Improvement of CIGS solar cell efficiency with graded bandgap absorber layer

There are several ways to increase the efficiency of a solar cell. In addition to increasing efficiency, the important subject is to build the cell at a lower cost and try to reduce the heat losses of the cell. In this article, research was conducted on CIGS solar cell in which some methods were pro...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 32; no. 2; pp. 2041 - 2050
Main Authors Panahi, Seyed Reza Fatemi Shariat, Abbasi, Abdollah, Ghods, Vahid, Amirahmadi, Meysam
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0957-4522
1573-482X
DOI10.1007/s10854-020-04971-7

Cover

Loading…
Abstract There are several ways to increase the efficiency of a solar cell. In addition to increasing efficiency, the important subject is to build the cell at a lower cost and try to reduce the heat losses of the cell. In this article, research was conducted on CIGS solar cell in which some methods were proposed that in addition to reducing the losses of a CIGS solar cell, we could achieve maximum efficiency with the minimum thickness of the absorber layer. To simulate and perform mathematical calculations, the Atlas software of Silvaco was used in this research. It should be noted that in all proposed structures, the thickness of the layer is minimized, and also the absorber layer is p -type. In the first stage, the structure of a ZnO:Al/Zn 0.83 Mg 0.17 O/CdS/Graded CIGS/MO was simulated in which the thickness of the graded CIGS (absorber layer) is 1 µm. Graded CIGS is a structure in which the bandgap of material CuIn 1− x Ga x Se 2 changes linearly from x 1 to x 2 . In this study, the x variation is from 0.7 to 0.1, so that the decrease in x corresponds to the decrease in band gap linearly from 1.45 to 1.07 eV. In this stage, the cell efficiency was 17.1%. In the second stage, the buffer layer was upgraded to increase the cell efficiency, that is, instead of CdS layer with the bandgap of 2.4 eV, ZnO 0.5 S 0.5 with the bandgap of 2.8 eV was used that made the efficiency to become 19.0%. In the third stage, an electron reflector layer was added to the structure of the first stage; indeed at this stage, the effect of the electron reflector layer on the solar cell of the first stage was displayed. In the fourth stage (last stage), CGS (CGS is CuGaSe 2 ) layer was used as the electron reflector layer, which caused the cell efficiency to reach 28.3%.
AbstractList There are several ways to increase the efficiency of a solar cell. In addition to increasing efficiency, the important subject is to build the cell at a lower cost and try to reduce the heat losses of the cell. In this article, research was conducted on CIGS solar cell in which some methods were proposed that in addition to reducing the losses of a CIGS solar cell, we could achieve maximum efficiency with the minimum thickness of the absorber layer. To simulate and perform mathematical calculations, the Atlas software of Silvaco was used in this research. It should be noted that in all proposed structures, the thickness of the layer is minimized, and also the absorber layer is p -type. In the first stage, the structure of a ZnO:Al/Zn 0.83 Mg 0.17 O/CdS/Graded CIGS/MO was simulated in which the thickness of the graded CIGS (absorber layer) is 1 µm. Graded CIGS is a structure in which the bandgap of material CuIn 1− x Ga x Se 2 changes linearly from x 1 to x 2 . In this study, the x variation is from 0.7 to 0.1, so that the decrease in x corresponds to the decrease in band gap linearly from 1.45 to 1.07 eV. In this stage, the cell efficiency was 17.1%. In the second stage, the buffer layer was upgraded to increase the cell efficiency, that is, instead of CdS layer with the bandgap of 2.4 eV, ZnO 0.5 S 0.5 with the bandgap of 2.8 eV was used that made the efficiency to become 19.0%. In the third stage, an electron reflector layer was added to the structure of the first stage; indeed at this stage, the effect of the electron reflector layer on the solar cell of the first stage was displayed. In the fourth stage (last stage), CGS (CGS is CuGaSe 2 ) layer was used as the electron reflector layer, which caused the cell efficiency to reach 28.3%.
There are several ways to increase the efficiency of a solar cell. In addition to increasing efficiency, the important subject is to build the cell at a lower cost and try to reduce the heat losses of the cell. In this article, research was conducted on CIGS solar cell in which some methods were proposed that in addition to reducing the losses of a CIGS solar cell, we could achieve maximum efficiency with the minimum thickness of the absorber layer. To simulate and perform mathematical calculations, the Atlas software of Silvaco was used in this research. It should be noted that in all proposed structures, the thickness of the layer is minimized, and also the absorber layer is p-type. In the first stage, the structure of a ZnO:Al/Zn0.83Mg0.17O/CdS/Graded CIGS/MO was simulated in which the thickness of the graded CIGS (absorber layer) is 1 µm. Graded CIGS is a structure in which the bandgap of material CuIn1−xGaxSe2 changes linearly from x1 to x2. In this study, the x variation is from 0.7 to 0.1, so that the decrease in x corresponds to the decrease in band gap linearly from 1.45 to 1.07 eV. In this stage, the cell efficiency was 17.1%. In the second stage, the buffer layer was upgraded to increase the cell efficiency, that is, instead of CdS layer with the bandgap of 2.4 eV, ZnO0.5S0.5 with the bandgap of 2.8 eV was used that made the efficiency to become 19.0%. In the third stage, an electron reflector layer was added to the structure of the first stage; indeed at this stage, the effect of the electron reflector layer on the solar cell of the first stage was displayed. In the fourth stage (last stage), CGS (CGS is CuGaSe2) layer was used as the electron reflector layer, which caused the cell efficiency to reach 28.3%.
Author Ghods, Vahid
Abbasi, Abdollah
Panahi, Seyed Reza Fatemi Shariat
Amirahmadi, Meysam
Author_xml – sequence: 1
  givenname: Seyed Reza Fatemi Shariat
  surname: Panahi
  fullname: Panahi, Seyed Reza Fatemi Shariat
  organization: Department of Electronic Engineering, Semnan Branch, Islamic Azad University
– sequence: 2
  givenname: Abdollah
  orcidid: 0000-0001-6490-8745
  surname: Abbasi
  fullname: Abbasi, Abdollah
  email: a_abbasi@semnan.ac.ir
  organization: Department of Electronic, Faculty of Electrical and Computer Engineering, Semnan University
– sequence: 3
  givenname: Vahid
  surname: Ghods
  fullname: Ghods, Vahid
  organization: Department of Electronic Engineering, Semnan Branch, Islamic Azad University
– sequence: 4
  givenname: Meysam
  surname: Amirahmadi
  fullname: Amirahmadi, Meysam
  organization: Department of Electronic Engineering, Semnan Branch, Islamic Azad University
BookMark eNp9kE1Lw0AURQepYFv9A64GXEfns5lZStFaKLhQwd3wMnlTU9KkzqRK_73RCIKLrt7mnncvZ0JGTdsgIZecXXPG8pvEmdEqY4JlTNmcZ_kJGXOdy0wZ8ToiY2Z1niktxBmZpLRhjM2UNGOyWm53sf3ALTYdbQOdLxdPNLU1ROqxrimGUPkKG3-gn1X3RtcRSixpAU25hh2FIrWxwEhrOGA8J6cB6oQXv3dKXu7vnucP2epxsZzfrjIvue2yorBWcm8xiJktBaAXAqBgUBrPhEEueTCAJigotCoNaoZWafBBlRpAyim5Gv7209_3mDq3afex6SudUJYrxeVM9ykxpHxsU4oY3C5WW4gHx5n7tuYGa6635n6subyHzD_IVx10Vdt0Ear6OCoHNPU9zRrj36oj1BfVCYQR
CitedBy_id crossref_primary_10_1080_10667857_2021_1964215
crossref_primary_10_1142_S021797922350114X
crossref_primary_10_1002_aesr_202400203
crossref_primary_10_1016_j_rser_2022_113027
crossref_primary_10_3390_en17184758
crossref_primary_10_3390_molecules30030562
crossref_primary_10_1016_j_ceramint_2021_08_018
crossref_primary_10_1007_s11664_023_10567_8
crossref_primary_10_1007_s00339_021_04954_3
crossref_primary_10_1021_acsomega_2c06501
crossref_primary_10_1088_2631_8695_accf60
crossref_primary_10_1016_j_matlet_2023_135806
crossref_primary_10_1016_j_matpr_2023_03_356
crossref_primary_10_2109_jcersj2_21062
crossref_primary_10_1007_s10854_024_12250_y
crossref_primary_10_1016_j_solmat_2024_112796
crossref_primary_10_1016_j_inoche_2024_113426
Cites_doi 10.1016/0927-0248(95)00145-X
10.1155/2017/8269358
10.1016/j.dib.2017.07.054
10.1016/j.optmat.2017.09.032
10.1007/s11082-019-2000-z
10.1186/s40064-016-2256-8
10.1016/j.egypro.2013.07.071
10.4038/jnsfsr.v41i2.5702
10.1016/j.egypro.2015.07.766
10.1007/978-3-319-96667-0
10.12816/0010308
10.3390/en8054416
10.1007/s10854-020-03700-4
10.1088/0256-307X/33/10/107801
10.7567/APEX.9.072301
10.1016/j.tsf.2018.04.014
10.1016/j.egypro.2010.07.024
10.1016/j.matpr.2016.04.004
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-020-04971-7
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 2050
ExternalDocumentID 10_1007_s10854_020_04971_7
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-bb9931c9ef269d2aec22aab0ad8c028e131f8ae8f4ab54d8e50e945acf4d5aa33
IEDL.DBID U2A
ISSN 0957-4522
IngestDate Fri Jul 25 11:01:54 EDT 2025
Tue Jul 01 02:34:56 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
Fri Feb 21 02:49:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bb9931c9ef269d2aec22aab0ad8c028e131f8ae8f4ab54d8e50e945acf4d5aa33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6490-8745
PQID 2491441365
PQPubID 326250
PageCount 10
ParticipantIDs proquest_journals_2491441365
crossref_primary_10_1007_s10854_020_04971_7
crossref_citationtrail_10_1007_s10854_020_04971_7
springer_journals_10_1007_s10854_020_04971_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Asaduzzaman, Hasan, Bahar (CR19) 2016; 5
CR2
Tobbeche, Kalache, Elbar, Kateb, Serdouk (CR18) 2019; 51
Fatemi Shariat Panahi, Abbasi, Ghods, Amirahmadi (CR6) 2020; 31
Contreras (CR9) 1996; 41–42
Ihalane, Atourki, Kirou, Ihlal, Bouabid (CR10) 2006; 3
Sharbati, Gharibshahian, Orouji (CR16) 2018; 75
Echendu, Dharmadasa (CR3) 2015; 8
Umehara, Tajima, Aoki, Takeda, Motohiro (CR1) 2016; 9
Elbar, Tobbeche (CR14) 2015; 74
Gharibshahian, Sharbati, Orouji (CR7) 2018; 655
Lin, Qiu, Zhang, Zhang (CR17) 2016; 33
Hosen, Bahar, Ali, Asaduzzaman (CR20) 2017; 14
Dharmadasa, Kalyanaratne, Dharmadasa (CR8) 2013; 41
Ojo, Cranton, Dharmadasa (CR5) 2019
Benmir, Aida (CR11) 2013; 36
(CR13) 2019
Attari, Amhaimar, El Yaakoubi, Asselman, Bassou (CR15) 2017; 2017
Morales-Acevedo (CR4) 2010; 2
Tobbeche, Amar (CR12) 2014; 4
A Benmir (4971_CR11) 2013; 36
M Asaduzzaman (4971_CR19) 2016; 5
AA Ojo (4971_CR5) 2019
M Elbar (4971_CR14) 2015; 74
MB Hosen (4971_CR20) 2017; 14
S Sharbati (4971_CR16) 2018; 75
MA Contreras (4971_CR9) 1996; 41–42
SR Fatemi Shariat Panahi (4971_CR6) 2020; 31
S Tobbeche (4971_CR18) 2019; 51
Silvaco Inc. (4971_CR13) 2019
OK Echendu (4971_CR3) 2015; 8
IM Dharmadasa (4971_CR8) 2013; 41
M Umehara (4971_CR1) 2016; 9
S Tobbeche (4971_CR12) 2014; 4
4971_CR2
I Gharibshahian (4971_CR7) 2018; 655
LY Lin (4971_CR17) 2016; 33
A Morales-Acevedo (4971_CR4) 2010; 2
EH Ihalane (4971_CR10) 2006; 3
K Attari (4971_CR15) 2017; 2017
References_xml – volume: 41–42
  start-page: 231
  year: 1996
  end-page: 246
  ident: CR9
  article-title: High efficiency graded bandgap thin-film polycrystalline Cu(In, Ga) Se2-based solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(95)00145-X
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR15
  article-title: The design and optimization of GaAs single solar cells using the genetic algorithm and Silvaco ATLAS
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2017/8269358
– volume: 14
  start-page: 246
  year: 2017
  end-page: 250
  ident: CR20
  article-title: Modeling and performance analysis dataset of a CIGS solar cell with ZnS buffer layer
  publication-title: Data Br.
  doi: 10.1016/j.dib.2017.07.054
– volume: 75
  start-page: 216
  year: 2018
  end-page: 223
  ident: CR16
  article-title: Proposed suitable electron reflector layer materials for thin-film CuIn1 – xGaxSe2 solar cells
  publication-title: Opt. Mater. (Amst).
  doi: 10.1016/j.optmat.2017.09.032
– volume: 51
  start-page: 284
  issue: 8
  year: 2019
  ident: CR18
  article-title: Improvement of the CIGS solar cell performance: structure based on a ZnS buffer layer
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-019-2000-z
– volume: 5
  start-page: 578
  issue: 1
  year: 2016
  ident: CR19
  article-title: An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency
  publication-title: Springerplus
  doi: 10.1186/s40064-016-2256-8
– ident: CR2
– volume: 3
  start-page: 2570
  issue: 7
  year: 2006
  end-page: 2577
  ident: CR10
  article-title: Numerical study of thin films CIGS bilayer solar cells using SCAPS
  publication-title: Mater. Today: Proc.
– volume: 36
  start-page: 618
  year: 2013
  end-page: 627
  ident: CR11
  article-title: Analytical modeling and simulation of CIGS solar cells
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.07.071
– volume: 41
  start-page: 73
  issue: 2
  year: 2013
  end-page: 80
  ident: CR8
  article-title: Effective harvesting of photons for improvement of solar energy conversion by graded bandgap multilayer solar cells
  publication-title: J. Natl. Sci. Found. Sri Lanka
  doi: 10.4038/jnsfsr.v41i2.5702
– volume: 74
  start-page: 1220
  year: 2015
  end-page: 1227
  ident: CR14
  article-title: Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the Silvaco-Atlas software
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.766
– year: 2019
  ident: CR5
  publication-title: Next Generation Multilayer Graded Bandgap Solar Cells
  doi: 10.1007/978-3-319-96667-0
– volume: 4
  start-page: 89
  issue: 1
  year: 2014
  end-page: 93
  ident: CR12
  article-title: Two-dimensional modelling and simulation of CIGS thin-film solar cell
  publication-title: J. New Technol. Mater.
  doi: 10.12816/0010308
– volume: 8
  start-page: 4416
  issue: 5
  year: 2015
  end-page: 4435
  ident: CR3
  article-title: Graded-bandgap solar cells using all-electrodeposited ZnS, CdS and CdTe thin-films
  publication-title: Energies
  doi: 10.3390/en8054416
– volume: 31
  start-page: 11527
  issue: 14
  year: 2020
  end-page: 11537
  ident: CR6
  article-title: Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-020-03700-4
– volume: 33
  start-page: 107801
  issue: 10
  year: 2016
  ident: CR17
  article-title: Analysis of effect of Zn(O,S) buffer layer properties on CZTS solar cell performance using AMPS
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/33/10/107801
– volume: 9
  start-page: 072301
  issue: 7
  year: 2016
  ident: CR1
  article-title: Cu2Sn1–x Gex S3 solar cells fabricated with a graded bandgap structure
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.9.072301
– year: 2019
  ident: CR13
  publication-title: Atlas User’s Manual
– volume: 655
  start-page: 95
  year: 2018
  end-page: 104
  ident: CR7
  article-title: Potential efficiency improvement of Cu (In, Ga) Se2 thin-film solar cells by the window layer optimization
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2018.04.014
– volume: 2
  start-page: 169
  issue: 1
  year: 2010
  end-page: 176
  ident: CR4
  article-title: A simple model of graded band-gap CuInGaSe2 solar cells
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2010.07.024
– volume: 33
  start-page: 107801
  issue: 10
  year: 2016
  ident: 4971_CR17
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/33/10/107801
– volume: 51
  start-page: 284
  issue: 8
  year: 2019
  ident: 4971_CR18
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-019-2000-z
– volume-title: Atlas User’s Manual
  year: 2019
  ident: 4971_CR13
– volume: 2017
  start-page: 1
  year: 2017
  ident: 4971_CR15
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2017/8269358
– volume: 75
  start-page: 216
  year: 2018
  ident: 4971_CR16
  publication-title: Opt. Mater. (Amst).
  doi: 10.1016/j.optmat.2017.09.032
– volume: 3
  start-page: 2570
  issue: 7
  year: 2006
  ident: 4971_CR10
  publication-title: Mater. Today: Proc.
  doi: 10.1016/j.matpr.2016.04.004
– volume: 36
  start-page: 618
  year: 2013
  ident: 4971_CR11
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.07.071
– volume: 4
  start-page: 89
  issue: 1
  year: 2014
  ident: 4971_CR12
  publication-title: J. New Technol. Mater.
  doi: 10.12816/0010308
– volume: 74
  start-page: 1220
  year: 2015
  ident: 4971_CR14
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.766
– volume: 9
  start-page: 072301
  issue: 7
  year: 2016
  ident: 4971_CR1
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.9.072301
– volume: 31
  start-page: 11527
  issue: 14
  year: 2020
  ident: 4971_CR6
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-020-03700-4
– ident: 4971_CR2
– volume-title: Next Generation Multilayer Graded Bandgap Solar Cells
  year: 2019
  ident: 4971_CR5
  doi: 10.1007/978-3-319-96667-0
– volume: 655
  start-page: 95
  year: 2018
  ident: 4971_CR7
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2018.04.014
– volume: 8
  start-page: 4416
  issue: 5
  year: 2015
  ident: 4971_CR3
  publication-title: Energies
  doi: 10.3390/en8054416
– volume: 2
  start-page: 169
  issue: 1
  year: 2010
  ident: 4971_CR4
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2010.07.024
– volume: 5
  start-page: 578
  issue: 1
  year: 2016
  ident: 4971_CR19
  publication-title: Springerplus
  doi: 10.1186/s40064-016-2256-8
– volume: 14
  start-page: 246
  year: 2017
  ident: 4971_CR20
  publication-title: Data Br.
  doi: 10.1016/j.dib.2017.07.054
– volume: 41–42
  start-page: 231
  year: 1996
  ident: 4971_CR9
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(95)00145-X
– volume: 41
  start-page: 73
  issue: 2
  year: 2013
  ident: 4971_CR8
  publication-title: J. Natl. Sci. Found. Sri Lanka
  doi: 10.4038/jnsfsr.v41i2.5702
SSID ssj0006438
Score 2.4007528
Snippet There are several ways to increase the efficiency of a solar cell. In addition to increasing efficiency, the important subject is to build the cell at a lower...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2041
SubjectTerms Absorbers
Buffer layers
Cadmium sulfide
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper indium gallium selenides
Efficiency
Electrons
Energy gap
Materials Science
Optical and Electronic Materials
Photovoltaic cells
Solar cells
Thickness
Zinc oxide
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWBAPEWhIA9sYBHnaU8IqpaCoEJApW6Rn12qpCTl_2MnTgNIMCfxcBfffffZ9x0AF9oXidCUIxEk1BQonkIs5gJJrA2cF1jE2DYnP0_i8TR8nEUzR7iV7lplExOrQC1zYTnya1MmWOwfxNHN8gPZqVH2dNWN0NgEXROCiSm-unfDycvrOhabfEtqtT2r7u37rm3GNc-RKES2fDIoOcEo-ZmaWrz564i0yjyjXbDjICO8rX28BzZUtg-2vwkJHoCnmhuoqD6Yazh4uH-Dpa1aoWXmoaqEImyXJbTEK5wXTCoJOcvknC0h42VecFXABTMI_BBMR8P3wRi5OQnGwJiuEOcGZGBBlfZjKn2mhO8zxj0miTDwQeEAa8IU0SHjUSiJijxFw4gJHcqIsSA4Ap0sz9QxgImnY61kzKUlhwx0ogGVnNtCiytKSA_gxkSpcCLidpbFIm3lj61ZU2PWtDJrmvTA5fqbZS2h8e_b_cbyqdtOZdo6vweuGm-0j_9e7eT_1U7Blm_vqFSUSh90VsWnOjMgY8XP3Z_0BV_KzX0
  priority: 102
  providerName: ProQuest
Title Improvement of CIGS solar cell efficiency with graded bandgap absorber layer
URI https://link.springer.com/article/10.1007/s10854-020-04971-7
https://www.proquest.com/docview/2491441365
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxGP0icNGDcY0okh686SS0s7VHRBYViBFJ8DTpyoUAAfz_tsMMoFETTz1Mp4ev23uv_V4BbgyRsTRMeNKPmSUoNe3xSEhPYWPhvMQywi45udePOsPgaRSOsqSwZX7bPT-STFfqnWQ3GgaeozsW1cbYiwtQCh13t6N4SOqb9dfusXTtsOccvQnJUmV-buPrdrTFmN-ORdPdpnUEhxlMRPV1vx7Dnp6ewMGOeeApdNd6QCrvoZlBjcf2AC0dU0VOjUc6NYdwmZXIia1ovOBKKyT4VI35HHGxnC2EXqAJt6j7DIat5luj42VvI9igYrbyhLDAAkumDYmYIlxLQjgXNa6otJBBYx8byjU1ARdhoKgOa5oFIZcmUCHnvn8Oxelsqi8AxTUTGa0ioZwgZOES85kSwpEroRmlZcB5iBKZGYe79ysmydby2IU1sWFN0rAmcRluN__M17YZf9au5JFPsim0TCwvdGTPj8Iy3OW9sf38e2uX_6t-BfvE3VNJZZUKFFeLD31tgcZKVKFAW-0qlOoPve7Ale3356Yt75v9l9dqOuo-Aex_zrY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTgMxDLUQHIADYhVlzQFOMKLJbMkBIQR0gcIFkLgNWbmgtrRFiJ_iG4lnoYBEb5xnJho5jv1sx88Ae47pVDuhAh2mwgcodRvIROnAUOfhvKY6odicfH2TtO6jy4f4YQo-ql4YvFZZ2cTcUJuexhz5kQ8TEPuHSXzSfwlwahRWV6sRGoVaXNn3Nx-yDY_b535_9xlrXNydtYJyqoD_HSpGgVLeJVMtrGOJMExazZiUqi4N197ZWhpSx6XlLpIqjgy3cd2KKJbaRSaWEhOg3uTPRGEo8ETxRvPL8nvvzgtuP-QSZ6xs0ilb9XgcBRiseUye0iD96QjH6PZXQTb3c41FWCgBKjktNGoJpmx3Gea_0RauQKfIROSJRdJz5KzdvCVDjJEJ1gGIzWkpsKeTYJqXPA2ksYYo2TVPsk-kGvYGyg7Is_R4fxXu_0V-azDd7XXtOpC07hJnTaIMpqI8UBOhMEphWKes4LwGtBJRpkvKcpyc8ZyNyZZRrJkXa5aLNUtrcPD1Tb8g7Jj49lYl-aw8vMNsrGo1OKx2Y_z479U2Jq-2C7Otu-tO1mnfXG3CHMPbMXkyZwumR4NXu-3hzUjt5DpF4PG_lfgTEJgLWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6hREJwQIVSEZ4-lFNZsXb25UOF2kBKeESIFonb1s9cUBKSoKp_rb-uM_sggAQ3zrtrrcZjzzefPd8AfPbCpMZLHZh2KjFBCV2gEm0Cyz3CecNNwqk4-bKfnN5EZ7fx7QL8q2th6FplvScWG7UdGeLIDzFNIOzfTuJDX12LuDruHo3vA-ogRSetdTuN0kXO3d8_mL5Nv_aOca73heie_OqcBlWHAfw1LmeB1hieuZHOi0RaoZwRQikdKpsZDLyOt7nPlMt8pHQc2czFoZNRrIyPbKwUkaG4_TdTzIrCBjS_n_Svrh_jAMb6rFT6I2VxIaqSnapwL4ujgFI3ROgpD9LnYXGOdV8czxZRr_sBViq4yr6V_rUKC264BstPRAw_wkXJSxQ0Ixt51un9-MmmlDEzOhVgrhCpoApPRqQvG0yUdZZpNbQDNWZKT0cT7SbsTiH6X4ebd7HgJ2gMR0O3ASwNfeKdTbQlYgphm2xLqzUledrJLGsBr02Um0rAnPpo3OVz6WUya45mzQuz5mkLvjx-My7lO958e7u2fF4t5Wk-d7wWHNSzMX_8-mibb4-2B4vowPlFr3--BUuCrsoUzM42NGaTB7eDWGemdyunYvD7vf34P_NxEOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+CIGS+solar+cell+efficiency+with+graded+bandgap+absorber+layer&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Panahi%2C+Seyed+Reza+Fatemi+Shariat&rft.au=Abbasi%2C+Abdollah&rft.au=Ghods%2C+Vahid&rft.au=Amirahmadi%2C+Meysam&rft.date=2021-01-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=32&rft.issue=2&rft.spage=2041&rft.epage=2050&rft_id=info:doi/10.1007%2Fs10854-020-04971-7&rft.externalDocID=10_1007_s10854_020_04971_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon