Numerical simulation for thermal transport in the chemically reactive flow of bioconvective Reiner-Rivlin nanofluid with magnetic field
Bioconvection in nanofluids refers to the sensation where biological microorganisms, such as bacteria or algae, interact with nanoparticles suspended in a fluid, resulting in convective motion. This phenomenon has garnered interest due to its vital applications in diverse fields such as biotechnolog...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 149; no. 22; pp. 13117 - 13128 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.11.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bioconvection in nanofluids refers to the sensation where biological microorganisms, such as bacteria or algae, interact with nanoparticles suspended in a fluid, resulting in convective motion. This phenomenon has garnered interest due to its vital applications in diverse fields such as biotechnology, nanotechnology, and environmental engineering. This paper deals with the magneto-hydrodynamic (MHD) Reiner-Rivlin nanofluid flow by a stretchable porous sheet in the manifestation of the gyrotactic type of microorganisms. The Reiner-Rivlin nanofluid is considered to be incompressible and electrically conducting. Energy relation is developed by accounting the effects of dissipative forces, Joule heating, and radiative heat flux. Brownian dispersion and thermophoretic characteristics of solid tiny particles are accounted. Furthermore, chemical responses with modified Arrhenius kinetics are reflected in mass concentration relation. The acquired system of highly nonlinear partial differential equations (PDEs) is reduced into ordinary differential equations (ODEs) through appropriate transformations and then elucidated numerically via the shooting method (Runge–Kutta–Fehlberg). The study investigates the impact of various factors on fluid velocity, thermal field, heat and mass transfer rates, mass concentration, and microorganism motile density through graphs and tables. It is observed that Reiner-Rivlin fluid velocity decays versus Hartmann number and porosity constant, whereas the reverse scenario is observed for fluid material constant. Thermal field upsurges due to Hartmann and Eckert numbers. Moreover, the intensity of heat transfer escalates for higher Prandtl number and thermal radiation parameters. |
---|---|
AbstractList | Bioconvection in nanofluids refers to the sensation where biological microorganisms, such as bacteria or algae, interact with nanoparticles suspended in a fluid, resulting in convective motion. This phenomenon has garnered interest due to its vital applications in diverse fields such as biotechnology, nanotechnology, and environmental engineering. This paper deals with the magneto-hydrodynamic (MHD) Reiner-Rivlin nanofluid flow by a stretchable porous sheet in the manifestation of the gyrotactic type of microorganisms. The Reiner-Rivlin nanofluid is considered to be incompressible and electrically conducting. Energy relation is developed by accounting the effects of dissipative forces, Joule heating, and radiative heat flux. Brownian dispersion and thermophoretic characteristics of solid tiny particles are accounted. Furthermore, chemical responses with modified Arrhenius kinetics are reflected in mass concentration relation. The acquired system of highly nonlinear partial differential equations (PDEs) is reduced into ordinary differential equations (ODEs) through appropriate transformations and then elucidated numerically via the shooting method (Runge–Kutta–Fehlberg). The study investigates the impact of various factors on fluid velocity, thermal field, heat and mass transfer rates, mass concentration, and microorganism motile density through graphs and tables. It is observed that Reiner-Rivlin fluid velocity decays versus Hartmann number and porosity constant, whereas the reverse scenario is observed for fluid material constant. Thermal field upsurges due to Hartmann and Eckert numbers. Moreover, the intensity of heat transfer escalates for higher Prandtl number and thermal radiation parameters. |
Author | Haq, Fazal Hussain, Arshad Ghazwani, Hassan Ali |
Author_xml | – sequence: 1 givenname: Fazal orcidid: 0000-0002-9860-5707 surname: Haq fullname: Haq, Fazal email: fazal.haq@kiu.edu.pk organization: Department of Mathematics, Karakoram International University Main Campus – sequence: 2 givenname: Arshad surname: Hussain fullname: Hussain, Arshad organization: Karakoram International University, Hunza Campus – sequence: 3 givenname: Hassan Ali surname: Ghazwani fullname: Ghazwani, Hassan Ali organization: Department of Mechanical Engineering, College of Engineering and Computer Science, Jazan University |
BookMark | eNp9kMtKxDAUhoMoeH0BVwHX1aSZtulSxBuIwqDrkKYnTiRNxiQdcV7A1zYzFQQXkkUOP_-XE75DtOu8A4ROKTmnhDQXkZK2YQUpZwVl9awq1jvogFacF2Vb1rt5ZnmuaUX20WGMb4SQtiX0AH09jgMEo6TF0Qyjlcl4h7UPOC0gDDlOQbq49CFh4zYhVgsYNoD9xAGkSmYFWFv_gb3GnfHKuxVM6RyMg1DMzcpm1knntR1Njz9MWuBBvjpIRmFtwPbHaE9LG-Hk5z5CLzfXz1d3xcPT7f3V5UOhGG1T0TGtOJ9J2SgOHavzgbrpeyAlkR2TXKuuq6Hp6j6nSiraKsZ1pcq-7CSv2RE6m95dBv8-QkzizY_B5ZWCUcYaysmsyi0-tVTwMQbQQpm0VZNtGCsoERvtYtIusnax1S7WGS3_oMtgBhk-_4fYBMVcdq8Qfn_1D_UNEXydAA |
CitedBy_id | crossref_primary_10_1016_j_molliq_2025_127421 crossref_primary_10_1016_j_jrras_2025_101415 |
Cites_doi | 10.1016/j.icheatmasstransfer.2011.12.007 10.1038/s41598-021-95448-y 10.3390/fractalfract7020150 10.1016/j.ijheatmasstransfer.2018.03.040 10.1016/j.icheatmasstransfer.2021.105797 10.1108/HFF-12-2019-0925 10.1016/j.jnnfm.2005.10.001 10.1016/j.aej.2022.11.027 10.1016/j.csite.2021.101451 10.1038/160611a0 10.1016/j.jtice.2019.02.035 10.1016/j.csite.2021.101305 10.1080/01496395.2024.2366889 10.1080/01430750.2023.2198531 10.1108/HFF-09-2016-0358 10.1016/j.chaos.2022.112957 10.1016/j.aej.2023.05.017 10.1016/j.compfluid.2014.02.026 10.1016/j.icheatmasstransfer.2022.106297 10.1177/1687814020924894 10.1016/j.ijheatmasstransfer.2017.04.074 10.1016/j.ijthermalsci.2016.10.003 10.1016/j.icheatmasstransfer.2021.105820 10.2307/2371950 10.1016/j.ijheatmasstransfer.2015.03.003 10.1016/j.icheatmasstransfer.2022.106454 10.4283/JMAG.2021.26.4.378 10.1016/j.icheatmasstransfer.2010.08.015 10.1002/htj.21969 10.1016/j.ijheatmasstransfer.2018.05.093 10.1016/j.icheatmasstransfer.2024.107587 10.1016/S0017-9310(98)00358-5 10.1080/02286203.2023.2270673 10.1007/s12043-022-02404-0 10.1016/j.icheatmasstransfer.2020.104643 10.1016/j.tsep.2022.101596 10.1007/s12668-023-01191-1 10.1088/1674-1056/ac4236 10.1016/j.cjph.2021.08.003 10.1108/WJE-11-2020-0575 10.1016/j.icheatmasstransfer.2021.105530 |
ContentType | Journal Article |
Copyright | Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10973-024-13645-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 13128 |
ExternalDocumentID | 10_1007_s10973_024_13645_z |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZE2 ZMTXR ~02 ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-b3fc884aa7c8eb36363e67dde020ab3a8fcbb6e7b6d7ddcac19c38f5c2d2ba863 |
IEDL.DBID | U2A |
ISSN | 1388-6150 |
IngestDate | Fri Jul 25 10:57:46 EDT 2025 Tue Jul 01 02:44:54 EDT 2025 Thu Apr 24 23:07:47 EDT 2025 Fri Feb 21 02:38:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Bioconvection Viscous dissipation Reiner-Rivlin fluid Activation energy Joule heating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-b3fc884aa7c8eb36363e67dde020ab3a8fcbb6e7b6d7ddcac19c38f5c2d2ba863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9860-5707 |
PQID | 3133718045 |
PQPubID | 2043843 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3133718045 crossref_citationtrail_10_1007_s10973_024_13645_z crossref_primary_10_1007_s10973_024_13645_z springer_journals_10_1007_s10973_024_13645_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Forum for Thermal Studies |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationTitleAbbrev | J Therm Anal Calorim |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Sahoo, Van Gorder, Andersson (CR5) 2012; 39 Ijaz Khan, Al-Khaled, Khan, Muhammad, Waqas, El-Refaey (CR21) 2021; 28 Arain, Bhatti, Zeeshan, Alzahrani (CR10) 2021; 9 Reiner (CR1) 1945; 67 Batool, Haq, Fatima, Ali (CR24) 2023; 13 Azam (CR36) 2022; 130 Shin, Ahn, Cho, Sohn (CR3) 1999; 42 Xu, Khan, Al-Khaled, Khan, Alzahrani, Khan (CR31) 2021; 27 Khan, Hayat, Alsaedi (CR12) 2022; 137 Azam, Xu, Mabood, Khan (CR33) 2021; 127 CR14 Mutuku, Makinde (CR27) 2014; 95 Caswell (CR4) 2006; 133 Khan, Hayat, Alsaedi (CR8) 2023; 66 Turkyilmazoglu (CR18) 2018; 126 Raza Shah Naqvi, Kim, Muhammad, Mallawi, Ullah (CR11) 2020; 116 Haq, Saleem, El-Zahar, Gouadria, Ijaz (CR41) 2021; 26 Xun, Zhao, Zheng, Zhang (CR29) 2017; 111 Anjum, Khan, Azam, Ali, Waqas, Hussain (CR39) 2023; 38 Hayat, Farooq, Alsaedi, Ahmad (CR37) 2017; 112 Anwar, Tahir, Kumam, Ahmed, Thounthong (CR17) 2021; 50 Lv, Gul, Ramzan, Chung, Bilal (CR7) 2021; 11 Haq, Khan, Khan, Hayat (CR40) 2020; 12 Tabassum, Mustafa (CR6) 2018; 123 Haq, Khan, Khan, Abualnaja, El-Shorbagy (CR23) 2022; 31 Rashad, Nabwey (CR30) 2019; 99 Kuznetsov (CR26) 2010; 37 Raees, Xu, Liao (CR28) 2015; 86 Turkyilmazoglu (CR15) 2017; 27 Sandeep, Reddy, Babu, Rathore (CR19) 2023 Rivlin (CR2) 1947; 160 Li, Waqas, Al-Khaled, Hussain, Khan, Sun (CR32) 2021; 73 Farooq, Ijaz, Alotaibi (CR34) 2024; 156 Sulochana, Savita (CR20) 2023; 44 Khan, Hayat, Alsaedi (CR13) 2022; 130 Mustafa (CR22) 2020; 30 Muhammad, Anwar, AsifaYavuz (CR16) 2023; 7 Sarkar, Sarkar, Sahoo (CR9) 2022; 19 Hussain, Raizah, Aly (CR35) 2022; 139 Khan, Adnan, Riaz, Awais, Bhatti (CR42) 2024; 59 Avramenko, Kovetska, Shevchuk (CR38) 2023; 166 Alsaedi, Razaq, Hayat, Khan (CR43) 2023; 74 Rahman, Sharif, Turkyilmazoglu, Siddiqui (CR25) 2022; 96 13645_CR14 SA Khan (13645_CR13) 2022; 130 WN Mutuku (13645_CR27) 2014; 95 S Hussain (13645_CR35) 2022; 139 MB Arain (13645_CR10) 2021; 9 SU Khan (13645_CR42) 2024; 59 A Alsaedi (13645_CR43) 2023; 74 N Sandeep (13645_CR19) 2023 B Caswell (13645_CR4) 2006; 133 F Haq (13645_CR41) 2021; 26 SA Khan (13645_CR8) 2023; 66 S Xun (13645_CR29) 2017; 111 A Raees (13645_CR28) 2015; 86 M Tabassum (13645_CR6) 2018; 123 S Muhammad (13645_CR16) 2023; 7 GM Sarkar (13645_CR9) 2022; 19 C Sulochana (13645_CR20) 2023; 44 T Hayat (13645_CR37) 2017; 112 AV Kuznetsov (13645_CR26) 2010; 37 Y-X Li (13645_CR32) 2021; 73 SA Khan (13645_CR12) 2022; 137 SM Raza Shah Naqvi (13645_CR11) 2020; 116 M Azam (13645_CR33) 2021; 127 AA Avramenko (13645_CR38) 2023; 166 T Mustafa (13645_CR22) 2020; 30 Y-J Xu (13645_CR31) 2021; 27 M Turkyilmazoglu (13645_CR15) 2017; 27 F Haq (13645_CR40) 2020; 12 S Shin (13645_CR3) 1999; 42 AM Rashad (13645_CR30) 2019; 99 B Sahoo (13645_CR5) 2012; 39 M Turkyilmazoglu (13645_CR18) 2018; 126 N Anjum (13645_CR39) 2023; 38 M Rahman (13645_CR25) 2022; 96 M Azam (13645_CR36) 2022; 130 K Batool (13645_CR24) 2023; 13 T Anwar (13645_CR17) 2021; 50 S Farooq (13645_CR34) 2024; 156 F Haq (13645_CR23) 2022; 31 M Ijaz Khan (13645_CR21) 2021; 28 M Reiner (13645_CR1) 1945; 67 Y-P Lv (13645_CR7) 2021; 11 RS Rivlin (13645_CR2) 1947; 160 |
References_xml | – volume: 39 start-page: 336 issue: 3 year: 2012 end-page: 342 ident: CR5 article-title: Steady revolving flow and heat transfer of a non-Newtonian Reiner-Rivlin fluid publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2011.12.007 – volume: 11 start-page: 15859 issue: 1 year: 2021 ident: CR7 article-title: Bioconvective Reiner-Rivlin nanofluid flow over a rotating disk with Cattaneo-Christov flow heat flux and entropy generation analysis publication-title: Sci Rep doi: 10.1038/s41598-021-95448-y – volume: 7 start-page: 150 issue: 2 year: 2023 ident: CR16 article-title: Comprehensive investigation of thermal and flow features of alloy based nanofluid considering shape and newtonian heating effects via new fractional approach publication-title: Fratcal Fract doi: 10.3390/fractalfract7020150 – volume: 123 start-page: 979 year: 2018 end-page: 987 ident: CR6 article-title: A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.03.040 – volume: 130 start-page: 105797 year: 2022 ident: CR13 article-title: Irreversibility analysis in hydromagnetic Reiner-Rivlin nanofluid with quartic autocatalytic chemical reactions publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2021.105797 – volume: 30 start-page: 4765 issue: 11 year: 2020 end-page: 4774 ident: CR22 article-title: Eyring-Powell fluid flow through a circular pipe and heat transfer: full solutions publication-title: Int J Numer Meth Heat Fluid Flow doi: 10.1108/HFF-12-2019-0925 – volume: 133 start-page: 1 issue: 1 year: 2006 end-page: 13 ident: CR4 article-title: Non-Newtonian flow at lowest order, the role of the Reiner-Rivlin stress publication-title: J Nonnewton Fluid Mech doi: 10.1016/j.jnnfm.2005.10.001 – volume: 66 start-page: 257 year: 2023 end-page: 268 ident: CR8 article-title: Entropy generation in chemically reactive flow of Reiner-Rivlin liquid conveying tiny particles considering thermal radiation publication-title: Alex Eng J doi: 10.1016/j.aej.2022.11.027 – volume: 28 year: 2021 ident: CR21 article-title: Dynamic consequences of nonlinear radiative heat flux and heat generation/absorption effects in cross-diffusion flow of generalized micropolar nanofluid publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2021.101451 – volume: 160 start-page: 611 issue: 4070 year: 1947 ident: CR2 article-title: Hydrodynamics of Non-Newtonian fluids publication-title: Nature doi: 10.1038/160611a0 – volume: 99 start-page: 9 year: 2019 end-page: 17 ident: CR30 article-title: Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective boundary condition publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2019.02.035 – volume: 27 start-page: 101305 year: 2021 ident: CR31 article-title: Effectiveness of induced magnetic force and non-uniform heat source/sink features for enhancing the thermal efficiency of third grade nanofluid containing microorganisms publication-title: Case Stud in Therm Eng doi: 10.1016/j.csite.2021.101305 – volume: 59 start-page: 1172 issue: 10–14 year: 2024 end-page: 1182 ident: CR42 article-title: Insights into the impact of Cattaneo-Christov heat flux on bioconvective flow in magnetized Reiner-Rivlin nanofluids publication-title: Sep Sci Technol doi: 10.1080/01496395.2024.2366889 – ident: CR14 – volume: 44 start-page: 1904 issue: 1 year: 2023 end-page: 1913 ident: CR20 article-title: Joule heating effect on the MHD flow of tangent hyperbolic mixed nanofluid embedded with MgO and CuO nanoparticles publication-title: Int J Ambient Energy doi: 10.1080/01430750.2023.2198531 – volume: 27 start-page: 2259 issue: 10 year: 2017 end-page: 2267 ident: CR15 article-title: Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces publication-title: Int J Numer Meth Heat Fluid Flow doi: 10.1108/HFF-09-2016-0358 – volume: 166 start-page: 112957 year: 2023 ident: CR38 article-title: Lorenz approach for analysis of bioconvection instability of gyrotactic motile microorganisms publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2022.112957 – volume: 74 start-page: 1 year: 2023 end-page: 19 ident: CR43 article-title: Modeling and simulation of Cattaneo-Christov fluxes in entropy induced flow through Reiner-Rivlin fluid conveying tiny particles publication-title: Alex Eng J doi: 10.1016/j.aej.2023.05.017 – volume: 95 start-page: 88 year: 2014 end-page: 97 ident: CR27 article-title: Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms publication-title: Comput Fluids doi: 10.1016/j.compfluid.2014.02.026 – volume: 137 start-page: 106297 year: 2022 ident: CR12 article-title: Simultaneous features of soret and dufour in entropy optimized flow of Reiner-Rivlin fluid considering thermal radiation publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2022.106297 – volume: 12 start-page: 1687814020924894 issue: 9 year: 2020 ident: CR40 article-title: Investigation of suspended nanoliquid flow of Eyring–Powell fluid with gyrotactic microorganisms and density number publication-title: Adv Mech Eng doi: 10.1177/1687814020924894 – volume: 111 start-page: 1001 year: 2017 end-page: 1006 ident: CR29 article-title: Bioconvection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.04.074 – volume: 112 start-page: 68 year: 2017 end-page: 81 ident: CR37 article-title: Numerical study for soret and dufour effects on mixed convective peristalsis of Oldroyd 8-constants fluid publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2016.10.003 – volume: 130 start-page: 105820 year: 2022 ident: CR36 article-title: Bioconvection and nonlinear thermal extrusion in development ofchemically reactive sutterby nano-material due to gyrotactic microorganisms publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2021.105820 – volume: 67 start-page: 350 issue: 3 year: 1945 end-page: 362 ident: CR1 article-title: A mathematical theory of dilatancy publication-title: Am J Math doi: 10.2307/2371950 – volume: 86 start-page: 174 year: 2015 end-page: 182 ident: CR28 article-title: Unsteady mixed nano-bioconvection flow in a horizontal channel with its upper plate expanding or contracting publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.03.003 – volume: 139 start-page: 106454 year: 2022 ident: CR35 article-title: Thermal radiation impact on bioconvection flow of nano-enhanced phase change materials and oxytactic microorganisms inside a vertical wavy porous cavity publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2022.106454 – volume: 26 start-page: 378 issue: 4 year: 2021 end-page: 388 ident: CR41 article-title: Darcy-forchheimer flow of magnetized bioconvective williamson nanofluid with variable thermal conductivity publication-title: J Magn doi: 10.4283/JMAG.2021.26.4.378 – volume: 37 start-page: 1421 issue: 10 year: 2010 end-page: 1425 ident: CR26 article-title: The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2010.08.015 – volume: 50 start-page: 2064 issue: 3 year: 2021 end-page: 2089 ident: CR17 article-title: Magnetohydrodynamic mixed convective peristaltic slip transport of carbon nanotubes dispersed in water through an inclined channel with Joule heating publication-title: Heat Transf doi: 10.1002/htj.21969 – volume: 9 start-page: 2139 issue: 17 year: 2021 ident: CR10 article-title: Bioconvection Reiner-Rivlin nanofluid flow between rotating circular plates with induced magnetic effects, activation energy and squeezing phenomena publication-title: Math Internet – volume: 126 start-page: 974 year: 2018 end-page: 979 ident: CR18 article-title: Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.05.093 – volume: 156 start-page: 107587 year: 2024 ident: CR34 article-title: Nonlinear mixed convection and gyerotactic-microorganism features in electro-osmotic peristaltic motion of third order material publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2024.107587 – volume: 42 start-page: 2935 issue: 15 year: 1999 end-page: 2942 ident: CR3 article-title: Heat transfer behavior of a temperature-dependent non-Newtonian fluid with Reiner-Rivlin model in a 2: 1 rectangular duct publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(98)00358-5 – year: 2023 ident: CR19 article-title: Ashwinkumar GP (2023) A theoretical investigation on heat transport feature of Sutterby nanofluid flow above a conical surface publication-title: Int J Modelling Simul doi: 10.1080/02286203.2023.2270673 – volume: 96 start-page: 170 issue: 4 year: 2022 ident: CR25 article-title: Unsteady three-dimensional magnetohydrodynamics flow of nanofluids over a decelerated rotating disk with uniform suction publication-title: Pramana doi: 10.1007/s12043-022-02404-0 – volume: 116 start-page: 104643 year: 2020 ident: CR11 article-title: Numerical study for slip flow of Reiner-Rivlin nanofluid due to a rotating disk publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2020.104643 – volume: 38 start-page: 101596 year: 2023 ident: CR39 article-title: Significance of bioconvection analysis for thermally stratified 3D Cross nanofluid flow with gyrotactic microorganisms and activation energy aspects publication-title: Therm Sci Eng Prog doi: 10.1016/j.tsep.2022.101596 – volume: 13 start-page: 1741 issue: 4 year: 2023 end-page: 1752 ident: CR24 article-title: Significance of Interfacial Nanolayer and Mixed Convection in Radiative Casson Hybrid Nanofluid Flow by Permeable Rotating Cone publication-title: BioNanoScience doi: 10.1007/s12668-023-01191-1 – volume: 31 start-page: 084703 issue: 8 year: 2022 ident: CR23 article-title: Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis publication-title: Chin Phys B doi: 10.1088/1674-1056/ac4236 – volume: 73 start-page: 569 year: 2021 end-page: 580 ident: CR32 article-title: Study of radiative Reiner-Philippoff nanofluid model with gyrotactic microorganisms and activation energy: a Cattaneo-Christov double diffusion (CCDD) model analysis publication-title: Chin J Phys doi: 10.1016/j.cjph.2021.08.003 – volume: 19 start-page: 522 issue: 4 year: 2022 end-page: 531 ident: CR9 article-title: Analysis of Hiemenz flow of Reiner-Rivlin fluid over a stretching/shrinking sheet publication-title: World J Eng doi: 10.1108/WJE-11-2020-0575 – volume: 127 start-page: 105530 year: 2021 ident: CR33 article-title: Non-linear radiative bioconvection flow of cross nano-material with gyrotatic microorganisms and activation energy publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2021.105530 – ident: 13645_CR14 – volume: 112 start-page: 68 year: 2017 ident: 13645_CR37 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2016.10.003 – volume: 96 start-page: 170 issue: 4 year: 2022 ident: 13645_CR25 publication-title: Pramana doi: 10.1007/s12043-022-02404-0 – volume: 27 start-page: 2259 issue: 10 year: 2017 ident: 13645_CR15 publication-title: Int J Numer Meth Heat Fluid Flow doi: 10.1108/HFF-09-2016-0358 – volume: 166 start-page: 112957 year: 2023 ident: 13645_CR38 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2022.112957 – volume: 130 start-page: 105820 year: 2022 ident: 13645_CR36 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2021.105820 – volume: 116 start-page: 104643 year: 2020 ident: 13645_CR11 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2020.104643 – volume: 156 start-page: 107587 year: 2024 ident: 13645_CR34 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2024.107587 – volume: 26 start-page: 378 issue: 4 year: 2021 ident: 13645_CR41 publication-title: J Magn doi: 10.4283/JMAG.2021.26.4.378 – volume: 30 start-page: 4765 issue: 11 year: 2020 ident: 13645_CR22 publication-title: Int J Numer Meth Heat Fluid Flow doi: 10.1108/HFF-12-2019-0925 – volume: 39 start-page: 336 issue: 3 year: 2012 ident: 13645_CR5 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2011.12.007 – volume: 11 start-page: 15859 issue: 1 year: 2021 ident: 13645_CR7 publication-title: Sci Rep doi: 10.1038/s41598-021-95448-y – volume: 95 start-page: 88 year: 2014 ident: 13645_CR27 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2014.02.026 – volume: 13 start-page: 1741 issue: 4 year: 2023 ident: 13645_CR24 publication-title: BioNanoScience doi: 10.1007/s12668-023-01191-1 – year: 2023 ident: 13645_CR19 publication-title: Int J Modelling Simul doi: 10.1080/02286203.2023.2270673 – volume: 37 start-page: 1421 issue: 10 year: 2010 ident: 13645_CR26 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2010.08.015 – volume: 42 start-page: 2935 issue: 15 year: 1999 ident: 13645_CR3 publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(98)00358-5 – volume: 137 start-page: 106297 year: 2022 ident: 13645_CR12 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2022.106297 – volume: 66 start-page: 257 year: 2023 ident: 13645_CR8 publication-title: Alex Eng J doi: 10.1016/j.aej.2022.11.027 – volume: 130 start-page: 105797 year: 2022 ident: 13645_CR13 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2021.105797 – volume: 9 start-page: 2139 issue: 17 year: 2021 ident: 13645_CR10 publication-title: Math Internet – volume: 74 start-page: 1 year: 2023 ident: 13645_CR43 publication-title: Alex Eng J doi: 10.1016/j.aej.2023.05.017 – volume: 73 start-page: 569 year: 2021 ident: 13645_CR32 publication-title: Chin J Phys doi: 10.1016/j.cjph.2021.08.003 – volume: 44 start-page: 1904 issue: 1 year: 2023 ident: 13645_CR20 publication-title: Int J Ambient Energy doi: 10.1080/01430750.2023.2198531 – volume: 59 start-page: 1172 issue: 10–14 year: 2024 ident: 13645_CR42 publication-title: Sep Sci Technol doi: 10.1080/01496395.2024.2366889 – volume: 133 start-page: 1 issue: 1 year: 2006 ident: 13645_CR4 publication-title: J Nonnewton Fluid Mech doi: 10.1016/j.jnnfm.2005.10.001 – volume: 67 start-page: 350 issue: 3 year: 1945 ident: 13645_CR1 publication-title: Am J Math doi: 10.2307/2371950 – volume: 111 start-page: 1001 year: 2017 ident: 13645_CR29 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.04.074 – volume: 7 start-page: 150 issue: 2 year: 2023 ident: 13645_CR16 publication-title: Fratcal Fract doi: 10.3390/fractalfract7020150 – volume: 28 year: 2021 ident: 13645_CR21 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2021.101451 – volume: 86 start-page: 174 year: 2015 ident: 13645_CR28 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.03.003 – volume: 160 start-page: 611 issue: 4070 year: 1947 ident: 13645_CR2 publication-title: Nature doi: 10.1038/160611a0 – volume: 19 start-page: 522 issue: 4 year: 2022 ident: 13645_CR9 publication-title: World J Eng doi: 10.1108/WJE-11-2020-0575 – volume: 139 start-page: 106454 year: 2022 ident: 13645_CR35 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2022.106454 – volume: 127 start-page: 105530 year: 2021 ident: 13645_CR33 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2021.105530 – volume: 12 start-page: 168781402092489 issue: 9 year: 2020 ident: 13645_CR40 publication-title: Adv Mech Eng doi: 10.1177/1687814020924894 – volume: 123 start-page: 979 year: 2018 ident: 13645_CR6 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.03.040 – volume: 50 start-page: 2064 issue: 3 year: 2021 ident: 13645_CR17 publication-title: Heat Transf doi: 10.1002/htj.21969 – volume: 126 start-page: 974 year: 2018 ident: 13645_CR18 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.05.093 – volume: 27 start-page: 101305 year: 2021 ident: 13645_CR31 publication-title: Case Stud in Therm Eng doi: 10.1016/j.csite.2021.101305 – volume: 31 start-page: 084703 issue: 8 year: 2022 ident: 13645_CR23 publication-title: Chin Phys B doi: 10.1088/1674-1056/ac4236 – volume: 99 start-page: 9 year: 2019 ident: 13645_CR30 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2019.02.035 – volume: 38 start-page: 101596 year: 2023 ident: 13645_CR39 publication-title: Therm Sci Eng Prog doi: 10.1016/j.tsep.2022.101596 |
SSID | ssj0009901 |
Score | 2.4313748 |
Snippet | Bioconvection in nanofluids refers to the sensation where biological microorganisms, such as bacteria or algae, interact with nanoparticles suspended in a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13117 |
SubjectTerms | Analytical Chemistry Biological effects Chemistry Chemistry and Materials Science Environmental engineering Fluid flow Hartmann number Heat flux Heat transfer Heat transmission Incompressible flow Inorganic Chemistry Mass transfer Measurement Science and Instrumentation Microorganisms Nanofluids Nonlinear differential equations Ohmic dissipation Ordinary differential equations Partial differential equations Physical Chemistry Polymer Sciences Prandtl number Resistance heating Runge-Kutta method Thermal radiation Thermal simulation |
Title | Numerical simulation for thermal transport in the chemically reactive flow of bioconvective Reiner-Rivlin nanofluid with magnetic field |
URI | https://link.springer.com/article/10.1007/s10973-024-13645-z https://www.proquest.com/docview/3133718045 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfQifuJ0jhy8aWH9StvjNjaH4g7DwTyVJE2k0LXiOsX9A_7bvqStVVFBeiikaQ55Ly-_l5f3ewidMwtghUm7RldScFC4BDtoO8LwIikC6nmCaCam2wkZz5zruTsvk8KW1W33KiSpLfWnZLfAUzFHxzBV7MxYb6Kmq3x30OKZ1aupdoNu4WaBDii68zJV5ucxvm5HNcb8FhbVu81oF-2UMBH3CrnuoQ2R7qOtQVWd7QC9TVZFrCXBy3hR1uDCgECxQnQLaM4r2nIcp6oR85IbIHnFgBS1ncMyyV5wJjGLM33_vGidCpUSaEzjZ5gonNI0k8kqjrA6tMUL-pCqzEesL78dotloeDcYG2VRBYPDassNZkvu-w6lHvfBkSbwgDzAyAFupMymvuSMEeExEkErp9wMuO1Ll1uRxahP7CPUSLNUHCMsJDcFI1JS4jqcWswNQC8pC1wuXSLsFjKruQ15yTiuCl8kYc2VrOQRgjxCLY9w3UIXH_88Fnwbf_ZuVyILy7W3DG1wu2HHBazaQpeVGOvPv4928r_up2jb0pqkzmPaqJE_rcQZIJScdVCzN-r3J-p9dX8z7GgFfQdAsuXL |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDGVBPEWhgAc2iNS8nGSsKqoCbYeqlbpFtmOjSGmCaAqif4C_zdlJCCBAQtkujofc-fyd7-4zQpfMAlhh0o7RkRQCFC7BD9qOMLxIioB6niCaiWk0JoOZczd352VT2LKqdq9SktpTf2p2CzyVc3QMU-XOjPUm2gIw4KtCrpnVral2g04RZoENKLrzslXm5zm-bkc1xvyWFtW7TX8X7ZQwEXcLve6hDZHuo2avup3tAL2NV0WuJcHLeFHewYUBgWKF6BYgzivachynSoh5yQ2QvGJAitrPYZlkLziTmMWZrj8vpBOhWgKNSfwMPwqnNM1ksoojrA5t8YI-pKrzEevit0M0699MewOjvFTB4LDacoPZkvu-Q6nHfQikCTygD3BygBsps6kvOWNEeIxEIOWUmwG3felyK7IY9Yl9hBpplopjhIXkpmBESkpch1OLuQHYJWWBy6VLhN1CZvVvQ14yjquLL5Kw5kpW-ghBH6HWR7huoauPbx4Lvo0_R7crlYXl2luGNoTdsOMCVm2h60qN9evfZzv53_AL1BxMR8NweDu-P0XblrYqdTbTRo38aSXOAK3k7Fwb5zvVTOWu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSMAF8RSDATlwg4r1lbbHaTCN14QmJu1WJWmCKnXtxDoQ-wP8bZy0ZQMBEurNTXOIXedzHH9G6JRZACtM2jSakkKAwiX4QdsRhhdJEVDPE0QzMd33SHfg3Azd4UIVv77tXqUki5oGxdKU5hfjSF4sFL4Fnso_Ooap8mjGbBmtgDs2lV0PrNacdjdoFiEX2IOiPi_LZn6e4-vWNMeb31KkeufpbKKNEjLiVqHjLbQk0m201q46te2g9960yLskeBKPyn5cGNAoVuhuBOK8ojDHcaqEmJc8AckbBtSofR6WSfaKM4lZnOm76IW0L1R5oNGPX2DRcErTTCbTOMLqABeP6FOqqiCxvgi3iwadq8d21ygbLBgclio3mC257zuUetyHoJrAA7oBhwcYkjKb-pIzRoTHSARSTrkZcNuXLrcii1Gf2Huolmap2EdYSG4KRqSkxHU4tZgbgI1SFrhcukTYdWRWaxvykn1cNcFIwjlvstJHCPoItT7CWR2dfX4zLrg3_hzdqFQWlv_hJLQhBIfdF3BrHZ1Xapy__n22g_8NP0GrD5ed8O66d3uI1i1tVOqYpoFq-fNUHAFwydmxts0Pzbfp6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+for+thermal+transport+in+the+chemically+reactive+flow+of+bioconvective+Reiner-Rivlin+nanofluid+with+magnetic+field&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Haq+Fazal&rft.au=Hussain+Arshad&rft.au=Ghazwani+Hassan+Ali&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=149&rft.issue=22&rft.spage=13117&rft.epage=13128&rft_id=info:doi/10.1007%2Fs10973-024-13645-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |