Weak mean attractors and invariant measures for stochastic Schrödinger delay lattice systems
In this paper, we study the long term dynamics of the stochastic Schrödinger delay lattice systems when the nonlinear drift and diffusion terms are both locally Lipschitz continuous. Based on the well-posedness of the system, we first prove the existence and uniqueness of weak pullback mean random a...
Saved in:
Published in | Journal of dynamics and differential equations Vol. 35; no. 4; pp. 3201 - 3240 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study the long term dynamics of the stochastic Schrödinger delay lattice systems when the nonlinear drift and diffusion terms are both locally Lipschitz continuous. Based on the well-posedness of the system, we first prove the existence and uniqueness of weak pullback mean random attractors in a product Hilbert space. We then show the tightness of distribution laws of solutions and the existence of invariant measures. We further prove the set of all invariant measures of the delay system is tight and every limit point of invariant measures of the delay system must be an invariant measure of the limiting system as time delay approaches zero. The idea of uniform tail-estimates is employed to to establish the tightness of distributions of solutions as well as the set of invariant measures of the delay system. |
---|---|
AbstractList | In this paper, we study the long term dynamics of the stochastic Schrödinger delay lattice systems when the nonlinear drift and diffusion terms are both locally Lipschitz continuous. Based on the well-posedness of the system, we first prove the existence and uniqueness of weak pullback mean random attractors in a product Hilbert space. We then show the tightness of distribution laws of solutions and the existence of invariant measures. We further prove the set of all invariant measures of the delay system is tight and every limit point of invariant measures of the delay system must be an invariant measure of the limiting system as time delay approaches zero. The idea of uniform tail-estimates is employed to to establish the tightness of distributions of solutions as well as the set of invariant measures of the delay system. |
Author | Chen, Zhang Wang, Bixiang |
Author_xml | – sequence: 1 givenname: Zhang surname: Chen fullname: Chen, Zhang organization: School of Mathematics, Shandong University – sequence: 2 givenname: Bixiang orcidid: 0000-0001-5851-2453 surname: Wang fullname: Wang, Bixiang email: bwang@nmt.edu organization: Department of Mathematics, New Mexico Institute of Mixing and Technology |
BookMark | eNp9kM1KAzEQx4NUsK2-gKeA59XJfmVzlOIXFDyoeJIwm83a1G22JqnQF_MFfDFTVxA89JQJ-f9mMr8JGdneakJOGZwzAH7hGVRVnkDKkniviiQ7IGNW8DQRaZqOYg05JDwV-RGZeL8EAFFlYkxenjW-0ZVGSzEEhyr0zlO0DTX2A51BG3avfuO0p23vqA-9WqAPRtEHtXBfn42xr9rRRne4pV1sYpSmfuuDXvljcthi5_XJ7zklT9dXj7PbZH5_cze7nCcqYyIktRB5ATlHaETDS9UIwVSNZabqDLAutWYcUEOtsFQ1gxpUm1ct53ldtKopsik5G_quXf--0T7IZb9xNo6UaSUYK6pSlDFVDSnleu-dbqUyAYPpbVzcdJKB3MmUg0wZZcofmTKLaPoPXTuzQrfdD2UD5GN4J-nvV3uob8S4i_U |
CitedBy_id | crossref_primary_10_1007_s43037_023_00310_0 crossref_primary_10_1016_j_jde_2024_02_040 crossref_primary_10_1007_s10884_023_10333_8 crossref_primary_10_1007_s40840_024_01685_5 crossref_primary_10_1007_s00033_024_02380_y crossref_primary_10_3934_dcdss_2024217 crossref_primary_10_1063_5_0206015 crossref_primary_10_1016_j_jde_2024_08_065 crossref_primary_10_1007_s10955_023_03229_w crossref_primary_10_1088_1361_6544_adbb49 crossref_primary_10_1007_s00245_023_10073_7 crossref_primary_10_1142_S0219493724500126 crossref_primary_10_1007_s10884_023_10260_8 crossref_primary_10_1090_proc_16359 crossref_primary_10_1007_s40072_023_00307_8 crossref_primary_10_1007_s13398_023_01543_2 crossref_primary_10_1080_17442508_2024_2347849 crossref_primary_10_1016_j_cnsns_2023_107341 crossref_primary_10_1007_s10884_022_10145_2 crossref_primary_10_1016_j_cnsns_2025_108602 crossref_primary_10_1017_prm_2024_20 crossref_primary_10_1007_s40304_024_00396_4 crossref_primary_10_1080_10236198_2024_2427631 crossref_primary_10_1177_09217134251317875 crossref_primary_10_1016_j_cnsns_2024_108070 crossref_primary_10_1137_23M157137X crossref_primary_10_1080_07362994_2022_2038624 crossref_primary_10_1080_07362994_2022_2144375 crossref_primary_10_61383_ejam_20231233 |
Cites_doi | 10.1007/s10884-021-10011-7 10.3934/dcds.2014.34.4019 10.1137/080727312 10.1007/s002050050189 10.1016/j.jde.2012.05.016 10.1016/j.jde.2010.10.018 10.1016/j.jde.2020.09.034 10.1016/j.jmaa.2019.04.015 10.1016/j.jde.2016.10.006 10.1214/16-AOP1133 10.1007/s10255-007-7101-y 10.1142/S0219493706001621 10.1016/j.cam.2018.01.020 10.3934/dcds.2014.34.51 10.1080/07362994.2019.1679646 10.1007/s10884-015-9448-8 10.1016/j.jmaa.2010.11.032 10.1016/j.jde.2005.11.005 10.1214/17-EJP122 10.1023/B:JODY.0000009745.41889.30 10.1017/CBO9780511666223 10.1007/s10959-015-0606-z 10.1016/j.physd.2018.09.004 10.1006/jdeq.1998.3478 10.1007/s10884-018-9696-5 10.1088/0951-7715/21/1/005 10.1512/iumj.2006.55.2701 10.1080/17442508.2016.1149589 10.1007/s11425-018-9527-1 10.1016/0025-5564(81)90085-7 10.1016/j.jde.2019.08.007 10.1063/1.3319566 10.1016/j.physd.2005.10.006 10.1007/s10483-009-1211-z 10.1137/0147038 10.1109/81.222795 10.1016/j.jde.2012.03.020 10.1109/81.473583 10.1016/j.jde.2016.05.015 10.1016/j.jde.2015.11.007 10.1080/00036811.2014.952291 10.1016/j.jde.2005.01.003 10.1016/j.physd.2014.08.004 10.1090/proc/14356 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10884-021-10085-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1572-9222 |
EndPage | 3240 |
ExternalDocumentID | 10_1007_s10884_021_10085_3 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11471190; 11971260 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-b9945047a0d9d76cd991cba63cb30ab6ee170ae0bca6cb10b0cf48f774b5fcd53 |
IEDL.DBID | U2A |
ISSN | 1040-7294 |
IngestDate | Fri Jul 25 11:00:00 EDT 2025 Thu Apr 24 22:54:52 EDT 2025 Tue Jul 01 03:46:32 EDT 2025 Fri Feb 21 02:41:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 37L55 60H10 Invariant measure Asymptotic compactness Stochastic Schrödinger lattice system Weak pullback mean attractor Time delay Tail-estimate 37L40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-b9945047a0d9d76cd991cba63cb30ab6ee170ae0bca6cb10b0cf48f774b5fcd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5851-2453 |
PQID | 2891158696 |
PQPubID | 2043775 |
PageCount | 40 |
ParticipantIDs | proquest_journals_2891158696 crossref_citationtrail_10_1007_s10884_021_10085_3 crossref_primary_10_1007_s10884_021_10085_3 springer_journals_10_1007_s10884_021_10085_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of dynamics and differential equations |
PublicationTitleAbbrev | J Dyn Diff Equat |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Han (CR22) 2011; 376 Kim (CR29) 2006; 6 Chen, Li, Wang (CR15) 2021; 26 Wang (CR41) 2019; 477 Han, Kloeden (CR24) 2019; 389 Wang, Wang (CR43) 2020; 38 Wang, Lu, Wang (CR46) 2016; 28 Brzezniak, Motyl, Ondrejat (CR8) 2017; 45 Chen, Dong, Jiang, Zhai (CR14) 2020; 63 Wang (CR42) 2019; 268 Caraballo, Morillas, Valero (CR11) 2012; 253 Es-Sarhir, van Gaans, Scheutzow (CR21) 2010; 23 Bo, Yuan (CR7) 2016; 88 Caraballo, Morillas, Valero (CR13) 2014; 34 Da Prato, Zabczyk (CR20) 1992 Li, Wang, Wang (CR35) 2021; 272 Wang (CR38) 2006; 221 Wang (CR39) 2019; 31 Wu, Yin, Mei (CR47) 2017; 262 Kim (CR28) 2004; 2004 Misiats, Stanzhytskyi, Yip (CR36) 2016; 29 Yan, Li, Ji (CR48) 2010; 51 Bell (CR5) 1981; 54 Beyn, Pilyugin (CR6) 2003; 15 Bao, Yin, Yuan, Wang (CR1) 2014; 93 Huang, Han, Zhou (CR26) 2009; 30 Han, Kloeden (CR23) 2016; 261 Bates, Chmaj (CR2) 1999; 150 Li, Shi, Wang (CR33) 2019; 24 Butkovsky, Scheutzow (CR10) 2017; 22 Kim (CR31) 2006; 55 Chow, Mallet-Paret (CR17) 1995; 42 Chen, Zhou, Zhao (CR16) 2010; 26 Wang, Li (CR44) 2019; 354 Van Vleck, Wang (CR37) 2005; 212 Brzezniak, Ondrejat, Seidler (CR9) 2016; 260 Keener (CR27) 1987; 47 Wang, Li, Wu (CR45) 2009; 40 Kim (CR30) 2006; 228 Chua, Roska (CR19) 1993; 40 Han, Shen, Zhou (CR25) 2011; 250 Bates, Lisei, Lu (CR3) 2006; 6 Bates, Lu, Wang (CR4) 2014; 289 Caraballo, Morillas, Valero (CR12) 2013; 34 Li, Wang, Wang (CR34) 2021 Zhang, Zhao (CR49) 2007; 21 Kloeden, Lorenz (CR32) 2012; 253 Wang (CR40) 2019; 147 Chow, Mallet-Paret, Shen (CR18) 1998; 149 Z Brzezniak (10085_CR8) 2017; 45 L Bo (10085_CR7) 2016; 88 J Kim (10085_CR28) 2004; 2004 J Kim (10085_CR30) 2006; 228 D Li (10085_CR33) 2019; 24 G Da Prato (10085_CR20) 1992 PW Bates (10085_CR3) 2006; 6 JP Keener (10085_CR27) 1987; 47 X Han (10085_CR24) 2019; 389 Z Brzezniak (10085_CR9) 2016; 260 D Li (10085_CR35) 2021; 272 SN Chow (10085_CR18) 1998; 149 P Kloeden (10085_CR32) 2012; 253 J Huang (10085_CR26) 2009; 30 X Han (10085_CR23) 2016; 261 T Caraballo (10085_CR12) 2013; 34 LO Chua (10085_CR19) 1993; 40 Z Chen (10085_CR15) 2021; 26 SN Chow (10085_CR17) 1995; 42 R Wang (10085_CR44) 2019; 354 T Caraballo (10085_CR11) 2012; 253 B Wang (10085_CR43) 2020; 38 O Misiats (10085_CR36) 2016; 29 B Wang (10085_CR39) 2019; 31 J Kim (10085_CR31) 2006; 55 B Wang (10085_CR38) 2006; 221 B Wang (10085_CR41) 2019; 477 X Han (10085_CR25) 2011; 250 B Wang (10085_CR42) 2019; 268 WP Yan (10085_CR48) 2010; 51 PW Bates (10085_CR4) 2014; 289 B Wang (10085_CR40) 2019; 147 E Van Vleck (10085_CR37) 2005; 212 J Bell (10085_CR5) 1981; 54 O Butkovsky (10085_CR10) 2017; 22 L Chen (10085_CR14) 2020; 63 J Kim (10085_CR29) 2006; 6 X Wang (10085_CR46) 2016; 28 J Bao (10085_CR1) 2014; 93 T Chen (10085_CR16) 2010; 26 A Es-Sarhir (10085_CR21) 2010; 23 KF Zhang (10085_CR49) 2007; 21 PW Bates (10085_CR2) 1999; 150 ZC Wang (10085_CR45) 2009; 40 X Han (10085_CR22) 2011; 376 D Li (10085_CR34) 2021 T Caraballo (10085_CR13) 2014; 34 F Wu (10085_CR47) 2017; 262 WJ Beyn (10085_CR6) 2003; 15 |
References_xml | – year: 2021 ident: CR34 article-title: Limiting behavior of invariant measures of stochastic delay lattice systems publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-021-10011-7 – volume: 22 start-page: 1 year: 2017 end-page: 23 ident: CR10 article-title: Invariant measures for stochastic functional differential equations publication-title: Electron. J. Probab. – volume: 31 start-page: 2177 year: 2019 end-page: 2204 ident: CR39 article-title: Weak pullback attractors for mean random dynamical systems in Bochner spaces publication-title: J. Dyn. Differ. Equ. – volume: 268 start-page: 1 year: 2019 end-page: 59 ident: CR42 article-title: Dynamics of fractional stochastic reaction-diffision equations on unbounded domains driven by nonlinear noise publication-title: J. Differ. Equ. – volume: 250 start-page: 1235 year: 2011 end-page: 1266 ident: CR25 article-title: Random attractors for stochastic lattice dynamical systems in weighted spaces publication-title: J. Differ. Equ. – year: 1992 ident: CR20 publication-title: Stochastic Equations Infinite Dimensions – volume: 40 start-page: 2392 issue: 6 year: 2009 end-page: 2420 ident: CR45 article-title: Entire solutions in delayed lattice differential equations with monostable nonlinearity publication-title: SIAM J. Math. Anal. – volume: 2004 start-page: 1 issue: 05 year: 2004 end-page: 30 ident: CR28 article-title: Periodic and invariant measures for stochastic wave equations publication-title: Electron. J. Differ. Equ. – volume: 24 start-page: 5121 issue: 9 year: 2019 end-page: 5148 ident: CR33 article-title: Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 88 start-page: 841 issue: 6 year: 2016 end-page: 863 ident: CR7 article-title: Stochastic delay differential equations with jump reflection: invariant measure publication-title: Stochastics – volume: 29 start-page: 996 year: 2016 end-page: 1026 ident: CR36 article-title: Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains publication-title: J. Theor. Probab. – volume: 54 start-page: 181 year: 1981 end-page: 190 ident: CR5 article-title: Some threshold results for models of myelinated nerves publication-title: Math. Biosci. – volume: 253 start-page: 667 year: 2012 end-page: 693 ident: CR11 article-title: Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities publication-title: J. Differ. Equ. – volume: 93 start-page: 2330 issue: 11 year: 2014 end-page: 2349 ident: CR1 article-title: Exponential ergodicity for retarded stochastic differential equations publication-title: Appl. Anal. – volume: 376 start-page: 481 year: 2011 end-page: 493 ident: CR22 article-title: Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise publication-title: J. Math. Anal. Appl. – volume: 28 start-page: 1309 year: 2016 end-page: 1335 ident: CR46 article-title: Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise publication-title: J. Dyn. Differ. Equ. – volume: 23 start-page: 189 year: 2010 end-page: 200 ident: CR21 article-title: Invariant measures for stochastic functional differential equations with superlinear drift term publication-title: Differ. Integral Equ. – volume: 26 start-page: 3235 year: 2021 end-page: 3269 ident: CR15 article-title: Invariant measures of stochastic delay lattice systems publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 38 start-page: 213 year: 2020 end-page: 237 ident: CR43 article-title: Asymptotic behavior of stochastic Schrödinger lattice systems driven by nonlinear noise publication-title: Stoch. Anal. Appl. – volume: 21 start-page: 97 issue: 1 year: 2007 ident: CR49 article-title: Spreading speed and travelling waves for a spatially discrete SIS epidemic model publication-title: Nonlinearity – volume: 228 start-page: 737 year: 2006 end-page: 768 ident: CR30 article-title: On the stochastic Benjamin-Ono equation publication-title: J. Differ. Equ. – volume: 26 start-page: 633 issue: 4 year: 2010 end-page: 642 ident: CR16 article-title: Attractors for discrete nonlinear Schrödinger equation with delay publication-title: Acta Math. Appl. Sin. – volume: 51 start-page: 032702 issue: 3 year: 2010 ident: CR48 article-title: Random attractors for first order stochastic retarded lattice dynamical systems publication-title: J. Math. Phys. – volume: 289 start-page: 32 year: 2014 end-page: 50 ident: CR4 article-title: Attractors of non-autonomous stochastic lattice systems in weighted spaces publication-title: Phys. D Nonlinear Phenom. – volume: 261 start-page: 2986 issue: 6 year: 2016 end-page: 3009 ident: CR23 article-title: Non-autonomous lattice systems with switching effects and delayed recovery publication-title: J. Differ. Equ. – volume: 221 start-page: 224 year: 2006 end-page: 245 ident: CR38 article-title: Dynamics of systems on infinite lattices publication-title: J. Differ. Equ. – volume: 34 start-page: 4019 year: 2014 end-page: 4037 ident: CR13 article-title: Asymptotic behaviour of a logistic lattice system publication-title: Discrete Contin. Dyn. Syst. – volume: 354 start-page: 86 year: 2019 end-page: 102 ident: CR44 article-title: Regularity and backward compactness of attractors for non-autonomous lattice systems with random coefficients publication-title: Appl. Math. Comput. – volume: 260 start-page: 4157 year: 2016 end-page: 4179 ident: CR9 article-title: Invariant measures for stochastic nonlinear beam and wave equations publication-title: J. Differ. Equ. – volume: 42 start-page: 746 year: 1995 end-page: 751 ident: CR17 article-title: Pattern formation and spatial chaos in lattice dynamical systems, I, II publication-title: IEEE Trans. Circuits Syst. – volume: 63 start-page: 1463 year: 2020 end-page: 1504 ident: CR14 article-title: On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity publication-title: Sci. China Math. – volume: 212 start-page: 317 year: 2005 end-page: 336 ident: CR37 article-title: Attractors for lattice FitzHugh–Nagumo systems publication-title: Phys. D Nonlinear Phenom. – volume: 149 start-page: 248 year: 1998 end-page: 291 ident: CR18 article-title: Traveling waves in lattice dynamical systems publication-title: J. Differ. Equ. – volume: 477 start-page: 104 year: 2019 end-page: 132 ident: CR41 article-title: Dynamics of stochastic reaction-diffusion lattice systems driven by nonlinear noise publication-title: J. Math. Anal. Appl. – volume: 6 start-page: 1 year: 2006 end-page: 21 ident: CR3 article-title: Attractors for stochastic lattice dynamical systems publication-title: Stoch. Dyn. – volume: 45 start-page: 3145 year: 2017 end-page: 3201 ident: CR8 article-title: Invariant measure for the stochastic Navier–Stokes equations in unbounded 2D domains publication-title: Ann. Probab. – volume: 15 start-page: 485 year: 2003 end-page: 515 ident: CR6 article-title: Attractors of reaction diffusion systems on infinite lattices publication-title: J. Dyn. Diff. Equ. – volume: 55 start-page: 687 year: 2006 end-page: 717 ident: CR31 article-title: Invariant measures for a stochastic nonlinear Schrödinger equation publication-title: Indiana Univ. Math. J. – volume: 147 start-page: 1627 issue: 4 year: 2019 end-page: 1638 ident: CR40 article-title: Weak pullback attractors for stochastic Navier–Stokes equations with nonlinear diffusion terms publication-title: Proc. Am. Math. Soc. – volume: 34 start-page: 51 issue: 1 year: 2013 end-page: 77 ident: CR12 article-title: On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems publication-title: Discrete Contin. Dyn. Syst. – volume: 40 start-page: 147 year: 1993 end-page: 156 ident: CR19 article-title: The CNN paradigm publication-title: IEEE Trans. Circuits Syst. – volume: 262 start-page: 1226 issue: 3 year: 2017 end-page: 1252 ident: CR47 article-title: Stochastic functional differential equations with infinite delay: Existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity publication-title: J. Differ. Equ. – volume: 47 start-page: 556 year: 1987 end-page: 572 ident: CR27 article-title: Propagation and its failure in coupled systems of discrete excitable cells publication-title: SIAM J. Appl. Math. – volume: 389 start-page: 1 year: 2019 end-page: 12 ident: CR24 article-title: Asymptotic behavior of a neural field lattice model with a Heaviside operator publication-title: Phys. D Nonlinear Phenom. – volume: 150 start-page: 281 year: 1999 end-page: 368 ident: CR2 article-title: A discrete convolution model for phase transitions publication-title: Arch. Rat. Mech. Anal. – volume: 253 start-page: 1422 year: 2012 end-page: 1438 ident: CR32 article-title: Mean-square random dynamical systems publication-title: J. Differ. Equ. – volume: 30 start-page: 1597 year: 2009 end-page: 1607 ident: CR26 article-title: Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems publication-title: Appl. Math. Mech. – volume: 6 start-page: 835 year: 2006 end-page: 866 ident: CR29 article-title: On the stochastic Burgers equation with polynomial nonlinearity in the real line publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 272 start-page: 74 year: 2021 end-page: 104 ident: CR35 article-title: Periodic measures of stochastic delay lattice systems publication-title: J. Differ. Equ. – volume: 34 start-page: 4019 year: 2014 ident: 10085_CR13 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2014.34.4019 – volume: 40 start-page: 2392 issue: 6 year: 2009 ident: 10085_CR45 publication-title: SIAM J. Math. Anal. doi: 10.1137/080727312 – volume: 150 start-page: 281 year: 1999 ident: 10085_CR2 publication-title: Arch. Rat. Mech. Anal. doi: 10.1007/s002050050189 – volume: 253 start-page: 1422 year: 2012 ident: 10085_CR32 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2012.05.016 – volume: 250 start-page: 1235 year: 2011 ident: 10085_CR25 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.10.018 – volume: 272 start-page: 74 year: 2021 ident: 10085_CR35 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2020.09.034 – volume: 2004 start-page: 1 issue: 05 year: 2004 ident: 10085_CR28 publication-title: Electron. J. Differ. Equ. – volume: 477 start-page: 104 year: 2019 ident: 10085_CR41 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2019.04.015 – volume: 262 start-page: 1226 issue: 3 year: 2017 ident: 10085_CR47 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2016.10.006 – volume: 24 start-page: 5121 issue: 9 year: 2019 ident: 10085_CR33 publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 45 start-page: 3145 year: 2017 ident: 10085_CR8 publication-title: Ann. Probab. doi: 10.1214/16-AOP1133 – volume: 26 start-page: 633 issue: 4 year: 2010 ident: 10085_CR16 publication-title: Acta Math. Appl. Sin. doi: 10.1007/s10255-007-7101-y – volume: 6 start-page: 835 year: 2006 ident: 10085_CR29 publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 6 start-page: 1 year: 2006 ident: 10085_CR3 publication-title: Stoch. Dyn. doi: 10.1142/S0219493706001621 – volume: 354 start-page: 86 year: 2019 ident: 10085_CR44 publication-title: Appl. Math. Comput. doi: 10.1016/j.cam.2018.01.020 – volume: 34 start-page: 51 issue: 1 year: 2013 ident: 10085_CR12 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2014.34.51 – volume: 38 start-page: 213 year: 2020 ident: 10085_CR43 publication-title: Stoch. Anal. Appl. doi: 10.1080/07362994.2019.1679646 – volume: 28 start-page: 1309 year: 2016 ident: 10085_CR46 publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-015-9448-8 – year: 2021 ident: 10085_CR34 publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-021-10011-7 – volume: 376 start-page: 481 year: 2011 ident: 10085_CR22 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.11.032 – volume: 228 start-page: 737 year: 2006 ident: 10085_CR30 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2005.11.005 – volume: 22 start-page: 1 year: 2017 ident: 10085_CR10 publication-title: Electron. J. Probab. doi: 10.1214/17-EJP122 – volume: 15 start-page: 485 year: 2003 ident: 10085_CR6 publication-title: J. Dyn. Diff. Equ. doi: 10.1023/B:JODY.0000009745.41889.30 – volume-title: Stochastic Equations Infinite Dimensions year: 1992 ident: 10085_CR20 doi: 10.1017/CBO9780511666223 – volume: 29 start-page: 996 year: 2016 ident: 10085_CR36 publication-title: J. Theor. Probab. doi: 10.1007/s10959-015-0606-z – volume: 389 start-page: 1 year: 2019 ident: 10085_CR24 publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2018.09.004 – volume: 149 start-page: 248 year: 1998 ident: 10085_CR18 publication-title: J. Differ. Equ. doi: 10.1006/jdeq.1998.3478 – volume: 31 start-page: 2177 year: 2019 ident: 10085_CR39 publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-018-9696-5 – volume: 21 start-page: 97 issue: 1 year: 2007 ident: 10085_CR49 publication-title: Nonlinearity doi: 10.1088/0951-7715/21/1/005 – volume: 55 start-page: 687 year: 2006 ident: 10085_CR31 publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.2006.55.2701 – volume: 26 start-page: 3235 year: 2021 ident: 10085_CR15 publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 88 start-page: 841 issue: 6 year: 2016 ident: 10085_CR7 publication-title: Stochastics doi: 10.1080/17442508.2016.1149589 – volume: 23 start-page: 189 year: 2010 ident: 10085_CR21 publication-title: Differ. Integral Equ. – volume: 63 start-page: 1463 year: 2020 ident: 10085_CR14 publication-title: Sci. China Math. doi: 10.1007/s11425-018-9527-1 – volume: 54 start-page: 181 year: 1981 ident: 10085_CR5 publication-title: Math. Biosci. doi: 10.1016/0025-5564(81)90085-7 – volume: 268 start-page: 1 year: 2019 ident: 10085_CR42 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2019.08.007 – volume: 51 start-page: 032702 issue: 3 year: 2010 ident: 10085_CR48 publication-title: J. Math. Phys. doi: 10.1063/1.3319566 – volume: 212 start-page: 317 year: 2005 ident: 10085_CR37 publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2005.10.006 – volume: 30 start-page: 1597 year: 2009 ident: 10085_CR26 publication-title: Appl. Math. Mech. doi: 10.1007/s10483-009-1211-z – volume: 47 start-page: 556 year: 1987 ident: 10085_CR27 publication-title: SIAM J. Appl. Math. doi: 10.1137/0147038 – volume: 40 start-page: 147 year: 1993 ident: 10085_CR19 publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/81.222795 – volume: 253 start-page: 667 year: 2012 ident: 10085_CR11 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2012.03.020 – volume: 42 start-page: 746 year: 1995 ident: 10085_CR17 publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/81.473583 – volume: 261 start-page: 2986 issue: 6 year: 2016 ident: 10085_CR23 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2016.05.015 – volume: 260 start-page: 4157 year: 2016 ident: 10085_CR9 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2015.11.007 – volume: 93 start-page: 2330 issue: 11 year: 2014 ident: 10085_CR1 publication-title: Appl. Anal. doi: 10.1080/00036811.2014.952291 – volume: 221 start-page: 224 year: 2006 ident: 10085_CR38 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2005.01.003 – volume: 289 start-page: 32 year: 2014 ident: 10085_CR4 publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2014.08.004 – volume: 147 start-page: 1627 issue: 4 year: 2019 ident: 10085_CR40 publication-title: Proc. Am. Math. Soc. doi: 10.1090/proc/14356 |
SSID | ssj0009839 |
Score | 2.4903295 |
Snippet | In this paper, we study the long term dynamics of the stochastic Schrödinger delay lattice systems when the nonlinear drift and diffusion terms are both... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3201 |
SubjectTerms | Applications of Mathematics Hilbert space Invariants Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Tightness Time lag |
Title | Weak mean attractors and invariant measures for stochastic Schrödinger delay lattice systems |
URI | https://link.springer.com/article/10.1007/s10884-021-10085-3 https://www.proquest.com/docview/2891158696 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgvcABsYpCqXzgBpayOG5yrFBLBSoXqCgHFHmLiigBNQGJH-MH-DHGTtIAAiTOdibSm9h-E8-8QejQSLIAq_aJSrRHqHQEEUATiCs9KamhsPYGf3TBhmN6NgkmZVFYVmW7V1eSdqf-VOwWhpSYlAIjSBMQfxk1A4jdTSLX2OvVUruh7R_m2lw5L6JlqczPNr4eRzXH_HYtak-bwTpaK2ki7hV-3UBLOt1Eq6OFxmq2hW6vNb_HD5qnmOf5vOibg3mq8F36AhEwQGZGzR_ADAM1xUDz5JQbXWZ8Kafz9zdlX42NTuQrnoER2DRwIe2cbaPxoH91MiRlswQiYRXlgHBEA4d2uaMi1WVSAfGTgjNfCt_hgmkNXuHaEZIzKVxHODKhYQLsTwSJVIG_gxrpY6p3EY4YVxyM6IgKiE6kMRxolyqXR55yRQu5FWaxLJXETUOLWVxrIBucY8A5tjjHfgsdLZ55KnQ0_pzdrlwRl2sqiyE0BPoasoi10HHlnnr4d2t7_5u-j1ZMT_kiZ6WNGvn8WR8A88hFBzV7pzfn_Y794D4ADErRgw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2hcgAOiFWU1Qc4QaQsTkgOHCoWtUB7gYpeUPBWFVECagKo_8M38AP8GGMnoYAAiQNnO2NrZmy_icdvADY1JQuias-SXeVaVNjc4ggTLEe4QlANYc0NfrMV1Nv0uON3xuC5fAtjst3LK0mzU3947BaG1NIpBZqQxrfKktUnaviEgVq61zhAq2657tHh-X7dKmoJWAKdLMMJRNS36S6zZSR3AyERFwnOAk9wz2Y8UAonzZTNBQsEd2xuiy4NuwiOuN8VUteGwI1-HMFHqNdO262NqH1DU6_MMbl5bkSLpznfz_nz8TfCtF-uYc3pdjQD0wUsJbXcj2ZhTCVzMNV853RN5-HyQrEbcqtYQliWDfI6PYQlklwnjxhxo4l0q_7jmBKEwgRhpegxzQNNzkRv8PoizdBE81IOSR-F4CZFcirpdAHa_6LQRagkd4laAhIFTDIUoiLKMRoSWrCvHCodFrnS4VVwSp3FomAu1wU0-vGIc1nrOUY9x0bPsVeF7fdv7nPejl97r5amiIs1nMYYiiJcDoMoqMJOaZ5R88_Slv_WfQMm6ufN0_i00TpZgUldzz7Pl1mFSjZ4UGuIejK-bpyOwNV_e_kblqEO5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6kguhBfGK16h70pKFJuonJwYNYS7VaBC32InFfoaLG0kTFf-XJP-AfczYPq6KCh553M9nMzO5-m535BmBDU7Igqq4ZMlS2QYXJDY4wwbCELQTVEDa9wT9pu80OPeo63TF4KXJh0mj34koyy2nQLE1RUu3LsPop8c3zqKHDCzQ5jWMU5atb6vkJD23x7mEdLbxp242D8_2mkdcVMAQ6XIKD8alj0h1mSl_uuEIiRhKcuTXBaybjrlL4AUyZXDBXcMvkpgipFyJQ4k4opK4TgYv-ONXZxziDOvbekObXS2uXWWmcnu3TPE3n5zF_3QqH-PbblWy60zVmYDqHqGQv86lZGFPRHEydfPC7xvNweaHYDblTLCIsSQZZzR7CIkmuo0c8faO5dKv--xgThMUEIaboMc0JTc5Eb_D2KtNXE81R-UxuUQguWCSjlY4XoDMShS5CKbqP1BIQ32WSoRDlU44nI6EFO8qi0mK-LS1eBqvQWSByFnNdTOM2GPIvaz0HqOcg1XNQK8PWxzP9jMPjz96VwhRBPp_jAI-lCJ0913fLsF2YZ9j8u7Tl_3Vfh4nTeiM4Pmy3VmBSl7bPQmcqUEoGD2oVAVDC11KfI3A1aid_B1YIExo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+mean+attractors+and+invariant+measures+for+stochastic+Schr%C3%B6dinger+delay+lattice+systems&rft.jtitle=Journal+of+dynamics+and+differential+equations&rft.au=Chen%2C+Zhang&rft.au=Wang%2C+Bixiang&rft.date=2023-12-01&rft.issn=1040-7294&rft.eissn=1572-9222&rft.volume=35&rft.issue=4&rft.spage=3201&rft.epage=3240&rft_id=info:doi/10.1007%2Fs10884-021-10085-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10884_021_10085_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7294&client=summon |