Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses

The techniques of melt-quenching have been used to generate 53B 2 O 3 —2NaF—27PbO – ( 20 - x ) BaO— x La 2 O 3 ( 0 ≤ x ≥ 15 ) g l a s s s y s t e m . XRD patterns have been established the amorphous character of glass samples. There is a clear evidence of the role of the La 2 O 3 modifier in the gla...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 32; no. 21; pp. 26034 - 26048
Main Authors Shaaban, Kh. S., Alomairy, Sultan, Al-Buriahi, M. S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The techniques of melt-quenching have been used to generate 53B 2 O 3 —2NaF—27PbO – ( 20 - x ) BaO— x La 2 O 3 ( 0 ≤ x ≥ 15 ) g l a s s s y s t e m . XRD patterns have been established the amorphous character of glass samples. There is a clear evidence of the role of the La 2 O 3 modifier in the glass network. The thermal characteristics have been identified to increase with an increase in La 2 O 3 content. Increasing La 2 O 3 increases the linear and non-linear optical bandgap energy and the Urbach energy. By adding La 2 O 3 to the glass samples, the refractive index, molar polarizability, polarizability, and optical basicity increased. The bulk modulus and the glass transition temperature increased because of the increase in bond strength. The number of bonds per unit increased with the increase in La 2 O 3 content because of the modifier character of La 2 O 3 in the glass samples. Many optical parameters ( ε ∞ ), ( ε o ), χ ( 1 ) , χ ( 3 ) and ( n 2 ) as a function of linear and non-linear E opt have been obtained. The extent of shielding in this article has been examined with the increment in La 2 O 3  at the expense of BaO. The results correspond with similar studies conducted before.
AbstractList The techniques of melt-quenching have been used to generate 53B 2 O 3 —2NaF—27PbO – ( 20 - x ) BaO— x La 2 O 3 ( 0 ≤ x ≥ 15 ) g l a s s s y s t e m . XRD patterns have been established the amorphous character of glass samples. There is a clear evidence of the role of the La 2 O 3 modifier in the glass network. The thermal characteristics have been identified to increase with an increase in La 2 O 3 content. Increasing La 2 O 3 increases the linear and non-linear optical bandgap energy and the Urbach energy. By adding La 2 O 3 to the glass samples, the refractive index, molar polarizability, polarizability, and optical basicity increased. The bulk modulus and the glass transition temperature increased because of the increase in bond strength. The number of bonds per unit increased with the increase in La 2 O 3 content because of the modifier character of La 2 O 3 in the glass samples. Many optical parameters ( ε ∞ ), ( ε o ), χ ( 1 ) , χ ( 3 ) and ( n 2 ) as a function of linear and non-linear E opt have been obtained. The extent of shielding in this article has been examined with the increment in La 2 O 3  at the expense of BaO. The results correspond with similar studies conducted before.
The techniques of melt-quenching have been used to generate 53B2O3—2NaF—27PbO – (20-x) BaO—x La2O3(0≤x≥15)glasssystem. XRD patterns have been established the amorphous character of glass samples. There is a clear evidence of the role of the La2O3 modifier in the glass network. The thermal characteristics have been identified to increase with an increase in La2O3 content. Increasing La2O3 increases the linear and non-linear optical bandgap energy and the Urbach energy. By adding La2O3 to the glass samples, the refractive index, molar polarizability, polarizability, and optical basicity increased. The bulk modulus and the glass transition temperature increased because of the increase in bond strength. The number of bonds per unit increased with the increase in La2O3 content because of the modifier character of La2O3 in the glass samples. Many optical parameters (ε∞), (εo), χ(1), χ(3) and (n2) as a function of linear and non-linear Eopt have been obtained. The extent of shielding in this article has been examined with the increment in La2O3 at the expense of BaO. The results correspond with similar studies conducted before.
Author Shaaban, Kh. S.
Al-Buriahi, M. S.
Alomairy, Sultan
Author_xml – sequence: 1
  givenname: Kh. S.
  orcidid: 0000-0002-5969-3089
  surname: Shaaban
  fullname: Shaaban, Kh. S.
  email: khamies1078@yahoo.com
  organization: Chemistry Department, Faculty of Science, Al-Azhar University
– sequence: 2
  givenname: Sultan
  surname: Alomairy
  fullname: Alomairy, Sultan
  organization: Department of Physics, College of Science, Taif University
– sequence: 3
  givenname: M. S.
  surname: Al-Buriahi
  fullname: Al-Buriahi, M. S.
  organization: Department of Physics, Sakarya University
BookMark eNp9kE9LwzAYh4NMcJt-AU8Fr1bf_FuToxtOhWE9KHiRkLbpltG1NekO3vwOfkM_idkqCB52-QWS35O8eUZoUDe1QegcwxUGSK49BsFZDATHwIXgsThCQ8wTGjNBXgdoCJInMeOEnKCR92sAmDAqhugtbTub6-oy6lbGbXQV6bqInC6s7mxTR35lTVXYehm1rmmN66zxUVNGU5LS78-vRz0P-ZSlIad6lwsdTqJlpb03_hQdl7ry5ux3HaOX-e3z7D5epHcPs5tFnFMsuziTmSyJpISVmMkCCo5pJkDgLJcYG5A5l4xpISij-STHJZdUyixhpAx7IOkYXfT3hiHft8Z3at1sXR2eVCToSASTAKEl-lbuGu-dKVVuu_03O6dtpTConUzVy1RBptrLVCKg5B_aOrvR7uMwRHvIh3K9NO5vqgPUD7PuioA
CitedBy_id crossref_primary_10_1007_s11664_024_11095_9
crossref_primary_10_1007_s12633_022_01702_x
crossref_primary_10_15251_DJNB_2023_182_713
crossref_primary_10_1007_s12633_022_01783_8
crossref_primary_10_1007_s12633_022_02029_3
crossref_primary_10_1016_j_conbuildmat_2023_130896
crossref_primary_10_1007_s12633_024_02897_x
crossref_primary_10_1016_j_optmat_2024_115351
crossref_primary_10_1007_s10904_022_02345_6
crossref_primary_10_1007_s00339_022_05348_9
crossref_primary_10_1016_j_optmat_2024_115512
crossref_primary_10_1007_s12633_022_01801_9
crossref_primary_10_1016_j_radphyschem_2022_110560
crossref_primary_10_1016_j_optmat_2024_115559
crossref_primary_10_1007_s10854_021_06165_1
crossref_primary_10_1016_j_pnucene_2022_104457
crossref_primary_10_1016_j_jmrt_2022_03_090
crossref_primary_10_1016_j_optmat_2022_112898
crossref_primary_10_1088_1402_4896_ad7abc
crossref_primary_10_1007_s10854_021_07158_w
crossref_primary_10_1016_j_radphyschem_2022_109995
crossref_primary_10_1007_s12633_023_02537_w
crossref_primary_10_1016_j_radphyschem_2022_110289
crossref_primary_10_1007_s13538_021_00928_1
crossref_primary_10_1016_j_cplett_2023_140678
crossref_primary_10_1016_j_pnucene_2024_105151
crossref_primary_10_1007_s12633_023_02433_3
crossref_primary_10_1007_s11664_023_10347_4
crossref_primary_10_1007_s12633_021_01441_5
crossref_primary_10_1007_s10854_021_07530_w
crossref_primary_10_1007_s10904_022_02446_2
crossref_primary_10_1007_s12633_023_02699_7
crossref_primary_10_1016_j_optmat_2024_116057
crossref_primary_10_1007_s10854_024_12754_7
crossref_primary_10_1007_s12633_022_02124_5
crossref_primary_10_1016_j_radphyschem_2023_111168
crossref_primary_10_1016_j_radphyschem_2023_111440
crossref_primary_10_1016_j_radphyschem_2023_111086
crossref_primary_10_1007_s41779_021_00616_y
crossref_primary_10_1016_j_radphyschem_2024_111707
crossref_primary_10_1007_s11082_024_06816_7
crossref_primary_10_1007_s12633_022_01703_w
crossref_primary_10_1016_j_ceramint_2023_06_048
crossref_primary_10_1515_ract_2023_0140
crossref_primary_10_1016_j_apradiso_2023_110896
crossref_primary_10_1007_s12633_022_01784_7
crossref_primary_10_1140_epjp_s13360_023_04079_x
crossref_primary_10_1515_ract_2024_0272
crossref_primary_10_1016_j_optmat_2024_115298
crossref_primary_10_1016_j_jmrt_2023_01_062
crossref_primary_10_1007_s11665_024_10332_w
crossref_primary_10_1007_s12633_024_03217_z
crossref_primary_10_1007_s10904_022_02321_0
crossref_primary_10_1515_ract_2024_0307
crossref_primary_10_1088_1402_4896_ac4121
crossref_primary_10_1007_s12633_023_02804_w
crossref_primary_10_1016_j_radphyschem_2023_110966
crossref_primary_10_1007_s12633_021_01481_x
crossref_primary_10_1016_j_radphyschem_2021_109956
crossref_primary_10_1016_j_radphyschem_2023_111137
crossref_primary_10_1007_s12633_021_01440_6
crossref_primary_10_1016_j_radphyschem_2023_110969
crossref_primary_10_1515_ract_2024_0356
crossref_primary_10_1088_1402_4896_ac6709
crossref_primary_10_1016_j_optmat_2024_114852
crossref_primary_10_1016_j_optmat_2024_115346
crossref_primary_10_1007_s00339_022_05474_4
crossref_primary_10_1016_j_optmat_2024_115624
crossref_primary_10_1088_1402_4896_abf86a
crossref_primary_10_1007_s12633_024_02846_8
crossref_primary_10_1007_s12633_024_02900_5
crossref_primary_10_1016_j_nimb_2025_165683
crossref_primary_10_15251_JOR_2024_205_731
crossref_primary_10_1007_s12633_023_02351_4
Cites_doi 10.1016/j.matdes.2015.09.159
10.1016/j.ceramint.2020.10.109
10.1007/s00339-019-2574-0
10.1016/0025-5408(85)90073-x
10.1016/j.radphyschem.2019.108496
10.1007/s10854-020-03065-8
10.1007/s12633-020-00798-3
10.1126/science.158.3808.1543
10.1016/b978-008043958-7/50019-4
10.1007/s10854-021-05499-0
10.1007/s00339-019-3166-8
10.1016/j.optcom.2005.11.056
10.1007/s10853-012-6256-y
10.1007/s00339-017-1052-9
10.1007/s00339-020-03982-9
10.1016/j.commatsci.2007.05.023
10.1007/s00339-020-03932-5
10.1016/j.ceramint.2020.08.092
10.1007/s12633-017-9709-8
10.1007/s11665-020-04969-6
10.1016/j.ceramint.2020.03.091
10.1016/j.ceramint.2020.03.110
10.1007/s10854-020-05119-3
10.1007/s10904-020-01641-3
10.1002/pssb.2221000240
10.1007/s10854-020-05204-7
10.1007/s00339-020-04041-z
10.1016/j.radmeas.2020.106326
10.1088/2053-1591/aaaee8
10.1016/j.jnoncrysol.2004.08.132
10.1016/j.ijleo.2017.05.088
10.1007/s12633-020-00827-1
10.1016/0020-0891(81)90033-6
10.1007/s11664-019-07889-x
10.1016/j.ceramint.2020.04.018
10.1007/s11082-020-2191-3
10.1016/j.jnoncrysol.2020.120509
10.1016/j.jnoncrysol.2020
10.1016/j.jnoncrysol.2016.09.017
10.1016/j.ceramint.2019.05.028
10.1007/s10904-020-01650-2
10.1007/s10904-020-01640-4
10.1063/1.360962
10.1016/1350-4495(94)90026-4
10.1016/j.saa.2020.118774
10.1016/j.physb.2006.11.015
10.1016/j.ssi.2017.10.006
10.1007/s10904-020-01799-w
10.1007/s10854-020-03261-6
10.1007/s11082-020-02575-3
10.1007/s10904-020-01750-z
10.1016/j.ceramint.2020.04.240
10.1016/j.saa.2015.04.105
10.1007/s12633-016-9519-4
10.1016/j.ijleo.2019.163976
10.1002/pssb.2221310202
10.1155/2014/389543
10.1016/j.ceramint.2020.10.168
10.1016/j.nucengdes.2016.07.029
10.1016/B978-0-08-057150-8.50025-2
10.1007/s10904-020-01574-x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-021-05885-8
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 26048
ExternalDocumentID 10_1007_s10854_021_05885_8
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-b9b9f29324f149d0d513b8081bc911e09c5944a88343c6c1f59399b742f883093
IEDL.DBID BENPR
ISSN 0957-4522
IngestDate Fri Jul 25 11:02:28 EDT 2025
Tue Jul 01 02:35:03 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Fri Feb 21 02:47:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b9b9f29324f149d0d513b8081bc911e09c5944a88343c6c1f59399b742f883093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5969-3089
PQID 2588784900
PQPubID 326250
PageCount 15
ParticipantIDs proquest_journals_2588784900
crossref_citationtrail_10_1007_s10854_021_05885_8
crossref_primary_10_1007_s10854_021_05885_8
springer_journals_10_1007_s10854_021_05885_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211100
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Abdel Wahab (CR39) 2020
AlBuriahi, Hegazy, Alresheedi, Olarinoye, Algarni, Tekin, Saudi (CR59) 2020
Ibrahim, ElBatal, Abdelghany (CR26) 2016; 453
Şakar, Özpolat, Alım, Sayyed, Kurudirek (CR27) 2020
Zhao, Wang, Lin, Wang (CR41) 2007; 392
Schuyt, Williams (CR11) 2020
Saudi, Abd-Allah, Shaaban (CR34) 2020; 31
Abdel-Baki, El-Diasty, Wahab (CR29) 2006; 261
Rammah, El-Agawany, Elkhoshkhany (CR4) 2021; 32
Rammah, Mahmoud, Kavaz, Kumar, El-Agawany (CR58) 2020; 46
Kaur, Singh, Singh (CR56) 2016; 307
Ozturk, Ilik, Kilic (CR57) 2020; 126
Shaaban, Abo-naf, Abd Elnaeim, Hassouna (CR19) 2017
Shaaban, Abdel Wahab, El-Maaref (CR32) 2020; 31
Abdel Wahab, Shaaban, Yousef (CR38) 2020; 52
El-Rehim, Ali, Zahran (CR21) 2020
Olarinoye, Rammah, Alraddadi, Sriwunkum, Abd El-Rehim, Zahran, Al-Buriahi (CR2) 2020
Elbatal, Marzouk, Hamdy, ElBatal (CR12) 2014; 2014
El-Rehim, Shaaban (CR7) 2021
CR49
Ravindra (CR44) 1981; 21
Moss (CR43) 1985; 131
Okasha, Marzouk, Hammad, Abdelghany (CR9) 2017; 142
Somaily, Shaaban, Makhlouf (CR31) 2020
Wong, Angell (CR10) 1976
Boukhris, Kebaili, Al-Buriahi (CR3) 2020; 126
Shaaban, Abo-Naf, Hassouna (CR17) 2019; 11
Doweidar, El-Damrawi, Abdelghany (CR13) 2012; 47
Al-Buriahi, Tonguç, Perişanoğlu, Kavaz (CR64) 2020; 46
Shaaban, Koubisy, Zahran (CR30) 2020
Shaaban, Zahran, Yahia (CR50) 2020; 126
Al-Buriahi, Bakhsh, Tonguc, Khan (CR62) 2020; 46
Kassab, Courrol, Seragioli, Wetter, Tatumi, Gomes (CR25) 2004; 348
Abdel Wahab, Shaaban, Elsaman (CR51) 2019; 125
Shaaban, Yousef, Abdel Wahab (CR16) 2020; 29
Kumar, Singh (CR47) 2010; 48
Al-Buriahi, Singh, Alalawi, Sriwunkum, Tonguc (CR63) 2020
Fayad, Shaaban, Abd-Allah (CR33) 2020
Kavaz, Yorgun (CR55) 2018; 752
Sathiyapriya, Naseer, Marimuthu (CR1) 2021
Abdelghany, ElBatal (CR36) 2016; 89
Hervé, Vandamme (CR48) 1994; 35
Abdel Wahab, Shaaban, Elsaman (CR23) 2019; 125
Tauc (CR40) 1967; 158
El-Rehim, Zahran, Yahia (CR54) 2020
Wahab, Shaaban (CR20) 2018; 5
Stalin, Gaikwad, Al-Buriahi, Srinivasu, Ahmed, Tekin, Rahman (CR60) 2020
Abdelghany, ElBatal, EzzElDin (CR14) 2015; 149
Gupta, Ravindra (CR45) 1980; 100
Shaaban, Saddeek, Sayed (CR8) 2018; 10
Shaaban, Wahab, Shaaban (CR28) 2020; 52
Anani, Mathieu, Lebid, Amar, Chama, Abid (CR46) 2008; 41
Yamane, Kawazoe, Inoue, Maeda (CR6) 1985; 20
Dimitrov, Sakka (CR42) 1996; 79
El-Rehim, Zahran, Yahia (CR53) 2020
Shaaban, Wahab, Shaaban (CR35) 2020; 49
CR24
Shaaban, El Sayed (CR22) 2020; 203
Abd-Allah, Saudi, Shaaban (CR18) 2019; 125
Shakespeare (CR5) 2002
Al-Buriahi, Somaily, Alalawi (CR61) 2020
El-Sharkawy, Shaaban, Elsaman, Allam, El-Taher, Mahmoud (CR52) 2020; 528
Yadav, Dahiya, Narwal, Hooda, Agarwal, Khasa (CR15) 2017; 312
El-Maaref, Wahab, Shaaban, Abdelawwad, Koubisy, Börcsök, Yousef (CR37) 2020; 242
P Hervé (5885_CR48) 1994; 35
EA Abdel Wahab (5885_CR38) 2020; 52
E Kavaz (5885_CR55) 2018; 752
X Zhao (5885_CR41) 2007; 392
VP Gupta (5885_CR45) 1980; 100
NM Ravindra (5885_CR44) 1981; 21
KS Shaaban (5885_CR35) 2020; 49
MS Al-Buriahi (5885_CR63) 2020
EA Abdel Wahab (5885_CR23) 2019; 125
S Stalin (5885_CR60) 2020
KS Shaaban (5885_CR50) 2020; 126
A Yadav (5885_CR15) 2017; 312
EA Abdel Wahab (5885_CR51) 2019; 125
P Kaur (5885_CR56) 2016; 307
KS Shaaban (5885_CR8) 2018; 10
HA Saudi (5885_CR34) 2020; 31
AM Abdelghany (5885_CR36) 2016; 89
IO Olarinoye (5885_CR2) 2020
E Şakar (5885_CR27) 2020
J Wong (5885_CR10) 1976
5885_CR49
I Boukhris (5885_CR3) 2020; 126
AFA El-Rehim (5885_CR21) 2020
J Tauc (5885_CR40) 1967; 158
MS Al-Buriahi (5885_CR64) 2020; 46
A Okasha (5885_CR9) 2017; 142
AFA El-Rehim (5885_CR7) 2021
YS Rammah (5885_CR58) 2020; 46
H Doweidar (5885_CR13) 2012; 47
AFA El-Rehim (5885_CR53) 2020
MS AlBuriahi (5885_CR59) 2020
EA Abdel Wahab (5885_CR39) 2020
V Dimitrov (5885_CR42) 1996; 79
KS Shaaban (5885_CR22) 2020; 203
KS Shaaban (5885_CR16) 2020; 29
S Ozturk (5885_CR57) 2020; 126
FHA Elbatal (5885_CR12) 2014; 2014
MS Al-Buriahi (5885_CR61) 2020
KS Shaaban (5885_CR30) 2020
JJ Schuyt (5885_CR11) 2020
AM Abdelghany (5885_CR14) 2015; 149
EAA Wahab (5885_CR20) 2018; 5
K Shaaban (5885_CR32) 2020; 31
WM Abd-Allah (5885_CR18) 2019; 125
V Kumar (5885_CR47) 2010; 48
M Yamane (5885_CR6) 1985; 20
S Ibrahim (5885_CR26) 2016; 453
M Anani (5885_CR46) 2008; 41
YS Rammah (5885_CR4) 2021; 32
M Abdel-Baki (5885_CR29) 2006; 261
5885_CR24
LRP Kassab (5885_CR25) 2004; 348
RM El-Sharkawy (5885_CR52) 2020; 528
AA El-Maaref (5885_CR37) 2020; 242
AA El-Rehim (5885_CR54) 2020
HH Somaily (5885_CR31) 2020
TS Moss (5885_CR43) 1985; 131
KS Shaaban (5885_CR17) 2019; 11
KS Shaaban (5885_CR19) 2017
MS Al-Buriahi (5885_CR62) 2020; 46
G Sathiyapriya (5885_CR1) 2021
W Shakespeare (5885_CR5) 2002
KS Shaaban (5885_CR28) 2020; 52
AM Fayad (5885_CR33) 2020
References_xml – volume: 89
  start-page: 568
  year: 2016
  end-page: 572
  ident: CR36
  article-title: Optical and μ-FTIR mapping: a new approach for structural evaluation of V O -lithium fluoroborate glasses
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.09.159
– year: 2020
  ident: CR60
  article-title: Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.109
– ident: CR49
– volume: 125
  start-page: 275
  year: 2019
  ident: CR18
  article-title: Investigation of structural and radiation shielding properties of 40B O –30PbO–(30– ) BaO- ZnO glass system
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2574-0
– volume: 20
  start-page: 905
  issue: 8
  year: 1985
  end-page: 911
  ident: CR6
  article-title: IR transparency of the glass of ZnCl -KBr-PbBr 2 system
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(85)90073-x
– year: 2020
  ident: CR27
  article-title: Phy-X / PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2019.108496
– volume: 31
  start-page: 4986
  year: 2020
  end-page: 4996
  ident: CR32
  article-title: Judd-Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-03065-8
– year: 2020
  ident: CR54
  article-title: Radiation, crystallization, and physical properties of cadmium borate glasses
  publication-title: Silicon
  doi: 10.1007/s12633-020-00798-3
– volume: 158
  start-page: 1543
  issue: 3808
  year: 1967
  end-page: 1548
  ident: CR40
  article-title: Electronic properties of amorphous materials: changes are considered which occur when the long-range order typical for crystals disappears
  publication-title: Science.
  doi: 10.1126/science.158.3808.1543
– year: 2002
  ident: CR5
  article-title: Halide glass
  publication-title: Struct. Chem. Glasses
  doi: 10.1016/b978-008043958-7/50019-4
– year: 2021
  ident: CR1
  article-title: Structural, optical, and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-021-05499-0
– volume: 125
  start-page: 869
  year: 2019
  ident: CR23
  article-title: Radiation shielding, and physical properties of lead borate glass doped ZrO nanoparticles
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3166-8
– volume: 261
  start-page: 65
  issue: 1
  year: 2006
  end-page: 70
  ident: CR29
  article-title: Optical characterization of xTiO2–(60–x) SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability, and optical basicity
  publication-title: Opti. Commun.
  doi: 10.1016/j.optcom.2005.11.056
– volume: 47
  start-page: 4028
  issue: 9
  year: 2012
  end-page: 4035
  ident: CR13
  article-title: Structure and properties of CaF –B O glasses
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6256-y
– year: 2017
  ident: CR19
  article-title: Studying effect of MoO on elastic and crystallization behavior of lithium diborate glasses
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-017-1052-9
– volume: 126
  start-page: 804
  year: 2020
  ident: CR50
  article-title: Mechanical and radiation-shielding properties of B O –P O –Li O–MoO glasses
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03982-9
– volume: 41
  start-page: 570
  year: 2008
  end-page: 757
  ident: CR46
  article-title: Model for calculating the refractive index of a III-V semiconductor
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2007.05.023
– volume: 126
  start-page: 763
  year: 2020
  ident: CR3
  article-title: Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03932-5
– year: 2020
  ident: CR2
  article-title: The effects of La O addition on mechanical and nuclear shielding properties for zinc borate glasses in Monte Carlo simulation
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.092
– volume: 10
  start-page: 1973
  year: 2018
  end-page: 1978
  ident: CR8
  article-title: Mechanical and thermal properties of lead borate glasses containing CaO and NaF
  publication-title: SILICON
  doi: 10.1007/s12633-017-9709-8
– volume: 29
  start-page: 4549
  year: 2020
  end-page: 4558
  ident: CR16
  article-title: Investigation of crystallization and mechanical characteristics of glass and glass-ceramic with the compositions xFe2O3–35SiO2–35B2O3–10Al2O3-(20–x) Na2O
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-020-04969-6
– year: 2020
  ident: CR63
  article-title: Mechanical features and radiation shielding properties of TeO2–Ag2O-WO3 glasses
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.091
– volume: 46
  start-page: 23347
  issue: 15
  year: 2020
  end-page: 23356
  ident: CR64
  article-title: The impact of Gd2O3 on nuclear safety proficiencies of TeO2–ZnO–Nb2O5 glasses: a GEANT4 Monte Carlo study
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.110
– volume: 32
  start-page: 3743
  year: 2021
  end-page: 3752
  ident: CR4
  article-title: Physical, optical, thermal, and gamma-ray shielding features of fluorotellurite lithiumniobate glasses: TeO -LiNbO -BaO-BaF -La O
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-05119-3
– year: 2020
  ident: CR33
  article-title: Structural and optical study of CoO doping in borophosphate host glass and effect of gamma irradiation
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01641-3
– year: 1976
  ident: CR10
  publication-title: Glass structure by Spectroscopy
– volume: 100
  start-page: 715
  issue: 2
  year: 1980
  end-page: 719
  ident: CR45
  article-title: Comments on the moss formula
  publication-title: Phys. Status Solidi (b)
  doi: 10.1002/pssb.2221000240
– year: 2021
  ident: CR7
  article-title: Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-05204-7
– volume: 126
  start-page: 844
  year: 2020
  ident: CR57
  article-title: Ta O -doped zinc-borate glasses: physical, structural, optical, thermal, and radiation shielding properties
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-04041-z
– year: 2020
  ident: CR11
  article-title: Photoluminescence of Dy and Dy in NaMgF : Dy: a potential infrared radio photoluminescence dosimeter
  publication-title: Radiat. Meas.
  doi: 10.1016/j.radmeas.2020.106326
– volume: 5
  start-page: 025207
  issue: 2
  year: 2018
  ident: CR20
  article-title: Effects of SnO on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaaee8
– volume: 348
  start-page: 94
  year: 2004
  end-page: 97
  ident: CR25
  article-title: Er laser transition in PbO–PbF –B O glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2004.08.132
– volume: 142
  start-page: 125
  year: 2017
  end-page: 133
  ident: CR9
  article-title: Optical character inquest of cobalt containing fluoroborate glass
  publication-title: Optik – Int. J. Light. Electron. Opt.
  doi: 10.1016/j.ijleo.2017.05.088
– year: 2020
  ident: CR53
  article-title: Physical, radiation shielding and crystallization properties of Na O-Bi O - MoO -B O - SiO -Fe O Glasses
  publication-title: Silicon
  doi: 10.1007/s12633-020-00827-1
– volume: 21
  start-page: 283
  issue: 5
  year: 1981
  end-page: 285
  ident: CR44
  article-title: Energy gap-refractive index relation — some observations
  publication-title: Infrared Physics
  doi: 10.1016/0020-0891(81)90033-6
– volume: 49
  start-page: 2040
  year: 2020
  end-page: 2049
  ident: CR35
  article-title: Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B O –30Li O–5Al O ) glasses doped with titanate
  publication-title: J. Elec. Mater.
  doi: 10.1007/s11664-019-07889-x
– volume: 46
  start-page: 23357
  issue: 15
  year: 2020
  end-page: 23368
  ident: CR58
  article-title: The role of PbO/Bi O insertion on the shielding characteristics of novel borate glasses
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.018
– volume: 52
  start-page: 125
  year: 2020
  ident: CR28
  article-title: Electronic polarizability, optical basicity and mechanical properties of aluminum lead phosphate glasses
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-2191-3
– year: 2020
  ident: CR39
  article-title: Novel borosilicate glass system: Na B O -SiO -MnO : synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features
  publication-title: J. Non-Crystall. Solids
  doi: 10.1016/j.jnoncrysol.2020.120509
– volume: 528
  start-page: 119754
  year: 2020
  ident: CR52
  article-title: Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B O -(20–x) CdO based on nano metal oxides
  publication-title: J. Non-Crystall. Solids
  doi: 10.1016/j.jnoncrysol.2020
– volume: 453
  start-page: 16
  year: 2016
  end-page: 22
  ident: CR26
  article-title: Optical character enrichment of NdF – doped lithium fluoroborate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2016.09.017
– volume: 752
  start-page: 61
  year: 2018
  end-page: 67
  ident: CR55
  article-title: Gamma ray buildup factors of lithium borate glasses doped with minerals
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.ceramint.2019.05.028
– year: 2020
  ident: CR31
  article-title: Comparative studies on polarizability, optical basicity and optical properties of lead borosilicate modified with Titania
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01650-2
– year: 2020
  ident: CR30
  article-title: Spectroscopic properties, electronic polarizability, and optical basicity of titanium-cadmium tellurite glasses doped with different amounts of lanthanum
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01640-4
– volume: 125
  start-page: 869
  issue: 12
  year: 2019
  ident: CR51
  article-title: Radiation shielding, and physical properties of lead borate glass doped ZrO2 nanoparticles
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3166-8
– volume: 79
  start-page: 1736
  issue: 3
  year: 1996
  end-page: 1740
  ident: CR42
  article-title: Electronic oxide polarizability and optical basicity of simple oxides
  publication-title: I. J. Appl. Phys.
  doi: 10.1063/1.360962
– volume: 35
  start-page: 609
  issue: 4
  year: 1994
  end-page: 615
  ident: CR48
  article-title: General relation between refractive index and energy gap in semiconductors
  publication-title: Infrared Physics & Technology
  doi: 10.1016/1350-4495(94)90026-4
– volume: 242
  start-page: 118774
  year: 2020
  ident: CR37
  article-title: Visible and mid-infrared spectral emissions and radiative rates calculations of Tm doped BBLC glass
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118774
– volume: 392
  start-page: 132
  issue: 1–2
  year: 2007
  end-page: 136
  ident: CR41
  article-title: Electronic polarizability and optical basicity of lanthanide oxides
  publication-title: Phys. B: Cond. Matter.
  doi: 10.1016/j.physb.2006.11.015
– volume: 312
  start-page: 21
  year: 2017
  end-page: 31
  ident: CR15
  article-title: Electrical characterization of lithium bismuth borate glasses containing cobalt/vanadium ions
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2017.10.006
– year: 2020
  ident: CR21
  article-title: Spectroscopic, structural, thermal, and mechanical properties of B O -CeO -PbO glasses
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01799-w
– volume: 31
  start-page: 6963
  year: 2020
  end-page: 6976
  ident: CR34
  article-title: Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-03261-6
– volume: 52
  start-page: 458
  year: 2020
  ident: CR38
  article-title: Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-02575-3
– year: 2020
  ident: CR61
  article-title: Polarizability, optical basicity, and photon attenuation properties of Ag2O–MoO3–V2O5–TeO2 glasses: the role of silver oxide
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01750-z
– volume: 46
  start-page: 19078
  issue: 11
  year: 2020
  end-page: 19083
  ident: CR62
  article-title: Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.240
– volume: 149
  start-page: 788
  year: 2015
  end-page: 792
  ident: CR14
  article-title: Influence of CuO content on the structure of lithium fluoroborate glasses: Spectral and gamma irradiation studies
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2015.04.105
– volume: 11
  start-page: 2421
  year: 2019
  end-page: 2428
  ident: CR17
  article-title: Physical and structural properties of lithium borate glasses containing MoO
  publication-title: SILICON
  doi: 10.1007/s12633-016-9519-4
– volume: 203
  start-page: 163976
  year: 2020
  ident: CR22
  article-title: Optical properties of Bi O doped boro tellurite glasses and glass ceramics
  publication-title: Optik: Int. J. Light Electron Optic.
  doi: 10.1016/j.ijleo.2019.163976
– volume: 131
  start-page: 415
  issue: 2
  year: 1985
  end-page: 427
  ident: CR43
  article-title: Relations between the refractive index and energy gap of semiconductors
  publication-title: Phys. Status Solidi (b)
  doi: 10.1002/pssb.2221310202
– volume: 48
  start-page: 571
  year: 2010
  end-page: 574
  ident: CR47
  article-title: Model for calculating the refractive index of different materials
  publication-title: Ind. J. Pure and Appl. Phys.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 8
  ident: CR12
  article-title: Optical and FT infrared absorption spectra of 3d transition metal ions doped in NaF-CaF -B O glass and effects of gamma irradiation
  publication-title: J. Solid-State Phys.
  doi: 10.1155/2014/389543
– ident: CR24
– year: 2020
  ident: CR59
  article-title: Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.168
– volume: 307
  start-page: 364
  year: 2016
  end-page: 376
  ident: CR56
  article-title: Heavy metal oxide glasses as gamma rays shielding material
  publication-title: Nucl. Eng. Design
  doi: 10.1016/j.nucengdes.2016.07.029
– volume: 203
  start-page: 163976
  year: 2020
  ident: 5885_CR22
  publication-title: Optik: Int. J. Light Electron Optic.
  doi: 10.1016/j.ijleo.2019.163976
– ident: 5885_CR49
  doi: 10.1016/B978-0-08-057150-8.50025-2
– year: 2020
  ident: 5885_CR61
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01750-z
– volume: 31
  start-page: 6963
  year: 2020
  ident: 5885_CR34
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-03261-6
– volume: 307
  start-page: 364
  year: 2016
  ident: 5885_CR56
  publication-title: Nucl. Eng. Design
  doi: 10.1016/j.nucengdes.2016.07.029
– volume: 126
  start-page: 844
  year: 2020
  ident: 5885_CR57
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-04041-z
– volume: 149
  start-page: 788
  year: 2015
  ident: 5885_CR14
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2015.04.105
– volume: 126
  start-page: 763
  year: 2020
  ident: 5885_CR3
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03932-5
– volume: 46
  start-page: 23347
  issue: 15
  year: 2020
  ident: 5885_CR64
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.110
– volume: 41
  start-page: 570
  year: 2008
  ident: 5885_CR46
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2007.05.023
– volume: 5
  start-page: 025207
  issue: 2
  year: 2018
  ident: 5885_CR20
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaaee8
– volume: 79
  start-page: 1736
  issue: 3
  year: 1996
  ident: 5885_CR42
  publication-title: I. J. Appl. Phys.
  doi: 10.1063/1.360962
– year: 2020
  ident: 5885_CR11
  publication-title: Radiat. Meas.
  doi: 10.1016/j.radmeas.2020.106326
– year: 2020
  ident: 5885_CR30
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01640-4
– volume: 312
  start-page: 21
  year: 2017
  ident: 5885_CR15
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2017.10.006
– volume-title: Glass structure by Spectroscopy
  year: 1976
  ident: 5885_CR10
– year: 2020
  ident: 5885_CR39
  publication-title: J. Non-Crystall. Solids
  doi: 10.1016/j.jnoncrysol.2020.120509
– volume: 52
  start-page: 458
  year: 2020
  ident: 5885_CR38
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-02575-3
– year: 2020
  ident: 5885_CR53
  publication-title: Silicon
  doi: 10.1007/s12633-020-00827-1
– ident: 5885_CR24
  doi: 10.1007/s10904-020-01574-x
– volume: 125
  start-page: 869
  issue: 12
  year: 2019
  ident: 5885_CR51
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3166-8
– volume: 35
  start-page: 609
  issue: 4
  year: 1994
  ident: 5885_CR48
  publication-title: Infrared Physics & Technology
  doi: 10.1016/1350-4495(94)90026-4
– volume: 2014
  start-page: 1
  year: 2014
  ident: 5885_CR12
  publication-title: J. Solid-State Phys.
  doi: 10.1155/2014/389543
– year: 2020
  ident: 5885_CR31
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01650-2
– volume: 89
  start-page: 568
  year: 2016
  ident: 5885_CR36
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.09.159
– volume: 31
  start-page: 4986
  year: 2020
  ident: 5885_CR32
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-03065-8
– year: 2020
  ident: 5885_CR27
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2019.108496
– volume: 126
  start-page: 804
  year: 2020
  ident: 5885_CR50
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03982-9
– volume: 261
  start-page: 65
  issue: 1
  year: 2006
  ident: 5885_CR29
  publication-title: Opti. Commun.
  doi: 10.1016/j.optcom.2005.11.056
– year: 2020
  ident: 5885_CR21
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01799-w
– volume: 242
  start-page: 118774
  year: 2020
  ident: 5885_CR37
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118774
– year: 2021
  ident: 5885_CR1
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-021-05499-0
– volume: 752
  start-page: 61
  year: 2018
  ident: 5885_CR55
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.ceramint.2019.05.028
– volume: 142
  start-page: 125
  year: 2017
  ident: 5885_CR9
  publication-title: Optik – Int. J. Light. Electron. Opt.
  doi: 10.1016/j.ijleo.2017.05.088
– year: 2020
  ident: 5885_CR60
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.109
– volume: 32
  start-page: 3743
  year: 2021
  ident: 5885_CR4
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-05119-3
– volume: 453
  start-page: 16
  year: 2016
  ident: 5885_CR26
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2016.09.017
– volume: 392
  start-page: 132
  issue: 1–2
  year: 2007
  ident: 5885_CR41
  publication-title: Phys. B: Cond. Matter.
  doi: 10.1016/j.physb.2006.11.015
– volume: 528
  start-page: 119754
  year: 2020
  ident: 5885_CR52
  publication-title: J. Non-Crystall. Solids
  doi: 10.1016/j.jnoncrysol.2020
– volume: 158
  start-page: 1543
  issue: 3808
  year: 1967
  ident: 5885_CR40
  publication-title: Science.
  doi: 10.1126/science.158.3808.1543
– volume: 46
  start-page: 19078
  issue: 11
  year: 2020
  ident: 5885_CR62
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.240
– year: 2020
  ident: 5885_CR2
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.092
– year: 2021
  ident: 5885_CR7
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-020-05204-7
– year: 2017
  ident: 5885_CR19
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-017-1052-9
– volume: 29
  start-page: 4549
  year: 2020
  ident: 5885_CR16
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-020-04969-6
– volume: 100
  start-page: 715
  issue: 2
  year: 1980
  ident: 5885_CR45
  publication-title: Phys. Status Solidi (b)
  doi: 10.1002/pssb.2221000240
– volume: 46
  start-page: 23357
  issue: 15
  year: 2020
  ident: 5885_CR58
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.018
– year: 2020
  ident: 5885_CR54
  publication-title: Silicon
  doi: 10.1007/s12633-020-00798-3
– volume: 131
  start-page: 415
  issue: 2
  year: 1985
  ident: 5885_CR43
  publication-title: Phys. Status Solidi (b)
  doi: 10.1002/pssb.2221310202
– volume: 348
  start-page: 94
  year: 2004
  ident: 5885_CR25
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2004.08.132
– volume: 48
  start-page: 571
  year: 2010
  ident: 5885_CR47
  publication-title: Ind. J. Pure and Appl. Phys.
– year: 2020
  ident: 5885_CR33
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01641-3
– volume: 47
  start-page: 4028
  issue: 9
  year: 2012
  ident: 5885_CR13
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6256-y
– year: 2002
  ident: 5885_CR5
  publication-title: Struct. Chem. Glasses
  doi: 10.1016/b978-008043958-7/50019-4
– volume: 49
  start-page: 2040
  year: 2020
  ident: 5885_CR35
  publication-title: J. Elec. Mater.
  doi: 10.1007/s11664-019-07889-x
– volume: 10
  start-page: 1973
  year: 2018
  ident: 5885_CR8
  publication-title: SILICON
  doi: 10.1007/s12633-017-9709-8
– volume: 21
  start-page: 283
  issue: 5
  year: 1981
  ident: 5885_CR44
  publication-title: Infrared Physics
  doi: 10.1016/0020-0891(81)90033-6
– volume: 125
  start-page: 869
  year: 2019
  ident: 5885_CR23
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3166-8
– volume: 11
  start-page: 2421
  year: 2019
  ident: 5885_CR17
  publication-title: SILICON
  doi: 10.1007/s12633-016-9519-4
– year: 2020
  ident: 5885_CR59
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.168
– volume: 52
  start-page: 125
  year: 2020
  ident: 5885_CR28
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-2191-3
– year: 2020
  ident: 5885_CR63
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.091
– volume: 20
  start-page: 905
  issue: 8
  year: 1985
  ident: 5885_CR6
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(85)90073-x
– volume: 125
  start-page: 275
  year: 2019
  ident: 5885_CR18
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2574-0
SSID ssj0006438
Score 2.575072
Snippet The techniques of melt-quenching have been used to generate 53B 2 O 3 —2NaF—27PbO – ( 20 - x ) BaO— x La 2 O 3 ( 0 ≤ x ≥ 15 ) g l a s s s y s t e m . XRD...
The techniques of melt-quenching have been used to generate 53B2O3—2NaF—27PbO – (20-x) BaO—x La2O3(0≤x≥15)glasssystem. XRD patterns have been established the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26034
SubjectTerms Barium oxides
Bonding strength
Boron oxides
Bulk modulus
Characterization and Evaluation of Materials
Chemistry and Materials Science
Glass transition temperature
Investigations
Lanthanum oxides
Lead oxides
Materials Science
Optical and Electronic Materials
Optical basicity
Optical properties
Parameter modification
Radiation
Radiation shielding
Refractivity
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagLDAgfkWhIA9s1JLj2K09toiqQtAyUKkLimzHFgOkVVN23oE35Ek4pwktCJBYPOQuHu5s35199x1C58IZ3W45SpyQnnATKSJ1LIgRyqnYa6CHC_3bQas_4tdjMS6LwvIq2716kixO6pViNyk4CSkFVEgpiFxHGwJi95DINWKdz_MXbKxcIOwFRG_GylKZn-f4ao6WPua3Z9HC2vR20HbpJuLOQq-7aM1le2hrBTxwHz0Mp8U9dBMHH-4ZuHWW4lnAGgjCxvljSE4DVjwNF-6zgJyKJx532TB-f30b6B6Md2YIY1eH8UYDBRfutMsP0Kh3dX_ZJ2WzBGJhF82JUUZ5sN2Mewh6UpqKKDahrYaxcJ45qqxQnGspYx7blo28UOCbGIiMPXyjKj5EtWySuSOErY9AR14KSlMeM69sJEGohqkCDo3XUVTJLLElknhoaPGULDGQg5wTkHNSyDmRdXTx-c90gaPxJ3ejUkVS7qk8YUBrS64oraNmpZ4l-ffZjv_HfoI2WVghRcFhA9Xmsxd3Cp7H3JwVC-0DANHO3Q
  priority: 102
  providerName: Springer Nature
Title Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses
URI https://link.springer.com/article/10.1007/s10854-021-05885-8
https://www.proquest.com/docview/2588784900
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NThsxEB5BcmkPVaGtGgqRD9yKhddrB_tUJSgBAU1QRSR6qFZrry0OkKRJeu879A37JJ3ZOIRWKhcf_HeYf4_tbwAOdXDlSScIHrSJXLnMclPmmjttg81jieOU0P887JyP1cWtvk0Jt0V6Vrm2ibWhrqaecuTHUqM6GGWF-DT7zqlqFN2uphIa29BEE2xMA5q9_vD6y6MtRn9rVmh7hO4tZfo2kz7PGa04PVEQuLfm5m_XtIk3_7kirT3P4DW8SiEj6654vANbYbILL58ACb6Bb6NZnZM-YhTPPeDsclKxOeEOEOHZ4o4equFUNqPk-5xQVNk0sp4c5b9__hqWA2yv3QjbXkntVYkjrA6tw-ItjAf9m9NzngoncI8ateTOOhvRj0sV8QBUiUpnuaMSG86jbQvCem2VKo3JVe47PovaYpzi8JQcsU_Y_B00JtNJeA_Mxwz5FY0WolK5jNZnBonqpK2h0VQLsjXNCp9Qxam4xX2xwUMmOhdI56Kmc2Fa8PFxzWyFqfHs7P01K4qkX4tiIw0tOFqzZzP8_932nt_tA7yQJBH1Z8N9aCznP8IBRh1L14ZtMzhrQ7N79vWy306Chr1j2f0DPh_WuQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BThsxEB0hOLQ9oFJATaHUh_YEFrteO9gHVBXaNJSQcACJS7Vde21xKEmaBKHe-g_8Bx_VL2HG2SUUqdy4-LD2rrTj55nx2PMG4L3ytthp-oR7pQOXNjVcF5niVhlvslBgPwX0j7rN9qn8dqbO5uCmzoWha5W1ToyKuhw4ipFvC4XLQUuTJB-HvzhVjaLT1bqExhQWh_73FW7ZxrsHn3F-PwjR-nKy3-ZVVQHuEG4Tbo01AY2ckAF3B2VSqjSzVH_COlz4PjFOGSkLrTOZuaZLgzJoxC1uIQM-i-RLqPIXZIaWnDLTW1_vND9adz3l9iMucSGqJJ0qVU8ryelCRIJ_orj-1xDOvNsHB7LRzrVewmLloLJPU0QtwZzvv4IX92gLl-F7bxgj4FuMvMcLHF30SzYilgOaZjY-p2txOJQNKdQ_Is5WNghsT_Syv3-uu0UL22Pbw3avoLZTYA-Ljrwfr8Dpkwh0Feb7g75_DcyFFNERtEqSUmYiGJdqFKoVJhKxyQaktcxyV3GYUymNn_mMfZnknKOc8yjnXDdg8-6d4ZTB49HR6_VU5NVqHucz7DVgq56eWff_v_bm8a-9g2ftk6NO3jnoHq7Bc0HoiGmO6zA_GV36t-jvTOxGBBmDH0-N6ltXfQxF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BThsxEB2hIFX0gEoLalra-tCewMqu1w72AVUEiEKhSVQRiQta1l5bHEqSJqlQb_2H_k0_hy_pzGaX0ErNjYsPa-9KO36eGY_HbwDeK2-zvaaPuFc6cGljw3WWKG6V8SYJGfZTQP9zt9kZyE8X6mIFfld3YSitstKJhaLOR45i5A2hcDloaaKoEcq0iP5R--P4G6cKUnTSWpXTmEPk1P-4xe3bdP_kCOf6gxDt4_PDDi8rDHCH0Jtxa6wJaPCEDLhTyKNcxYmlWhTWoRLwkXHKSJlpncjENV0clEGDbnE7GfBZQcSE6n91j3ZFNVhtHXf7X-7tANp6PWf6I2ZxIcorO-XFPa0kp_SICP9Lcf23WVz4uv8czxZWr_0M1kt3lR3M8bUBK374HJ4-IDF8AZe9cREP32XkS97g6GyYswlxHtCks-k1JcnhUDamwP-EGFzZKLCW6CV3P391sza2fdvDtpVRe5ZhDyvcej_dhMGjiHQLasPR0L8E5kKMWAlaRVEuExGMizUK1QpT0LLJOsSVzFJXMppTYY2v6YKLmeScopzTQs6prsPO_TvjOZ_H0tHb1VSk5dqepgsk1mG3mp5F9_-_9mr5197BE0R0enbSPX0Na4LAUdx53IbabPLdv0HnZ2bflihjcPXYwP4DkUYR1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical%2C+thermal+and+radiation+shielding+properties+of+B2O3%E2%80%93NaF%E2%80%93PbO%E2%80%93BaO%E2%80%93La2O3+glasses&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Shaaban%2C+Kh.+S.&rft.au=Alomairy%2C+Sultan&rft.au=Al-Buriahi%2C+M.+S.&rft.date=2021-11-01&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=32&rft.issue=21&rft.spage=26034&rft.epage=26048&rft_id=info:doi/10.1007%2Fs10854-021-05885-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10854_021_05885_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon