Evaluation and performance analysis of Chinese remainder theorem and its application to lossless image compression

Chinese remainder theorem (CRT) is widely utilized in many cryptographic applications and additionally the reversible nature of CRT is employed in compression of images. This paper mainly focuses on the suitability of CRT for lossless image compression and the analysis is carried out for the number...

Full description

Saved in:
Bibliographic Details
Published inJournal of ambient intelligence and humanized computing Vol. 14; no. 6; pp. 6645 - 6660
Main Authors Vidhya, R., Brindha, M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-5137
1868-5145
DOI10.1007/s12652-021-03532-y

Cover

Loading…
Abstract Chinese remainder theorem (CRT) is widely utilized in many cryptographic applications and additionally the reversible nature of CRT is employed in compression of images. This paper mainly focuses on the suitability of CRT for lossless image compression and the analysis is carried out for the number and range of primes to be chosen. With respect to the analysis is carried out for the number of primes to be chosen (i.e., 2, 3, 4, 5, and 6), it is found that CRT suits well only for the chosen number of primes 2 with good compression ratio. For the remaining prime numbers, it provides negligible or even negative CR based on the chosen number of prime numbers. Also, CRT based lossless compression (CRTLC) reduces the size of the image based on the number of primes chosen. Further, it can achieve substantial compression of the original image. Using different test images, CRT is compared with recent lossless compression methods and against the standard set of lossless compression techniques (i.e., JPEG 2000, JPEG-LS, and CALIC). From these comparisons, it is inferred that CRT scores (maximum achieved CR is 1.8823) better than the recent and standard algorithms.
AbstractList Chinese remainder theorem (CRT) is widely utilized in many cryptographic applications and additionally the reversible nature of CRT is employed in compression of images. This paper mainly focuses on the suitability of CRT for lossless image compression and the analysis is carried out for the number and range of primes to be chosen. With respect to the analysis is carried out for the number of primes to be chosen (i.e., 2, 3, 4, 5, and 6), it is found that CRT suits well only for the chosen number of primes 2 with good compression ratio. For the remaining prime numbers, it provides negligible or even negative CR based on the chosen number of prime numbers. Also, CRT based lossless compression (CRTLC) reduces the size of the image based on the number of primes chosen. Further, it can achieve substantial compression of the original image. Using different test images, CRT is compared with recent lossless compression methods and against the standard set of lossless compression techniques (i.e., JPEG 2000, JPEG-LS, and CALIC). From these comparisons, it is inferred that CRT scores (maximum achieved CR is 1.8823) better than the recent and standard algorithms.
Author Brindha, M.
Vidhya, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Vidhya
  fullname: Vidhya, R.
  organization: School of Computer Science and Engineering, Department of IOT, Vellore Institute of Technology
– sequence: 2
  givenname: M.
  surname: Brindha
  fullname: Brindha, M.
  email: brindham@nitt.edu
  organization: Department of Computer Science and Engineering, National Institute of Technology
BookMark eNp9kF9PwyAUxYmZiVP3BXwi8bnKLW2BR7PMP8kSX_SZUEo3lg4qdCb99uJqNPFhvMAJ53dzz7lEM-edQegGyB0Qwu4j5FWZZySHjNCS5tl4hubAK56VUJSz3zdlF2gR446kQwUFgDkKq0_VHdRgvcPKNbg3ofVhr5w2SatujDZi3-Ll1joTDQ5mr6xrTMDD1vikjpQdIlZ931k9TRo87nyMnYkR273aGKz9vg9Jpt9rdN6qLprFz32F3h9Xb8vnbP369LJ8WGeaghiymtclE9oIXTEtmCFMNFXNoMgVI4Ir4MDrWumWKgIFqeqkSVkqYKxmbdXQK3Q7ze2D_ziYOMidP4SUKcpcgCgY46JMLj65dEgbB9NKbYdjiiEo20kg8rtkOZUsU8nyWLIcE5r_Q_uQ0obxNEQnKCaz25jwt9UJ6gtwSpN0
CitedBy_id crossref_primary_10_12677_JISP_2023_122012
crossref_primary_10_3390_e26100832
Cites_doi 10.1007/s11042-016-3629-2
10.1109/TIP.2013.2293428
10.1109/TMM.2017.2749162
10.1109/IWSOC.2004.1319854
10.1109/TMM.2018.2847228
10.1007/s00500-017-2783-4
10.1016/j.image.2014.06.011
10.1109/ICSCN.2007.350696
10.1109/INFCOM.2010.5462034
10.2140/pjm.1977.70.289
10.1016/j.asoc.2015.09.055
10.1109/TIP.2008.920772
10.1109/TMM.2012.2191945
10.1109/TMM.2016.2525010
10.1007/s11227-018-2656-3
10.1109/ICOIACT50329.2020.9332044
10.1007/s12652-020-01792-8
10.1109/ACCESS.2019.2932462
10.1109/TGRS.2016.2603527
10.1109/ICOIN48656.2020.9016442
10.1002/spe.2598
10.1016/j.ijleo.2015.10.154
10.1109/TMM.2008.917357
10.1179/136821909X12490326247489
10.1109/NRSC.2001.929397
10.1109/TMI.2017.2714640
10.1007/s11760-013-0435-4
10.1109/TMM.2017.2721544
10.1109/TMM.2017.2786860
10.1007/s11042-020-08821-w
10.1109/TMM.2017.2741426
10.1007/s12652-018-1016-8
10.1016/j.image.2013.02.004
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12652-021-03532-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-5145
EndPage 6660
ExternalDocumentID 10_1007_s12652_021_03532_y
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-b8b579ce9c67c97e079d6b7142a7098a1818bbacf3a01406b818055a177b7f6d3
IEDL.DBID U2A
ISSN 1868-5137
IngestDate Fri Jul 25 23:27:53 EDT 2025
Thu Apr 24 22:54:25 EDT 2025
Tue Jul 01 02:25:56 EDT 2025
Fri Feb 21 02:43:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Lossless compression
Compression ratio
CRT
Bit rate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b8b579ce9c67c97e079d6b7142a7098a1818bbacf3a01406b818055a177b7f6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919477895
PQPubID 2043913
PageCount 16
ParticipantIDs proquest_journals_2919477895
crossref_citationtrail_10_1007_s12652_021_03532_y
crossref_primary_10_1007_s12652_021_03532_y
springer_journals_10_1007_s12652_021_03532_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of ambient intelligence and humanized computing
PublicationTitleAbbrev J Ambient Intell Human Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ammar A, Al Kabbany A, Youssef M, Amam A (2001) A secure image coding scheme using residue number system. In: Proceedings of the eighteenth national radio science conference, NRSC’2001 (IEEE Cat. No. 01EX462), IEEE, vol 2, pp 399–405
LiSXuMRenYWangZClosed-form optimization on saliency-guided image compression for HEVC-MSPIEEE Trans Multimed201720115517010.1109/TMM.2017.2721544
McClellen JH, Rader CM (1979) Number theory in digital signal processing. Prentice Hall Professional Technical Reference
ZhangYAdjerohDAPrediction by partial approximate matching for lossless image compressionIEEE Trans Image Process2008176924935251661410.1109/TIP.2008.920772
ZhangHXqWangYjSunXyWangA novel method for lossless image compression and encryption based on LWT, SPIHT and cellular automataSignal Process Image Commun202084115829
Howard PG, Vitter J (1994) Fast and e cient lossless image compression. In: Proc. data compression conference, JA Storer and M. Cohn, eds, Citeseer, pp 351–360
BrindhaMGoundenNAA chaos based image encryption and lossless compression algorithm using hash table and Chinese remainder theoremAppl Soft Comput20164037939010.1016/j.asoc.2015.09.055
VenugopalDMohanSRajaSAn efficient block based lossless compression of medical imagesOptik2016127275475810.1016/j.ijleo.2015.10.154
Ghobaei-AraniMSouriALP-WSC: a linear programming approach for web service composition in geographically distributed cloud environmentsJ Supercomput20197552603262810.1007/s11227-018-2656-3
ShenHPanWDWuDPredictive lossless compression of regions of interest in hyperspectral images with no-data regionsIEEE Trans Geosci Remote Sens201655117318210.1109/TGRS.2016.2603527
KalluriMJiangMLingNZhengJZhangPAdaptive RD optimal sparse coding with quantization for image compressionIEEE Trans Multimed2018211395010.1109/TMM.2018.2847228
KuoHCLinYLA hybrid algorithm for effective lossless compression of video display framesIEEE Trans Multimed201214350050910.1109/TMM.2012.2191945
KhelifiFBouridaneAKurugolluFJoined spectral trees for scalable SPIHT-based multispectral image compressionIEEE Trans Multimed200810331632910.1109/TMM.2008.917357
ZhuSLiMChenCLiuSZengBCross-space distortion directed color image compressionIEEE Trans Multimed201720352553810.1109/TMM.2017.2749162
SECTOR S, ITU O (1998) Information technology–lossless and near-lossless compression of continuous-tone still images–baseline
KimSChoNIHierarchical prediction and context adaptive coding for lossless color image compressionIEEE Trans Image Process2013231445449326201810.1109/TIP.2013.22934281374.94176
Jagannathan V, Mahadevan A, Hariharan R, Srinivasan E (2007) Number theory based image compression encryption and application to image multiplexing. In: 2007 International conference on signal processing, communications and networking, IEEE, pp 59–64
Burrows M, Wheeler D (1994) A block-sorting lossless data compression algorithm. In: Digital SRC research report, Citeseer
Ghobaei-AraniMRahmanianAAAslanpourMSDashtiSECSA-WSC: cuckoo search algorithm for web service composition in cloud environmentsSoft Comput201822248353837810.1007/s00500-017-2783-4
Ghobaei-AraniMSouriABakerTHussienAControcity: an autonomous approach for controlling elasticity using buffer management in cloud computing environmentIEEE Access2019710691210692410.1109/ACCESS.2019.2932462
Hidayat T, Zakaria MH, Pee ANC (2020) Survey of performance measurement indicators for lossless compression technique based on the objectives. In: 2020 3rd International conference on information and communications technology (ICOIACT), IEEE, pp 170–175
UmaMaheswariSSrinivasaRaghavanVLossless medical image compression algorithm using tetrolet transformationJ Ambient Intell Humaniz Comput20211234127413510.1007/s12652-020-01792-8
Wu X, Memon N (1996) CALIC-a context based adaptive lossless image codec. In: 1996 IEEE international conference on acoustics, speech, and signal processing conference proceedings, IEEE, vol 4, pp 1890–1893
WeinbergerMJSenior member, IEEE, Gadiel Seroussi, fellow, IEEE, and Guillermo Sapiro, member, IEEE, the LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS in image processingIEEE Trans2000913091324
Ghobaei-AraniMRahmanianAASouriARahmaniAMA moth-flame optimization algorithm for web service composition in cloud computing: simulation and verificationSoftw Pract Exp2018481018651892
KhanAKhanAKhanMUzairMLossless image compression: application of bi-level burrows wheeler compression algorithm (BBWCA) to 2-D dataMultimed Tools Appl20177610123911241610.1007/s11042-016-3629-2
LiCLiuYZhangLYWongKWCryptanalyzing a class of image encryption schemes based on Chinese remainder theoremSignal Process Image Commun201429891492010.1016/j.image.2014.06.011
PeiDSalomaaADingCChinese remainder theorem: applications in computing, coding, cryptography1996SingaporeWorld Scientific0907.11002
JTC I (2000) Information technology-JPEG2000 image coding system part 1: core coding system. ISO/IEC 15444-1
ZhuHZhaoCZhangXA novel image encryption-compression scheme using hyper-chaos and Chinese remainder theoremSignal Process Image Commun201328667068010.1016/j.image.2013.02.004
Wang P, Dai R, Akyildiz IF (2010) Collaborative data compression using clustered source coding for wireless multimedia sensor networks. In: 2010 Proceedings IEEE INFOCOM, IEEE, pp 1–9
YangFMouJSunKChuRLossless image compression-encryption algorithm based on bp neural network and chaotic systemMultimed Tools Appl20207927199631999210.1007/s11042-020-08821-w
PennebakerWBMitchellJLJPEG: still image data compression standard1992BerlinSpringer Science & Business Media
LiPLoKTA content-adaptive joint image compression and encryption schemeIEEE Trans Multimed20172081960197210.1109/TMM.2017.2786860
AraziBA generalization of the Chinese remainder theoremPac J Math197770228929648029710.2140/pjm.1977.70.2890335.10004
YangJChangCLinCResidue number system oriented image encoding schemesImaging Sci J201058131110.1179/136821909X12490326247489
David T, Marcellin M (2012) Jpeg2000 image compression fundamentals, standards and practice: image compression fundamentals, standards and practice, vol 642. Springer Science & Business Media
WiegandTSchwarzHSource coding: part I of fundamentals of source and video coding2011NorwellNow Publishers Inc1213.94001
Wang W, Swamy M, Ahmad MO (2004) RNS application for digital image processing. In: 4th IEEE international workshop on system-on-chip for real-time applications, IEEE, pp 77–80
ChenYZhaoXZhangLKangJWMultiview and 3d video compression using neighboring block based disparity vectorsIEEE Trans Multimed201618457658910.1109/TMM.2016.2525010
Ahmad I, Lee B, Shin S (2020) Analysis of Chinese remainder theorem for data compression. In: 2020 International conference on information networking (ICOIN), IEEE, pp 634–636
OuniTLassouedAAbidMLossless image compression using gradient based space filling curves (G-SFC)Signal Image Video Process20159227729310.1007/s11760-013-0435-4
LucasLFRodriguesNMda Silva CruzLAde FariaSMLossless compression of medical images using 3-D predictorsIEEE Trans Med Imaging201736112250226010.1109/TMI.2017.2714640
Hernandez-CabroneroMMarcellinMWBlanesISerra-SagristaJLossless compression of color filter array mosaic images with visualization via JPEG 2000IEEE Trans Multimed201720225727010.1109/TMM.2017.2741426
KasbanHHashimaSAdaptive radiographic image compression technique using hierarchical vector quantization and Huffman encodingJ Ambient Intell Humaniz Comput20191072855286710.1007/s12652-018-1016-8
3532_CR31
F Khelifi (3532_CR20) 2008; 10
M Ghobaei-Arani (3532_CR9) 2018; 22
3532_CR13
3532_CR35
D Venugopal (3532_CR34) 2016; 127
H Kasban (3532_CR18) 2019; 10
F Yang (3532_CR41) 2020; 79
S Zhu (3532_CR45) 2017; 20
T Ouni (3532_CR28) 2015; 9
3532_CR7
J Yang (3532_CR40) 2010; 58
M Ghobaei-Arani (3532_CR8) 2019; 75
3532_CR5
MJ Weinberger (3532_CR37) 2000; 9
3532_CR16
M Kalluri (3532_CR17) 2018; 21
M Hernandez-Cabronero (3532_CR12) 2017; 20
3532_CR39
3532_CR14
3532_CR36
3532_CR15
A Khan (3532_CR19) 2017; 76
WB Pennebaker (3532_CR30) 1992
3532_CR1
S Li (3532_CR25) 2017; 20
3532_CR2
T Wiegand (3532_CR38) 2011
M Brindha (3532_CR4) 2016; 40
S UmaMaheswari (3532_CR33) 2021; 12
Y Chen (3532_CR6) 2016; 18
LF Lucas (3532_CR26) 2017; 36
H Zhang (3532_CR43) 2020; 84
H Zhu (3532_CR44) 2013; 28
B Arazi (3532_CR3) 1977; 70
Y Zhang (3532_CR42) 2008; 17
M Ghobaei-Arani (3532_CR11) 2019; 7
P Li (3532_CR23) 2017; 20
HC Kuo (3532_CR22) 2012; 14
3532_CR27
S Kim (3532_CR21) 2013; 23
D Pei (3532_CR29) 1996
M Ghobaei-Arani (3532_CR10) 2018; 48
H Shen (3532_CR32) 2016; 55
C Li (3532_CR24) 2014; 29
References_xml – reference: WeinbergerMJSenior member, IEEE, Gadiel Seroussi, fellow, IEEE, and Guillermo Sapiro, member, IEEE, the LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS in image processingIEEE Trans2000913091324
– reference: Ghobaei-AraniMSouriABakerTHussienAControcity: an autonomous approach for controlling elasticity using buffer management in cloud computing environmentIEEE Access2019710691210692410.1109/ACCESS.2019.2932462
– reference: JTC I (2000) Information technology-JPEG2000 image coding system part 1: core coding system. ISO/IEC 15444-1
– reference: Wang P, Dai R, Akyildiz IF (2010) Collaborative data compression using clustered source coding for wireless multimedia sensor networks. In: 2010 Proceedings IEEE INFOCOM, IEEE, pp 1–9
– reference: YangFMouJSunKChuRLossless image compression-encryption algorithm based on bp neural network and chaotic systemMultimed Tools Appl20207927199631999210.1007/s11042-020-08821-w
– reference: Ammar A, Al Kabbany A, Youssef M, Amam A (2001) A secure image coding scheme using residue number system. In: Proceedings of the eighteenth national radio science conference, NRSC’2001 (IEEE Cat. No. 01EX462), IEEE, vol 2, pp 399–405
– reference: YangJChangCLinCResidue number system oriented image encoding schemesImaging Sci J201058131110.1179/136821909X12490326247489
– reference: PennebakerWBMitchellJLJPEG: still image data compression standard1992BerlinSpringer Science & Business Media
– reference: Ghobaei-AraniMSouriALP-WSC: a linear programming approach for web service composition in geographically distributed cloud environmentsJ Supercomput20197552603262810.1007/s11227-018-2656-3
– reference: SECTOR S, ITU O (1998) Information technology–lossless and near-lossless compression of continuous-tone still images–baseline
– reference: ZhuHZhaoCZhangXA novel image encryption-compression scheme using hyper-chaos and Chinese remainder theoremSignal Process Image Commun201328667068010.1016/j.image.2013.02.004
– reference: Hidayat T, Zakaria MH, Pee ANC (2020) Survey of performance measurement indicators for lossless compression technique based on the objectives. In: 2020 3rd International conference on information and communications technology (ICOIACT), IEEE, pp 170–175
– reference: KuoHCLinYLA hybrid algorithm for effective lossless compression of video display framesIEEE Trans Multimed201214350050910.1109/TMM.2012.2191945
– reference: LiSXuMRenYWangZClosed-form optimization on saliency-guided image compression for HEVC-MSPIEEE Trans Multimed201720115517010.1109/TMM.2017.2721544
– reference: ZhangYAdjerohDAPrediction by partial approximate matching for lossless image compressionIEEE Trans Image Process2008176924935251661410.1109/TIP.2008.920772
– reference: McClellen JH, Rader CM (1979) Number theory in digital signal processing. Prentice Hall Professional Technical Reference
– reference: Ghobaei-AraniMRahmanianAAAslanpourMSDashtiSECSA-WSC: cuckoo search algorithm for web service composition in cloud environmentsSoft Comput201822248353837810.1007/s00500-017-2783-4
– reference: ZhangHXqWangYjSunXyWangA novel method for lossless image compression and encryption based on LWT, SPIHT and cellular automataSignal Process Image Commun202084115829
– reference: ZhuSLiMChenCLiuSZengBCross-space distortion directed color image compressionIEEE Trans Multimed201720352553810.1109/TMM.2017.2749162
– reference: Howard PG, Vitter J (1994) Fast and e cient lossless image compression. In: Proc. data compression conference, JA Storer and M. Cohn, eds, Citeseer, pp 351–360
– reference: PeiDSalomaaADingCChinese remainder theorem: applications in computing, coding, cryptography1996SingaporeWorld Scientific0907.11002
– reference: Wang W, Swamy M, Ahmad MO (2004) RNS application for digital image processing. In: 4th IEEE international workshop on system-on-chip for real-time applications, IEEE, pp 77–80
– reference: WiegandTSchwarzHSource coding: part I of fundamentals of source and video coding2011NorwellNow Publishers Inc1213.94001
– reference: David T, Marcellin M (2012) Jpeg2000 image compression fundamentals, standards and practice: image compression fundamentals, standards and practice, vol 642. Springer Science & Business Media
– reference: ChenYZhaoXZhangLKangJWMultiview and 3d video compression using neighboring block based disparity vectorsIEEE Trans Multimed201618457658910.1109/TMM.2016.2525010
– reference: KasbanHHashimaSAdaptive radiographic image compression technique using hierarchical vector quantization and Huffman encodingJ Ambient Intell Humaniz Comput20191072855286710.1007/s12652-018-1016-8
– reference: LucasLFRodriguesNMda Silva CruzLAde FariaSMLossless compression of medical images using 3-D predictorsIEEE Trans Med Imaging201736112250226010.1109/TMI.2017.2714640
– reference: ShenHPanWDWuDPredictive lossless compression of regions of interest in hyperspectral images with no-data regionsIEEE Trans Geosci Remote Sens201655117318210.1109/TGRS.2016.2603527
– reference: KalluriMJiangMLingNZhengJZhangPAdaptive RD optimal sparse coding with quantization for image compressionIEEE Trans Multimed2018211395010.1109/TMM.2018.2847228
– reference: Wu X, Memon N (1996) CALIC-a context based adaptive lossless image codec. In: 1996 IEEE international conference on acoustics, speech, and signal processing conference proceedings, IEEE, vol 4, pp 1890–1893
– reference: Jagannathan V, Mahadevan A, Hariharan R, Srinivasan E (2007) Number theory based image compression encryption and application to image multiplexing. In: 2007 International conference on signal processing, communications and networking, IEEE, pp 59–64
– reference: BrindhaMGoundenNAA chaos based image encryption and lossless compression algorithm using hash table and Chinese remainder theoremAppl Soft Comput20164037939010.1016/j.asoc.2015.09.055
– reference: KhanAKhanAKhanMUzairMLossless image compression: application of bi-level burrows wheeler compression algorithm (BBWCA) to 2-D dataMultimed Tools Appl20177610123911241610.1007/s11042-016-3629-2
– reference: UmaMaheswariSSrinivasaRaghavanVLossless medical image compression algorithm using tetrolet transformationJ Ambient Intell Humaniz Comput20211234127413510.1007/s12652-020-01792-8
– reference: VenugopalDMohanSRajaSAn efficient block based lossless compression of medical imagesOptik2016127275475810.1016/j.ijleo.2015.10.154
– reference: Burrows M, Wheeler D (1994) A block-sorting lossless data compression algorithm. In: Digital SRC research report, Citeseer
– reference: Hernandez-CabroneroMMarcellinMWBlanesISerra-SagristaJLossless compression of color filter array mosaic images with visualization via JPEG 2000IEEE Trans Multimed201720225727010.1109/TMM.2017.2741426
– reference: KhelifiFBouridaneAKurugolluFJoined spectral trees for scalable SPIHT-based multispectral image compressionIEEE Trans Multimed200810331632910.1109/TMM.2008.917357
– reference: KimSChoNIHierarchical prediction and context adaptive coding for lossless color image compressionIEEE Trans Image Process2013231445449326201810.1109/TIP.2013.22934281374.94176
– reference: LiCLiuYZhangLYWongKWCryptanalyzing a class of image encryption schemes based on Chinese remainder theoremSignal Process Image Commun201429891492010.1016/j.image.2014.06.011
– reference: Ahmad I, Lee B, Shin S (2020) Analysis of Chinese remainder theorem for data compression. In: 2020 International conference on information networking (ICOIN), IEEE, pp 634–636
– reference: Ghobaei-AraniMRahmanianAASouriARahmaniAMA moth-flame optimization algorithm for web service composition in cloud computing: simulation and verificationSoftw Pract Exp2018481018651892
– reference: OuniTLassouedAAbidMLossless image compression using gradient based space filling curves (G-SFC)Signal Image Video Process20159227729310.1007/s11760-013-0435-4
– reference: AraziBA generalization of the Chinese remainder theoremPac J Math197770228929648029710.2140/pjm.1977.70.2890335.10004
– reference: LiPLoKTA content-adaptive joint image compression and encryption schemeIEEE Trans Multimed20172081960197210.1109/TMM.2017.2786860
– volume: 76
  start-page: 12391
  issue: 10
  year: 2017
  ident: 3532_CR19
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-016-3629-2
– volume-title: Chinese remainder theorem: applications in computing, coding, cryptography
  year: 1996
  ident: 3532_CR29
– ident: 3532_CR5
– volume: 23
  start-page: 445
  issue: 1
  year: 2013
  ident: 3532_CR21
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2293428
– volume: 84
  start-page: 829
  issue: 115
  year: 2020
  ident: 3532_CR43
  publication-title: Signal Process Image Commun
– volume: 20
  start-page: 525
  issue: 3
  year: 2017
  ident: 3532_CR45
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2749162
– ident: 3532_CR7
– volume: 9
  start-page: 1309
  year: 2000
  ident: 3532_CR37
  publication-title: IEEE Trans
– ident: 3532_CR36
  doi: 10.1109/IWSOC.2004.1319854
– volume: 21
  start-page: 39
  issue: 1
  year: 2018
  ident: 3532_CR17
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2018.2847228
– volume: 22
  start-page: 8353
  issue: 24
  year: 2018
  ident: 3532_CR9
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2783-4
– volume: 29
  start-page: 914
  issue: 8
  year: 2014
  ident: 3532_CR24
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2014.06.011
– ident: 3532_CR15
  doi: 10.1109/ICSCN.2007.350696
– ident: 3532_CR27
– ident: 3532_CR35
  doi: 10.1109/INFCOM.2010.5462034
– volume: 70
  start-page: 289
  issue: 2
  year: 1977
  ident: 3532_CR3
  publication-title: Pac J Math
  doi: 10.2140/pjm.1977.70.289
– volume: 40
  start-page: 379
  year: 2016
  ident: 3532_CR4
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.09.055
– volume: 17
  start-page: 924
  issue: 6
  year: 2008
  ident: 3532_CR42
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.920772
– volume: 14
  start-page: 500
  issue: 3
  year: 2012
  ident: 3532_CR22
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2012.2191945
– volume: 18
  start-page: 576
  issue: 4
  year: 2016
  ident: 3532_CR6
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2016.2525010
– volume: 75
  start-page: 2603
  issue: 5
  year: 2019
  ident: 3532_CR8
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2656-3
– ident: 3532_CR13
  doi: 10.1109/ICOIACT50329.2020.9332044
– volume: 12
  start-page: 4127
  issue: 3
  year: 2021
  ident: 3532_CR33
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-01792-8
– volume: 7
  start-page: 106912
  year: 2019
  ident: 3532_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932462
– volume-title: JPEG: still image data compression standard
  year: 1992
  ident: 3532_CR30
– volume: 55
  start-page: 173
  issue: 1
  year: 2016
  ident: 3532_CR32
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2016.2603527
– ident: 3532_CR1
  doi: 10.1109/ICOIN48656.2020.9016442
– ident: 3532_CR16
– volume: 48
  start-page: 1865
  issue: 10
  year: 2018
  ident: 3532_CR10
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.2598
– volume: 127
  start-page: 754
  issue: 2
  year: 2016
  ident: 3532_CR34
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.10.154
– ident: 3532_CR39
– volume: 10
  start-page: 316
  issue: 3
  year: 2008
  ident: 3532_CR20
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2008.917357
– volume: 58
  start-page: 3
  issue: 1
  year: 2010
  ident: 3532_CR40
  publication-title: Imaging Sci J
  doi: 10.1179/136821909X12490326247489
– ident: 3532_CR2
  doi: 10.1109/NRSC.2001.929397
– volume: 36
  start-page: 2250
  issue: 11
  year: 2017
  ident: 3532_CR26
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2714640
– volume: 9
  start-page: 277
  issue: 2
  year: 2015
  ident: 3532_CR28
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-013-0435-4
– ident: 3532_CR14
– ident: 3532_CR31
– volume: 20
  start-page: 155
  issue: 1
  year: 2017
  ident: 3532_CR25
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2721544
– volume: 20
  start-page: 1960
  issue: 8
  year: 2017
  ident: 3532_CR23
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2786860
– volume: 79
  start-page: 19963
  issue: 27
  year: 2020
  ident: 3532_CR41
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-08821-w
– volume-title: Source coding: part I of fundamentals of source and video coding
  year: 2011
  ident: 3532_CR38
– volume: 20
  start-page: 257
  issue: 2
  year: 2017
  ident: 3532_CR12
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2741426
– volume: 10
  start-page: 2855
  issue: 7
  year: 2019
  ident: 3532_CR18
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-018-1016-8
– volume: 28
  start-page: 670
  issue: 6
  year: 2013
  ident: 3532_CR44
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2013.02.004
SSID ssj0000393111
Score 2.266867
Snippet Chinese remainder theorem (CRT) is widely utilized in many cryptographic applications and additionally the reversible nature of CRT is employed in compression...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6645
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Compression ratio
Computational Intelligence
Cryptography
Data compression
Data encryption
Engineering
Image compression
Medical research
Methods
Multimedia
Original Research
Prime numbers
Robotics and Automation
Theorems
User Interfaces and Human Computer Interaction
Video compression
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyIouJ0Sg7eNNiPJK89icrGEBwiDnYrzUdhsLVzq4f99yZtuqrgjqVNKC_Jey_v4_dD6EYpAcYUUEJFLAn1lUcEoz4xvinlEQdKlY13vI75aEJfpmzqAm5rV1bZ6MRKUatC2hj5fRCb6zZAFLOH5SexrFE2u-ooNPZR16jgiHVQ92kwfnvfRlls56lfkfBaWHjC_BBc50zdPxdwFhBbpeCFLAzI5rd1al3OP1nSyvgMj9Ch8xrxY73Mx2hP5ydoNdgideM0V3jZ9gCY5xprBBcZthTZeq3xSi9SC464wnX34qIaNSvX-EcWG5cFnptfmxsNiGcLo22wrTqvq2XzUzQZDj6eR8RRKBBpzlZJRCQYxFLHkoOMQXsQKy7Ap0EKXhylxr5HQqQyC1N71eLCtn4zlvoAAjKuwjPUyYtcnyOsQq4y4_55FDRNJUQyU74QoLknmdJeD_mN6BLp8MUtzcU8aZGRrbgTI-6kEney6aHb7Zhlja6x8-t-syKJO2nrpN0XPXTXrFL7-v_ZLnbPdokOLLN8XRXWR51y9aWvjP9Rimu3yb4BoqPX6g
  priority: 102
  providerName: ProQuest
Title Evaluation and performance analysis of Chinese remainder theorem and its application to lossless image compression
URI https://link.springer.com/article/10.1007/s12652-021-03532-y
https://www.proquest.com/docview/2919477895
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8N-gIPaGwgCqzyw97AUpzYvvixTC1o09A0UQmeovgjElKbojY88N9j56Mp0zaJpyiKbUV3tu_su9_vAL5aq9GbAk65VoZyZiOqBWfU-6ZcphI5t-G-4-etvJnx7_fivgWFrbts9y4kWe_UPdgtliKmIaUgSkQS05cdGAh_dg-JfLN4vLlZCWhTVhfeDVTwVLAEW7TM34d5a5F6N_OPyGhtcKYf4aD1FMm4Ue0hfHDlJ9jf4g_8DKvJhqub5KUlTz0KwL83bCNkWZBQJNutHVm5RR7oEVekwS8u6l6P1ZpsxbFJtSRz_6NzvweSx4Xfb0jIO2_yZcsjmE0nd99uaFtEgRq_uiqqUy1QGaeMRKPQRais1Mh4nGOk0txb-FTr3BRJHg5bUgfwtxA5Q9RYSJscw265LN0JEJtIW3gHMOLoeG4wNYVlWqOTkRHWRUNgnSAz0zKMh0IX86znRg7Cz7zws1r42csQLjZ9nhp-jf-2Pu_0k7VrbZ3FiimOmCoxhMtOZ_3nf492-r7mZ7AXas03eWLnsFutnt0X75FUegQ76fR6BIPx9cOPiX9eTW5__R7V0_IVXJTcXg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXBALElgI-wAks8rA98QEhHlttabtCqJV6C_EjUqXd7HY3Fdo_xW9knMcGkOitxyixFY3HM2PPzPcBvHLOILkCwYXRlovYRdxIEXOKTYXKFArhwn3H6VRNzsXXC3mxA7_6XphQVtnbxMZQu4UNd-TvEk3HbcRMyw_LKx5Yo0J2tafQaNXi2G9-0pFt_f7oC63v6yQ5HJ99nvCOVYBbUream8xI1NZrq9Bq9BFqpwzGIikw0llBLi8zprBlWoTThzKhG1rKIkY0WCqX0rx3YI_CDE27aO_TePrt-_ZWJ3S6xg3pb4Ch5zJOsevUafv1EiUTHqoiolSmCd_87Q2HEPefrGzj7A4fwP0uSmUfW7V6CDu-egSr8RYZnBWVY8uh54CeW2wTtihZoOT2a89Wfl4EMMYVa7sl582oy3rN_sias3rBZvRrM7K47HJO1o2FKve2Ord6DOe3ItwnsFstKv8UmEuVKyncjAR6UVjMbOliY9CryErnoxHEvehy2-GZB1qNWT4gMQdx5yTuvBF3vhnBm-2YZYvmcePXB_2K5N3OXueDHo7gbb9Kw-v_z7Z_82wv4e7k7PQkPzmaHj-De4HVvq1IO4DdenXtn1PsU5sXncIx-HHbOv4bl4MUDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkL0wLtioQUfuIHbOLE98bGiXQqFigOVyinyK1LFbna1mx7aX4-dR7OtKBLiGPmhZDz2TDzzfQPwzjmDwRRwyo2ylDOXUCM4o8E35TKXyLmL9x3fTuTRKf9yJs7WUPxNtnsfkmwxDZGlqar3Fq7cG4BvqRQpjekFSSaylF7ehw0eydlHsLH_6efxcM8SsaesKcMbieGpYBl22Jk_T3TTPg1O5604aWN-Jo9B9y_eZp382r2oza69usXp-D9f9gQedb4p2W-V6Snc89Uz2FxjLHwOy8NrdnCiK0cWA-4gPLf8JmRekliW2688WfqZjoSMS9IiJmfNqPN6RdYi56Sek2kQxjScuuR8Fk44EjPd2wzd6gWcTg5_fDyiXdkGasN-rqnJjUBlvbISrUKfoHLSIOOpxkTlOvgUuTHalpmOv3fSRLi5EJohGiyly7ZgVM0r_xKIy6Qrg8uZcPRcW8xt6Zgx6GVihfPJGFi_WIXtOM1jaY1pMbAxR3kWQZ5FI8_icgzvr8csWkaPv_be7nWg6Hb3qkgVUxwxV2IMH_olHZrvnu3Vv3V_Cw--H0yKr59Pjl_Dw1jovk1S24ZRvbzwO8Edqs2bTuN_A3ueAWE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+and+performance+analysis+of+Chinese+remainder+theorem+and+its+application+to+lossless+image+compression&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Vidhya%2C+R.&rft.au=Brindha%2C+M.&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=14&rft.issue=6&rft.spage=6645&rft.epage=6660&rft_id=info:doi/10.1007%2Fs12652-021-03532-y&rft.externalDocID=10_1007_s12652_021_03532_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon