A novel hybrid multi-verse optimizer with K-means for text documents clustering
Text clustering has been widely utilized with the aim of partitioning specific document collection into different subsets using homogeneity/heterogeneity criteria. It has also become a very complicated area of research, including pattern recognition, information retrieval, and text mining. Metaheuri...
Saved in:
Published in | Neural computing & applications Vol. 32; no. 23; pp. 17703 - 17729 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.12.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Text clustering has been widely utilized with the aim of partitioning specific document collection into different subsets using homogeneity/heterogeneity criteria. It has also become a very complicated area of research, including pattern recognition, information retrieval, and text mining. Metaheuristics are typically used as efficient approaches for the text clustering problem. The multi-verse optimizer algorithm (MVO) involves a stochastic population-based algorithm. It has been recently proposed and successfully utilized to tackle many hard optimization problems. However, a recently applied research trend involves hybridizing two or more algorithms with the aim of obtaining a superior solution regarding the problems of optimization. In this paper, a new hybrid of MVO algorithm with the K-means clustering algorithm is proposed, i.e., the H-MVO algorithm with the aims of enhancing the quality of initial candidate solutions, as well as the best solution, which is produced by MVO at each iteration. This hybrid algorithm aims at improving the global (diversification) ability of the search and finding a better cluster partition. The proposed H-MVO effectiveness was tested on five standard datasets, which are used in the domain of data clustering, as well as six standard text datasets, which are utilized in the domain of text document clustering, in addition to two scientific articles’ datasets. The experiments showed that K-means hybridized MVO improves the results in terms of high convergence rate, accuracy, error rate, purity, entropy, recall, precision, and F-measure criteria. In general, H-MVO has outperformed or at least proven to be highly competitive compared to the original MVO algorithm and with well-known optimization algorithms like KHA, HS, PSO, GA, H-PSO, and H-GA and the clustering techniques like K-mean, K-mean++, DBSCAN, agglomerative, and spectral clustering techniques. |
---|---|
AbstractList | Text clustering has been widely utilized with the aim of partitioning specific document collection into different subsets using homogeneity/heterogeneity criteria. It has also become a very complicated area of research, including pattern recognition, information retrieval, and text mining. Metaheuristics are typically used as efficient approaches for the text clustering problem. The multi-verse optimizer algorithm (MVO) involves a stochastic population-based algorithm. It has been recently proposed and successfully utilized to tackle many hard optimization problems. However, a recently applied research trend involves hybridizing two or more algorithms with the aim of obtaining a superior solution regarding the problems of optimization. In this paper, a new hybrid of MVO algorithm with the K-means clustering algorithm is proposed, i.e., the H-MVO algorithm with the aims of enhancing the quality of initial candidate solutions, as well as the best solution, which is produced by MVO at each iteration. This hybrid algorithm aims at improving the global (diversification) ability of the search and finding a better cluster partition. The proposed H-MVO effectiveness was tested on five standard datasets, which are used in the domain of data clustering, as well as six standard text datasets, which are utilized in the domain of text document clustering, in addition to two scientific articles’ datasets. The experiments showed that K-means hybridized MVO improves the results in terms of high convergence rate, accuracy, error rate, purity, entropy, recall, precision, and F-measure criteria. In general, H-MVO has outperformed or at least proven to be highly competitive compared to the original MVO algorithm and with well-known optimization algorithms like KHA, HS, PSO, GA, H-PSO, and H-GA and the clustering techniques like K-mean, K-mean++, DBSCAN, agglomerative, and spectral clustering techniques. |
Author | Al-Betar, Mohammed Azmi Khader, Ahamad Tajudin Naim, Syibrah Makhadmeh, Sharif Naser Abasi, Ammar Kamal Alyasseri, Zaid Abdi Alkareem |
Author_xml | – sequence: 1 givenname: Ammar Kamal surname: Abasi fullname: Abasi, Ammar Kamal email: ammar_abasi@student.usm.my organization: School of Computer Sciences, Universiti Sains Malaysia (USM) – sequence: 2 givenname: Ahamad Tajudin surname: Khader fullname: Khader, Ahamad Tajudin organization: School of Computer Sciences, Universiti Sains Malaysia (USM) – sequence: 3 givenname: Mohammed Azmi surname: Al-Betar fullname: Al-Betar, Mohammed Azmi organization: Department of Information Technology, Al-Huson University College – sequence: 4 givenname: Syibrah surname: Naim fullname: Naim, Syibrah organization: Technology Department, Endicott College of International Studies (ECIS), Woosong University – sequence: 5 givenname: Zaid Abdi Alkareem surname: Alyasseri fullname: Alyasseri, Zaid Abdi Alkareem organization: School of Computer Sciences, Universiti Sains Malaysia (USM), ECE Department, Faculty of Engineering, University of Kufa – sequence: 6 givenname: Sharif Naser surname: Makhadmeh fullname: Makhadmeh, Sharif Naser organization: School of Computer Sciences, Universiti Sains Malaysia (USM) |
BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxGw4x05qj1XFl6jUBWbLSWzqKomL7QDl15NSJCSGTje873N3eiZo1PnOIHRJ4ZoCzG4iQJ5RAhkQ4JLnBE7QmHLGCINcjNAYJB_igrMzNIlxAwC8EPkYrea48--mwetdGVyN275JjrybEA322-Ra92UC_nBpjZ9Ia3QXsfUBJ_OZcO2rvjVdirhq-phMcN3rOTq1uonm4ndO0cvd7fPigSxX94-L-ZJUjMpEypJaW9sCmK2kNpLqOmc8l0Jk3ApuQItKlpSVMyEznYmy4PVMDllW6EJYy6bo6rB3G_xbb2JSG9-HbjipMj6jBQCVYmhlh1YVfIzBWLUNrtVhpyiovTh1EKcGcepHnIIBEv-gyiWdnO9S0K45jrIDGrd7GSb8fXWE-gZ1CISX |
CitedBy_id | crossref_primary_10_3390_app121910057 crossref_primary_10_3390_math9161929 crossref_primary_10_1007_s11227_021_03814_4 crossref_primary_10_1016_j_engappai_2022_105457 crossref_primary_10_1109_ACCESS_2024_3484388 crossref_primary_10_1007_s13369_023_07993_5 crossref_primary_10_1007_s11227_023_05540_5 crossref_primary_10_3390_electronics10040447 crossref_primary_10_1016_j_dsp_2021_103312 crossref_primary_10_1007_s10044_023_01146_y crossref_primary_10_1109_ACCESS_2023_3314589 crossref_primary_10_1155_2022_2459815 crossref_primary_10_3390_math10030315 crossref_primary_10_3390_sym15061163 crossref_primary_10_1016_j_asoc_2021_107951 crossref_primary_10_1016_j_asoc_2022_108904 crossref_primary_10_1111_exsy_12759 crossref_primary_10_1007_s11192_023_04674_w crossref_primary_10_1016_j_egyr_2021_02_007 crossref_primary_10_1007_s10462_024_10920_1 crossref_primary_10_1016_j_jksuci_2021_06_015 crossref_primary_10_1016_j_petrol_2021_109149 crossref_primary_10_1007_s11831_023_09984_z crossref_primary_10_1016_j_procs_2022_09_041 crossref_primary_10_1016_j_swevo_2025_101847 crossref_primary_10_1155_2022_3661477 crossref_primary_10_1080_00949655_2020_1822358 crossref_primary_10_3390_app122412979 crossref_primary_10_1007_s12652_020_02439_4 crossref_primary_10_3390_e24070875 |
Cites_doi | 10.1007/s00500-020-04760-8 10.1016/j.ieri.2013.11.053 10.1080/0952813X.2018.1430858 10.1109/ACCESS.2019.2962658 10.1016/j.asoc.2009.12.025 10.1016/j.eswa.2009.02.003 10.1109/JEEIT.2019.8717468 10.1016/j.ins.2014.12.058 10.1016/j.compstruc.2012.09.003 10.1109/JEEIT.2019.8717491 10.1007/s00500-016-2262-3 10.1016/j.knosys.2011.07.001 10.1016/j.compstruc.2012.12.011 10.1016/j.advengsoft.2015.01.010 10.1017/CBO9780511814990 10.1016/j.swevo.2013.11.003 10.1007/s00500-014-1571-7 10.1109/JIOT.2018.2796243 10.1016/j.swevo.2014.02.001 10.1007/s00521-015-2110-x 10.1016/j.advengsoft.2017.07.002 10.1016/j.knosys.2012.06.015 10.1109/TKDE.2013.19 10.1007/978-0-387-30164-8_630 10.4018/978-1-5225-0075-9.ch012 10.1016/j.neucom.2015.02.048 10.1007/s12559-018-9611-8 10.1016/j.asoc.2017.06.059 10.1007/s11227-018-2625-x 10.1016/j.eswa.2008.12.046 10.1016/j.eswa.2008.01.039 10.1016/j.eswa.2011.07.123 10.1007/s00521-013-1485-9 10.1007/s10115-011-0412-6 10.1016/j.engappai.2018.03.013 10.1016/j.engappai.2019.04.007 10.1016/j.asoc.2009.07.001 10.1016/j.ins.2012.07.025 10.1016/j.cnsns.2012.05.010 10.1007/s00500-015-1707-4 10.1007/s00521-015-1870-7 10.1007/978-3-319-21212-8_12 10.1145/3321289.3321327 10.1016/j.advengsoft.2013.03.004 10.1016/j.eswa.2018.09.006 10.1007/s00521-015-2095-5 10.1109/SMC.2013.390 10.2307/3001968 10.1504/IJBIC.2016.079569 10.1007/978-1-4614-3223-4_4 10.1016/j.rser.2019.109362 10.1109/ICECCT.2015.7226090 10.1016/j.advengsoft.2013.12.007 10.1016/j.aca.2003.12.032 10.1016/j.eswa.2014.10.023 10.1007/978-3-642-27242-4_10 10.1016/j.asoc.2019.106002 10.1145/3130348.3130362 10.1007/s00521-015-1920-1 10.1007/s00521-017-3228-9 10.3233/FI-2019-1795 10.3233/AIC-150677 10.1007/978-981-13-3600-3_25 10.1016/j.ygeno.2019.09.015 10.1016/j.patrec.2016.11.004 10.1007/978-3-319-13826-8_14 10.1007/s10462-012-9328-0 10.1016/j.petrol.2017.04.010 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-020-04945-0 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 17729 |
ExternalDocumentID | 10_1007_s00521_020_04945_0 |
GrantInformation_xml | – fundername: Universiti Sains Malaysia grantid: 1001/PKOMP/ 8014016 funderid: http://dx.doi.org/10.13039/501100004595 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-bb1ffdf603fc9ae91ad534598824f84e0a8c9b13b7892a28b64d7924f26a68ff3 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Sun Jul 13 03:38:12 EDT 2025 Tue Jul 01 01:46:55 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Fri Feb 21 02:35:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Text clustering Multi-verse optimizer (MVO) Hybridization k-Means clustering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-bb1ffdf603fc9ae91ad534598824f84e0a8c9b13b7892a28b64d7924f26a68ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2471600198 |
PQPubID | 2043988 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2471600198 crossref_primary_10_1007_s00521_020_04945_0 crossref_citationtrail_10_1007_s00521_020_04945_0 springer_journals_10_1007_s00521_020_04945_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2020 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Arqub, Al-Smadi, Momani, Hayat (CR79) 2017; 21 Abualigah, Khader, Hanandeh, Gandomi (CR10) 2017; 60 Zaw, Mon, Yang (CR18) 2015 Wei, Yonghe, Chang, Zhou, Bao (CR85) 2015; 42 OA (CR75) 2017; 28 Kaveh, Farhoudi (CR25) 2013; 59 Barrow, Davies, Harper (CR28) 2004 Al-Betar, Alomari, Abu-Romman (CR47) 2019; 112 Nanda, Panda (CR69) 2014; 16 CR39 Niknam, Amiri (CR9) 2010; 10 Bharti, Singh (CR2) 2016; 20 Bezdek (CR41) 2013 Alyasseri, Khader, Al-Betar, Abasi, Makhadmeh (CR36) 2019; 8 Shelokar, Jayaraman, Kulkarni (CR27) 2004; 509 Forsati, Keikha, Shamsfard (CR83) 2015; 159 Wang, Gandomi, Alavi, Hao (CR60) 2014; 25 CR71 CR70 Faris, Hassonah, Ala’M, Mirjalili, Aljarah (CR35) 2017; 30 Deepa, Revathy, Student (CR80) 2012; 1 Kalogeratos, Likas (CR4) 2012; 31 Sahoo (CR13) 2017; 28 Wilcoxon (CR87) 1945; 1 Degertekin, Hayalioglu (CR23) 2013; 119 Lin, Jiang, Lee (CR82) 2014; 26 CR3 Benmessahel, Xie, Chellal (CR32) 2017; 48 Arqub, Mohammed, Momani, Hayat (CR76) 2016; 20 CR8 Jangir, Parmar, Trivedi, Bhesdadiya (CR73) 2017; 20 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR19) 2017; 114 Cura (CR26) 2012; 39 Gandomi, Alavi (CR22) 2012; 17 CR45 Ewees, El Aziz, Hassanien (CR34) 2017; 31 Shehab, Khader, Laouchedi, Alomari (CR38) 2019; 75 Sayed, Darwish, Hassanien (CR74) 2019; 31 Kumar, Sahoo (CR7) 2015; 28 Saini, Saha, Bhattacharyya (CR86) 2019; 11 Wang, Gandomi, Yang, Alavi (CR61) 2016; 8 Del Buono, Pio (CR81) 2015; 301 Han, Pei, Kamber (CR11) 2011 Alam, Dobbie, Koh, Riddle, Ur Rehman (CR49) 2014; 17 Abasi, Khader, Al-Betar, Naim, Makhadmeh, Alyasseri (CR5) 2020; 87 Karaboga, Gorkemli, Ozturk, Karaboga (CR56) 2014; 42 Mirjalili, Mirjalili, Hatamlou (CR29) 2016; 27 Yang, Sun, Zhang (CR58) 2009; 36 Forsati, Mahdavi, Shamsfard, Meybodi (CR16) 2013; 220 CR14 CR57 CR12 Tan, Ting, Teng (CR84) 2011; 44 CR55 CR54 Song, Li, Park (CR52) 2009; 36 CR51 CR50 Figueiredo, Macedo, Siqueira, Santana, Gokhale, Bastos-Filho (CR1) 2019; 82 Janiga, Czarnota, Stopa, Wojnarowski, Kosowski (CR33) 2017; 154 Vishwakarma, Nair, Rao (CR44) 2017; 2 Makhadmeh, Khader, Al-Betar, Naim, Abasi, Alyasseri (CR37) 2019; 115 Rani, Babu, Wang, Reddy, Prasad, Reddy (CR6) 2019 Aggarwal, Zhai, Aggarwal, Zhai (CR46) 2012 Chen (CR42) 2017; 93 Sayed, Darwish, Hassanien (CR72) 2018; 30 Mirjalili (CR24) 2015; 83 Park, Jun (CR40) 2009; 36 Karaboga, Ozturk (CR59) 2011; 11 Arqub (CR78) 2019; 166 Kaveh, Khayatazad (CR15) 2012; 112 Mirjalili, Mirjalili, Lewis (CR17) 2014; 69 CR68 Kumar, Garg, Singh, Batra, You Ilsun (CR31) 2018; 5 Bansal, Srivastava (CR63) 2018; 49 CR67 CR64 Shukri, Faris, Aljarah, Mirjalili, Abraham (CR30) 2018; 72 CR62 Akter, Chung (CR53) 2013; 4 Awadallah, Al-Betar, Bolaji, Doush, Hammouri, Mafarja (CR77) 2020 Zeugmann, Sammut, Webb (CR48) 2011 Raghuvanshi, Patel (CR65) 2017; 6 Bouras, Tsogkas (CR66) 2012; 36 Pan (CR20) 2012; 26 Mirjalili (CR21) 2016; 27 Hussain, Haris (CR43) 2019; 118 S Mirjalili (4945_CR17) 2014; 69 MA Al-Betar (4945_CR47) 2019; 112 OA Arqub (4945_CR79) 2017; 21 SF Hussain (4945_CR43) 2019; 118 E Figueiredo (4945_CR1) 2019; 82 D Karaboga (4945_CR56) 2014; 42 C-H Chen (4945_CR42) 2017; 93 H Faris (4945_CR35) 2017; 30 M Shehab (4945_CR38) 2019; 75 4945_CR45 R Forsati (4945_CR16) 2013; 220 I Benmessahel (4945_CR32) 2017; 48 SJ Nanda (4945_CR69) 2014; 16 T Wei (4945_CR85) 2015; 42 S Mirjalili (4945_CR21) 2016; 27 T Niknam (4945_CR9) 2010; 10 LM Abualigah (4945_CR10) 2017; 60 MA Awadallah (4945_CR77) 2020 AK Abasi (4945_CR5) 2020; 87 R Akter (4945_CR53) 2013; 4 JD Barrow (4945_CR28) 2004 T Zeugmann (4945_CR48) 2011 AA Ewees (4945_CR34) 2017; 31 A Kaveh (4945_CR25) 2013; 59 SC Tan (4945_CR84) 2011; 44 W-T Pan (4945_CR20) 2012; 26 D Karaboga (4945_CR59) 2011; 11 G-G Wang (4945_CR60) 2014; 25 J Han (4945_CR11) 2011 4945_CR55 4945_CR12 D Janiga (4945_CR33) 2017; 154 4945_CR57 4945_CR14 F Wilcoxon (4945_CR87) 1945; 1 4945_CR50 P Kumar (4945_CR31) 2018; 5 4945_CR51 S Mirjalili (4945_CR19) 2017; 114 4945_CR54 MS Rani (4945_CR6) 2019 ZAA Alyasseri (4945_CR36) 2019; 8 P Jangir (4945_CR73) 2017; 20 N Saini (4945_CR86) 2019; 11 S Alam (4945_CR49) 2014; 17 4945_CR67 AH Gandomi (4945_CR22) 2012; 17 4945_CR68 R Forsati (4945_CR83) 2015; 159 S Mirjalili (4945_CR29) 2016; 27 M Deepa (4945_CR80) 2012; 1 GI Sayed (4945_CR74) 2019; 31 A Kaveh (4945_CR15) 2012; 112 KK Bharti (4945_CR2) 2016; 20 S Shukri (4945_CR30) 2018; 72 W Song (4945_CR52) 2009; 36 T Cura (4945_CR26) 2012; 39 4945_CR62 C Bouras (4945_CR66) 2012; 36 4945_CR64 OA Arqub (4945_CR78) 2019; 166 MM Zaw (4945_CR18) 2015 M Raghuvanshi (4945_CR65) 2017; 6 4945_CR8 N Del Buono (4945_CR81) 2015; 301 CC Aggarwal (4945_CR46) 2012 B Bansal (4945_CR63) 2018; 49 A Kalogeratos (4945_CR4) 2012; 31 SN Makhadmeh (4945_CR37) 2019; 115 PS Shelokar (4945_CR27) 2004; 509 H-S Park (4945_CR40) 2009; 36 F Yang (4945_CR58) 2009; 36 G-G Wang (4945_CR61) 2016; 8 Y-S Lin (4945_CR82) 2014; 26 G Sahoo (4945_CR13) 2017; 28 OA Arqub (4945_CR76) 2016; 20 SO Degertekin (4945_CR23) 2013; 119 4945_CR39 Arqub OA (4945_CR75) 2017; 28 4945_CR3 S Vishwakarma (4945_CR44) 2017; 2 JC Bezdek (4945_CR41) 2013 4945_CR70 4945_CR71 GI Sayed (4945_CR72) 2018; 30 Y Kumar (4945_CR7) 2015; 28 S Mirjalili (4945_CR24) 2015; 83 |
References_xml | – volume: 72 start-page: 54 year: 2018 end-page: 66 ident: CR30 article-title: Evolutionary static and dynamic clustering algorithms based on multi-verse optimizer publication-title: Eng Appl Artif Intell – ident: CR45 – ident: CR70 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR17 article-title: Grey wolf optimizer publication-title: Adv Eng Softw – volume: 118 start-page: 20 year: 2019 end-page: 34 ident: CR43 article-title: A k-means based co-clustering (KCC) algorithm for sparse, high dimensional data publication-title: Expert Syst Appl – volume: 2 start-page: 297 issue: 11 year: 2017 end-page: 302 ident: CR44 article-title: A comparative study of K-means and K-medoid clustering for social media text mining publication-title: Int J Adv Sci Res Eng Trends – ident: CR68 – ident: CR39 – ident: CR51 – volume: 10 start-page: 183 issue: 1 year: 2010 end-page: 197 ident: CR9 article-title: An efficient hybrid approach based on pso, aco and k-means for cluster analysis publication-title: Appl Soft Comput – ident: CR12 – start-page: 263 year: 2015 end-page: 281 ident: CR18 article-title: Web document clustering by using PSO-based cuckoo search clustering algorithm publication-title: Recent advances in swarm intelligence and evolutionary computation – volume: 59 start-page: 53 year: 2013 end-page: 70 ident: CR25 article-title: A new optimization method: dolphin echolocation publication-title: Adv Eng Softw – volume: 16 start-page: 1 year: 2014 end-page: 18 ident: CR69 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm Evolut Comput – ident: CR54 – volume: 112 start-page: 114 year: 2019 end-page: 126 ident: CR47 article-title: A TRIZ-inspired bat algorithm for gene selection in cancer classification publication-title: Genomics – volume: 75 start-page: 2395 issue: 5 year: 2019 end-page: 2422 ident: CR38 article-title: Hybridizing cuckoo search algorithm with bat algorithm for global numerical optimization publication-title: J Supercomput – ident: CR8 – volume: 166 start-page: 87 issue: 2 year: 2019 end-page: 110 ident: CR78 article-title: Application of residual power series method for the solution of time-fractional schrodinger equations in one-dimensional space publication-title: Fundam Inform – volume: 31 start-page: 455 issue: 3 year: 2012 end-page: 474 ident: CR4 article-title: Text document clustering using global term context vectors publication-title: Knowl Inf Syst – start-page: 261 year: 2019 end-page: 271 ident: CR6 article-title: Efficient query clustering technique and context well-informed document clustering publication-title: Soft computing and signal processing – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: CR24 article-title: The ant lion optimizer publication-title: Adv Eng Softw – volume: 42 start-page: 21 issue: 1 year: 2014 end-page: 57 ident: CR56 article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications publication-title: Artif Intell Rev – volume: 301 start-page: 13 year: 2015 end-page: 26 ident: CR81 article-title: Non-negative matrix tri-factorization for co-clustering: an analysis of the block matrix publication-title: Inf Sci – volume: 4 start-page: 370 year: 2013 end-page: 375 ident: CR53 article-title: An evolutionary approach for document clustering publication-title: IERI Procedia – volume: 44 start-page: 2786 issue: 10–11 year: 2011 end-page: 2799 ident: CR84 article-title: A general stochastic clustering method for automatic cluster discovery publication-title: Pattern Recogn – ident: CR71 – year: 2011 ident: CR11 publication-title: Data mining: concepts and techniques – volume: 1 start-page: 147 issue: 3 year: 2012 end-page: 152 ident: CR80 article-title: Validation of document clustering based on purity and entropy measures publication-title: Int J Adv Res Comput Commun Eng – ident: CR67 – ident: CR50 – volume: 8 start-page: 10584 year: 2019 end-page: 10605 ident: CR36 article-title: EEG signals denoising using optimal wavelet transform hybridized with efficient metaheuristic methods publication-title: IEEE Access – volume: 28 start-page: 1591 issue: 7 year: 2017 end-page: 1610 ident: CR75 article-title: Adaptation of reproducing kernel algorithm for solving fuzzy fredholm-volterra integrodifferential equations publication-title: Neural Comput Appl – volume: 112 start-page: 283 year: 2012 end-page: 294 ident: CR15 article-title: A new meta-heuristic method: ray optimization publication-title: Comput Struct – ident: CR57 – year: 2013 ident: CR41 publication-title: Pattern recognition with fuzzy objective function algorithms – volume: 11 start-page: 271 year: 2019 end-page: 293 ident: CR86 article-title: Automatic scientific document clustering using self-organized multi-objective differential evolution publication-title: Cogn Comput – ident: CR64 – volume: 27 start-page: 1053 issue: 4 year: 2016 end-page: 1073 ident: CR21 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput Appl – volume: 509 start-page: 187 issue: 2 year: 2004 end-page: 195 ident: CR27 article-title: An ant colony approach for clustering publication-title: Anal Chim Acta – volume: 154 start-page: 354 year: 2017 end-page: 366 ident: CR33 article-title: Performance of nature inspired optimization algorithms for polymer enhanced oil recovery process publication-title: J Petrol Sci Eng – volume: 48 start-page: 1 year: 2017 end-page: 13 ident: CR32 article-title: A new evolutionary neural networks based on intrusion detection systems using multiverse optimization publication-title: Appl Intell – volume: 119 start-page: 177 year: 2013 end-page: 188 ident: CR23 article-title: Sizing truss structures using teaching–learning-based optimization publication-title: Comput Struct – start-page: 760 year: 2011 end-page: 766 ident: CR48 article-title: Particle swarm optimization publication-title: Encyclopedia of machine learning – volume: 39 start-page: 1582 issue: 1 year: 2012 end-page: 1588 ident: CR26 article-title: A particle swarm optimization approach to clustering publication-title: Expert Syst Appl – volume: 30 start-page: 1 year: 2017 end-page: 15 ident: CR35 article-title: A multi-verse optimizer approach for feature selection and optimizing svm parameters based on a robust system architecture publication-title: Neural Comput Appl – volume: 31 start-page: 2763 year: 2019 end-page: 2780 ident: CR74 article-title: Quantum multiverse optimization algorithm for optimization problems publication-title: Neural Comput Appl – volume: 49 start-page: 1 year: 2018 end-page: 13 ident: CR63 article-title: Hybrid attribute based sentiment classification of online reviews for consumer intelligence publication-title: Appl Intell – volume: 28 start-page: 537 issue: 3 year: 2017 end-page: 551 ident: CR13 article-title: A two-step artificial bee colony algorithm for clustering publication-title: Neural Comput Appl – ident: CR14 – volume: 159 start-page: 9 year: 2015 end-page: 26 ident: CR83 article-title: An improved bee colony optimization algorithm with an application to document clustering publication-title: Neurocomputing – volume: 20 start-page: 1113 issue: 3 year: 2016 end-page: 1126 ident: CR2 article-title: Chaotic gradient artificial bee colony for text clustering publication-title: Soft Comput – volume: 36 start-page: 9847 issue: 6 year: 2009 end-page: 9852 ident: CR58 article-title: An efficient hybrid data clustering method based on k-harmonic means and particle swarm optimization publication-title: Expert Syst Appl – volume: 25 start-page: 297 issue: 2 year: 2014 end-page: 308 ident: CR60 article-title: Hybrid krill herd algorithm with differential evolution for global numerical optimization publication-title: Neural Comput Appl – volume: 21 start-page: 7191 issue: 23 year: 2017 end-page: 7206 ident: CR79 article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems publication-title: Soft Comput – volume: 82 start-page: 313 year: 2019 end-page: 329 ident: CR1 article-title: Swarm intelligence for clustering a systematic review with new perspectives on data mining publication-title: Eng Appl Artif Intell – volume: 8 start-page: 286 issue: 5 year: 2016 end-page: 299 ident: CR61 article-title: A new hybrid method based on krill herd and cuckoo search for global optimisation tasks publication-title: Int J Bio-Inspir Comput – volume: 60 start-page: 423 year: 2017 end-page: 435 ident: CR10 article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques publication-title: Appl Soft Comput – volume: 28 start-page: 751 issue: 4 year: 2015 end-page: 764 ident: CR7 article-title: A hybrid data clustering approach based on improved cat swarm optimization and k-harmonic mean algorithm publication-title: AI Commun – volume: 87 start-page: 106002 year: 2020 ident: CR5 article-title: Link-based multi-verse optimizer for text documents clustering publication-title: Appl Soft Comput – volume: 17 start-page: 4831 issue: 12 year: 2012 end-page: 4845 ident: CR22 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Commun Nonlinear Sci Numer Simul – volume: 26 start-page: 69 year: 2012 end-page: 74 ident: CR20 article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example publication-title: Knowl Based Syst – volume: 26 start-page: 1575 issue: 7 year: 2014 end-page: 1590 ident: CR82 article-title: A similarity measure for text classification and clustering publication-title: IEEE Trans Knowl Data Eng – volume: 42 start-page: 2264 issue: 4 year: 2015 end-page: 2275 ident: CR85 article-title: A semantic approach for text clustering using wordnet and lexical chains publication-title: Expert Syst Appl – volume: 93 start-page: 113 year: 2017 end-page: 122 ident: CR42 article-title: Improved tfidf in big news retrieval: an empirical study publication-title: Pattern Recogn Lett – volume: 20 start-page: 3283 issue: 8 year: 2016 end-page: 3302 ident: CR76 article-title: Numerical solutions of fuzzy differential equations using reproducing kernel hilbert space method publication-title: Soft Comput – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: CR87 article-title: Individual comparisons by ranking methods publication-title: Biom Bull – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: CR19 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw – year: 2020 ident: CR77 article-title: Island artificial bee colony for global optimization publication-title: Soft Comput doi: 10.1007/s00500-020-04760-8 – volume: 5 start-page: 1698 year: 2018 end-page: 1707 ident: CR31 article-title: Mvo-based two-dimensional path planning scheme for providing quality of service in uav environment publication-title: IEEE Internet Things J – volume: 115 start-page: 109362 year: 2019 ident: CR37 article-title: Optimization methods for power scheduling problems in smart home: survey publication-title: Renew Sustain Energy Rev – ident: CR3 – volume: 36 start-page: 115 year: 2012 end-page: 128 ident: CR66 article-title: A clustering technique for news articles using wordnet publication-title: Knowl Based Syst – year: 2004 ident: CR28 publication-title: Science and ultimate reality: quantum theory, cosmology, and complexity – volume: 30 start-page: 293 issue: 2 year: 2018 end-page: 317 ident: CR72 article-title: A new chaotic multi-verse optimization algorithm for solving engineering optimization problems publication-title: J Exp Theor Artif Intell – volume: 27 start-page: 495 issue: 2 year: 2016 end-page: 513 ident: CR29 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput Appl – volume: 36 start-page: 3336 issue: 2 year: 2009 end-page: 3341 ident: CR40 article-title: A simple and fast algorithm for k-medoids clustering publication-title: Expert Syst Appl – volume: 17 start-page: 1 year: 2014 end-page: 13 ident: CR49 article-title: Research on particle swarm optimization based clustering: a systematic review of literature and techniques publication-title: Swarm Evolut Comput – volume: 20 start-page: 570 issue: 2 year: 2017 end-page: 586 ident: CR73 article-title: A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem publication-title: Eng Sci Technol Int J – volume: 11 start-page: 652 issue: 1 year: 2011 end-page: 657 ident: CR59 article-title: A novel clustering approach: artificial bee colony (ABC) algorithm publication-title: Appl Soft Comput – ident: CR55 – volume: 6 start-page: 20285 issue: 2 year: 2017 end-page: 20288 ident: CR65 article-title: An improved document clustering with multiview point similarity/dissimilarity measures publication-title: Int J Eng Comput Sci – volume: 220 start-page: 269 year: 2013 end-page: 291 ident: CR16 article-title: Efficient stochastic algorithms for document clustering publication-title: Inf Sci – volume: 31 start-page: 1 year: 2017 end-page: 16 ident: CR34 article-title: Chaotic multi-verse optimizer-based feature selection publication-title: Neural Comput Appl – ident: CR62 – volume: 36 start-page: 9095 issue: 5 year: 2009 end-page: 9104 ident: CR52 article-title: Genetic algorithm for text clustering using ontology and evaluating the validity of various semantic similarity measures publication-title: Expert Syst Appl – start-page: 77 year: 2012 end-page: 128 ident: CR46 article-title: A survey of text clustering algorithms publication-title: Mining text data – volume-title: Pattern recognition with fuzzy objective function algorithms year: 2013 ident: 4945_CR41 – volume: 4 start-page: 370 year: 2013 ident: 4945_CR53 publication-title: IERI Procedia doi: 10.1016/j.ieri.2013.11.053 – ident: 4945_CR39 – volume: 30 start-page: 293 issue: 2 year: 2018 ident: 4945_CR72 publication-title: J Exp Theor Artif Intell doi: 10.1080/0952813X.2018.1430858 – volume: 8 start-page: 10584 year: 2019 ident: 4945_CR36 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962658 – volume: 11 start-page: 652 issue: 1 year: 2011 ident: 4945_CR59 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.12.025 – ident: 4945_CR68 – volume: 36 start-page: 9847 issue: 6 year: 2009 ident: 4945_CR58 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.02.003 – volume: 2 start-page: 297 issue: 11 year: 2017 ident: 4945_CR44 publication-title: Int J Adv Sci Res Eng Trends – volume-title: Data mining: concepts and techniques year: 2011 ident: 4945_CR11 – ident: 4945_CR51 doi: 10.1109/JEEIT.2019.8717468 – volume: 6 start-page: 20285 issue: 2 year: 2017 ident: 4945_CR65 publication-title: Int J Eng Comput Sci – ident: 4945_CR55 – volume: 49 start-page: 1 year: 2018 ident: 4945_CR63 publication-title: Appl Intell – volume: 44 start-page: 2786 issue: 10–11 year: 2011 ident: 4945_CR84 publication-title: Pattern Recogn – volume: 301 start-page: 13 year: 2015 ident: 4945_CR81 publication-title: Inf Sci doi: 10.1016/j.ins.2014.12.058 – ident: 4945_CR45 – volume: 112 start-page: 283 year: 2012 ident: 4945_CR15 publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.09.003 – ident: 4945_CR12 doi: 10.1109/JEEIT.2019.8717491 – volume: 20 start-page: 570 issue: 2 year: 2017 ident: 4945_CR73 publication-title: Eng Sci Technol Int J – volume: 21 start-page: 7191 issue: 23 year: 2017 ident: 4945_CR79 publication-title: Soft Comput doi: 10.1007/s00500-016-2262-3 – volume: 26 start-page: 69 year: 2012 ident: 4945_CR20 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2011.07.001 – volume: 119 start-page: 177 year: 2013 ident: 4945_CR23 publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.12.011 – volume: 83 start-page: 80 year: 2015 ident: 4945_CR24 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.01.010 – volume-title: Science and ultimate reality: quantum theory, cosmology, and complexity year: 2004 ident: 4945_CR28 doi: 10.1017/CBO9780511814990 – volume: 16 start-page: 1 year: 2014 ident: 4945_CR69 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2013.11.003 – ident: 4945_CR71 – volume: 20 start-page: 1113 issue: 3 year: 2016 ident: 4945_CR2 publication-title: Soft Comput doi: 10.1007/s00500-014-1571-7 – volume: 5 start-page: 1698 year: 2018 ident: 4945_CR31 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2796243 – volume: 17 start-page: 1 year: 2014 ident: 4945_CR49 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2014.02.001 – volume: 28 start-page: 1591 issue: 7 year: 2017 ident: 4945_CR75 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2110-x – volume: 114 start-page: 163 year: 2017 ident: 4945_CR19 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 36 start-page: 115 year: 2012 ident: 4945_CR66 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2012.06.015 – volume: 26 start-page: 1575 issue: 7 year: 2014 ident: 4945_CR82 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.19 – start-page: 760 volume-title: Encyclopedia of machine learning year: 2011 ident: 4945_CR48 doi: 10.1007/978-0-387-30164-8_630 – ident: 4945_CR8 doi: 10.4018/978-1-5225-0075-9.ch012 – volume: 159 start-page: 9 year: 2015 ident: 4945_CR83 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.048 – volume: 11 start-page: 271 year: 2019 ident: 4945_CR86 publication-title: Cogn Comput doi: 10.1007/s12559-018-9611-8 – volume: 60 start-page: 423 year: 2017 ident: 4945_CR10 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.059 – volume: 75 start-page: 2395 issue: 5 year: 2019 ident: 4945_CR38 publication-title: J Supercomput doi: 10.1007/s11227-018-2625-x – volume: 36 start-page: 9095 issue: 5 year: 2009 ident: 4945_CR52 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.12.046 – volume: 36 start-page: 3336 issue: 2 year: 2009 ident: 4945_CR40 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.01.039 – volume: 39 start-page: 1582 issue: 1 year: 2012 ident: 4945_CR26 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.07.123 – volume: 1 start-page: 147 issue: 3 year: 2012 ident: 4945_CR80 publication-title: Int J Adv Res Comput Commun Eng – volume: 31 start-page: 1 year: 2017 ident: 4945_CR34 publication-title: Neural Comput Appl – volume: 25 start-page: 297 issue: 2 year: 2014 ident: 4945_CR60 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1485-9 – volume: 31 start-page: 455 issue: 3 year: 2012 ident: 4945_CR4 publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0412-6 – volume: 72 start-page: 54 year: 2018 ident: 4945_CR30 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.03.013 – volume: 82 start-page: 313 year: 2019 ident: 4945_CR1 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.04.007 – volume: 10 start-page: 183 issue: 1 year: 2010 ident: 4945_CR9 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.07.001 – volume: 220 start-page: 269 year: 2013 ident: 4945_CR16 publication-title: Inf Sci doi: 10.1016/j.ins.2012.07.025 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 4945_CR22 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.05.010 – volume: 20 start-page: 3283 issue: 8 year: 2016 ident: 4945_CR76 publication-title: Soft Comput doi: 10.1007/s00500-015-1707-4 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 4945_CR29 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1870-7 – ident: 4945_CR54 doi: 10.1007/978-3-319-21212-8_12 – ident: 4945_CR14 doi: 10.1145/3321289.3321327 – volume: 59 start-page: 53 year: 2013 ident: 4945_CR25 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.03.004 – volume: 118 start-page: 20 year: 2019 ident: 4945_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.09.006 – volume: 28 start-page: 537 issue: 3 year: 2017 ident: 4945_CR13 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2095-5 – ident: 4945_CR62 – ident: 4945_CR50 doi: 10.1109/SMC.2013.390 – volume: 1 start-page: 80 year: 1945 ident: 4945_CR87 publication-title: Biom Bull doi: 10.2307/3001968 – volume: 8 start-page: 286 issue: 5 year: 2016 ident: 4945_CR61 publication-title: Int J Bio-Inspir Comput doi: 10.1504/IJBIC.2016.079569 – ident: 4945_CR3 – start-page: 77 volume-title: Mining text data year: 2012 ident: 4945_CR46 doi: 10.1007/978-1-4614-3223-4_4 – ident: 4945_CR67 – volume: 115 start-page: 109362 year: 2019 ident: 4945_CR37 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109362 – ident: 4945_CR70 doi: 10.1109/ICECCT.2015.7226090 – volume: 30 start-page: 1 year: 2017 ident: 4945_CR35 publication-title: Neural Comput Appl – volume: 69 start-page: 46 year: 2014 ident: 4945_CR17 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 509 start-page: 187 issue: 2 year: 2004 ident: 4945_CR27 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2003.12.032 – volume: 48 start-page: 1 year: 2017 ident: 4945_CR32 publication-title: Appl Intell – volume: 42 start-page: 2264 issue: 4 year: 2015 ident: 4945_CR85 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.10.023 – ident: 4945_CR57 doi: 10.1007/978-3-642-27242-4_10 – volume: 87 start-page: 106002 year: 2020 ident: 4945_CR5 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.106002 – ident: 4945_CR64 doi: 10.1145/3130348.3130362 – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 4945_CR21 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1920-1 – volume: 31 start-page: 2763 year: 2019 ident: 4945_CR74 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3228-9 – volume: 166 start-page: 87 issue: 2 year: 2019 ident: 4945_CR78 publication-title: Fundam Inform doi: 10.3233/FI-2019-1795 – volume: 28 start-page: 751 issue: 4 year: 2015 ident: 4945_CR7 publication-title: AI Commun doi: 10.3233/AIC-150677 – start-page: 261 volume-title: Soft computing and signal processing year: 2019 ident: 4945_CR6 doi: 10.1007/978-981-13-3600-3_25 – volume: 112 start-page: 114 year: 2019 ident: 4945_CR47 publication-title: Genomics doi: 10.1016/j.ygeno.2019.09.015 – volume: 93 start-page: 113 year: 2017 ident: 4945_CR42 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2016.11.004 – year: 2020 ident: 4945_CR77 publication-title: Soft Comput doi: 10.1007/s00500-020-04760-8 – start-page: 263 volume-title: Recent advances in swarm intelligence and evolutionary computation year: 2015 ident: 4945_CR18 doi: 10.1007/978-3-319-13826-8_14 – volume: 42 start-page: 21 issue: 1 year: 2014 ident: 4945_CR56 publication-title: Artif Intell Rev doi: 10.1007/s10462-012-9328-0 – volume: 154 start-page: 354 year: 2017 ident: 4945_CR33 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2017.04.010 |
SSID | ssj0004685 |
Score | 2.4213622 |
Snippet | Text clustering has been widely utilized with the aim of partitioning specific document collection into different subsets using homogeneity/heterogeneity... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17703 |
SubjectTerms | Algorithms Artificial Intelligence Cluster analysis Clustering Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data mining Data Mining and Knowledge Discovery Datasets Domains Heterogeneity Homogeneity Image Processing and Computer Vision Information retrieval Optimization Original Article Pattern recognition Probability and Statistics in Computer Science Scientific papers Vector quantization |
SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRgv5cANIrI07doTAgSaQAyEQNqtStJEII2Wx4YEvx47SzdAYtc2iVo7fsT5bBOyL1zEbeIM0yZzTHYMZyqzCZOF4kKBiYs0xiGve0n3QV72434IuL0HWGWtE72iLiqDMfIjAVoUjXOWHr-8MuwahberoYXGPGmCCk7h8NU8Pe_d3v3IjPRNOeEMg_geGYW0GZ88hxFReCoQ3pjJmPHfpmnqb_65IvWW52KZLAaXkZ6MebxC5my5Spbqdgw0SOcauTmhZfVhB_TxE9OwqMcKMoRdWFqBZnh--oLhGHilV-zZgo2i4LFShH5Q-P-RT3ajZjDC2gnwJevk4eL8_qzLQr8EZkCQhkzrtnOFS3jkDNbcbqsijmScgRMtXSotV6nJdDvSnTQTSqQ6kUUHzl9OJCpJnYs2SKOsSrtJqCmwMDwIOzgcMim40oVUysapk8Ly2LVIuyZVbkIxcexpMcgnZZA9eXMgb-7Jm_MWOZjMeRmX0pg5eqfmQB7E6j2fboIWOay5Mn39_2pbs1fbJgsCN4KHqeyQxvBtZHfB2RjqvbCjvgH268-s priority: 102 providerName: ProQuest |
Title | A novel hybrid multi-verse optimizer with K-means for text documents clustering |
URI | https://link.springer.com/article/10.1007/s00521-020-04945-0 https://www.proquest.com/docview/2471600198 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ULl78bUSR9OBNm4yuG9txKINIRGMkwdPSdm00gc0ImOhf72vZQI2aeOphbbO89vV9r_3eewidUu06yteSCBlqwlrSITxUPmEpdygHE-cKcw95PfB7Q3Y18kZFUNi0ZLuXT5L2pF4Gu5kbTHB9qaEjhswj4KhXPeO7wy4e0uhTNKQtxAl-i-H0MLcIlfl5jq_maIUxvz2LWmsTb6PNAibiaLGuO2hNZbtoqyzBgAuN3EM3Ec7yVzXGj28m9ApbfiAxVAuFczgNJk_v0N1ctuI-mSiwSxhQKjZ0D5zmcm4D3LAcz02-BPiTfTSMO_cXPVLUSCASlGdGhGhqnWrfcbU0ebabPPVc5oUAnJkOmHJ4IEPRdEUrCCmngfBZ2gKfS1Of-4HW7gGqZHmmDhGWqUkGDwoOIIP5qcNFyjhXXqAZVY6na6hZiiqRRQJxU8dinCxTH1vxJiDexIo3cWrobDnmeZE-48_e9XIFkkKVpgkF82lQWRjU0Hm5KqvPv8929L_ux2iDmo1hqSp1VJm9zNUJAI6ZaKD1IO42UDVqX7Zj03Yf-h1o253B7V3D7r4PeBDQpQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB71caAXaKFVUwr1AU5g1bG9m90DQlUhTUlSLq3U29b22gIpL5oEVH4Uv5EZZ7ehSO2t112vtRp_nhmPv5kBeCODEj4NjluXB65bTnCT-5Tr0ghp0MQpS3HI_lnaudBfLpPLFfhT58IQrbLWiVFRl2NHMfJDiVqUjHOefZz84NQ1im5X6xYaC1h0_c0vPLJNP5x-wvV9K2X78_lxh1ddBbhDuM24tc0QypAKFRxVpm6aMlE6ydHV1CHTXpjM5bapbCvLpZGZTXXZwlNKkKlJsxAUzrsK61qpnHZU1j75Jw8ztgDFExOxibSqknRiqh7FX_GpJDJlrhMu7hrCpXf734VstHPtTXhaOajsaIGoLVjxo-fwrG7-wCpd8AK-HrHR-KcfsG83lPTFIjORE8nDszHqoeH33zicwrysy4ceLSJD_5gR0YShtOcxtY65wZwqNeCfbMPFo8hxB9ZG45HfBeZKKkOPqgXdG52WwthSG-OTLGjpRRIa0KxFVbiqdDl10BgUt0WXo3gLFG8RxVuIBry7_WayKNzx4Oj9egWKahNPiyXkGvC-XpXl6_tn23t4tgN40jnv94re6Vn3JWxIAkUkyOzD2ux67l-hmzOzryO2GFw9Npj_ArgYC58 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQbz4FqtV9-BNlyabTZoci1qq1erBQm9hnyi0SdFU0F_v7DZpq6jgOZslmX3MzO73fYPQKTWBpyMjiZCJIawpPcITHRGmuEc5uLhA2HPIu17U6bObQThYYPE7tHt1JTnlNFiVpqxojJVpzIhv9jQT0mBqoYkJCwkk7SuwHft2Xvdpa4EZ6YpyQg5j8T0sKGkzP_fx1TXN481vV6TO87Q30XoZMuLWdIy30JLOttFGVY4Bl6tzB923cJa_6SF-erc0LOywgsTCLjTOYWcYPX9Ac3vwirtkpMFHYYhYsYV-YJXLiSO7YTmcWO0E-JJd1G9fPV50SFkvgUj484II4RujTOQFRlrNbZ-rMGBhAkE0MzHTHo9lIvxANOOEchqLiKkm5F-GRjyKjQn20HKWZ3ofYamsMDwsdgg4WKQ8LhTjXIexYVR7oakhvzJVKksxcVvTYpjOZJCdeVMwb-rMm3o1dDZ7ZzyV0vizdb0agbRcVq8pBVdqI7QkrqHzalTmj3_v7eB_zU_Q6sNlO7297nUP0Rq1c8QhWOpouXiZ6COIQwpx7KbaJ0kv0k4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+multi-verse+optimizer+with+K-means+for+text+documents+clustering&rft.jtitle=Neural+computing+%26+applications&rft.au=Abasi%2C+Ammar+Kamal&rft.au=Khader%2C+Ahamad+Tajudin&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Naim%2C+Syibrah&rft.date=2020-12-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=23&rft.spage=17703&rft.epage=17729&rft_id=info:doi/10.1007%2Fs00521-020-04945-0&rft.externalDocID=10_1007_s00521_020_04945_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |