Numerical simulation for thermal transport in the chemically reactive flow of bioconvective Reiner-Rivlin nanofluid with magnetic field

Bioconvection in nanofluids refers to the sensation where biological microorganisms, such as bacteria or algae, interact with nanoparticles suspended in a fluid, resulting in convective motion. This phenomenon has garnered interest due to its vital applications in diverse fields such as biotechnolog...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 149; no. 22; pp. 13117 - 13128
Main Authors Haq, Fazal, Hussain, Arshad, Ghazwani, Hassan Ali
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bioconvection in nanofluids refers to the sensation where biological microorganisms, such as bacteria or algae, interact with nanoparticles suspended in a fluid, resulting in convective motion. This phenomenon has garnered interest due to its vital applications in diverse fields such as biotechnology, nanotechnology, and environmental engineering. This paper deals with the magneto-hydrodynamic (MHD) Reiner-Rivlin nanofluid flow by a stretchable porous sheet in the manifestation of the gyrotactic type of microorganisms. The Reiner-Rivlin nanofluid is considered to be incompressible and electrically conducting. Energy relation is developed by accounting the effects of dissipative forces, Joule heating, and radiative heat flux. Brownian dispersion and thermophoretic characteristics of solid tiny particles are accounted. Furthermore, chemical responses with modified Arrhenius kinetics are reflected in mass concentration relation. The acquired system of highly nonlinear partial differential equations (PDEs) is reduced into ordinary differential equations (ODEs) through appropriate transformations and then elucidated numerically via the shooting method (Runge–Kutta–Fehlberg). The study investigates the impact of various factors on fluid velocity, thermal field, heat and mass transfer rates, mass concentration, and microorganism motile density through graphs and tables. It is observed that Reiner-Rivlin fluid velocity decays versus Hartmann number and porosity constant, whereas the reverse scenario is observed for fluid material constant. Thermal field upsurges due to Hartmann and Eckert numbers. Moreover, the intensity of heat transfer escalates for higher Prandtl number and thermal radiation parameters.
AbstractList Bioconvection in nanofluids refers to the sensation where biological microorganisms, such as bacteria or algae, interact with nanoparticles suspended in a fluid, resulting in convective motion. This phenomenon has garnered interest due to its vital applications in diverse fields such as biotechnology, nanotechnology, and environmental engineering. This paper deals with the magneto-hydrodynamic (MHD) Reiner-Rivlin nanofluid flow by a stretchable porous sheet in the manifestation of the gyrotactic type of microorganisms. The Reiner-Rivlin nanofluid is considered to be incompressible and electrically conducting. Energy relation is developed by accounting the effects of dissipative forces, Joule heating, and radiative heat flux. Brownian dispersion and thermophoretic characteristics of solid tiny particles are accounted. Furthermore, chemical responses with modified Arrhenius kinetics are reflected in mass concentration relation. The acquired system of highly nonlinear partial differential equations (PDEs) is reduced into ordinary differential equations (ODEs) through appropriate transformations and then elucidated numerically via the shooting method (Runge–Kutta–Fehlberg). The study investigates the impact of various factors on fluid velocity, thermal field, heat and mass transfer rates, mass concentration, and microorganism motile density through graphs and tables. It is observed that Reiner-Rivlin fluid velocity decays versus Hartmann number and porosity constant, whereas the reverse scenario is observed for fluid material constant. Thermal field upsurges due to Hartmann and Eckert numbers. Moreover, the intensity of heat transfer escalates for higher Prandtl number and thermal radiation parameters.
Author Haq, Fazal
Hussain, Arshad
Ghazwani, Hassan Ali
Author_xml – sequence: 1
  givenname: Fazal
  orcidid: 0000-0002-9860-5707
  surname: Haq
  fullname: Haq, Fazal
  email: fazal.haq@kiu.edu.pk
  organization: Department of Mathematics, Karakoram International University Main Campus
– sequence: 2
  givenname: Arshad
  surname: Hussain
  fullname: Hussain, Arshad
  organization: Karakoram International University, Hunza Campus
– sequence: 3
  givenname: Hassan Ali
  surname: Ghazwani
  fullname: Ghazwani, Hassan Ali
  organization: Department of Mechanical Engineering, College of Engineering and Computer Science, Jazan University
BookMark eNp9kMtKxDAUhoMoeH0BVwHX1aSZtulSxBuIwqDrkKYnTiRNxiQdcV7A1zYzFQQXkkUOP_-XE75DtOu8A4ROKTmnhDQXkZK2YQUpZwVl9awq1jvogFacF2Vb1rt5ZnmuaUX20WGMb4SQtiX0AH09jgMEo6TF0Qyjlcl4h7UPOC0gDDlOQbq49CFh4zYhVgsYNoD9xAGkSmYFWFv_gb3GnfHKuxVM6RyMg1DMzcpm1knntR1Njz9MWuBBvjpIRmFtwPbHaE9LG-Hk5z5CLzfXz1d3xcPT7f3V5UOhGG1T0TGtOJ9J2SgOHavzgbrpeyAlkR2TXKuuq6Hp6j6nSiraKsZ1pcq-7CSv2RE6m95dBv8-QkzizY_B5ZWCUcYaysmsyi0-tVTwMQbQQpm0VZNtGCsoERvtYtIusnax1S7WGS3_oMtgBhk-_4fYBMVcdq8Qfn_1D_UNEXydAA
CitedBy_id crossref_primary_10_1016_j_molliq_2025_127421
crossref_primary_10_1016_j_jrras_2025_101415
Cites_doi 10.1016/j.icheatmasstransfer.2011.12.007
10.1038/s41598-021-95448-y
10.3390/fractalfract7020150
10.1016/j.ijheatmasstransfer.2018.03.040
10.1016/j.icheatmasstransfer.2021.105797
10.1108/HFF-12-2019-0925
10.1016/j.jnnfm.2005.10.001
10.1016/j.aej.2022.11.027
10.1016/j.csite.2021.101451
10.1038/160611a0
10.1016/j.jtice.2019.02.035
10.1016/j.csite.2021.101305
10.1080/01496395.2024.2366889
10.1080/01430750.2023.2198531
10.1108/HFF-09-2016-0358
10.1016/j.chaos.2022.112957
10.1016/j.aej.2023.05.017
10.1016/j.compfluid.2014.02.026
10.1016/j.icheatmasstransfer.2022.106297
10.1177/1687814020924894
10.1016/j.ijheatmasstransfer.2017.04.074
10.1016/j.ijthermalsci.2016.10.003
10.1016/j.icheatmasstransfer.2021.105820
10.2307/2371950
10.1016/j.ijheatmasstransfer.2015.03.003
10.1016/j.icheatmasstransfer.2022.106454
10.4283/JMAG.2021.26.4.378
10.1016/j.icheatmasstransfer.2010.08.015
10.1002/htj.21969
10.1016/j.ijheatmasstransfer.2018.05.093
10.1016/j.icheatmasstransfer.2024.107587
10.1016/S0017-9310(98)00358-5
10.1080/02286203.2023.2270673
10.1007/s12043-022-02404-0
10.1016/j.icheatmasstransfer.2020.104643
10.1016/j.tsep.2022.101596
10.1007/s12668-023-01191-1
10.1088/1674-1056/ac4236
10.1016/j.cjph.2021.08.003
10.1108/WJE-11-2020-0575
10.1016/j.icheatmasstransfer.2021.105530
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10973-024-13645-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 13128
ExternalDocumentID 10_1007_s10973_024_13645_z
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZE2
ZMTXR
~02
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-b3fc884aa7c8eb36363e67dde020ab3a8fcbb6e7b6d7ddcac19c38f5c2d2ba863
IEDL.DBID U2A
ISSN 1388-6150
IngestDate Fri Jul 25 10:57:46 EDT 2025
Tue Jul 01 02:44:54 EDT 2025
Thu Apr 24 23:07:47 EDT 2025
Fri Feb 21 02:38:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Bioconvection
Viscous dissipation
Reiner-Rivlin fluid
Activation energy
Joule heating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b3fc884aa7c8eb36363e67dde020ab3a8fcbb6e7b6d7ddcac19c38f5c2d2ba863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9860-5707
PQID 3133718045
PQPubID 2043843
PageCount 12
ParticipantIDs proquest_journals_3133718045
crossref_citationtrail_10_1007_s10973_024_13645_z
crossref_primary_10_1007_s10973_024_13645_z
springer_journals_10_1007_s10973_024_13645_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Sahoo, Van Gorder, Andersson (CR5) 2012; 39
Ijaz Khan, Al-Khaled, Khan, Muhammad, Waqas, El-Refaey (CR21) 2021; 28
Arain, Bhatti, Zeeshan, Alzahrani (CR10) 2021; 9
Reiner (CR1) 1945; 67
Batool, Haq, Fatima, Ali (CR24) 2023; 13
Azam (CR36) 2022; 130
Shin, Ahn, Cho, Sohn (CR3) 1999; 42
Xu, Khan, Al-Khaled, Khan, Alzahrani, Khan (CR31) 2021; 27
Khan, Hayat, Alsaedi (CR12) 2022; 137
Azam, Xu, Mabood, Khan (CR33) 2021; 127
CR14
Mutuku, Makinde (CR27) 2014; 95
Caswell (CR4) 2006; 133
Khan, Hayat, Alsaedi (CR8) 2023; 66
Turkyilmazoglu (CR18) 2018; 126
Raza Shah Naqvi, Kim, Muhammad, Mallawi, Ullah (CR11) 2020; 116
Haq, Saleem, El-Zahar, Gouadria, Ijaz (CR41) 2021; 26
Xun, Zhao, Zheng, Zhang (CR29) 2017; 111
Anjum, Khan, Azam, Ali, Waqas, Hussain (CR39) 2023; 38
Hayat, Farooq, Alsaedi, Ahmad (CR37) 2017; 112
Anwar, Tahir, Kumam, Ahmed, Thounthong (CR17) 2021; 50
Lv, Gul, Ramzan, Chung, Bilal (CR7) 2021; 11
Haq, Khan, Khan, Hayat (CR40) 2020; 12
Tabassum, Mustafa (CR6) 2018; 123
Haq, Khan, Khan, Abualnaja, El-Shorbagy (CR23) 2022; 31
Rashad, Nabwey (CR30) 2019; 99
Kuznetsov (CR26) 2010; 37
Raees, Xu, Liao (CR28) 2015; 86
Turkyilmazoglu (CR15) 2017; 27
Sandeep, Reddy, Babu, Rathore (CR19) 2023
Rivlin (CR2) 1947; 160
Li, Waqas, Al-Khaled, Hussain, Khan, Sun (CR32) 2021; 73
Farooq, Ijaz, Alotaibi (CR34) 2024; 156
Sulochana, Savita (CR20) 2023; 44
Khan, Hayat, Alsaedi (CR13) 2022; 130
Mustafa (CR22) 2020; 30
Muhammad, Anwar, AsifaYavuz (CR16) 2023; 7
Sarkar, Sarkar, Sahoo (CR9) 2022; 19
Hussain, Raizah, Aly (CR35) 2022; 139
Khan, Adnan, Riaz, Awais, Bhatti (CR42) 2024; 59
Avramenko, Kovetska, Shevchuk (CR38) 2023; 166
Alsaedi, Razaq, Hayat, Khan (CR43) 2023; 74
Rahman, Sharif, Turkyilmazoglu, Siddiqui (CR25) 2022; 96
13645_CR14
SA Khan (13645_CR13) 2022; 130
WN Mutuku (13645_CR27) 2014; 95
S Hussain (13645_CR35) 2022; 139
MB Arain (13645_CR10) 2021; 9
SU Khan (13645_CR42) 2024; 59
A Alsaedi (13645_CR43) 2023; 74
N Sandeep (13645_CR19) 2023
B Caswell (13645_CR4) 2006; 133
F Haq (13645_CR41) 2021; 26
SA Khan (13645_CR8) 2023; 66
S Xun (13645_CR29) 2017; 111
A Raees (13645_CR28) 2015; 86
M Tabassum (13645_CR6) 2018; 123
S Muhammad (13645_CR16) 2023; 7
GM Sarkar (13645_CR9) 2022; 19
C Sulochana (13645_CR20) 2023; 44
T Hayat (13645_CR37) 2017; 112
AV Kuznetsov (13645_CR26) 2010; 37
Y-X Li (13645_CR32) 2021; 73
SA Khan (13645_CR12) 2022; 137
SM Raza Shah Naqvi (13645_CR11) 2020; 116
M Azam (13645_CR33) 2021; 127
AA Avramenko (13645_CR38) 2023; 166
T Mustafa (13645_CR22) 2020; 30
Y-J Xu (13645_CR31) 2021; 27
M Turkyilmazoglu (13645_CR15) 2017; 27
F Haq (13645_CR40) 2020; 12
S Shin (13645_CR3) 1999; 42
AM Rashad (13645_CR30) 2019; 99
B Sahoo (13645_CR5) 2012; 39
M Turkyilmazoglu (13645_CR18) 2018; 126
N Anjum (13645_CR39) 2023; 38
M Rahman (13645_CR25) 2022; 96
M Azam (13645_CR36) 2022; 130
K Batool (13645_CR24) 2023; 13
T Anwar (13645_CR17) 2021; 50
S Farooq (13645_CR34) 2024; 156
F Haq (13645_CR23) 2022; 31
M Ijaz Khan (13645_CR21) 2021; 28
M Reiner (13645_CR1) 1945; 67
Y-P Lv (13645_CR7) 2021; 11
RS Rivlin (13645_CR2) 1947; 160
References_xml – volume: 39
  start-page: 336
  issue: 3
  year: 2012
  end-page: 342
  ident: CR5
  article-title: Steady revolving flow and heat transfer of a non-Newtonian Reiner-Rivlin fluid
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2011.12.007
– volume: 11
  start-page: 15859
  issue: 1
  year: 2021
  ident: CR7
  article-title: Bioconvective Reiner-Rivlin nanofluid flow over a rotating disk with Cattaneo-Christov flow heat flux and entropy generation analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95448-y
– volume: 7
  start-page: 150
  issue: 2
  year: 2023
  ident: CR16
  article-title: Comprehensive investigation of thermal and flow features of alloy based nanofluid considering shape and newtonian heating effects via new fractional approach
  publication-title: Fratcal Fract
  doi: 10.3390/fractalfract7020150
– volume: 123
  start-page: 979
  year: 2018
  end-page: 987
  ident: CR6
  article-title: A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.03.040
– volume: 130
  start-page: 105797
  year: 2022
  ident: CR13
  article-title: Irreversibility analysis in hydromagnetic Reiner-Rivlin nanofluid with quartic autocatalytic chemical reactions
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2021.105797
– volume: 30
  start-page: 4765
  issue: 11
  year: 2020
  end-page: 4774
  ident: CR22
  article-title: Eyring-Powell fluid flow through a circular pipe and heat transfer: full solutions
  publication-title: Int J Numer Meth Heat Fluid Flow
  doi: 10.1108/HFF-12-2019-0925
– volume: 133
  start-page: 1
  issue: 1
  year: 2006
  end-page: 13
  ident: CR4
  article-title: Non-Newtonian flow at lowest order, the role of the Reiner-Rivlin stress
  publication-title: J Nonnewton Fluid Mech
  doi: 10.1016/j.jnnfm.2005.10.001
– volume: 66
  start-page: 257
  year: 2023
  end-page: 268
  ident: CR8
  article-title: Entropy generation in chemically reactive flow of Reiner-Rivlin liquid conveying tiny particles considering thermal radiation
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2022.11.027
– volume: 28
  year: 2021
  ident: CR21
  article-title: Dynamic consequences of nonlinear radiative heat flux and heat generation/absorption effects in cross-diffusion flow of generalized micropolar nanofluid
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.101451
– volume: 160
  start-page: 611
  issue: 4070
  year: 1947
  ident: CR2
  article-title: Hydrodynamics of Non-Newtonian fluids
  publication-title: Nature
  doi: 10.1038/160611a0
– volume: 99
  start-page: 9
  year: 2019
  end-page: 17
  ident: CR30
  article-title: Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective boundary condition
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2019.02.035
– volume: 27
  start-page: 101305
  year: 2021
  ident: CR31
  article-title: Effectiveness of induced magnetic force and non-uniform heat source/sink features for enhancing the thermal efficiency of third grade nanofluid containing microorganisms
  publication-title: Case Stud in Therm Eng
  doi: 10.1016/j.csite.2021.101305
– volume: 59
  start-page: 1172
  issue: 10–14
  year: 2024
  end-page: 1182
  ident: CR42
  article-title: Insights into the impact of Cattaneo-Christov heat flux on bioconvective flow in magnetized Reiner-Rivlin nanofluids
  publication-title: Sep Sci Technol
  doi: 10.1080/01496395.2024.2366889
– ident: CR14
– volume: 44
  start-page: 1904
  issue: 1
  year: 2023
  end-page: 1913
  ident: CR20
  article-title: Joule heating effect on the MHD flow of tangent hyperbolic mixed nanofluid embedded with MgO and CuO nanoparticles
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2023.2198531
– volume: 27
  start-page: 2259
  issue: 10
  year: 2017
  end-page: 2267
  ident: CR15
  article-title: Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces
  publication-title: Int J Numer Meth Heat Fluid Flow
  doi: 10.1108/HFF-09-2016-0358
– volume: 166
  start-page: 112957
  year: 2023
  ident: CR38
  article-title: Lorenz approach for analysis of bioconvection instability of gyrotactic motile microorganisms
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2022.112957
– volume: 74
  start-page: 1
  year: 2023
  end-page: 19
  ident: CR43
  article-title: Modeling and simulation of Cattaneo-Christov fluxes in entropy induced flow through Reiner-Rivlin fluid conveying tiny particles
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2023.05.017
– volume: 95
  start-page: 88
  year: 2014
  end-page: 97
  ident: CR27
  article-title: Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2014.02.026
– volume: 137
  start-page: 106297
  year: 2022
  ident: CR12
  article-title: Simultaneous features of soret and dufour in entropy optimized flow of Reiner-Rivlin fluid considering thermal radiation
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106297
– volume: 12
  start-page: 1687814020924894
  issue: 9
  year: 2020
  ident: CR40
  article-title: Investigation of suspended nanoliquid flow of Eyring–Powell fluid with gyrotactic microorganisms and density number
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814020924894
– volume: 111
  start-page: 1001
  year: 2017
  end-page: 1006
  ident: CR29
  article-title: Bioconvection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.04.074
– volume: 112
  start-page: 68
  year: 2017
  end-page: 81
  ident: CR37
  article-title: Numerical study for soret and dufour effects on mixed convective peristalsis of Oldroyd 8-constants fluid
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2016.10.003
– volume: 130
  start-page: 105820
  year: 2022
  ident: CR36
  article-title: Bioconvection and nonlinear thermal extrusion in development ofchemically reactive sutterby nano-material due to gyrotactic microorganisms
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2021.105820
– volume: 67
  start-page: 350
  issue: 3
  year: 1945
  end-page: 362
  ident: CR1
  article-title: A mathematical theory of dilatancy
  publication-title: Am J Math
  doi: 10.2307/2371950
– volume: 86
  start-page: 174
  year: 2015
  end-page: 182
  ident: CR28
  article-title: Unsteady mixed nano-bioconvection flow in a horizontal channel with its upper plate expanding or contracting
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.03.003
– volume: 139
  start-page: 106454
  year: 2022
  ident: CR35
  article-title: Thermal radiation impact on bioconvection flow of nano-enhanced phase change materials and oxytactic microorganisms inside a vertical wavy porous cavity
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106454
– volume: 26
  start-page: 378
  issue: 4
  year: 2021
  end-page: 388
  ident: CR41
  article-title: Darcy-forchheimer flow of magnetized bioconvective williamson nanofluid with variable thermal conductivity
  publication-title: J Magn
  doi: 10.4283/JMAG.2021.26.4.378
– volume: 37
  start-page: 1421
  issue: 10
  year: 2010
  end-page: 1425
  ident: CR26
  article-title: The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2010.08.015
– volume: 50
  start-page: 2064
  issue: 3
  year: 2021
  end-page: 2089
  ident: CR17
  article-title: Magnetohydrodynamic mixed convective peristaltic slip transport of carbon nanotubes dispersed in water through an inclined channel with Joule heating
  publication-title: Heat Transf
  doi: 10.1002/htj.21969
– volume: 9
  start-page: 2139
  issue: 17
  year: 2021
  ident: CR10
  article-title: Bioconvection Reiner-Rivlin nanofluid flow between rotating circular plates with induced magnetic effects, activation energy and squeezing phenomena
  publication-title: Math Internet
– volume: 126
  start-page: 974
  year: 2018
  end-page: 979
  ident: CR18
  article-title: Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.05.093
– volume: 156
  start-page: 107587
  year: 2024
  ident: CR34
  article-title: Nonlinear mixed convection and gyerotactic-microorganism features in electro-osmotic peristaltic motion of third order material
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2024.107587
– volume: 42
  start-page: 2935
  issue: 15
  year: 1999
  end-page: 2942
  ident: CR3
  article-title: Heat transfer behavior of a temperature-dependent non-Newtonian fluid with Reiner-Rivlin model in a 2: 1 rectangular duct
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(98)00358-5
– year: 2023
  ident: CR19
  article-title: Ashwinkumar GP (2023) A theoretical investigation on heat transport feature of Sutterby nanofluid flow above a conical surface
  publication-title: Int J Modelling Simul
  doi: 10.1080/02286203.2023.2270673
– volume: 96
  start-page: 170
  issue: 4
  year: 2022
  ident: CR25
  article-title: Unsteady three-dimensional magnetohydrodynamics flow of nanofluids over a decelerated rotating disk with uniform suction
  publication-title: Pramana
  doi: 10.1007/s12043-022-02404-0
– volume: 116
  start-page: 104643
  year: 2020
  ident: CR11
  article-title: Numerical study for slip flow of Reiner-Rivlin nanofluid due to a rotating disk
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2020.104643
– volume: 38
  start-page: 101596
  year: 2023
  ident: CR39
  article-title: Significance of bioconvection analysis for thermally stratified 3D Cross nanofluid flow with gyrotactic microorganisms and activation energy aspects
  publication-title: Therm Sci Eng Prog
  doi: 10.1016/j.tsep.2022.101596
– volume: 13
  start-page: 1741
  issue: 4
  year: 2023
  end-page: 1752
  ident: CR24
  article-title: Significance of Interfacial Nanolayer and Mixed Convection in Radiative Casson Hybrid Nanofluid Flow by Permeable Rotating Cone
  publication-title: BioNanoScience
  doi: 10.1007/s12668-023-01191-1
– volume: 31
  start-page: 084703
  issue: 8
  year: 2022
  ident: CR23
  article-title: Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/ac4236
– volume: 73
  start-page: 569
  year: 2021
  end-page: 580
  ident: CR32
  article-title: Study of radiative Reiner-Philippoff nanofluid model with gyrotactic microorganisms and activation energy: a Cattaneo-Christov double diffusion (CCDD) model analysis
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2021.08.003
– volume: 19
  start-page: 522
  issue: 4
  year: 2022
  end-page: 531
  ident: CR9
  article-title: Analysis of Hiemenz flow of Reiner-Rivlin fluid over a stretching/shrinking sheet
  publication-title: World J Eng
  doi: 10.1108/WJE-11-2020-0575
– volume: 127
  start-page: 105530
  year: 2021
  ident: CR33
  article-title: Non-linear radiative bioconvection flow of cross nano-material with gyrotatic microorganisms and activation energy
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2021.105530
– ident: 13645_CR14
– volume: 112
  start-page: 68
  year: 2017
  ident: 13645_CR37
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2016.10.003
– volume: 96
  start-page: 170
  issue: 4
  year: 2022
  ident: 13645_CR25
  publication-title: Pramana
  doi: 10.1007/s12043-022-02404-0
– volume: 27
  start-page: 2259
  issue: 10
  year: 2017
  ident: 13645_CR15
  publication-title: Int J Numer Meth Heat Fluid Flow
  doi: 10.1108/HFF-09-2016-0358
– volume: 166
  start-page: 112957
  year: 2023
  ident: 13645_CR38
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2022.112957
– volume: 130
  start-page: 105820
  year: 2022
  ident: 13645_CR36
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2021.105820
– volume: 116
  start-page: 104643
  year: 2020
  ident: 13645_CR11
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2020.104643
– volume: 156
  start-page: 107587
  year: 2024
  ident: 13645_CR34
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2024.107587
– volume: 26
  start-page: 378
  issue: 4
  year: 2021
  ident: 13645_CR41
  publication-title: J Magn
  doi: 10.4283/JMAG.2021.26.4.378
– volume: 30
  start-page: 4765
  issue: 11
  year: 2020
  ident: 13645_CR22
  publication-title: Int J Numer Meth Heat Fluid Flow
  doi: 10.1108/HFF-12-2019-0925
– volume: 39
  start-page: 336
  issue: 3
  year: 2012
  ident: 13645_CR5
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2011.12.007
– volume: 11
  start-page: 15859
  issue: 1
  year: 2021
  ident: 13645_CR7
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95448-y
– volume: 95
  start-page: 88
  year: 2014
  ident: 13645_CR27
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2014.02.026
– volume: 13
  start-page: 1741
  issue: 4
  year: 2023
  ident: 13645_CR24
  publication-title: BioNanoScience
  doi: 10.1007/s12668-023-01191-1
– year: 2023
  ident: 13645_CR19
  publication-title: Int J Modelling Simul
  doi: 10.1080/02286203.2023.2270673
– volume: 37
  start-page: 1421
  issue: 10
  year: 2010
  ident: 13645_CR26
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2010.08.015
– volume: 42
  start-page: 2935
  issue: 15
  year: 1999
  ident: 13645_CR3
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(98)00358-5
– volume: 137
  start-page: 106297
  year: 2022
  ident: 13645_CR12
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106297
– volume: 66
  start-page: 257
  year: 2023
  ident: 13645_CR8
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2022.11.027
– volume: 130
  start-page: 105797
  year: 2022
  ident: 13645_CR13
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2021.105797
– volume: 9
  start-page: 2139
  issue: 17
  year: 2021
  ident: 13645_CR10
  publication-title: Math Internet
– volume: 74
  start-page: 1
  year: 2023
  ident: 13645_CR43
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2023.05.017
– volume: 73
  start-page: 569
  year: 2021
  ident: 13645_CR32
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2021.08.003
– volume: 44
  start-page: 1904
  issue: 1
  year: 2023
  ident: 13645_CR20
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2023.2198531
– volume: 59
  start-page: 1172
  issue: 10–14
  year: 2024
  ident: 13645_CR42
  publication-title: Sep Sci Technol
  doi: 10.1080/01496395.2024.2366889
– volume: 133
  start-page: 1
  issue: 1
  year: 2006
  ident: 13645_CR4
  publication-title: J Nonnewton Fluid Mech
  doi: 10.1016/j.jnnfm.2005.10.001
– volume: 67
  start-page: 350
  issue: 3
  year: 1945
  ident: 13645_CR1
  publication-title: Am J Math
  doi: 10.2307/2371950
– volume: 111
  start-page: 1001
  year: 2017
  ident: 13645_CR29
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.04.074
– volume: 7
  start-page: 150
  issue: 2
  year: 2023
  ident: 13645_CR16
  publication-title: Fratcal Fract
  doi: 10.3390/fractalfract7020150
– volume: 28
  year: 2021
  ident: 13645_CR21
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.101451
– volume: 86
  start-page: 174
  year: 2015
  ident: 13645_CR28
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.03.003
– volume: 160
  start-page: 611
  issue: 4070
  year: 1947
  ident: 13645_CR2
  publication-title: Nature
  doi: 10.1038/160611a0
– volume: 19
  start-page: 522
  issue: 4
  year: 2022
  ident: 13645_CR9
  publication-title: World J Eng
  doi: 10.1108/WJE-11-2020-0575
– volume: 139
  start-page: 106454
  year: 2022
  ident: 13645_CR35
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106454
– volume: 127
  start-page: 105530
  year: 2021
  ident: 13645_CR33
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2021.105530
– volume: 12
  start-page: 168781402092489
  issue: 9
  year: 2020
  ident: 13645_CR40
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814020924894
– volume: 123
  start-page: 979
  year: 2018
  ident: 13645_CR6
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.03.040
– volume: 50
  start-page: 2064
  issue: 3
  year: 2021
  ident: 13645_CR17
  publication-title: Heat Transf
  doi: 10.1002/htj.21969
– volume: 126
  start-page: 974
  year: 2018
  ident: 13645_CR18
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.05.093
– volume: 27
  start-page: 101305
  year: 2021
  ident: 13645_CR31
  publication-title: Case Stud in Therm Eng
  doi: 10.1016/j.csite.2021.101305
– volume: 31
  start-page: 084703
  issue: 8
  year: 2022
  ident: 13645_CR23
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/ac4236
– volume: 99
  start-page: 9
  year: 2019
  ident: 13645_CR30
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2019.02.035
– volume: 38
  start-page: 101596
  year: 2023
  ident: 13645_CR39
  publication-title: Therm Sci Eng Prog
  doi: 10.1016/j.tsep.2022.101596
SSID ssj0009901
Score 2.4313748
Snippet Bioconvection in nanofluids refers to the sensation where biological microorganisms, such as bacteria or algae, interact with nanoparticles suspended in a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13117
SubjectTerms Analytical Chemistry
Biological effects
Chemistry
Chemistry and Materials Science
Environmental engineering
Fluid flow
Hartmann number
Heat flux
Heat transfer
Heat transmission
Incompressible flow
Inorganic Chemistry
Mass transfer
Measurement Science and Instrumentation
Microorganisms
Nanofluids
Nonlinear differential equations
Ohmic dissipation
Ordinary differential equations
Partial differential equations
Physical Chemistry
Polymer Sciences
Prandtl number
Resistance heating
Runge-Kutta method
Thermal radiation
Thermal simulation
Title Numerical simulation for thermal transport in the chemically reactive flow of bioconvective Reiner-Rivlin nanofluid with magnetic field
URI https://link.springer.com/article/10.1007/s10973-024-13645-z
https://www.proquest.com/docview/3133718045
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfQifuJ0jhy8aWH9StvjNjaH4g7DwTyVJE2k0LXiOsX9A_7bvqStVVFBeiikaQ55Ly-_l5f3ewidMwtghUm7RldScFC4BDtoO8LwIikC6nmCaCam2wkZz5zruTsvk8KW1W33KiSpLfWnZLfAUzFHxzBV7MxYb6Kmq3x30OKZ1aupdoNu4WaBDii68zJV5ucxvm5HNcb8FhbVu81oF-2UMBH3CrnuoQ2R7qOtQVWd7QC9TVZFrCXBy3hR1uDCgECxQnQLaM4r2nIcp6oR85IbIHnFgBS1ncMyyV5wJjGLM33_vGidCpUSaEzjZ5gonNI0k8kqjrA6tMUL-pCqzEesL78dotloeDcYG2VRBYPDassNZkvu-w6lHvfBkSbwgDzAyAFupMymvuSMEeExEkErp9wMuO1Ll1uRxahP7CPUSLNUHCMsJDcFI1JS4jqcWswNQC8pC1wuXSLsFjKruQ15yTiuCl8kYc2VrOQRgjxCLY9w3UIXH_88Fnwbf_ZuVyILy7W3DG1wu2HHBazaQpeVGOvPv4928r_up2jb0pqkzmPaqJE_rcQZIJScdVCzN-r3J-p9dX8z7GgFfQdAsuXL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDGVBPEWhgAc2iNS8nGSsKqoCbYeqlbpFtmOjSGmCaAqif4C_zdlJCCBAQtkujofc-fyd7-4zQpfMAlhh0o7RkRQCFC7BD9qOMLxIioB6niCaiWk0JoOZczd352VT2LKqdq9SktpTf2p2CzyVc3QMU-XOjPUm2gIw4KtCrpnVral2g04RZoENKLrzslXm5zm-bkc1xvyWFtW7TX8X7ZQwEXcLve6hDZHuo2avup3tAL2NV0WuJcHLeFHewYUBgWKF6BYgzivachynSoh5yQ2QvGJAitrPYZlkLziTmMWZrj8vpBOhWgKNSfwMPwqnNM1ksoojrA5t8YI-pKrzEevit0M0699MewOjvFTB4LDacoPZkvu-Q6nHfQikCTygD3BygBsps6kvOWNEeIxEIOWUmwG3felyK7IY9Yl9hBpplopjhIXkpmBESkpch1OLuQHYJWWBy6VLhN1CZvVvQ14yjquLL5Kw5kpW-ghBH6HWR7huoauPbx4Lvo0_R7crlYXl2luGNoTdsOMCVm2h60qN9evfZzv53_AL1BxMR8NweDu-P0XblrYqdTbTRo38aSXOAK3k7Fwb5zvVTOWu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSMAF8RSDATlwg4r1lbbHaTCN14QmJu1WJWmCKnXtxDoQ-wP8bZy0ZQMBEurNTXOIXedzHH9G6JRZACtM2jSakkKAwiX4QdsRhhdJEVDPE0QzMd33SHfg3Azd4UIVv77tXqUki5oGxdKU5hfjSF4sFL4Fnso_Ooap8mjGbBmtgDs2lV0PrNacdjdoFiEX2IOiPi_LZn6e4-vWNMeb31KkeufpbKKNEjLiVqHjLbQk0m201q46te2g9960yLskeBKPyn5cGNAoVuhuBOK8ojDHcaqEmJc8AckbBtSofR6WSfaKM4lZnOm76IW0L1R5oNGPX2DRcErTTCbTOMLqABeP6FOqqiCxvgi3iwadq8d21ygbLBgclio3mC257zuUetyHoJrAA7oBhwcYkjKb-pIzRoTHSARSTrkZcNuXLrcii1Gf2Huolmap2EdYSG4KRqSkxHU4tZgbgI1SFrhcukTYdWRWaxvykn1cNcFIwjlvstJHCPoItT7CWR2dfX4zLrg3_hzdqFQWlv_hJLQhBIfdF3BrHZ1Xapy__n22g_8NP0GrD5ed8O66d3uI1i1tVOqYpoFq-fNUHAFwydmxts0Pzbfp6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+for+thermal+transport+in+the+chemically+reactive+flow+of+bioconvective+Reiner-Rivlin+nanofluid+with+magnetic+field&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Haq+Fazal&rft.au=Hussain+Arshad&rft.au=Ghazwani+Hassan+Ali&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=149&rft.issue=22&rft.spage=13117&rft.epage=13128&rft_id=info:doi/10.1007%2Fs10973-024-13645-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon