Evaluation and performance analysis of Chinese remainder theorem and its application to lossless image compression
Chinese remainder theorem (CRT) is widely utilized in many cryptographic applications and additionally the reversible nature of CRT is employed in compression of images. This paper mainly focuses on the suitability of CRT for lossless image compression and the analysis is carried out for the number...
Saved in:
Published in | Journal of ambient intelligence and humanized computing Vol. 14; no. 6; pp. 6645 - 6660 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-5137 1868-5145 |
DOI | 10.1007/s12652-021-03532-y |
Cover
Loading…
Abstract | Chinese remainder theorem (CRT) is widely utilized in many cryptographic applications and additionally the reversible nature of CRT is employed in compression of images. This paper mainly focuses on the suitability of CRT for lossless image compression and the analysis is carried out for the number and range of primes to be chosen. With respect to the analysis is carried out for the number of primes to be chosen (i.e., 2, 3, 4, 5, and 6), it is found that CRT suits well only for the chosen number of primes 2 with good compression ratio. For the remaining prime numbers, it provides negligible or even negative CR based on the chosen number of prime numbers. Also, CRT based lossless compression (CRTLC) reduces the size of the image based on the number of primes chosen. Further, it can achieve substantial compression of the original image. Using different test images, CRT is compared with recent lossless compression methods and against the standard set of lossless compression techniques (i.e., JPEG 2000, JPEG-LS, and CALIC). From these comparisons, it is inferred that CRT scores (maximum achieved CR is 1.8823) better than the recent and standard algorithms. |
---|---|
AbstractList | Chinese remainder theorem (CRT) is widely utilized in many cryptographic applications and additionally the reversible nature of CRT is employed in compression of images. This paper mainly focuses on the suitability of CRT for lossless image compression and the analysis is carried out for the number and range of primes to be chosen. With respect to the analysis is carried out for the number of primes to be chosen (i.e., 2, 3, 4, 5, and 6), it is found that CRT suits well only for the chosen number of primes 2 with good compression ratio. For the remaining prime numbers, it provides negligible or even negative CR based on the chosen number of prime numbers. Also, CRT based lossless compression (CRTLC) reduces the size of the image based on the number of primes chosen. Further, it can achieve substantial compression of the original image. Using different test images, CRT is compared with recent lossless compression methods and against the standard set of lossless compression techniques (i.e., JPEG 2000, JPEG-LS, and CALIC). From these comparisons, it is inferred that CRT scores (maximum achieved CR is 1.8823) better than the recent and standard algorithms. |
Author | Brindha, M. Vidhya, R. |
Author_xml | – sequence: 1 givenname: R. surname: Vidhya fullname: Vidhya, R. organization: School of Computer Science and Engineering, Department of IOT, Vellore Institute of Technology – sequence: 2 givenname: M. surname: Brindha fullname: Brindha, M. email: brindham@nitt.edu organization: Department of Computer Science and Engineering, National Institute of Technology |
BookMark | eNp9kF9PwyAUxYmZiVP3BXwi8bnKLW2BR7PMP8kSX_SZUEo3lg4qdCb99uJqNPFhvMAJ53dzz7lEM-edQegGyB0Qwu4j5FWZZySHjNCS5tl4hubAK56VUJSz3zdlF2gR446kQwUFgDkKq0_VHdRgvcPKNbg3ofVhr5w2SatujDZi3-Ll1joTDQ5mr6xrTMDD1vikjpQdIlZ931k9TRo87nyMnYkR273aGKz9vg9Jpt9rdN6qLprFz32F3h9Xb8vnbP369LJ8WGeaghiymtclE9oIXTEtmCFMNFXNoMgVI4Ir4MDrWumWKgIFqeqkSVkqYKxmbdXQK3Q7ze2D_ziYOMidP4SUKcpcgCgY46JMLj65dEgbB9NKbYdjiiEo20kg8rtkOZUsU8nyWLIcE5r_Q_uQ0obxNEQnKCaz25jwt9UJ6gtwSpN0 |
CitedBy_id | crossref_primary_10_12677_JISP_2023_122012 crossref_primary_10_3390_e26100832 |
Cites_doi | 10.1007/s11042-016-3629-2 10.1109/TIP.2013.2293428 10.1109/TMM.2017.2749162 10.1109/IWSOC.2004.1319854 10.1109/TMM.2018.2847228 10.1007/s00500-017-2783-4 10.1016/j.image.2014.06.011 10.1109/ICSCN.2007.350696 10.1109/INFCOM.2010.5462034 10.2140/pjm.1977.70.289 10.1016/j.asoc.2015.09.055 10.1109/TIP.2008.920772 10.1109/TMM.2012.2191945 10.1109/TMM.2016.2525010 10.1007/s11227-018-2656-3 10.1109/ICOIACT50329.2020.9332044 10.1007/s12652-020-01792-8 10.1109/ACCESS.2019.2932462 10.1109/TGRS.2016.2603527 10.1109/ICOIN48656.2020.9016442 10.1002/spe.2598 10.1016/j.ijleo.2015.10.154 10.1109/TMM.2008.917357 10.1179/136821909X12490326247489 10.1109/NRSC.2001.929397 10.1109/TMI.2017.2714640 10.1007/s11760-013-0435-4 10.1109/TMM.2017.2721544 10.1109/TMM.2017.2786860 10.1007/s11042-020-08821-w 10.1109/TMM.2017.2741426 10.1007/s12652-018-1016-8 10.1016/j.image.2013.02.004 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s12652-021-03532-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1868-5145 |
EndPage | 6660 |
ExternalDocumentID | 10_1007_s12652_021_03532_y |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA BSONS CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 QOS R89 R9I RLLFE ROL RSV S1Z S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-b8b579ce9c67c97e079d6b7142a7098a1818bbacf3a01406b818055a177b7f6d3 |
IEDL.DBID | U2A |
ISSN | 1868-5137 |
IngestDate | Fri Jul 25 23:27:53 EDT 2025 Thu Apr 24 22:54:25 EDT 2025 Tue Jul 01 02:25:56 EDT 2025 Fri Feb 21 02:43:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Lossless compression Compression ratio CRT Bit rate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-b8b579ce9c67c97e079d6b7142a7098a1818bbacf3a01406b818055a177b7f6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2919477895 |
PQPubID | 2043913 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2919477895 crossref_citationtrail_10_1007_s12652_021_03532_y crossref_primary_10_1007_s12652_021_03532_y springer_journals_10_1007_s12652_021_03532_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230600 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of ambient intelligence and humanized computing |
PublicationTitleAbbrev | J Ambient Intell Human Comput |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Ammar A, Al Kabbany A, Youssef M, Amam A (2001) A secure image coding scheme using residue number system. In: Proceedings of the eighteenth national radio science conference, NRSC’2001 (IEEE Cat. No. 01EX462), IEEE, vol 2, pp 399–405 LiSXuMRenYWangZClosed-form optimization on saliency-guided image compression for HEVC-MSPIEEE Trans Multimed201720115517010.1109/TMM.2017.2721544 McClellen JH, Rader CM (1979) Number theory in digital signal processing. Prentice Hall Professional Technical Reference ZhangYAdjerohDAPrediction by partial approximate matching for lossless image compressionIEEE Trans Image Process2008176924935251661410.1109/TIP.2008.920772 ZhangHXqWangYjSunXyWangA novel method for lossless image compression and encryption based on LWT, SPIHT and cellular automataSignal Process Image Commun202084115829 Howard PG, Vitter J (1994) Fast and e cient lossless image compression. In: Proc. data compression conference, JA Storer and M. Cohn, eds, Citeseer, pp 351–360 BrindhaMGoundenNAA chaos based image encryption and lossless compression algorithm using hash table and Chinese remainder theoremAppl Soft Comput20164037939010.1016/j.asoc.2015.09.055 VenugopalDMohanSRajaSAn efficient block based lossless compression of medical imagesOptik2016127275475810.1016/j.ijleo.2015.10.154 Ghobaei-AraniMSouriALP-WSC: a linear programming approach for web service composition in geographically distributed cloud environmentsJ Supercomput20197552603262810.1007/s11227-018-2656-3 ShenHPanWDWuDPredictive lossless compression of regions of interest in hyperspectral images with no-data regionsIEEE Trans Geosci Remote Sens201655117318210.1109/TGRS.2016.2603527 KalluriMJiangMLingNZhengJZhangPAdaptive RD optimal sparse coding with quantization for image compressionIEEE Trans Multimed2018211395010.1109/TMM.2018.2847228 KuoHCLinYLA hybrid algorithm for effective lossless compression of video display framesIEEE Trans Multimed201214350050910.1109/TMM.2012.2191945 KhelifiFBouridaneAKurugolluFJoined spectral trees for scalable SPIHT-based multispectral image compressionIEEE Trans Multimed200810331632910.1109/TMM.2008.917357 ZhuSLiMChenCLiuSZengBCross-space distortion directed color image compressionIEEE Trans Multimed201720352553810.1109/TMM.2017.2749162 SECTOR S, ITU O (1998) Information technology–lossless and near-lossless compression of continuous-tone still images–baseline KimSChoNIHierarchical prediction and context adaptive coding for lossless color image compressionIEEE Trans Image Process2013231445449326201810.1109/TIP.2013.22934281374.94176 Jagannathan V, Mahadevan A, Hariharan R, Srinivasan E (2007) Number theory based image compression encryption and application to image multiplexing. In: 2007 International conference on signal processing, communications and networking, IEEE, pp 59–64 Burrows M, Wheeler D (1994) A block-sorting lossless data compression algorithm. In: Digital SRC research report, Citeseer Ghobaei-AraniMRahmanianAAAslanpourMSDashtiSECSA-WSC: cuckoo search algorithm for web service composition in cloud environmentsSoft Comput201822248353837810.1007/s00500-017-2783-4 Ghobaei-AraniMSouriABakerTHussienAControcity: an autonomous approach for controlling elasticity using buffer management in cloud computing environmentIEEE Access2019710691210692410.1109/ACCESS.2019.2932462 Hidayat T, Zakaria MH, Pee ANC (2020) Survey of performance measurement indicators for lossless compression technique based on the objectives. In: 2020 3rd International conference on information and communications technology (ICOIACT), IEEE, pp 170–175 UmaMaheswariSSrinivasaRaghavanVLossless medical image compression algorithm using tetrolet transformationJ Ambient Intell Humaniz Comput20211234127413510.1007/s12652-020-01792-8 Wu X, Memon N (1996) CALIC-a context based adaptive lossless image codec. In: 1996 IEEE international conference on acoustics, speech, and signal processing conference proceedings, IEEE, vol 4, pp 1890–1893 WeinbergerMJSenior member, IEEE, Gadiel Seroussi, fellow, IEEE, and Guillermo Sapiro, member, IEEE, the LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS in image processingIEEE Trans2000913091324 Ghobaei-AraniMRahmanianAASouriARahmaniAMA moth-flame optimization algorithm for web service composition in cloud computing: simulation and verificationSoftw Pract Exp2018481018651892 KhanAKhanAKhanMUzairMLossless image compression: application of bi-level burrows wheeler compression algorithm (BBWCA) to 2-D dataMultimed Tools Appl20177610123911241610.1007/s11042-016-3629-2 LiCLiuYZhangLYWongKWCryptanalyzing a class of image encryption schemes based on Chinese remainder theoremSignal Process Image Commun201429891492010.1016/j.image.2014.06.011 PeiDSalomaaADingCChinese remainder theorem: applications in computing, coding, cryptography1996SingaporeWorld Scientific0907.11002 JTC I (2000) Information technology-JPEG2000 image coding system part 1: core coding system. ISO/IEC 15444-1 ZhuHZhaoCZhangXA novel image encryption-compression scheme using hyper-chaos and Chinese remainder theoremSignal Process Image Commun201328667068010.1016/j.image.2013.02.004 Wang P, Dai R, Akyildiz IF (2010) Collaborative data compression using clustered source coding for wireless multimedia sensor networks. In: 2010 Proceedings IEEE INFOCOM, IEEE, pp 1–9 YangFMouJSunKChuRLossless image compression-encryption algorithm based on bp neural network and chaotic systemMultimed Tools Appl20207927199631999210.1007/s11042-020-08821-w PennebakerWBMitchellJLJPEG: still image data compression standard1992BerlinSpringer Science & Business Media LiPLoKTA content-adaptive joint image compression and encryption schemeIEEE Trans Multimed20172081960197210.1109/TMM.2017.2786860 AraziBA generalization of the Chinese remainder theoremPac J Math197770228929648029710.2140/pjm.1977.70.2890335.10004 YangJChangCLinCResidue number system oriented image encoding schemesImaging Sci J201058131110.1179/136821909X12490326247489 David T, Marcellin M (2012) Jpeg2000 image compression fundamentals, standards and practice: image compression fundamentals, standards and practice, vol 642. Springer Science & Business Media WiegandTSchwarzHSource coding: part I of fundamentals of source and video coding2011NorwellNow Publishers Inc1213.94001 Wang W, Swamy M, Ahmad MO (2004) RNS application for digital image processing. In: 4th IEEE international workshop on system-on-chip for real-time applications, IEEE, pp 77–80 ChenYZhaoXZhangLKangJWMultiview and 3d video compression using neighboring block based disparity vectorsIEEE Trans Multimed201618457658910.1109/TMM.2016.2525010 Ahmad I, Lee B, Shin S (2020) Analysis of Chinese remainder theorem for data compression. In: 2020 International conference on information networking (ICOIN), IEEE, pp 634–636 OuniTLassouedAAbidMLossless image compression using gradient based space filling curves (G-SFC)Signal Image Video Process20159227729310.1007/s11760-013-0435-4 LucasLFRodriguesNMda Silva CruzLAde FariaSMLossless compression of medical images using 3-D predictorsIEEE Trans Med Imaging201736112250226010.1109/TMI.2017.2714640 Hernandez-CabroneroMMarcellinMWBlanesISerra-SagristaJLossless compression of color filter array mosaic images with visualization via JPEG 2000IEEE Trans Multimed201720225727010.1109/TMM.2017.2741426 KasbanHHashimaSAdaptive radiographic image compression technique using hierarchical vector quantization and Huffman encodingJ Ambient Intell Humaniz Comput20191072855286710.1007/s12652-018-1016-8 3532_CR31 F Khelifi (3532_CR20) 2008; 10 M Ghobaei-Arani (3532_CR9) 2018; 22 3532_CR13 3532_CR35 D Venugopal (3532_CR34) 2016; 127 H Kasban (3532_CR18) 2019; 10 F Yang (3532_CR41) 2020; 79 S Zhu (3532_CR45) 2017; 20 T Ouni (3532_CR28) 2015; 9 3532_CR7 J Yang (3532_CR40) 2010; 58 M Ghobaei-Arani (3532_CR8) 2019; 75 3532_CR5 MJ Weinberger (3532_CR37) 2000; 9 3532_CR16 M Kalluri (3532_CR17) 2018; 21 M Hernandez-Cabronero (3532_CR12) 2017; 20 3532_CR39 3532_CR14 3532_CR36 3532_CR15 A Khan (3532_CR19) 2017; 76 WB Pennebaker (3532_CR30) 1992 3532_CR1 S Li (3532_CR25) 2017; 20 3532_CR2 T Wiegand (3532_CR38) 2011 M Brindha (3532_CR4) 2016; 40 S UmaMaheswari (3532_CR33) 2021; 12 Y Chen (3532_CR6) 2016; 18 LF Lucas (3532_CR26) 2017; 36 H Zhang (3532_CR43) 2020; 84 H Zhu (3532_CR44) 2013; 28 B Arazi (3532_CR3) 1977; 70 Y Zhang (3532_CR42) 2008; 17 M Ghobaei-Arani (3532_CR11) 2019; 7 P Li (3532_CR23) 2017; 20 HC Kuo (3532_CR22) 2012; 14 3532_CR27 S Kim (3532_CR21) 2013; 23 D Pei (3532_CR29) 1996 M Ghobaei-Arani (3532_CR10) 2018; 48 H Shen (3532_CR32) 2016; 55 C Li (3532_CR24) 2014; 29 |
References_xml | – reference: WeinbergerMJSenior member, IEEE, Gadiel Seroussi, fellow, IEEE, and Guillermo Sapiro, member, IEEE, the LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS in image processingIEEE Trans2000913091324 – reference: Ghobaei-AraniMSouriABakerTHussienAControcity: an autonomous approach for controlling elasticity using buffer management in cloud computing environmentIEEE Access2019710691210692410.1109/ACCESS.2019.2932462 – reference: JTC I (2000) Information technology-JPEG2000 image coding system part 1: core coding system. ISO/IEC 15444-1 – reference: Wang P, Dai R, Akyildiz IF (2010) Collaborative data compression using clustered source coding for wireless multimedia sensor networks. In: 2010 Proceedings IEEE INFOCOM, IEEE, pp 1–9 – reference: YangFMouJSunKChuRLossless image compression-encryption algorithm based on bp neural network and chaotic systemMultimed Tools Appl20207927199631999210.1007/s11042-020-08821-w – reference: Ammar A, Al Kabbany A, Youssef M, Amam A (2001) A secure image coding scheme using residue number system. In: Proceedings of the eighteenth national radio science conference, NRSC’2001 (IEEE Cat. No. 01EX462), IEEE, vol 2, pp 399–405 – reference: YangJChangCLinCResidue number system oriented image encoding schemesImaging Sci J201058131110.1179/136821909X12490326247489 – reference: PennebakerWBMitchellJLJPEG: still image data compression standard1992BerlinSpringer Science & Business Media – reference: Ghobaei-AraniMSouriALP-WSC: a linear programming approach for web service composition in geographically distributed cloud environmentsJ Supercomput20197552603262810.1007/s11227-018-2656-3 – reference: SECTOR S, ITU O (1998) Information technology–lossless and near-lossless compression of continuous-tone still images–baseline – reference: ZhuHZhaoCZhangXA novel image encryption-compression scheme using hyper-chaos and Chinese remainder theoremSignal Process Image Commun201328667068010.1016/j.image.2013.02.004 – reference: Hidayat T, Zakaria MH, Pee ANC (2020) Survey of performance measurement indicators for lossless compression technique based on the objectives. In: 2020 3rd International conference on information and communications technology (ICOIACT), IEEE, pp 170–175 – reference: KuoHCLinYLA hybrid algorithm for effective lossless compression of video display framesIEEE Trans Multimed201214350050910.1109/TMM.2012.2191945 – reference: LiSXuMRenYWangZClosed-form optimization on saliency-guided image compression for HEVC-MSPIEEE Trans Multimed201720115517010.1109/TMM.2017.2721544 – reference: ZhangYAdjerohDAPrediction by partial approximate matching for lossless image compressionIEEE Trans Image Process2008176924935251661410.1109/TIP.2008.920772 – reference: McClellen JH, Rader CM (1979) Number theory in digital signal processing. Prentice Hall Professional Technical Reference – reference: Ghobaei-AraniMRahmanianAAAslanpourMSDashtiSECSA-WSC: cuckoo search algorithm for web service composition in cloud environmentsSoft Comput201822248353837810.1007/s00500-017-2783-4 – reference: ZhangHXqWangYjSunXyWangA novel method for lossless image compression and encryption based on LWT, SPIHT and cellular automataSignal Process Image Commun202084115829 – reference: ZhuSLiMChenCLiuSZengBCross-space distortion directed color image compressionIEEE Trans Multimed201720352553810.1109/TMM.2017.2749162 – reference: Howard PG, Vitter J (1994) Fast and e cient lossless image compression. In: Proc. data compression conference, JA Storer and M. Cohn, eds, Citeseer, pp 351–360 – reference: PeiDSalomaaADingCChinese remainder theorem: applications in computing, coding, cryptography1996SingaporeWorld Scientific0907.11002 – reference: Wang W, Swamy M, Ahmad MO (2004) RNS application for digital image processing. In: 4th IEEE international workshop on system-on-chip for real-time applications, IEEE, pp 77–80 – reference: WiegandTSchwarzHSource coding: part I of fundamentals of source and video coding2011NorwellNow Publishers Inc1213.94001 – reference: David T, Marcellin M (2012) Jpeg2000 image compression fundamentals, standards and practice: image compression fundamentals, standards and practice, vol 642. Springer Science & Business Media – reference: ChenYZhaoXZhangLKangJWMultiview and 3d video compression using neighboring block based disparity vectorsIEEE Trans Multimed201618457658910.1109/TMM.2016.2525010 – reference: KasbanHHashimaSAdaptive radiographic image compression technique using hierarchical vector quantization and Huffman encodingJ Ambient Intell Humaniz Comput20191072855286710.1007/s12652-018-1016-8 – reference: LucasLFRodriguesNMda Silva CruzLAde FariaSMLossless compression of medical images using 3-D predictorsIEEE Trans Med Imaging201736112250226010.1109/TMI.2017.2714640 – reference: ShenHPanWDWuDPredictive lossless compression of regions of interest in hyperspectral images with no-data regionsIEEE Trans Geosci Remote Sens201655117318210.1109/TGRS.2016.2603527 – reference: KalluriMJiangMLingNZhengJZhangPAdaptive RD optimal sparse coding with quantization for image compressionIEEE Trans Multimed2018211395010.1109/TMM.2018.2847228 – reference: Wu X, Memon N (1996) CALIC-a context based adaptive lossless image codec. In: 1996 IEEE international conference on acoustics, speech, and signal processing conference proceedings, IEEE, vol 4, pp 1890–1893 – reference: Jagannathan V, Mahadevan A, Hariharan R, Srinivasan E (2007) Number theory based image compression encryption and application to image multiplexing. In: 2007 International conference on signal processing, communications and networking, IEEE, pp 59–64 – reference: BrindhaMGoundenNAA chaos based image encryption and lossless compression algorithm using hash table and Chinese remainder theoremAppl Soft Comput20164037939010.1016/j.asoc.2015.09.055 – reference: KhanAKhanAKhanMUzairMLossless image compression: application of bi-level burrows wheeler compression algorithm (BBWCA) to 2-D dataMultimed Tools Appl20177610123911241610.1007/s11042-016-3629-2 – reference: UmaMaheswariSSrinivasaRaghavanVLossless medical image compression algorithm using tetrolet transformationJ Ambient Intell Humaniz Comput20211234127413510.1007/s12652-020-01792-8 – reference: VenugopalDMohanSRajaSAn efficient block based lossless compression of medical imagesOptik2016127275475810.1016/j.ijleo.2015.10.154 – reference: Burrows M, Wheeler D (1994) A block-sorting lossless data compression algorithm. In: Digital SRC research report, Citeseer – reference: Hernandez-CabroneroMMarcellinMWBlanesISerra-SagristaJLossless compression of color filter array mosaic images with visualization via JPEG 2000IEEE Trans Multimed201720225727010.1109/TMM.2017.2741426 – reference: KhelifiFBouridaneAKurugolluFJoined spectral trees for scalable SPIHT-based multispectral image compressionIEEE Trans Multimed200810331632910.1109/TMM.2008.917357 – reference: KimSChoNIHierarchical prediction and context adaptive coding for lossless color image compressionIEEE Trans Image Process2013231445449326201810.1109/TIP.2013.22934281374.94176 – reference: LiCLiuYZhangLYWongKWCryptanalyzing a class of image encryption schemes based on Chinese remainder theoremSignal Process Image Commun201429891492010.1016/j.image.2014.06.011 – reference: Ahmad I, Lee B, Shin S (2020) Analysis of Chinese remainder theorem for data compression. In: 2020 International conference on information networking (ICOIN), IEEE, pp 634–636 – reference: Ghobaei-AraniMRahmanianAASouriARahmaniAMA moth-flame optimization algorithm for web service composition in cloud computing: simulation and verificationSoftw Pract Exp2018481018651892 – reference: OuniTLassouedAAbidMLossless image compression using gradient based space filling curves (G-SFC)Signal Image Video Process20159227729310.1007/s11760-013-0435-4 – reference: AraziBA generalization of the Chinese remainder theoremPac J Math197770228929648029710.2140/pjm.1977.70.2890335.10004 – reference: LiPLoKTA content-adaptive joint image compression and encryption schemeIEEE Trans Multimed20172081960197210.1109/TMM.2017.2786860 – volume: 76 start-page: 12391 issue: 10 year: 2017 ident: 3532_CR19 publication-title: Multimed Tools Appl doi: 10.1007/s11042-016-3629-2 – volume-title: Chinese remainder theorem: applications in computing, coding, cryptography year: 1996 ident: 3532_CR29 – ident: 3532_CR5 – volume: 23 start-page: 445 issue: 1 year: 2013 ident: 3532_CR21 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2293428 – volume: 84 start-page: 829 issue: 115 year: 2020 ident: 3532_CR43 publication-title: Signal Process Image Commun – volume: 20 start-page: 525 issue: 3 year: 2017 ident: 3532_CR45 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2749162 – ident: 3532_CR7 – volume: 9 start-page: 1309 year: 2000 ident: 3532_CR37 publication-title: IEEE Trans – ident: 3532_CR36 doi: 10.1109/IWSOC.2004.1319854 – volume: 21 start-page: 39 issue: 1 year: 2018 ident: 3532_CR17 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2018.2847228 – volume: 22 start-page: 8353 issue: 24 year: 2018 ident: 3532_CR9 publication-title: Soft Comput doi: 10.1007/s00500-017-2783-4 – volume: 29 start-page: 914 issue: 8 year: 2014 ident: 3532_CR24 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2014.06.011 – ident: 3532_CR15 doi: 10.1109/ICSCN.2007.350696 – ident: 3532_CR27 – ident: 3532_CR35 doi: 10.1109/INFCOM.2010.5462034 – volume: 70 start-page: 289 issue: 2 year: 1977 ident: 3532_CR3 publication-title: Pac J Math doi: 10.2140/pjm.1977.70.289 – volume: 40 start-page: 379 year: 2016 ident: 3532_CR4 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.09.055 – volume: 17 start-page: 924 issue: 6 year: 2008 ident: 3532_CR42 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.920772 – volume: 14 start-page: 500 issue: 3 year: 2012 ident: 3532_CR22 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2012.2191945 – volume: 18 start-page: 576 issue: 4 year: 2016 ident: 3532_CR6 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2016.2525010 – volume: 75 start-page: 2603 issue: 5 year: 2019 ident: 3532_CR8 publication-title: J Supercomput doi: 10.1007/s11227-018-2656-3 – ident: 3532_CR13 doi: 10.1109/ICOIACT50329.2020.9332044 – volume: 12 start-page: 4127 issue: 3 year: 2021 ident: 3532_CR33 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-01792-8 – volume: 7 start-page: 106912 year: 2019 ident: 3532_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932462 – volume-title: JPEG: still image data compression standard year: 1992 ident: 3532_CR30 – volume: 55 start-page: 173 issue: 1 year: 2016 ident: 3532_CR32 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2016.2603527 – ident: 3532_CR1 doi: 10.1109/ICOIN48656.2020.9016442 – ident: 3532_CR16 – volume: 48 start-page: 1865 issue: 10 year: 2018 ident: 3532_CR10 publication-title: Softw Pract Exp doi: 10.1002/spe.2598 – volume: 127 start-page: 754 issue: 2 year: 2016 ident: 3532_CR34 publication-title: Optik doi: 10.1016/j.ijleo.2015.10.154 – ident: 3532_CR39 – volume: 10 start-page: 316 issue: 3 year: 2008 ident: 3532_CR20 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2008.917357 – volume: 58 start-page: 3 issue: 1 year: 2010 ident: 3532_CR40 publication-title: Imaging Sci J doi: 10.1179/136821909X12490326247489 – ident: 3532_CR2 doi: 10.1109/NRSC.2001.929397 – volume: 36 start-page: 2250 issue: 11 year: 2017 ident: 3532_CR26 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2714640 – volume: 9 start-page: 277 issue: 2 year: 2015 ident: 3532_CR28 publication-title: Signal Image Video Process doi: 10.1007/s11760-013-0435-4 – ident: 3532_CR14 – ident: 3532_CR31 – volume: 20 start-page: 155 issue: 1 year: 2017 ident: 3532_CR25 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2721544 – volume: 20 start-page: 1960 issue: 8 year: 2017 ident: 3532_CR23 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2786860 – volume: 79 start-page: 19963 issue: 27 year: 2020 ident: 3532_CR41 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-08821-w – volume-title: Source coding: part I of fundamentals of source and video coding year: 2011 ident: 3532_CR38 – volume: 20 start-page: 257 issue: 2 year: 2017 ident: 3532_CR12 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2741426 – volume: 10 start-page: 2855 issue: 7 year: 2019 ident: 3532_CR18 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-018-1016-8 – volume: 28 start-page: 670 issue: 6 year: 2013 ident: 3532_CR44 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2013.02.004 |
SSID | ssj0000393111 |
Score | 2.266867 |
Snippet | Chinese remainder theorem (CRT) is widely utilized in many cryptographic applications and additionally the reversible nature of CRT is employed in compression... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6645 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Compression ratio Computational Intelligence Cryptography Data compression Data encryption Engineering Image compression Medical research Methods Multimedia Original Research Prime numbers Robotics and Automation Theorems User Interfaces and Human Computer Interaction Video compression |
SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyIouJ0Sg7eNNiPJK89icrGEBwiDnYrzUdhsLVzq4f99yZtuqrgjqVNKC_Jey_v4_dD6EYpAcYUUEJFLAn1lUcEoz4xvinlEQdKlY13vI75aEJfpmzqAm5rV1bZ6MRKUatC2hj5fRCb6zZAFLOH5SexrFE2u-ooNPZR16jgiHVQ92kwfnvfRlls56lfkfBaWHjC_BBc50zdPxdwFhBbpeCFLAzI5rd1al3OP1nSyvgMj9Ch8xrxY73Mx2hP5ydoNdgideM0V3jZ9gCY5xprBBcZthTZeq3xSi9SC464wnX34qIaNSvX-EcWG5cFnptfmxsNiGcLo22wrTqvq2XzUzQZDj6eR8RRKBBpzlZJRCQYxFLHkoOMQXsQKy7Ap0EKXhylxr5HQqQyC1N71eLCtn4zlvoAAjKuwjPUyYtcnyOsQq4y4_55FDRNJUQyU74QoLknmdJeD_mN6BLp8MUtzcU8aZGRrbgTI-6kEney6aHb7Zhlja6x8-t-syKJO2nrpN0XPXTXrFL7-v_ZLnbPdokOLLN8XRXWR51y9aWvjP9Rimu3yb4BoqPX6g priority: 102 providerName: ProQuest |
Title | Evaluation and performance analysis of Chinese remainder theorem and its application to lossless image compression |
URI | https://link.springer.com/article/10.1007/s12652-021-03532-y https://www.proquest.com/docview/2919477895 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8N-gIPaGwgCqzyw97AUpzYvvixTC1o09A0UQmeovgjElKbojY88N9j56Mp0zaJpyiKbUV3tu_su9_vAL5aq9GbAk65VoZyZiOqBWfU-6ZcphI5t-G-4-etvJnx7_fivgWFrbts9y4kWe_UPdgtliKmIaUgSkQS05cdGAh_dg-JfLN4vLlZCWhTVhfeDVTwVLAEW7TM34d5a5F6N_OPyGhtcKYf4aD1FMm4Ue0hfHDlJ9jf4g_8DKvJhqub5KUlTz0KwL83bCNkWZBQJNutHVm5RR7oEVekwS8u6l6P1ZpsxbFJtSRz_6NzvweSx4Xfb0jIO2_yZcsjmE0nd99uaFtEgRq_uiqqUy1QGaeMRKPQRais1Mh4nGOk0txb-FTr3BRJHg5bUgfwtxA5Q9RYSJscw265LN0JEJtIW3gHMOLoeG4wNYVlWqOTkRHWRUNgnSAz0zKMh0IX86znRg7Cz7zws1r42csQLjZ9nhp-jf-2Pu_0k7VrbZ3FiimOmCoxhMtOZ_3nf492-r7mZ7AXas03eWLnsFutnt0X75FUegQ76fR6BIPx9cOPiX9eTW5__R7V0_IVXJTcXg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXBALElgI-wAks8rA98QEhHlttabtCqJV6C_EjUqXd7HY3Fdo_xW9knMcGkOitxyixFY3HM2PPzPcBvHLOILkCwYXRlovYRdxIEXOKTYXKFArhwn3H6VRNzsXXC3mxA7_6XphQVtnbxMZQu4UNd-TvEk3HbcRMyw_LKx5Yo0J2tafQaNXi2G9-0pFt_f7oC63v6yQ5HJ99nvCOVYBbUream8xI1NZrq9Bq9BFqpwzGIikw0llBLi8zprBlWoTThzKhG1rKIkY0WCqX0rx3YI_CDE27aO_TePrt-_ZWJ3S6xg3pb4Ch5zJOsevUafv1EiUTHqoiolSmCd_87Q2HEPefrGzj7A4fwP0uSmUfW7V6CDu-egSr8RYZnBWVY8uh54CeW2wTtihZoOT2a89Wfl4EMMYVa7sl582oy3rN_sias3rBZvRrM7K47HJO1o2FKve2Ord6DOe3ItwnsFstKv8UmEuVKyncjAR6UVjMbOliY9CryErnoxHEvehy2-GZB1qNWT4gMQdx5yTuvBF3vhnBm-2YZYvmcePXB_2K5N3OXueDHo7gbb9Kw-v_z7Z_82wv4e7k7PQkPzmaHj-De4HVvq1IO4DdenXtn1PsU5sXncIx-HHbOv4bl4MUDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkL0wLtioQUfuIHbOLE98bGiXQqFigOVyinyK1LFbna1mx7aX4-dR7OtKBLiGPmhZDz2TDzzfQPwzjmDwRRwyo2ylDOXUCM4o8E35TKXyLmL9x3fTuTRKf9yJs7WUPxNtnsfkmwxDZGlqar3Fq7cG4BvqRQpjekFSSaylF7ehw0eydlHsLH_6efxcM8SsaesKcMbieGpYBl22Jk_T3TTPg1O5604aWN-Jo9B9y_eZp382r2oza69usXp-D9f9gQedb4p2W-V6Snc89Uz2FxjLHwOy8NrdnCiK0cWA-4gPLf8JmRekliW2688WfqZjoSMS9IiJmfNqPN6RdYi56Sek2kQxjScuuR8Fk44EjPd2wzd6gWcTg5_fDyiXdkGasN-rqnJjUBlvbISrUKfoHLSIOOpxkTlOvgUuTHalpmOv3fSRLi5EJohGiyly7ZgVM0r_xKIy6Qrg8uZcPRcW8xt6Zgx6GVihfPJGFi_WIXtOM1jaY1pMbAxR3kWQZ5FI8_icgzvr8csWkaPv_be7nWg6Hb3qkgVUxwxV2IMH_olHZrvnu3Vv3V_Cw--H0yKr59Pjl_Dw1jovk1S24ZRvbzwO8Edqs2bTuN_A3ueAWE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+and+performance+analysis+of+Chinese+remainder+theorem+and+its+application+to+lossless+image+compression&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Vidhya%2C+R.&rft.au=Brindha%2C+M.&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=14&rft.issue=6&rft.spage=6645&rft.epage=6660&rft_id=info:doi/10.1007%2Fs12652-021-03532-y&rft.externalDocID=10_1007_s12652_021_03532_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon |