Using CNN for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy

Facial expression recognition is a challenging problem in image classification. Recently, the use of deep learning is gaining importance in image classification. This has led to increased efforts in solving the problem of facial expression recognition using convolutional neural networks (CNNs). A si...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 36; no. 2; pp. 405 - 412
Main Authors Agrawal, Abhinav, Mittal, Namita
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facial expression recognition is a challenging problem in image classification. Recently, the use of deep learning is gaining importance in image classification. This has led to increased efforts in solving the problem of facial expression recognition using convolutional neural networks (CNNs). A significant challenge in deep learning is to design a network architecture that is simple and effective. A simple architecture is fast to train and easy to implement. An effective architecture achieves good accuracy on the test data. CNN architectures are black boxes to us. VGGNet, AlexNet and Inception are well-known CNN architectures. These architectures have strongly influenced CNN model designs for new datasets. Almost all CNN models known to achieve high accuracy on facial expression recognition problem are influenced by these architectures. This work tries to overcome this limitation by using FER-2013 dataset as starting point to design new CNN models. In this work, the effect of CNN parameters namely kernel size and number of filters on the classification accuracy is investigated using FER-2013 dataset. Our major contribution is a thorough evaluation of different kernel sizes and number of filters to propose two novel CNN architectures which achieve a human-like accuracy of 65% (Goodfellow et al. in: Neural information processing, Springer, Berlin, pp 117–124, 2013 ) on FER-2013 dataset. These architectures can serve as a basis for standardization of the base model for the much inquired FER-2013 dataset.
AbstractList Facial expression recognition is a challenging problem in image classification. Recently, the use of deep learning is gaining importance in image classification. This has led to increased efforts in solving the problem of facial expression recognition using convolutional neural networks (CNNs). A significant challenge in deep learning is to design a network architecture that is simple and effective. A simple architecture is fast to train and easy to implement. An effective architecture achieves good accuracy on the test data. CNN architectures are black boxes to us. VGGNet, AlexNet and Inception are well-known CNN architectures. These architectures have strongly influenced CNN model designs for new datasets. Almost all CNN models known to achieve high accuracy on facial expression recognition problem are influenced by these architectures. This work tries to overcome this limitation by using FER-2013 dataset as starting point to design new CNN models. In this work, the effect of CNN parameters namely kernel size and number of filters on the classification accuracy is investigated using FER-2013 dataset. Our major contribution is a thorough evaluation of different kernel sizes and number of filters to propose two novel CNN architectures which achieve a human-like accuracy of 65% (Goodfellow et al. in: Neural information processing, Springer, Berlin, pp 117–124, 2013) on FER-2013 dataset. These architectures can serve as a basis for standardization of the base model for the much inquired FER-2013 dataset.
Facial expression recognition is a challenging problem in image classification. Recently, the use of deep learning is gaining importance in image classification. This has led to increased efforts in solving the problem of facial expression recognition using convolutional neural networks (CNNs). A significant challenge in deep learning is to design a network architecture that is simple and effective. A simple architecture is fast to train and easy to implement. An effective architecture achieves good accuracy on the test data. CNN architectures are black boxes to us. VGGNet, AlexNet and Inception are well-known CNN architectures. These architectures have strongly influenced CNN model designs for new datasets. Almost all CNN models known to achieve high accuracy on facial expression recognition problem are influenced by these architectures. This work tries to overcome this limitation by using FER-2013 dataset as starting point to design new CNN models. In this work, the effect of CNN parameters namely kernel size and number of filters on the classification accuracy is investigated using FER-2013 dataset. Our major contribution is a thorough evaluation of different kernel sizes and number of filters to propose two novel CNN architectures which achieve a human-like accuracy of 65% (Goodfellow et al. in: Neural information processing, Springer, Berlin, pp 117–124, 2013 ) on FER-2013 dataset. These architectures can serve as a basis for standardization of the base model for the much inquired FER-2013 dataset.
Author Agrawal, Abhinav
Mittal, Namita
Author_xml – sequence: 1
  givenname: Abhinav
  orcidid: 0000-0001-7053-0144
  surname: Agrawal
  fullname: Agrawal, Abhinav
  email: abhinav0653@gmail.com
  organization: Department of CSE, MNIT
– sequence: 2
  givenname: Namita
  surname: Mittal
  fullname: Mittal, Namita
  organization: Department of CSE, MNIT
BookMark eNp9kMtKAzEUhoMoWKsv4CrgejS3zkzcSfEGohu7DknmpKaOmZpkwPr0plYQXLgIJ4fzf-fyH6H9MARA6JSSc0pIc5EI4Q2tCJXl1ZxUcg9NqOCsYpzO9tGE0KatWNPKQ3SU0oqUvBFygvIi-bDE88dH7IaInbZe9xg-1hFS8kPAEeywDD6X_yXWOOWx2-DB4fwCGJwDm9M2fYUYoMfJfwLWocNhfDMQtxXn-wyxiALW1o5R280xOnC6T3DyE6docXP9PL-rHp5u7-dXD5XlVObKtLw2vGYtN5wZOQMDjWkF7WhNTStbwRgXHbFdrQkXhDjmtAQuLGPGCUr4FJ3t-q7j8D5Cymo1jDGUkYpJ2shZw4goqnansnFIKYJT1me9PThH7XtFidp6rHYeq-Kx-vZYyYKyP-g6-jcdN_9DfAelIg5LiL9b_UN9ASDEkHc
CitedBy_id crossref_primary_10_1007_s13198_023_02186_7
crossref_primary_10_1155_2022_9449328
crossref_primary_10_1007_s00371_021_02136_z
crossref_primary_10_1007_s11760_025_03984_1
crossref_primary_10_1109_TIM_2023_3267367
crossref_primary_10_1088_1748_0221_19_03_P03018
crossref_primary_10_1016_j_conbuildmat_2024_138745
crossref_primary_10_3390_jpm12030361
crossref_primary_10_1007_s11042_021_11273_5
crossref_primary_10_3390_s23135775
crossref_primary_10_1007_s11356_024_32228_x
crossref_primary_10_3390_ijgi9060357
crossref_primary_10_1007_s11042_023_16220_0
crossref_primary_10_1155_2022_9261438
crossref_primary_10_3390_rs14092243
crossref_primary_10_1007_s00371_021_02350_9
crossref_primary_10_3390_app14156471
crossref_primary_10_1007_s44196_024_00406_x
crossref_primary_10_1007_s12652_020_01779_5
crossref_primary_10_1007_s11063_023_11322_0
crossref_primary_10_4081_jae_2022_1366
crossref_primary_10_1016_j_procs_2020_07_101
crossref_primary_10_4015_S1016237224500297
crossref_primary_10_1016_j_apenergy_2023_122399
crossref_primary_10_1016_j_engappai_2023_106661
crossref_primary_10_1007_s00371_023_02827_9
crossref_primary_10_1016_j_procs_2019_11_154
crossref_primary_10_1049_htl2_12040
crossref_primary_10_1109_ACCESS_2021_3082694
crossref_primary_10_1016_j_ins_2021_08_043
crossref_primary_10_1007_s00530_023_01062_5
crossref_primary_10_32604_csse_2023_036377
crossref_primary_10_1016_j_knosys_2020_106172
crossref_primary_10_1016_j_matpr_2021_05_658
crossref_primary_10_1093_molbev_msad157
crossref_primary_10_1007_s00371_022_02655_3
crossref_primary_10_1007_s42979_023_02368_x
crossref_primary_10_3390_w13040503
crossref_primary_10_1007_s10489_020_02125_0
crossref_primary_10_1007_s11042_024_19012_2
crossref_primary_10_1007_s00530_022_00907_9
crossref_primary_10_1109_ACCESS_2023_3313973
crossref_primary_10_1007_s00371_022_02413_5
crossref_primary_10_1109_ACCESS_2024_3391057
crossref_primary_10_3390_app132212418
crossref_primary_10_1007_s00530_022_00984_w
crossref_primary_10_1007_s11334_022_00438_6
crossref_primary_10_3390_app132312737
crossref_primary_10_1007_s11760_024_03801_1
crossref_primary_10_1007_s00371_021_02163_w
crossref_primary_10_3390_math10162872
crossref_primary_10_1088_1742_6596_2129_1_012083
crossref_primary_10_3390_s24123972
crossref_primary_10_1016_j_procs_2023_01_142
crossref_primary_10_3390_electronics13183665
crossref_primary_10_1007_s00542_023_05420_1
crossref_primary_10_1109_TMM_2020_2966858
crossref_primary_10_1007_s10489_021_02205_9
crossref_primary_10_1016_j_cag_2022_10_007
crossref_primary_10_1155_2020_4065207
crossref_primary_10_1515_pdtc_2024_0061
crossref_primary_10_3390_ijerph19053085
crossref_primary_10_1007_s00530_023_01232_5
crossref_primary_10_3102_10769986241268907
crossref_primary_10_3389_fnagi_2021_720226
crossref_primary_10_1007_s11042_022_14122_1
crossref_primary_10_1007_s00138_025_01674_z
crossref_primary_10_54644_jte_2024_1547
crossref_primary_10_1186_s13244_021_01100_8
crossref_primary_10_1016_j_conbuildmat_2024_135151
crossref_primary_10_1007_s11334_022_00437_7
crossref_primary_10_1016_j_bbe_2024_06_006
crossref_primary_10_1142_S0218001422560079
crossref_primary_10_1007_s41870_021_00803_x
crossref_primary_10_1007_s00371_021_02352_7
crossref_primary_10_1007_s00371_020_01802_y
crossref_primary_10_1007_s00371_019_01759_7
crossref_primary_10_1016_j_engappai_2023_106730
crossref_primary_10_1007_s11042_023_16174_3
crossref_primary_10_1007_s00371_022_02543_w
crossref_primary_10_1016_j_aej_2023_01_017
crossref_primary_10_1007_s00371_022_02690_0
crossref_primary_10_2166_hydro_2022_068
crossref_primary_10_1109_ACCESS_2023_3290620
crossref_primary_10_1007_s00371_021_02069_7
crossref_primary_10_1007_s11760_023_02657_1
crossref_primary_10_1016_j_inffus_2023_101847
crossref_primary_10_1007_s00521_021_06613_3
crossref_primary_10_1007_s11042_023_16342_5
crossref_primary_10_1016_j_imavis_2023_104677
crossref_primary_10_1007_s11042_023_14603_x
crossref_primary_10_1007_s00530_023_01188_6
crossref_primary_10_1007_s00371_020_01993_4
crossref_primary_10_32628_CSEIT228111
crossref_primary_10_3390_app10051897
crossref_primary_10_1007_s41348_024_00861_w
crossref_primary_10_1007_s00500_022_06804_7
crossref_primary_10_1002_nbm_4474
crossref_primary_10_1016_j_atmosenv_2024_120388
crossref_primary_10_32604_cmc_2023_032505
crossref_primary_10_1007_s13198_023_01945_w
crossref_primary_10_3390_info16030195
crossref_primary_10_1088_2515_7620_ad27fa
crossref_primary_10_36548_jtcsst_2021_2_003
crossref_primary_10_1142_S0218001423570021
crossref_primary_10_1007_s40031_022_00746_2
crossref_primary_10_1016_j_energy_2024_131276
crossref_primary_10_1142_S0219720022500019
crossref_primary_10_1109_LRA_2024_3405810
crossref_primary_10_3390_app9183904
crossref_primary_10_1007_s11571_023_10029_1
crossref_primary_10_1186_s12864_022_08772_6
crossref_primary_10_25046_aj050638
crossref_primary_10_1007_s40031_021_00681_8
crossref_primary_10_1016_j_cviu_2024_104010
crossref_primary_10_1007_s42979_025_03670_6
crossref_primary_10_3390_ijerph19042352
crossref_primary_10_1109_ACCESS_2024_3388911
crossref_primary_10_19126_suje_1435509
crossref_primary_10_1016_j_medengphy_2023_104041
crossref_primary_10_1016_j_advengsoft_2024_103719
crossref_primary_10_1007_s42600_024_00363_6
crossref_primary_10_3390_computers13040101
crossref_primary_10_1007_s11063_021_10636_1
crossref_primary_10_1111_coin_12586
Cites_doi 10.1007/978-3-642-42051-1_16
10.1007/s00371-018-1585-8
10.1109/KSE.2017.8119447
10.1109/CW.2016.34
10.1109/ROMAN.2016.7745199
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00371-019-01630-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 412
ExternalDocumentID 10_1007_s00371_019_01630_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-b836b36283b32b95ebe7b841d161b89842234d0cd6a03400f2fa9e34c22bf4103
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Fri Jul 25 22:32:12 EDT 2025
Tue Jul 01 01:05:47 EDT 2025
Thu Apr 24 22:53:27 EDT 2025
Fri Feb 21 02:34:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
FER-2013
CNN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b836b36283b32b95ebe7b841d161b89842234d0cd6a03400f2fa9e34c22bf4103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7053-0144
PQID 2917957204
PQPubID 2043737
PageCount 8
ParticipantIDs proquest_journals_2917957204
crossref_citationtrail_10_1007_s00371_019_01630_9
crossref_primary_10_1007_s00371_019_01630_9
springer_journals_10_1007_s00371_019_01630_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200200
2020-2-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 2
  year: 2020
  text: 20200200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Goodfellow, Erhan, Carrier, Courville, Mirza, Hamner, Cukierski, Tang, Thaler, Lee, Zhou, Ramaiah, Feng, Li, Wang, Athanasakis, Shawe-Taylor, Milakov, Park, Ionescu, Popescu, Grozea, Bergstra, Xie, Romaszko, Xu, Chuang, Bengio (CR1) 2013
CR2
CR4
Wan, Yang, Li (CR6) 2016
CR3
CR5
CR8
CR7
Gogić, Manhart, Pandžić, Ahlberg (CR9) 2018; 36
CR15
CR14
CR13
CR12
CR11
CR10
1630_CR3
1630_CR2
1630_CR5
1630_CR4
W Wan (1630_CR6) 2016
1630_CR15
1630_CR7
1630_CR8
1630_CR10
1630_CR12
1630_CR11
Ivan Gogić (1630_CR9) 2018; 36
1630_CR14
1630_CR13
Ian J. Goodfellow (1630_CR1) 2013
References_xml – start-page: 117
  year: 2013
  end-page: 124
  ident: CR1
  article-title: Challenges in Representation Learning: A Report on Three Machine Learning Contests
  publication-title: Neural Information Processing
  doi: 10.1007/978-3-642-42051-1_16
– ident: CR3
– ident: CR4
– ident: CR14
– ident: CR15
– ident: CR2
– ident: CR12
– ident: CR13
– ident: CR10
– ident: CR11
– year: 2016
  ident: CR6
  publication-title: Facial Expression Recognition Using Convolutional Neural Network. A Case Study of the Relationship Between Dataset Characteristics and Network Performance
– ident: CR5
– ident: CR7
– ident: CR8
– volume: 36
  start-page: 97
  issue: 1
  year: 2018
  end-page: 112
  ident: CR9
  article-title: Fast facial expression recognition using local binary features and shallow neural networks
  publication-title: The Visual Computer
  doi: 10.1007/s00371-018-1585-8
– ident: 1630_CR13
– ident: 1630_CR14
– start-page: 117
  volume-title: Neural Information Processing
  year: 2013
  ident: 1630_CR1
  doi: 10.1007/978-3-642-42051-1_16
– ident: 1630_CR7
– ident: 1630_CR15
  doi: 10.1109/KSE.2017.8119447
– ident: 1630_CR8
– ident: 1630_CR12
– ident: 1630_CR4
– ident: 1630_CR5
– ident: 1630_CR2
– ident: 1630_CR3
– volume-title: Facial Expression Recognition Using Convolutional Neural Network. A Case Study of the Relationship Between Dataset Characteristics and Network Performance
  year: 2016
  ident: 1630_CR6
– volume: 36
  start-page: 97
  issue: 1
  year: 2018
  ident: 1630_CR9
  publication-title: The Visual Computer
  doi: 10.1007/s00371-018-1585-8
– ident: 1630_CR10
  doi: 10.1109/CW.2016.34
– ident: 1630_CR11
  doi: 10.1109/ROMAN.2016.7745199
SSID ssj0017749
Score 2.5623863
Snippet Facial expression recognition is a challenging problem in image classification. Recently, the use of deep learning is gaining importance in image...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 405
SubjectTerms Accuracy
Artificial Intelligence
Artificial neural networks
Classification
Computer Graphics
Computer Science
Data processing
Datasets
Deep learning
Face recognition
Image classification
Image Processing and Computer Vision
Machine learning
Neural networks
Original Article
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaJQdvGtxN0m3Wi2ixFMEiYqG3JckmUCy7tQ9Qf72TNG1VsMfdPA4zSeabzOQbhC6apqm4SSICpskSLpKYSGMSEnPDhWVNKTxvwVM36fT4Y7_RDxduk5BWuTgT_UGdl9rdkV9T8CvShiupcjt6J65qlIuuhhIam6gKR7AA56t6_9B9flnGEQDceAAcg6_k3nyGZzP-8ZxnqwNX2uULJSwi6W_TtMKbf0Kk3vK0d9FOgIz4bq7jPbRhin20_YNI8ABNfeQft7pdDCAUW-kuwrH5CFmuBV7mCZXFDZbYk8ri0mKAfzikdLjPNzMuzBBPBl8GyyLH83ohrsUOXFgdOhVYaj0bS_15iHrth9dWh4R6CkTDRpsSJViiwGAJphhVaQP011SCxzmgPiVSwQEq8DzSeSIjBnvbUitTw7imVFkeR-wIVYqyMMcIww_NpKaWQwsMkqniCdUKnDedU6VqKF6IMtOBbNzVvBhmS5pkL_4MxJ958WdpDV0ux4zmVBtre9cXGsrCtptkq0VSQ1cLra2a_5_tZP1sp2iLOj_bZ2vXUWU6npkzACNTdR5W3DdTL9or
  priority: 102
  providerName: ProQuest
Title Using CNN for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy
URI https://link.springer.com/article/10.1007/s00371-019-01630-9
https://www.proquest.com/docview/2917957204
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VuMABWh7qFrqaA7cSKbG9WYfbgnZBrbpCqCvBKbIdW0KgbLW7SMCv79jrhIdopZ6ixI9DxpP5JvPNDMBh3_a1sHmakGlyiZB5lihr8yQTVkjH-0qGugU_x_n5RHy_6l3FpLB5w3ZvQpLhS90mu4XqcuT6en5PztOkWIG1nvfd6RRP2KCNHRCgCaA3I__I53nGVJn393htjp4x5puwaLA2o4-wGWEiDpZy_QQfbL0NW00LBowauQ0bL-oJ7sAiEADwdDxGwqLolP8fjvYhkl1rbOlC0_oYFYbasjh1SCgQI7PD397aWW3vcH7zZFHVFS7bhvgRd-Oj6zSpRmXM_UyZx12YjIa_Ts-T2FYhMaRvi0RLnmuyW5JrznTRIzH2tRRZReBPy0IKQgyiSk2Vq5STijvmVGG5MIxpJ7KU78FqPa3tZ0B6YLgyzAkaoUWq0CJnRpMPZyqmdQey5u2WJtYc960v7sq2WnKQSEkSKYNEyqID39o1v5cVN_45-6ARWhm1b14y8kGLnm-_04GjRpDPw3_f7cv_Td-Hdebd70DiPoDVxezefiWMstBdWJGjsy6sDc6ufwzpejIcX1x2w0H9A5l33_4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB615UA5IJ5q2gJzgBNY7NrOxlsJIRQIKW1zaqXeFttrSxHRJk1SlfZH9Td27OwmgERvOa5f0o7Hnm88L4C3Hdcx0mUJI9HkmVRZyrRzGUulk8qLjlYxb8HJIOufyR_n7fMNuG1iYYJbZXMnxou6HNvwRv6Rk16Rt0NJlc-TCxaqRgXralNCY8EWR-76ilS22afDr7S_7zjvfTvt9lldVYBZYrc5M0pkhq5tJYzgJm_TX3SMkmlJ2MeoXEkSmLJMbJnpRBCHe-517oS0nBsv00TQupvwQAqRhxOlet-XVguCUhFup6SZhQjTOkgnhurF3HikuAfvpEwkLP9bEK7Q7T8G2Sjnek_gcQ1Q8cuCo57ChquewaM_0hY-h3n0M8DuYIAEedHr8OyO7nftU1vh0itpXB2gxpjCFsceCWxi7UASPn-5aeVGOBveONRViYvqJKHHD4MRnwZVqK29nGp7_QLO1kLnl7BVjSu3A0gNVmjLvaQemqRzIzNuDamKtuTGtCBtSFnYOrV5qLAxKpZJmSP5CyJ_Eclf5C14v5wzWST2uHf0frNDRX3IZ8WKJVvwodm1Vff_V9u9f7U38LB_enJcHB8OjvZgmwcNP_qJ78PWfHrpXhEMmpvXkfcQfq6b2e8A-I8ULg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkSo48FhALBQ6B240amJ78-C2WlgVClEPXam3yHZsadWVt9qmEu2vZ-w8tlQFiWPisQ8eO_NNZuYbgI-ZyZQwaRyRabKRyNMkksakUSKMyC3PZB54C36W6dFCfD-bnN2q4g_Z7n1Isq1p8CxNrjm8qO3hUPgWmObIDfa5PimPo-IhPKLPceLP9YJNhzgCgZsAgBPylXzNZ1c2c_8af5qmLd68EyINlmf-HJ52kBGnrY5fwAPjRvCsb8eA3e0cwZNb3IIvoQnJADgrSyRcilb6f-NofnWJrw6H1KG1-4wSA88sri0SIsQuy8M_npuNMyu8XN4YlK7GtoWIH7FLH2knIYdS66uN1NevYDH_ejo7iroWC5GmzWoilfNUkQ3LueJMFRNSaaZykdQEBFVe5ILQg6hjXacy5nTdLbOyMFxoxpQVScxfw45bO_MGkF5oLjWzgkZokiyUSJlW5M_pmik1hqTf3Up3_OO-DcaqGpiTg0Yq0kgVNFIVY_g0zLlo2Tf-Kb3XK63qbuJlxcgfLSa-Fc8YDnpFbof_vtrb_xPfh92TL_Pqx7fy-B08Zt4rD7nde7DTbK7Me4IujfoQTudvFDnjGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+CNN+for+facial+expression+recognition%3A+a+study+of+the+effects+of+kernel+size+and+number+of+filters+on+accuracy&rft.jtitle=The+Visual+computer&rft.au=Agrawal%2C+Abhinav&rft.au=Mittal%2C+Namita&rft.date=2020-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=36&rft.issue=2&rft.spage=405&rft.epage=412&rft_id=info:doi/10.1007%2Fs00371-019-01630-9&rft.externalDocID=10_1007_s00371_019_01630_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon