A novel hybrid multi-verse optimizer with K-means for text documents clustering

Text clustering has been widely utilized with the aim of partitioning specific document collection into different subsets using homogeneity/heterogeneity criteria. It has also become a very complicated area of research, including pattern recognition, information retrieval, and text mining. Metaheuri...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 32; no. 23; pp. 17703 - 17729
Main Authors Abasi, Ammar Kamal, Khader, Ahamad Tajudin, Al-Betar, Mohammed Azmi, Naim, Syibrah, Alyasseri, Zaid Abdi Alkareem, Makhadmeh, Sharif Naser
Format Journal Article
LanguageEnglish
Published London Springer London 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Text clustering has been widely utilized with the aim of partitioning specific document collection into different subsets using homogeneity/heterogeneity criteria. It has also become a very complicated area of research, including pattern recognition, information retrieval, and text mining. Metaheuristics are typically used as efficient approaches for the text clustering problem. The multi-verse optimizer algorithm (MVO) involves a stochastic population-based algorithm. It has been recently proposed and successfully utilized to tackle many hard optimization problems. However, a recently applied research trend involves hybridizing two or more algorithms with the aim of obtaining a superior solution regarding the problems of optimization. In this paper, a new hybrid of MVO algorithm with the K-means clustering algorithm is proposed, i.e., the H-MVO algorithm with the aims of enhancing the quality of initial candidate solutions, as well as the best solution, which is produced by MVO at each iteration. This hybrid algorithm aims at improving the global (diversification) ability of the search and finding a better cluster partition. The proposed H-MVO effectiveness was tested on five standard datasets, which are used in the domain of data clustering, as well as six standard text datasets, which are utilized in the domain of text document clustering, in addition to two scientific articles’ datasets. The experiments showed that K-means hybridized MVO improves the results in terms of high convergence rate, accuracy, error rate, purity, entropy, recall, precision, and F-measure criteria. In general, H-MVO has outperformed or at least proven to be highly competitive compared to the original MVO algorithm and with well-known optimization algorithms like KHA, HS, PSO, GA, H-PSO, and H-GA and the clustering techniques like K-mean, K-mean++, DBSCAN, agglomerative, and spectral clustering techniques.
AbstractList Text clustering has been widely utilized with the aim of partitioning specific document collection into different subsets using homogeneity/heterogeneity criteria. It has also become a very complicated area of research, including pattern recognition, information retrieval, and text mining. Metaheuristics are typically used as efficient approaches for the text clustering problem. The multi-verse optimizer algorithm (MVO) involves a stochastic population-based algorithm. It has been recently proposed and successfully utilized to tackle many hard optimization problems. However, a recently applied research trend involves hybridizing two or more algorithms with the aim of obtaining a superior solution regarding the problems of optimization. In this paper, a new hybrid of MVO algorithm with the K-means clustering algorithm is proposed, i.e., the H-MVO algorithm with the aims of enhancing the quality of initial candidate solutions, as well as the best solution, which is produced by MVO at each iteration. This hybrid algorithm aims at improving the global (diversification) ability of the search and finding a better cluster partition. The proposed H-MVO effectiveness was tested on five standard datasets, which are used in the domain of data clustering, as well as six standard text datasets, which are utilized in the domain of text document clustering, in addition to two scientific articles’ datasets. The experiments showed that K-means hybridized MVO improves the results in terms of high convergence rate, accuracy, error rate, purity, entropy, recall, precision, and F-measure criteria. In general, H-MVO has outperformed or at least proven to be highly competitive compared to the original MVO algorithm and with well-known optimization algorithms like KHA, HS, PSO, GA, H-PSO, and H-GA and the clustering techniques like K-mean, K-mean++, DBSCAN, agglomerative, and spectral clustering techniques.
Author Al-Betar, Mohammed Azmi
Khader, Ahamad Tajudin
Naim, Syibrah
Makhadmeh, Sharif Naser
Abasi, Ammar Kamal
Alyasseri, Zaid Abdi Alkareem
Author_xml – sequence: 1
  givenname: Ammar Kamal
  surname: Abasi
  fullname: Abasi, Ammar Kamal
  email: ammar_abasi@student.usm.my
  organization: School of Computer Sciences, Universiti Sains Malaysia (USM)
– sequence: 2
  givenname: Ahamad Tajudin
  surname: Khader
  fullname: Khader, Ahamad Tajudin
  organization: School of Computer Sciences, Universiti Sains Malaysia (USM)
– sequence: 3
  givenname: Mohammed Azmi
  surname: Al-Betar
  fullname: Al-Betar, Mohammed Azmi
  organization: Department of Information Technology, Al-Huson University College
– sequence: 4
  givenname: Syibrah
  surname: Naim
  fullname: Naim, Syibrah
  organization: Technology Department, Endicott College of International Studies (ECIS), Woosong University
– sequence: 5
  givenname: Zaid Abdi Alkareem
  surname: Alyasseri
  fullname: Alyasseri, Zaid Abdi Alkareem
  organization: School of Computer Sciences, Universiti Sains Malaysia (USM), ECE Department, Faculty of Engineering, University of Kufa
– sequence: 6
  givenname: Sharif Naser
  surname: Makhadmeh
  fullname: Makhadmeh, Sharif Naser
  organization: School of Computer Sciences, Universiti Sains Malaysia (USM)
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxGw4x05qj1XFl6jUBWbLSWzqKomL7QDl15NSJCSGTje873N3eiZo1PnOIHRJ4ZoCzG4iQJ5RAhkQ4JLnBE7QmHLGCINcjNAYJB_igrMzNIlxAwC8EPkYrea48--mwetdGVyN275JjrybEA322-Ra92UC_nBpjZ9Ia3QXsfUBJ_OZcO2rvjVdirhq-phMcN3rOTq1uonm4ndO0cvd7fPigSxX94-L-ZJUjMpEypJaW9sCmK2kNpLqOmc8l0Jk3ApuQItKlpSVMyEznYmy4PVMDllW6EJYy6bo6rB3G_xbb2JSG9-HbjipMj6jBQCVYmhlh1YVfIzBWLUNrtVhpyiovTh1EKcGcepHnIIBEv-gyiWdnO9S0K45jrIDGrd7GSb8fXWE-gZ1CISX
CitedBy_id crossref_primary_10_3390_app121910057
crossref_primary_10_3390_math9161929
crossref_primary_10_1007_s11227_021_03814_4
crossref_primary_10_1016_j_engappai_2022_105457
crossref_primary_10_1109_ACCESS_2024_3484388
crossref_primary_10_1007_s13369_023_07993_5
crossref_primary_10_1007_s11227_023_05540_5
crossref_primary_10_3390_electronics10040447
crossref_primary_10_1016_j_dsp_2021_103312
crossref_primary_10_1007_s10044_023_01146_y
crossref_primary_10_1109_ACCESS_2023_3314589
crossref_primary_10_1155_2022_2459815
crossref_primary_10_3390_math10030315
crossref_primary_10_3390_sym15061163
crossref_primary_10_1016_j_asoc_2021_107951
crossref_primary_10_1016_j_asoc_2022_108904
crossref_primary_10_1111_exsy_12759
crossref_primary_10_1007_s11192_023_04674_w
crossref_primary_10_1016_j_egyr_2021_02_007
crossref_primary_10_1007_s10462_024_10920_1
crossref_primary_10_1016_j_jksuci_2021_06_015
crossref_primary_10_1016_j_petrol_2021_109149
crossref_primary_10_1007_s11831_023_09984_z
crossref_primary_10_1016_j_procs_2022_09_041
crossref_primary_10_1016_j_swevo_2025_101847
crossref_primary_10_1155_2022_3661477
crossref_primary_10_1080_00949655_2020_1822358
crossref_primary_10_3390_app122412979
crossref_primary_10_1007_s12652_020_02439_4
crossref_primary_10_3390_e24070875
Cites_doi 10.1007/s00500-020-04760-8
10.1016/j.ieri.2013.11.053
10.1080/0952813X.2018.1430858
10.1109/ACCESS.2019.2962658
10.1016/j.asoc.2009.12.025
10.1016/j.eswa.2009.02.003
10.1109/JEEIT.2019.8717468
10.1016/j.ins.2014.12.058
10.1016/j.compstruc.2012.09.003
10.1109/JEEIT.2019.8717491
10.1007/s00500-016-2262-3
10.1016/j.knosys.2011.07.001
10.1016/j.compstruc.2012.12.011
10.1016/j.advengsoft.2015.01.010
10.1017/CBO9780511814990
10.1016/j.swevo.2013.11.003
10.1007/s00500-014-1571-7
10.1109/JIOT.2018.2796243
10.1016/j.swevo.2014.02.001
10.1007/s00521-015-2110-x
10.1016/j.advengsoft.2017.07.002
10.1016/j.knosys.2012.06.015
10.1109/TKDE.2013.19
10.1007/978-0-387-30164-8_630
10.4018/978-1-5225-0075-9.ch012
10.1016/j.neucom.2015.02.048
10.1007/s12559-018-9611-8
10.1016/j.asoc.2017.06.059
10.1007/s11227-018-2625-x
10.1016/j.eswa.2008.12.046
10.1016/j.eswa.2008.01.039
10.1016/j.eswa.2011.07.123
10.1007/s00521-013-1485-9
10.1007/s10115-011-0412-6
10.1016/j.engappai.2018.03.013
10.1016/j.engappai.2019.04.007
10.1016/j.asoc.2009.07.001
10.1016/j.ins.2012.07.025
10.1016/j.cnsns.2012.05.010
10.1007/s00500-015-1707-4
10.1007/s00521-015-1870-7
10.1007/978-3-319-21212-8_12
10.1145/3321289.3321327
10.1016/j.advengsoft.2013.03.004
10.1016/j.eswa.2018.09.006
10.1007/s00521-015-2095-5
10.1109/SMC.2013.390
10.2307/3001968
10.1504/IJBIC.2016.079569
10.1007/978-1-4614-3223-4_4
10.1016/j.rser.2019.109362
10.1109/ICECCT.2015.7226090
10.1016/j.advengsoft.2013.12.007
10.1016/j.aca.2003.12.032
10.1016/j.eswa.2014.10.023
10.1007/978-3-642-27242-4_10
10.1016/j.asoc.2019.106002
10.1145/3130348.3130362
10.1007/s00521-015-1920-1
10.1007/s00521-017-3228-9
10.3233/FI-2019-1795
10.3233/AIC-150677
10.1007/978-981-13-3600-3_25
10.1016/j.ygeno.2019.09.015
10.1016/j.patrec.2016.11.004
10.1007/978-3-319-13826-8_14
10.1007/s10462-012-9328-0
10.1016/j.petrol.2017.04.010
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-04945-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 17729
ExternalDocumentID 10_1007_s00521_020_04945_0
GrantInformation_xml – fundername: Universiti Sains Malaysia
  grantid: 1001/PKOMP/ 8014016
  funderid: http://dx.doi.org/10.13039/501100004595
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-bb1ffdf603fc9ae91ad534598824f84e0a8c9b13b7892a28b64d7924f26a68ff3
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Sun Jul 13 03:38:12 EDT 2025
Tue Jul 01 01:46:55 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Fri Feb 21 02:35:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Text clustering
Multi-verse optimizer (MVO)
Hybridization
k-Means clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bb1ffdf603fc9ae91ad534598824f84e0a8c9b13b7892a28b64d7924f26a68ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2471600198
PQPubID 2043988
PageCount 27
ParticipantIDs proquest_journals_2471600198
crossref_primary_10_1007_s00521_020_04945_0
crossref_citationtrail_10_1007_s00521_020_04945_0
springer_journals_10_1007_s00521_020_04945_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Arqub, Al-Smadi, Momani, Hayat (CR79) 2017; 21
Abualigah, Khader, Hanandeh, Gandomi (CR10) 2017; 60
Zaw, Mon, Yang (CR18) 2015
Wei, Yonghe, Chang, Zhou, Bao (CR85) 2015; 42
OA (CR75) 2017; 28
Kaveh, Farhoudi (CR25) 2013; 59
Barrow, Davies, Harper (CR28) 2004
Al-Betar, Alomari, Abu-Romman (CR47) 2019; 112
Nanda, Panda (CR69) 2014; 16
CR39
Niknam, Amiri (CR9) 2010; 10
Bharti, Singh (CR2) 2016; 20
Bezdek (CR41) 2013
Alyasseri, Khader, Al-Betar, Abasi, Makhadmeh (CR36) 2019; 8
Shelokar, Jayaraman, Kulkarni (CR27) 2004; 509
Forsati, Keikha, Shamsfard (CR83) 2015; 159
Wang, Gandomi, Alavi, Hao (CR60) 2014; 25
CR71
CR70
Faris, Hassonah, Ala’M, Mirjalili, Aljarah (CR35) 2017; 30
Deepa, Revathy, Student (CR80) 2012; 1
Kalogeratos, Likas (CR4) 2012; 31
Sahoo (CR13) 2017; 28
Wilcoxon (CR87) 1945; 1
Degertekin, Hayalioglu (CR23) 2013; 119
Lin, Jiang, Lee (CR82) 2014; 26
CR3
Benmessahel, Xie, Chellal (CR32) 2017; 48
Arqub, Mohammed, Momani, Hayat (CR76) 2016; 20
CR8
Jangir, Parmar, Trivedi, Bhesdadiya (CR73) 2017; 20
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR19) 2017; 114
Cura (CR26) 2012; 39
Gandomi, Alavi (CR22) 2012; 17
CR45
Ewees, El Aziz, Hassanien (CR34) 2017; 31
Shehab, Khader, Laouchedi, Alomari (CR38) 2019; 75
Sayed, Darwish, Hassanien (CR74) 2019; 31
Kumar, Sahoo (CR7) 2015; 28
Saini, Saha, Bhattacharyya (CR86) 2019; 11
Wang, Gandomi, Yang, Alavi (CR61) 2016; 8
Del Buono, Pio (CR81) 2015; 301
Han, Pei, Kamber (CR11) 2011
Alam, Dobbie, Koh, Riddle, Ur Rehman (CR49) 2014; 17
Abasi, Khader, Al-Betar, Naim, Makhadmeh, Alyasseri (CR5) 2020; 87
Karaboga, Gorkemli, Ozturk, Karaboga (CR56) 2014; 42
Mirjalili, Mirjalili, Hatamlou (CR29) 2016; 27
Yang, Sun, Zhang (CR58) 2009; 36
Forsati, Mahdavi, Shamsfard, Meybodi (CR16) 2013; 220
CR14
CR57
CR12
Tan, Ting, Teng (CR84) 2011; 44
CR55
CR54
Song, Li, Park (CR52) 2009; 36
CR51
CR50
Figueiredo, Macedo, Siqueira, Santana, Gokhale, Bastos-Filho (CR1) 2019; 82
Janiga, Czarnota, Stopa, Wojnarowski, Kosowski (CR33) 2017; 154
Vishwakarma, Nair, Rao (CR44) 2017; 2
Makhadmeh, Khader, Al-Betar, Naim, Abasi, Alyasseri (CR37) 2019; 115
Rani, Babu, Wang, Reddy, Prasad, Reddy (CR6) 2019
Aggarwal, Zhai, Aggarwal, Zhai (CR46) 2012
Chen (CR42) 2017; 93
Sayed, Darwish, Hassanien (CR72) 2018; 30
Mirjalili (CR24) 2015; 83
Park, Jun (CR40) 2009; 36
Karaboga, Ozturk (CR59) 2011; 11
Arqub (CR78) 2019; 166
Kaveh, Khayatazad (CR15) 2012; 112
Mirjalili, Mirjalili, Lewis (CR17) 2014; 69
CR68
Kumar, Garg, Singh, Batra, You Ilsun (CR31) 2018; 5
Bansal, Srivastava (CR63) 2018; 49
CR67
CR64
Shukri, Faris, Aljarah, Mirjalili, Abraham (CR30) 2018; 72
CR62
Akter, Chung (CR53) 2013; 4
Awadallah, Al-Betar, Bolaji, Doush, Hammouri, Mafarja (CR77) 2020
Zeugmann, Sammut, Webb (CR48) 2011
Raghuvanshi, Patel (CR65) 2017; 6
Bouras, Tsogkas (CR66) 2012; 36
Pan (CR20) 2012; 26
Mirjalili (CR21) 2016; 27
Hussain, Haris (CR43) 2019; 118
S Mirjalili (4945_CR17) 2014; 69
MA Al-Betar (4945_CR47) 2019; 112
OA Arqub (4945_CR79) 2017; 21
SF Hussain (4945_CR43) 2019; 118
E Figueiredo (4945_CR1) 2019; 82
D Karaboga (4945_CR56) 2014; 42
C-H Chen (4945_CR42) 2017; 93
H Faris (4945_CR35) 2017; 30
M Shehab (4945_CR38) 2019; 75
4945_CR45
R Forsati (4945_CR16) 2013; 220
I Benmessahel (4945_CR32) 2017; 48
SJ Nanda (4945_CR69) 2014; 16
T Wei (4945_CR85) 2015; 42
S Mirjalili (4945_CR21) 2016; 27
T Niknam (4945_CR9) 2010; 10
LM Abualigah (4945_CR10) 2017; 60
MA Awadallah (4945_CR77) 2020
AK Abasi (4945_CR5) 2020; 87
R Akter (4945_CR53) 2013; 4
JD Barrow (4945_CR28) 2004
T Zeugmann (4945_CR48) 2011
AA Ewees (4945_CR34) 2017; 31
A Kaveh (4945_CR25) 2013; 59
SC Tan (4945_CR84) 2011; 44
W-T Pan (4945_CR20) 2012; 26
D Karaboga (4945_CR59) 2011; 11
G-G Wang (4945_CR60) 2014; 25
J Han (4945_CR11) 2011
4945_CR55
4945_CR12
D Janiga (4945_CR33) 2017; 154
4945_CR57
4945_CR14
F Wilcoxon (4945_CR87) 1945; 1
4945_CR50
P Kumar (4945_CR31) 2018; 5
4945_CR51
S Mirjalili (4945_CR19) 2017; 114
4945_CR54
MS Rani (4945_CR6) 2019
ZAA Alyasseri (4945_CR36) 2019; 8
P Jangir (4945_CR73) 2017; 20
N Saini (4945_CR86) 2019; 11
S Alam (4945_CR49) 2014; 17
4945_CR67
AH Gandomi (4945_CR22) 2012; 17
4945_CR68
R Forsati (4945_CR83) 2015; 159
S Mirjalili (4945_CR29) 2016; 27
M Deepa (4945_CR80) 2012; 1
GI Sayed (4945_CR74) 2019; 31
A Kaveh (4945_CR15) 2012; 112
KK Bharti (4945_CR2) 2016; 20
S Shukri (4945_CR30) 2018; 72
W Song (4945_CR52) 2009; 36
T Cura (4945_CR26) 2012; 39
4945_CR62
C Bouras (4945_CR66) 2012; 36
4945_CR64
OA Arqub (4945_CR78) 2019; 166
MM Zaw (4945_CR18) 2015
M Raghuvanshi (4945_CR65) 2017; 6
4945_CR8
N Del Buono (4945_CR81) 2015; 301
CC Aggarwal (4945_CR46) 2012
B Bansal (4945_CR63) 2018; 49
A Kalogeratos (4945_CR4) 2012; 31
SN Makhadmeh (4945_CR37) 2019; 115
PS Shelokar (4945_CR27) 2004; 509
H-S Park (4945_CR40) 2009; 36
F Yang (4945_CR58) 2009; 36
G-G Wang (4945_CR61) 2016; 8
Y-S Lin (4945_CR82) 2014; 26
G Sahoo (4945_CR13) 2017; 28
OA Arqub (4945_CR76) 2016; 20
SO Degertekin (4945_CR23) 2013; 119
4945_CR39
Arqub OA (4945_CR75) 2017; 28
4945_CR3
S Vishwakarma (4945_CR44) 2017; 2
JC Bezdek (4945_CR41) 2013
4945_CR70
4945_CR71
GI Sayed (4945_CR72) 2018; 30
Y Kumar (4945_CR7) 2015; 28
S Mirjalili (4945_CR24) 2015; 83
References_xml – volume: 72
  start-page: 54
  year: 2018
  end-page: 66
  ident: CR30
  article-title: Evolutionary static and dynamic clustering algorithms based on multi-verse optimizer
  publication-title: Eng Appl Artif Intell
– ident: CR45
– ident: CR70
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR17
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
– volume: 118
  start-page: 20
  year: 2019
  end-page: 34
  ident: CR43
  article-title: A k-means based co-clustering (KCC) algorithm for sparse, high dimensional data
  publication-title: Expert Syst Appl
– volume: 2
  start-page: 297
  issue: 11
  year: 2017
  end-page: 302
  ident: CR44
  article-title: A comparative study of K-means and K-medoid clustering for social media text mining
  publication-title: Int J Adv Sci Res Eng Trends
– ident: CR68
– ident: CR39
– ident: CR51
– volume: 10
  start-page: 183
  issue: 1
  year: 2010
  end-page: 197
  ident: CR9
  article-title: An efficient hybrid approach based on pso, aco and k-means for cluster analysis
  publication-title: Appl Soft Comput
– ident: CR12
– start-page: 263
  year: 2015
  end-page: 281
  ident: CR18
  article-title: Web document clustering by using PSO-based cuckoo search clustering algorithm
  publication-title: Recent advances in swarm intelligence and evolutionary computation
– volume: 59
  start-page: 53
  year: 2013
  end-page: 70
  ident: CR25
  article-title: A new optimization method: dolphin echolocation
  publication-title: Adv Eng Softw
– volume: 16
  start-page: 1
  year: 2014
  end-page: 18
  ident: CR69
  article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering
  publication-title: Swarm Evolut Comput
– ident: CR54
– volume: 112
  start-page: 114
  year: 2019
  end-page: 126
  ident: CR47
  article-title: A TRIZ-inspired bat algorithm for gene selection in cancer classification
  publication-title: Genomics
– volume: 75
  start-page: 2395
  issue: 5
  year: 2019
  end-page: 2422
  ident: CR38
  article-title: Hybridizing cuckoo search algorithm with bat algorithm for global numerical optimization
  publication-title: J Supercomput
– ident: CR8
– volume: 166
  start-page: 87
  issue: 2
  year: 2019
  end-page: 110
  ident: CR78
  article-title: Application of residual power series method for the solution of time-fractional schrodinger equations in one-dimensional space
  publication-title: Fundam Inform
– volume: 31
  start-page: 455
  issue: 3
  year: 2012
  end-page: 474
  ident: CR4
  article-title: Text document clustering using global term context vectors
  publication-title: Knowl Inf Syst
– start-page: 261
  year: 2019
  end-page: 271
  ident: CR6
  article-title: Efficient query clustering technique and context well-informed document clustering
  publication-title: Soft computing and signal processing
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: CR24
  article-title: The ant lion optimizer
  publication-title: Adv Eng Softw
– volume: 42
  start-page: 21
  issue: 1
  year: 2014
  end-page: 57
  ident: CR56
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif Intell Rev
– volume: 301
  start-page: 13
  year: 2015
  end-page: 26
  ident: CR81
  article-title: Non-negative matrix tri-factorization for co-clustering: an analysis of the block matrix
  publication-title: Inf Sci
– volume: 4
  start-page: 370
  year: 2013
  end-page: 375
  ident: CR53
  article-title: An evolutionary approach for document clustering
  publication-title: IERI Procedia
– volume: 44
  start-page: 2786
  issue: 10–11
  year: 2011
  end-page: 2799
  ident: CR84
  article-title: A general stochastic clustering method for automatic cluster discovery
  publication-title: Pattern Recogn
– ident: CR71
– year: 2011
  ident: CR11
  publication-title: Data mining: concepts and techniques
– volume: 1
  start-page: 147
  issue: 3
  year: 2012
  end-page: 152
  ident: CR80
  article-title: Validation of document clustering based on purity and entropy measures
  publication-title: Int J Adv Res Comput Commun Eng
– ident: CR67
– ident: CR50
– volume: 8
  start-page: 10584
  year: 2019
  end-page: 10605
  ident: CR36
  article-title: EEG signals denoising using optimal wavelet transform hybridized with efficient metaheuristic methods
  publication-title: IEEE Access
– volume: 28
  start-page: 1591
  issue: 7
  year: 2017
  end-page: 1610
  ident: CR75
  article-title: Adaptation of reproducing kernel algorithm for solving fuzzy fredholm-volterra integrodifferential equations
  publication-title: Neural Comput Appl
– volume: 112
  start-page: 283
  year: 2012
  end-page: 294
  ident: CR15
  article-title: A new meta-heuristic method: ray optimization
  publication-title: Comput Struct
– ident: CR57
– year: 2013
  ident: CR41
  publication-title: Pattern recognition with fuzzy objective function algorithms
– volume: 11
  start-page: 271
  year: 2019
  end-page: 293
  ident: CR86
  article-title: Automatic scientific document clustering using self-organized multi-objective differential evolution
  publication-title: Cogn Comput
– ident: CR64
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  end-page: 1073
  ident: CR21
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput Appl
– volume: 509
  start-page: 187
  issue: 2
  year: 2004
  end-page: 195
  ident: CR27
  article-title: An ant colony approach for clustering
  publication-title: Anal Chim Acta
– volume: 154
  start-page: 354
  year: 2017
  end-page: 366
  ident: CR33
  article-title: Performance of nature inspired optimization algorithms for polymer enhanced oil recovery process
  publication-title: J Petrol Sci Eng
– volume: 48
  start-page: 1
  year: 2017
  end-page: 13
  ident: CR32
  article-title: A new evolutionary neural networks based on intrusion detection systems using multiverse optimization
  publication-title: Appl Intell
– volume: 119
  start-page: 177
  year: 2013
  end-page: 188
  ident: CR23
  article-title: Sizing truss structures using teaching–learning-based optimization
  publication-title: Comput Struct
– start-page: 760
  year: 2011
  end-page: 766
  ident: CR48
  article-title: Particle swarm optimization
  publication-title: Encyclopedia of machine learning
– volume: 39
  start-page: 1582
  issue: 1
  year: 2012
  end-page: 1588
  ident: CR26
  article-title: A particle swarm optimization approach to clustering
  publication-title: Expert Syst Appl
– volume: 30
  start-page: 1
  year: 2017
  end-page: 15
  ident: CR35
  article-title: A multi-verse optimizer approach for feature selection and optimizing svm parameters based on a robust system architecture
  publication-title: Neural Comput Appl
– volume: 31
  start-page: 2763
  year: 2019
  end-page: 2780
  ident: CR74
  article-title: Quantum multiverse optimization algorithm for optimization problems
  publication-title: Neural Comput Appl
– volume: 49
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR63
  article-title: Hybrid attribute based sentiment classification of online reviews for consumer intelligence
  publication-title: Appl Intell
– volume: 28
  start-page: 537
  issue: 3
  year: 2017
  end-page: 551
  ident: CR13
  article-title: A two-step artificial bee colony algorithm for clustering
  publication-title: Neural Comput Appl
– ident: CR14
– volume: 159
  start-page: 9
  year: 2015
  end-page: 26
  ident: CR83
  article-title: An improved bee colony optimization algorithm with an application to document clustering
  publication-title: Neurocomputing
– volume: 20
  start-page: 1113
  issue: 3
  year: 2016
  end-page: 1126
  ident: CR2
  article-title: Chaotic gradient artificial bee colony for text clustering
  publication-title: Soft Comput
– volume: 36
  start-page: 9847
  issue: 6
  year: 2009
  end-page: 9852
  ident: CR58
  article-title: An efficient hybrid data clustering method based on k-harmonic means and particle swarm optimization
  publication-title: Expert Syst Appl
– volume: 25
  start-page: 297
  issue: 2
  year: 2014
  end-page: 308
  ident: CR60
  article-title: Hybrid krill herd algorithm with differential evolution for global numerical optimization
  publication-title: Neural Comput Appl
– volume: 21
  start-page: 7191
  issue: 23
  year: 2017
  end-page: 7206
  ident: CR79
  article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems
  publication-title: Soft Comput
– volume: 82
  start-page: 313
  year: 2019
  end-page: 329
  ident: CR1
  article-title: Swarm intelligence for clustering a systematic review with new perspectives on data mining
  publication-title: Eng Appl Artif Intell
– volume: 8
  start-page: 286
  issue: 5
  year: 2016
  end-page: 299
  ident: CR61
  article-title: A new hybrid method based on krill herd and cuckoo search for global optimisation tasks
  publication-title: Int J Bio-Inspir Comput
– volume: 60
  start-page: 423
  year: 2017
  end-page: 435
  ident: CR10
  article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques
  publication-title: Appl Soft Comput
– volume: 28
  start-page: 751
  issue: 4
  year: 2015
  end-page: 764
  ident: CR7
  article-title: A hybrid data clustering approach based on improved cat swarm optimization and k-harmonic mean algorithm
  publication-title: AI Commun
– volume: 87
  start-page: 106002
  year: 2020
  ident: CR5
  article-title: Link-based multi-verse optimizer for text documents clustering
  publication-title: Appl Soft Comput
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  end-page: 4845
  ident: CR22
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 26
  start-page: 69
  year: 2012
  end-page: 74
  ident: CR20
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
  publication-title: Knowl Based Syst
– volume: 26
  start-page: 1575
  issue: 7
  year: 2014
  end-page: 1590
  ident: CR82
  article-title: A similarity measure for text classification and clustering
  publication-title: IEEE Trans Knowl Data Eng
– volume: 42
  start-page: 2264
  issue: 4
  year: 2015
  end-page: 2275
  ident: CR85
  article-title: A semantic approach for text clustering using wordnet and lexical chains
  publication-title: Expert Syst Appl
– volume: 93
  start-page: 113
  year: 2017
  end-page: 122
  ident: CR42
  article-title: Improved tfidf in big news retrieval: an empirical study
  publication-title: Pattern Recogn Lett
– volume: 20
  start-page: 3283
  issue: 8
  year: 2016
  end-page: 3302
  ident: CR76
  article-title: Numerical solutions of fuzzy differential equations using reproducing kernel hilbert space method
  publication-title: Soft Comput
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: CR87
  article-title: Individual comparisons by ranking methods
  publication-title: Biom Bull
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: CR19
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
– year: 2020
  ident: CR77
  article-title: Island artificial bee colony for global optimization
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-04760-8
– volume: 5
  start-page: 1698
  year: 2018
  end-page: 1707
  ident: CR31
  article-title: Mvo-based two-dimensional path planning scheme for providing quality of service in uav environment
  publication-title: IEEE Internet Things J
– volume: 115
  start-page: 109362
  year: 2019
  ident: CR37
  article-title: Optimization methods for power scheduling problems in smart home: survey
  publication-title: Renew Sustain Energy Rev
– ident: CR3
– volume: 36
  start-page: 115
  year: 2012
  end-page: 128
  ident: CR66
  article-title: A clustering technique for news articles using wordnet
  publication-title: Knowl Based Syst
– year: 2004
  ident: CR28
  publication-title: Science and ultimate reality: quantum theory, cosmology, and complexity
– volume: 30
  start-page: 293
  issue: 2
  year: 2018
  end-page: 317
  ident: CR72
  article-title: A new chaotic multi-verse optimization algorithm for solving engineering optimization problems
  publication-title: J Exp Theor Artif Intell
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  end-page: 513
  ident: CR29
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput Appl
– volume: 36
  start-page: 3336
  issue: 2
  year: 2009
  end-page: 3341
  ident: CR40
  article-title: A simple and fast algorithm for k-medoids clustering
  publication-title: Expert Syst Appl
– volume: 17
  start-page: 1
  year: 2014
  end-page: 13
  ident: CR49
  article-title: Research on particle swarm optimization based clustering: a systematic review of literature and techniques
  publication-title: Swarm Evolut Comput
– volume: 20
  start-page: 570
  issue: 2
  year: 2017
  end-page: 586
  ident: CR73
  article-title: A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem
  publication-title: Eng Sci Technol Int J
– volume: 11
  start-page: 652
  issue: 1
  year: 2011
  end-page: 657
  ident: CR59
  article-title: A novel clustering approach: artificial bee colony (ABC) algorithm
  publication-title: Appl Soft Comput
– ident: CR55
– volume: 6
  start-page: 20285
  issue: 2
  year: 2017
  end-page: 20288
  ident: CR65
  article-title: An improved document clustering with multiview point similarity/dissimilarity measures
  publication-title: Int J Eng Comput Sci
– volume: 220
  start-page: 269
  year: 2013
  end-page: 291
  ident: CR16
  article-title: Efficient stochastic algorithms for document clustering
  publication-title: Inf Sci
– volume: 31
  start-page: 1
  year: 2017
  end-page: 16
  ident: CR34
  article-title: Chaotic multi-verse optimizer-based feature selection
  publication-title: Neural Comput Appl
– ident: CR62
– volume: 36
  start-page: 9095
  issue: 5
  year: 2009
  end-page: 9104
  ident: CR52
  article-title: Genetic algorithm for text clustering using ontology and evaluating the validity of various semantic similarity measures
  publication-title: Expert Syst Appl
– start-page: 77
  year: 2012
  end-page: 128
  ident: CR46
  article-title: A survey of text clustering algorithms
  publication-title: Mining text data
– volume-title: Pattern recognition with fuzzy objective function algorithms
  year: 2013
  ident: 4945_CR41
– volume: 4
  start-page: 370
  year: 2013
  ident: 4945_CR53
  publication-title: IERI Procedia
  doi: 10.1016/j.ieri.2013.11.053
– ident: 4945_CR39
– volume: 30
  start-page: 293
  issue: 2
  year: 2018
  ident: 4945_CR72
  publication-title: J Exp Theor Artif Intell
  doi: 10.1080/0952813X.2018.1430858
– volume: 8
  start-page: 10584
  year: 2019
  ident: 4945_CR36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962658
– volume: 11
  start-page: 652
  issue: 1
  year: 2011
  ident: 4945_CR59
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.12.025
– ident: 4945_CR68
– volume: 36
  start-page: 9847
  issue: 6
  year: 2009
  ident: 4945_CR58
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.02.003
– volume: 2
  start-page: 297
  issue: 11
  year: 2017
  ident: 4945_CR44
  publication-title: Int J Adv Sci Res Eng Trends
– volume-title: Data mining: concepts and techniques
  year: 2011
  ident: 4945_CR11
– ident: 4945_CR51
  doi: 10.1109/JEEIT.2019.8717468
– volume: 6
  start-page: 20285
  issue: 2
  year: 2017
  ident: 4945_CR65
  publication-title: Int J Eng Comput Sci
– ident: 4945_CR55
– volume: 49
  start-page: 1
  year: 2018
  ident: 4945_CR63
  publication-title: Appl Intell
– volume: 44
  start-page: 2786
  issue: 10–11
  year: 2011
  ident: 4945_CR84
  publication-title: Pattern Recogn
– volume: 301
  start-page: 13
  year: 2015
  ident: 4945_CR81
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.12.058
– ident: 4945_CR45
– volume: 112
  start-page: 283
  year: 2012
  ident: 4945_CR15
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.09.003
– ident: 4945_CR12
  doi: 10.1109/JEEIT.2019.8717491
– volume: 20
  start-page: 570
  issue: 2
  year: 2017
  ident: 4945_CR73
  publication-title: Eng Sci Technol Int J
– volume: 21
  start-page: 7191
  issue: 23
  year: 2017
  ident: 4945_CR79
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2262-3
– volume: 26
  start-page: 69
  year: 2012
  ident: 4945_CR20
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2011.07.001
– volume: 119
  start-page: 177
  year: 2013
  ident: 4945_CR23
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.12.011
– volume: 83
  start-page: 80
  year: 2015
  ident: 4945_CR24
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.01.010
– volume-title: Science and ultimate reality: quantum theory, cosmology, and complexity
  year: 2004
  ident: 4945_CR28
  doi: 10.1017/CBO9780511814990
– volume: 16
  start-page: 1
  year: 2014
  ident: 4945_CR69
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2013.11.003
– ident: 4945_CR71
– volume: 20
  start-page: 1113
  issue: 3
  year: 2016
  ident: 4945_CR2
  publication-title: Soft Comput
  doi: 10.1007/s00500-014-1571-7
– volume: 5
  start-page: 1698
  year: 2018
  ident: 4945_CR31
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2796243
– volume: 17
  start-page: 1
  year: 2014
  ident: 4945_CR49
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2014.02.001
– volume: 28
  start-page: 1591
  issue: 7
  year: 2017
  ident: 4945_CR75
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2110-x
– volume: 114
  start-page: 163
  year: 2017
  ident: 4945_CR19
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 36
  start-page: 115
  year: 2012
  ident: 4945_CR66
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2012.06.015
– volume: 26
  start-page: 1575
  issue: 7
  year: 2014
  ident: 4945_CR82
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.19
– start-page: 760
  volume-title: Encyclopedia of machine learning
  year: 2011
  ident: 4945_CR48
  doi: 10.1007/978-0-387-30164-8_630
– ident: 4945_CR8
  doi: 10.4018/978-1-5225-0075-9.ch012
– volume: 159
  start-page: 9
  year: 2015
  ident: 4945_CR83
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.048
– volume: 11
  start-page: 271
  year: 2019
  ident: 4945_CR86
  publication-title: Cogn Comput
  doi: 10.1007/s12559-018-9611-8
– volume: 60
  start-page: 423
  year: 2017
  ident: 4945_CR10
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.059
– volume: 75
  start-page: 2395
  issue: 5
  year: 2019
  ident: 4945_CR38
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2625-x
– volume: 36
  start-page: 9095
  issue: 5
  year: 2009
  ident: 4945_CR52
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.12.046
– volume: 36
  start-page: 3336
  issue: 2
  year: 2009
  ident: 4945_CR40
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.01.039
– volume: 39
  start-page: 1582
  issue: 1
  year: 2012
  ident: 4945_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.07.123
– volume: 1
  start-page: 147
  issue: 3
  year: 2012
  ident: 4945_CR80
  publication-title: Int J Adv Res Comput Commun Eng
– volume: 31
  start-page: 1
  year: 2017
  ident: 4945_CR34
  publication-title: Neural Comput Appl
– volume: 25
  start-page: 297
  issue: 2
  year: 2014
  ident: 4945_CR60
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1485-9
– volume: 31
  start-page: 455
  issue: 3
  year: 2012
  ident: 4945_CR4
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0412-6
– volume: 72
  start-page: 54
  year: 2018
  ident: 4945_CR30
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.03.013
– volume: 82
  start-page: 313
  year: 2019
  ident: 4945_CR1
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.04.007
– volume: 10
  start-page: 183
  issue: 1
  year: 2010
  ident: 4945_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.07.001
– volume: 220
  start-page: 269
  year: 2013
  ident: 4945_CR16
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.07.025
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 4945_CR22
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 20
  start-page: 3283
  issue: 8
  year: 2016
  ident: 4945_CR76
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1707-4
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 4945_CR29
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1870-7
– ident: 4945_CR54
  doi: 10.1007/978-3-319-21212-8_12
– ident: 4945_CR14
  doi: 10.1145/3321289.3321327
– volume: 59
  start-page: 53
  year: 2013
  ident: 4945_CR25
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.03.004
– volume: 118
  start-page: 20
  year: 2019
  ident: 4945_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.09.006
– volume: 28
  start-page: 537
  issue: 3
  year: 2017
  ident: 4945_CR13
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2095-5
– ident: 4945_CR62
– ident: 4945_CR50
  doi: 10.1109/SMC.2013.390
– volume: 1
  start-page: 80
  year: 1945
  ident: 4945_CR87
  publication-title: Biom Bull
  doi: 10.2307/3001968
– volume: 8
  start-page: 286
  issue: 5
  year: 2016
  ident: 4945_CR61
  publication-title: Int J Bio-Inspir Comput
  doi: 10.1504/IJBIC.2016.079569
– ident: 4945_CR3
– start-page: 77
  volume-title: Mining text data
  year: 2012
  ident: 4945_CR46
  doi: 10.1007/978-1-4614-3223-4_4
– ident: 4945_CR67
– volume: 115
  start-page: 109362
  year: 2019
  ident: 4945_CR37
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109362
– ident: 4945_CR70
  doi: 10.1109/ICECCT.2015.7226090
– volume: 30
  start-page: 1
  year: 2017
  ident: 4945_CR35
  publication-title: Neural Comput Appl
– volume: 69
  start-page: 46
  year: 2014
  ident: 4945_CR17
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 509
  start-page: 187
  issue: 2
  year: 2004
  ident: 4945_CR27
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2003.12.032
– volume: 48
  start-page: 1
  year: 2017
  ident: 4945_CR32
  publication-title: Appl Intell
– volume: 42
  start-page: 2264
  issue: 4
  year: 2015
  ident: 4945_CR85
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.023
– ident: 4945_CR57
  doi: 10.1007/978-3-642-27242-4_10
– volume: 87
  start-page: 106002
  year: 2020
  ident: 4945_CR5
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.106002
– ident: 4945_CR64
  doi: 10.1145/3130348.3130362
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 4945_CR21
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– volume: 31
  start-page: 2763
  year: 2019
  ident: 4945_CR74
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3228-9
– volume: 166
  start-page: 87
  issue: 2
  year: 2019
  ident: 4945_CR78
  publication-title: Fundam Inform
  doi: 10.3233/FI-2019-1795
– volume: 28
  start-page: 751
  issue: 4
  year: 2015
  ident: 4945_CR7
  publication-title: AI Commun
  doi: 10.3233/AIC-150677
– start-page: 261
  volume-title: Soft computing and signal processing
  year: 2019
  ident: 4945_CR6
  doi: 10.1007/978-981-13-3600-3_25
– volume: 112
  start-page: 114
  year: 2019
  ident: 4945_CR47
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.09.015
– volume: 93
  start-page: 113
  year: 2017
  ident: 4945_CR42
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2016.11.004
– year: 2020
  ident: 4945_CR77
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-04760-8
– start-page: 263
  volume-title: Recent advances in swarm intelligence and evolutionary computation
  year: 2015
  ident: 4945_CR18
  doi: 10.1007/978-3-319-13826-8_14
– volume: 42
  start-page: 21
  issue: 1
  year: 2014
  ident: 4945_CR56
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-012-9328-0
– volume: 154
  start-page: 354
  year: 2017
  ident: 4945_CR33
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2017.04.010
SSID ssj0004685
Score 2.4213622
Snippet Text clustering has been widely utilized with the aim of partitioning specific document collection into different subsets using homogeneity/heterogeneity...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17703
SubjectTerms Algorithms
Artificial Intelligence
Cluster analysis
Clustering
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data mining
Data Mining and Knowledge Discovery
Datasets
Domains
Heterogeneity
Homogeneity
Image Processing and Computer Vision
Information retrieval
Optimization
Original Article
Pattern recognition
Probability and Statistics in Computer Science
Scientific papers
Vector quantization
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRgv5cANIrI07doTAgSaQAyEQNqtStJEII2Wx4YEvx47SzdAYtc2iVo7fsT5bBOyL1zEbeIM0yZzTHYMZyqzCZOF4kKBiYs0xiGve0n3QV72434IuL0HWGWtE72iLiqDMfIjAVoUjXOWHr-8MuwahberoYXGPGmCCk7h8NU8Pe_d3v3IjPRNOeEMg_geGYW0GZ88hxFReCoQ3pjJmPHfpmnqb_65IvWW52KZLAaXkZ6MebxC5my5Spbqdgw0SOcauTmhZfVhB_TxE9OwqMcKMoRdWFqBZnh--oLhGHilV-zZgo2i4LFShH5Q-P-RT3ajZjDC2gnwJevk4eL8_qzLQr8EZkCQhkzrtnOFS3jkDNbcbqsijmScgRMtXSotV6nJdDvSnTQTSqQ6kUUHzl9OJCpJnYs2SKOsSrtJqCmwMDwIOzgcMim40oVUysapk8Ly2LVIuyZVbkIxcexpMcgnZZA9eXMgb-7Jm_MWOZjMeRmX0pg5eqfmQB7E6j2fboIWOay5Mn39_2pbs1fbJgsCN4KHqeyQxvBtZHfB2RjqvbCjvgH268-s
  priority: 102
  providerName: ProQuest
Title A novel hybrid multi-verse optimizer with K-means for text documents clustering
URI https://link.springer.com/article/10.1007/s00521-020-04945-0
https://www.proquest.com/docview/2471600198
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ULl78bUSR9OBNm4yuG9txKINIRGMkwdPSdm00gc0ImOhf72vZQI2aeOphbbO89vV9r_3eewidUu06yteSCBlqwlrSITxUPmEpdygHE-cKcw95PfB7Q3Y18kZFUNi0ZLuXT5L2pF4Gu5kbTHB9qaEjhswj4KhXPeO7wy4e0uhTNKQtxAl-i-H0MLcIlfl5jq_maIUxvz2LWmsTb6PNAibiaLGuO2hNZbtoqyzBgAuN3EM3Ec7yVzXGj28m9ApbfiAxVAuFczgNJk_v0N1ctuI-mSiwSxhQKjZ0D5zmcm4D3LAcz02-BPiTfTSMO_cXPVLUSCASlGdGhGhqnWrfcbU0ebabPPVc5oUAnJkOmHJ4IEPRdEUrCCmngfBZ2gKfS1Of-4HW7gGqZHmmDhGWqUkGDwoOIIP5qcNFyjhXXqAZVY6na6hZiiqRRQJxU8dinCxTH1vxJiDexIo3cWrobDnmeZE-48_e9XIFkkKVpgkF82lQWRjU0Hm5KqvPv8929L_ux2iDmo1hqSp1VJm9zNUJAI6ZaKD1IO42UDVqX7Zj03Yf-h1o253B7V3D7r4PeBDQpQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB71caAXaKFVUwr1AU5g1bG9m90DQlUhTUlSLq3U29b22gIpL5oEVH4Uv5EZZ7ehSO2t112vtRp_nhmPv5kBeCODEj4NjluXB65bTnCT-5Tr0ghp0MQpS3HI_lnaudBfLpPLFfhT58IQrbLWiVFRl2NHMfJDiVqUjHOefZz84NQ1im5X6xYaC1h0_c0vPLJNP5x-wvV9K2X78_lxh1ddBbhDuM24tc0QypAKFRxVpm6aMlE6ydHV1CHTXpjM5bapbCvLpZGZTXXZwlNKkKlJsxAUzrsK61qpnHZU1j75Jw8ztgDFExOxibSqknRiqh7FX_GpJDJlrhMu7hrCpXf734VstHPtTXhaOajsaIGoLVjxo-fwrG7-wCpd8AK-HrHR-KcfsG83lPTFIjORE8nDszHqoeH33zicwrysy4ceLSJD_5gR0YShtOcxtY65wZwqNeCfbMPFo8hxB9ZG45HfBeZKKkOPqgXdG52WwthSG-OTLGjpRRIa0KxFVbiqdDl10BgUt0WXo3gLFG8RxVuIBry7_WayKNzx4Oj9egWKahNPiyXkGvC-XpXl6_tn23t4tgN40jnv94re6Vn3JWxIAkUkyOzD2ux67l-hmzOzryO2GFw9Npj_ArgYC58
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQbz4FqtV9-BNlyabTZoci1qq1erBQm9hnyi0SdFU0F_v7DZpq6jgOZslmX3MzO73fYPQKTWBpyMjiZCJIawpPcITHRGmuEc5uLhA2HPIu17U6bObQThYYPE7tHt1JTnlNFiVpqxojJVpzIhv9jQT0mBqoYkJCwkk7SuwHft2Xvdpa4EZ6YpyQg5j8T0sKGkzP_fx1TXN481vV6TO87Q30XoZMuLWdIy30JLOttFGVY4Bl6tzB923cJa_6SF-erc0LOywgsTCLjTOYWcYPX9Ac3vwirtkpMFHYYhYsYV-YJXLiSO7YTmcWO0E-JJd1G9fPV50SFkvgUj484II4RujTOQFRlrNbZ-rMGBhAkE0MzHTHo9lIvxANOOEchqLiKkm5F-GRjyKjQn20HKWZ3ofYamsMDwsdgg4WKQ8LhTjXIexYVR7oakhvzJVKksxcVvTYpjOZJCdeVMwb-rMm3o1dDZ7ZzyV0vizdb0agbRcVq8pBVdqI7QkrqHzalTmj3_v7eB_zU_Q6sNlO7297nUP0Rq1c8QhWOpouXiZ6COIQwpx7KbaJ0kv0k4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+multi-verse+optimizer+with+K-means+for+text+documents+clustering&rft.jtitle=Neural+computing+%26+applications&rft.au=Abasi%2C+Ammar+Kamal&rft.au=Khader%2C+Ahamad+Tajudin&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Naim%2C+Syibrah&rft.date=2020-12-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=23&rft.spage=17703&rft.epage=17729&rft_id=info:doi/10.1007%2Fs00521-020-04945-0&rft.externalDocID=10_1007_s00521_020_04945_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon