e131f8ae8f4ab54d8e50e945acf4d5aa33 |
IEDL.DBID | U2A |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 11:01:54 EDT 2025 Tue Jul 01 02:34:56 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Fri Feb 21 02:49:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-bb9931c9ef269d2aec22aab0ad8c028e131f8ae8f4ab54d8e50e945acf4d5aa33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6490-8745 |
PQID | 2491441365 |
PQPubID | 326250 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2491441365 crossref_primary_10_1007_s10854_020_04971_7 crossref_citationtrail_10_1007_s10854_020_04971_7 springer_journals_10_1007_s10854_020_04971_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210100 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Asaduzzaman, Hasan, Bahar (CR19) 2016; 5 CR2 Tobbeche, Kalache, Elbar, Kateb, Serdouk (CR18) 2019; 51 Fatemi Shariat Panahi, Abbasi, Ghods, Amirahmadi (CR6) 2020; 31 Contreras (CR9) 1996; 41–42 Ihalane, Atourki, Kirou, Ihlal, Bouabid (CR10) 2006; 3 Sharbati, Gharibshahian, Orouji (CR16) 2018; 75 Echendu, Dharmadasa (CR3) 2015; 8 Umehara, Tajima, Aoki, Takeda, Motohiro (CR1) 2016; 9 Elbar, Tobbeche (CR14) 2015; 74 Gharibshahian, Sharbati, Orouji (CR7) 2018; 655 Lin, Qiu, Zhang, Zhang (CR17) 2016; 33 Hosen, Bahar, Ali, Asaduzzaman (CR20) 2017; 14 Dharmadasa, Kalyanaratne, Dharmadasa (CR8) 2013; 41 Ojo, Cranton, Dharmadasa (CR5) 2019 Benmir, Aida (CR11) 2013; 36 (CR13) 2019 Attari, Amhaimar, El Yaakoubi, Asselman, Bassou (CR15) 2017; 2017 Morales-Acevedo (CR4) 2010; 2 Tobbeche, Amar (CR12) 2014; 4 A Benmir (4971_CR11) 2013; 36 M Asaduzzaman (4971_CR19) 2016; 5 AA Ojo (4971_CR5) 2019 M Elbar (4971_CR14) 2015; 74 MB Hosen (4971_CR20) 2017; 14 S Sharbati (4971_CR16) 2018; 75 MA Contreras (4971_CR9) 1996; 41–42 SR Fatemi Shariat Panahi (4971_CR6) 2020; 31 S Tobbeche (4971_CR18) 2019; 51 Silvaco Inc. (4971_CR13) 2019 OK Echendu (4971_CR3) 2015; 8 IM Dharmadasa (4971_CR8) 2013; 41 M Umehara (4971_CR1) 2016; 9 S Tobbeche (4971_CR12) 2014; 4 4971_CR2 I Gharibshahian (4971_CR7) 2018; 655 LY Lin (4971_CR17) 2016; 33 A Morales-Acevedo (4971_CR4) 2010; 2 EH Ihalane (4971_CR10) 2006; 3 K Attari (4971_CR15) 2017; 2017 |
References_xml | – volume: 41–42 start-page: 231 year: 1996 end-page: 246 ident: CR9 article-title: High efficiency graded bandgap thin-film polycrystalline Cu(In, Ga) Se2-based solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(95)00145-X – volume: 2017 start-page: 1 year: 2017 end-page: 7 ident: CR15 article-title: The design and optimization of GaAs single solar cells using the genetic algorithm and Silvaco ATLAS publication-title: Int. J. Photoenergy doi: 10.1155/2017/8269358 – volume: 14 start-page: 246 year: 2017 end-page: 250 ident: CR20 article-title: Modeling and performance analysis dataset of a CIGS solar cell with ZnS buffer layer publication-title: Data Br. doi: 10.1016/j.dib.2017.07.054 – volume: 75 start-page: 216 year: 2018 end-page: 223 ident: CR16 article-title: Proposed suitable electron reflector layer materials for thin-film CuIn1 – xGaxSe2 solar cells publication-title: Opt. Mater. (Amst). doi: 10.1016/j.optmat.2017.09.032 – volume: 51 start-page: 284 issue: 8 year: 2019 ident: CR18 article-title: Improvement of the CIGS solar cell performance: structure based on a ZnS buffer layer publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-019-2000-z – volume: 5 start-page: 578 issue: 1 year: 2016 ident: CR19 article-title: An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency publication-title: Springerplus doi: 10.1186/s40064-016-2256-8 – ident: CR2 – volume: 3 start-page: 2570 issue: 7 year: 2006 end-page: 2577 ident: CR10 article-title: Numerical study of thin films CIGS bilayer solar cells using SCAPS publication-title: Mater. Today: Proc. – volume: 36 start-page: 618 year: 2013 end-page: 627 ident: CR11 article-title: Analytical modeling and simulation of CIGS solar cells publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.07.071 – volume: 41 start-page: 73 issue: 2 year: 2013 end-page: 80 ident: CR8 article-title: Effective harvesting of photons for improvement of solar energy conversion by graded bandgap multilayer solar cells publication-title: J. Natl. Sci. Found. Sri Lanka doi: 10.4038/jnsfsr.v41i2.5702 – volume: 74 start-page: 1220 year: 2015 end-page: 1227 ident: CR14 article-title: Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the Silvaco-Atlas software publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.766 – year: 2019 ident: CR5 publication-title: Next Generation Multilayer Graded Bandgap Solar Cells doi: 10.1007/978-3-319-96667-0 – volume: 4 start-page: 89 issue: 1 year: 2014 end-page: 93 ident: CR12 article-title: Two-dimensional modelling and simulation of CIGS thin-film solar cell publication-title: J. New Technol. Mater. doi: 10.12816/0010308 – volume: 8 start-page: 4416 issue: 5 year: 2015 end-page: 4435 ident: CR3 article-title: Graded-bandgap solar cells using all-electrodeposited ZnS, CdS and CdTe thin-films publication-title: Energies doi: 10.3390/en8054416 – volume: 31 start-page: 11527 issue: 14 year: 2020 end-page: 11537 ident: CR6 article-title: Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-03700-4 – volume: 33 start-page: 107801 issue: 10 year: 2016 ident: CR17 article-title: Analysis of effect of Zn(O,S) buffer layer properties on CZTS solar cell performance using AMPS publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/33/10/107801 – volume: 9 start-page: 072301 issue: 7 year: 2016 ident: CR1 article-title: Cu2Sn1–x Gex S3 solar cells fabricated with a graded bandgap structure publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.072301 – year: 2019 ident: CR13 publication-title: Atlas User’s Manual – volume: 655 start-page: 95 year: 2018 end-page: 104 ident: CR7 article-title: Potential efficiency improvement of Cu (In, Ga) Se2 thin-film solar cells by the window layer optimization publication-title: Thin Solid Films doi: 10.1016/j.tsf.2018.04.014 – volume: 2 start-page: 169 issue: 1 year: 2010 end-page: 176 ident: CR4 article-title: A simple model of graded band-gap CuInGaSe2 solar cells publication-title: Energy Procedia doi: 10.1016/j.egypro.2010.07.024 – volume: 33 start-page: 107801 issue: 10 year: 2016 ident: 4971_CR17 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/33/10/107801 – volume: 51 start-page: 284 issue: 8 year: 2019 ident: 4971_CR18 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-019-2000-z – volume-title: Atlas User’s Manual year: 2019 ident: 4971_CR13 – volume: 2017 start-page: 1 year: 2017 ident: 4971_CR15 publication-title: Int. J. Photoenergy doi: 10.1155/2017/8269358 – volume: 75 start-page: 216 year: 2018 ident: 4971_CR16 publication-title: Opt. Mater. (Amst). doi: 10.1016/j.optmat.2017.09.032 – volume: 3 start-page: 2570 issue: 7 year: 2006 ident: 4971_CR10 publication-title: Mater. Today: Proc. doi: 10.1016/j.matpr.2016.04.004 – volume: 36 start-page: 618 year: 2013 ident: 4971_CR11 publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.07.071 – volume: 4 start-page: 89 issue: 1 year: 2014 ident: 4971_CR12 publication-title: J. New Technol. Mater. doi: 10.12816/0010308 – volume: 74 start-page: 1220 year: 2015 ident: 4971_CR14 publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.766 – volume: 9 start-page: 072301 issue: 7 year: 2016 ident: 4971_CR1 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.072301 – volume: 31 start-page: 11527 issue: 14 year: 2020 ident: 4971_CR6 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-03700-4 – ident: 4971_CR2 – volume-title: Next Generation Multilayer Graded Bandgap Solar Cells year: 2019 ident: 4971_CR5 doi: 10.1007/978-3-319-96667-0 – volume: 655 start-page: 95 year: 2018 ident: 4971_CR7 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2018.04.014 – volume: 8 start-page: 4416 issue: 5 year: 2015 ident: 4971_CR3 publication-title: Energies doi: 10.3390/en8054416 – volume: 2 start-page: 169 issue: 1 year: 2010 ident: 4971_CR4 publication-title: Energy Procedia doi: 10.1016/j.egypro.2010.07.024 – volume: 5 start-page: 578 issue: 1 year: 2016 ident: 4971_CR19 publication-title: Springerplus doi: 10.1186/s40064-016-2256-8 – volume: 14 start-page: 246 year: 2017 ident: 4971_CR20 publication-title: Data Br. doi: 10.1016/j.dib.2017.07.054 – volume: 41–42 start-page: 231 year: 1996 ident: 4971_CR9 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(95)00145-X – volume: 41 start-page: 73 issue: 2 year: 2013 ident: 4971_CR8 publication-title: J. Natl. Sci. Found. Sri Lanka doi: 10.4038/jnsfsr.v41i2.5702 |
SSID | ssj0006438 |
Score | 2.4007528 |
Snippet | There are several ways to increase the efficiency of a solar cell. In addition to increasing efficiency, the important subject is to build the cell at a lower... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2041 |
SubjectTerms | Absorbers Buffer layers Cadmium sulfide Characterization and Evaluation of Materials Chemistry and Materials Science Copper indium gallium selenides Efficiency Electrons Energy gap Materials Science Optical and Electronic Materials Photovoltaic cells Solar cells Thickness Zinc oxide |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWBAPEWhIA9sYBHnaU8IqpaCoEJApW6Rn12qpCTl_2MnTgNIMCfxcBfffffZ9x0AF9oXidCUIxEk1BQonkIs5gJJrA2cF1jE2DYnP0_i8TR8nEUzR7iV7lplExOrQC1zYTnya1MmWOwfxNHN8gPZqVH2dNWN0NgEXROCiSm-unfDycvrOhabfEtqtT2r7u37rm3GNc-RKES2fDIoOcEo-ZmaWrz564i0yjyjXbDjICO8rX28BzZUtg-2vwkJHoCnmhuoqD6Yazh4uH-Dpa1aoWXmoaqEImyXJbTEK5wXTCoJOcvknC0h42VecFXABTMI_BBMR8P3wRi5OQnGwJiuEOcGZGBBlfZjKn2mhO8zxj0miTDwQeEAa8IU0SHjUSiJijxFw4gJHcqIsSA4Ap0sz9QxgImnY61kzKUlhwx0ogGVnNtCiytKSA_gxkSpcCLidpbFIm3lj61ZU2PWtDJrmvTA5fqbZS2h8e_b_cbyqdtOZdo6vweuGm-0j_9e7eT_1U7Blm_vqFSUSh90VsWnOjMgY8XP3Z_0BV_KzX0 priority: 102 providerName: ProQuest |
Title | Improvement of CIGS solar cell efficiency with graded bandgap absorber layer |
URI | https://link.springer.com/article/10.1007/s10854-020-04971-7 https://www.proquest.com/docview/2491441365 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxGP0icNGDcY0okh686SS0s7VHRBYViBFJ8DTpyoUAAfz_tsMMoFETTz1Mp4ev23uv_V4BbgyRsTRMeNKPmSUoNe3xSEhPYWPhvMQywi45udePOsPgaRSOsqSwZX7bPT-STFfqnWQ3GgaeozsW1cbYiwtQCh13t6N4SOqb9dfusXTtsOccvQnJUmV-buPrdrTFmN-ORdPdpnUEhxlMRPV1vx7Dnp6ewMGOeeApdNd6QCrvoZlBjcf2AC0dU0VOjUc6NYdwmZXIia1ovOBKKyT4VI35HHGxnC2EXqAJt6j7DIat5luj42VvI9igYrbyhLDAAkumDYmYIlxLQjgXNa6otJBBYx8byjU1ARdhoKgOa5oFIZcmUCHnvn8Oxelsqi8AxTUTGa0ioZwgZOES85kSwpEroRmlZcB5iBKZGYe79ysmydby2IU1sWFN0rAmcRluN__M17YZf9au5JFPsim0TCwvdGTPj8Iy3OW9sf38e2uX_6t-BfvE3VNJZZUKFFeLD31tgcZKVKFAW-0qlOoPve7Ale3356Yt75v9l9dqOuo-Aex_zrY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTgMxDLUQHIADYhVlzQFOMKLJbMkBIQR0gcIFkLgNWbmgtrRFiJ_iG4lnoYBEb5xnJho5jv1sx88Ae47pVDuhAh2mwgcodRvIROnAUOfhvKY6odicfH2TtO6jy4f4YQo-ql4YvFZZ2cTcUJuexhz5kQ8TEPuHSXzSfwlwahRWV6sRGoVaXNn3Nx-yDY_b535_9xlrXNydtYJyqoD_HSpGgVLeJVMtrGOJMExazZiUqi4N197ZWhpSx6XlLpIqjgy3cd2KKJbaRSaWEhOg3uTPRGEo8ETxRvPL8nvvzgtuP-QSZ6xs0ilb9XgcBRiseUye0iD96QjH6PZXQTb3c41FWCgBKjktNGoJpmx3Gea_0RauQKfIROSJRdJz5KzdvCVDjJEJ1gGIzWkpsKeTYJqXPA2ksYYo2TVPsk-kGvYGyg7Is_R4fxXu_0V-azDd7XXtOpC07hJnTaIMpqI8UBOhMEphWKes4LwGtBJRpkvKcpyc8ZyNyZZRrJkXa5aLNUtrcPD1Tb8g7Jj49lYl-aw8vMNsrGo1OKx2Y_z479U2Jq-2C7Otu-tO1mnfXG3CHMPbMXkyZwumR4NXu-3hzUjt5DpF4PG_lfgTEJgLWg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6hREJwQIVSEZ4-lFNZsXb25UOF2kBKeESIFonb1s9cUBKSoKp_rb-uM_sggAQ3zrtrrcZjzzefPd8AfPbCpMZLHZh2KjFBCV2gEm0Cyz3CecNNwqk4-bKfnN5EZ7fx7QL8q2th6FplvScWG7UdGeLIDzFNIOzfTuJDX12LuDruHo3vA-ogRSetdTuN0kXO3d8_mL5Nv_aOca73heie_OqcBlWHAfw1LmeB1hieuZHOi0RaoZwRQikdKpsZDLyOt7nPlMt8pHQc2czFoZNRrIyPbKwUkaG4_TdTzIrCBjS_n_Svrh_jAMb6rFT6I2VxIaqSnapwL4ujgFI3ROgpD9LnYXGOdV8czxZRr_sBViq4yr6V_rUKC264BstPRAw_wkXJSxQ0Ixt51un9-MmmlDEzOhVgrhCpoApPRqQvG0yUdZZpNbQDNWZKT0cT7SbsTiH6X4ebd7HgJ2gMR0O3ASwNfeKdTbQlYgphm2xLqzUledrJLGsBr02Um0rAnPpo3OVz6WUya45mzQuz5mkLvjx-My7lO958e7u2fF4t5Wk-d7wWHNSzMX_8-mibb4-2B4vowPlFr3--BUuCrsoUzM42NGaTB7eDWGemdyunYvD7vf34P_NxEOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+CIGS+solar+cell+efficiency+with+graded+bandgap+absorber+layer&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Panahi%2C+Seyed+Reza+Fatemi+Shariat&rft.au=Abbasi%2C+Abdollah&rft.au=Ghods%2C+Vahid&rft.au=Amirahmadi%2C+Meysam&rft.date=2021-01-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=32&rft.issue=2&rft.spage=2041&rft.epage=2050&rft_id=info:doi/10.1007%2Fs10854-020-04971-7&rft.externalDocID=10_1007_s10854_020_04971_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |