Investigation of accuracy of PPP and PPP-AR methods for direct georeferencing in UAV photogrammetry
Traditionally, photogrammetric product accuracy at cm level is obtained with Ground Control Points (GCP) in UAV photogrammetry. In recent years, UAVs equipped with Post-Processing Kinematic & Real-Time Kinematic (PPK/RTK) have become widespread. Accuracy in cm-level can be obtained with relative...
Saved in:
Published in | Earth science informatics Vol. 15; no. 4; pp. 2231 - 2238 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1865-0473 1865-0481 |
DOI | 10.1007/s12145-022-00868-7 |
Cover
Loading…
Abstract | Traditionally, photogrammetric product accuracy at cm level is obtained with Ground Control Points (GCP) in UAV photogrammetry. In recent years, UAVs equipped with Post-Processing Kinematic & Real-Time Kinematic (PPK/RTK) have become widespread. Accuracy in cm-level can be obtained with relative/differential positioning with these equipment. On the other hand, PPP (Precise Point Positioning), which is a special type of absolute positioning, is used effectively in many applications. In this study, performances of PPP and PPP-AR (PPP positioning with ambiguity resolution) solutions of kinematic GNSS data obtained from UAVs were investigated and compared with PPK solutions based on relative positioning. Especially, the performance and potential of the PPP-AR approach in terms of quality and accuracy of the products generated in UAV-photogrammetry has been demonstrated. Thus, this study can significantly contribute to subjects such as the production of fast, accurate, and cost-effective products with UAV photogrammetry, earth sciences applications, precise agriculture, sustainable forest management, forest planning. |
---|---|
AbstractList | Traditionally, photogrammetric product accuracy at cm level is obtained with Ground Control Points (GCP) in UAV photogrammetry. In recent years, UAVs equipped with Post-Processing Kinematic & Real-Time Kinematic (PPK/RTK) have become widespread. Accuracy in cm-level can be obtained with relative/differential positioning with these equipment. On the other hand, PPP (Precise Point Positioning), which is a special type of absolute positioning, is used effectively in many applications. In this study, performances of PPP and PPP-AR (PPP positioning with ambiguity resolution) solutions of kinematic GNSS data obtained from UAVs were investigated and compared with PPK solutions based on relative positioning. Especially, the performance and potential of the PPP-AR approach in terms of quality and accuracy of the products generated in UAV-photogrammetry has been demonstrated. Thus, this study can significantly contribute to subjects such as the production of fast, accurate, and cost-effective products with UAV photogrammetry, earth sciences applications, precise agriculture, sustainable forest management, forest planning. |
Author | Ocalan, Taylan Turk, Tarik Gurturk, Mert Tunalioglu, Nursu |
Author_xml | – sequence: 1 givenname: Taylan surname: Ocalan fullname: Ocalan, Taylan email: tocalan@yildiz.edu.tr organization: Civil Engineering Faculty, Department of Geomatics Engineering, Yildiz Technical University – sequence: 2 givenname: Tarik surname: Turk fullname: Turk, Tarik organization: Faculty of Engineering, Department of Geomatics Engineering, Sivas Cumhuriyet University – sequence: 3 givenname: Nursu surname: Tunalioglu fullname: Tunalioglu, Nursu organization: Civil Engineering Faculty, Department of Geomatics Engineering, Yildiz Technical University – sequence: 4 givenname: Mert surname: Gurturk fullname: Gurturk, Mert organization: Civil Engineering Faculty, Department of Geomatics Engineering, Yildiz Technical University |
BookMark | eNp9kE9LAzEQxYMoWGu_gKeA59VMss1mj6X4p1CwiPUastnsNtImNdkK_famXVHw0NMMw_vNvHlX6Nx5ZxC6AXIHhBT3ESjk44xQmhEiuMiKMzQAwdMoF3D-2xfsEo1itBVhQDmjVAyQnrkvEzvbqs56h32Dlda7oPT-0C8WC6xcfajZ5BVvTLfydcSND7i2wegOt8YH05hgnLauxdbh5eQdb1e-821Qm0SE_TW6aNQ6mtFPHaLl48Pb9DmbvzzNppN5phmUXVaxsihKLaoSmBGmaYgGaqgiNeOc6jEA4dCIvKJMM8I4pTXXnPO8EjmHCtgQ3fZ7t8F_7tJX8sPvgksnJS0YH5M8hzKpRK_SwceYzEttu-P3XVB2LYHIQ6qyT1WmVOUxVVkklP5Dt8FuVNifhlgPxSR2rQl_rk5Q3_mOio0 |
CitedBy_id | crossref_primary_10_1088_1361_6501_ad5ab9 crossref_primary_10_3390_drones7040265 crossref_primary_10_3390_drones9010015 crossref_primary_10_1080_00396265_2023_2259736 crossref_primary_10_1016_j_autcon_2023_105216 crossref_primary_10_3390_s23135858 crossref_primary_10_3390_rs15082034 crossref_primary_10_3390_drones8090456 crossref_primary_10_1007_s10291_023_01532_3 |
Cites_doi | 10.1016/j.measurement.2018.07.050 10.33012/2017.14909 10.1007/s10291-020-01079-7 10.1007/1345_2015_64 10.3390/rs11060721 10.1007/s00190-011-0537-0 10.1007/s00190-017-1081-3 10.3390/s19092189 10.1007/s10291-013-0345-5 10.1029/96JB03860 10.1016/j.isprsjprs.2015.04.002 10.5593/sgem2018/2.2/S08.018 10.1007/s00190-012-0559-2 10.15446/esrj.v20n4.59496 10.1007/PL00012883 10.1155/2016/1259893 10.1007/s10291-016-0532-2 10.1108/AEAT-05-2016-0078 10.1017/S0373463312000112 10.1007/s10291-021-01140-z 10.3390/electronics8010091 10.1111/phor.12259 10.1007/s00190-010-0371-9 10.5081/jgps.3.1.302 10.1007/s12517-018-4140-z 10.9733/JGG.2020R0008.T 10.1002/j.2161-4296.2009.tb01750.x 10.5194/esurf-7-807-2019 10.3390/rs13163266 10.1007/s00190-010-0424-0 10.1007/s00190-010-0399-x 10.1186/s41445-017-0009-9 10.1002/j.2161-4296.2002.tb00260.x 10.1017/S0373463311000361 10.1016/S1464-1895(01)00103-X 10.1007/s10291-015-0495-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7TG 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- KL. L7M L~C L~D M0N M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s12145-022-00868-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Agriculture |
EISSN | 1865-0481 |
EndPage | 2238 |
ExternalDocumentID | 10_1007_s12145_022_00868_7 |
GrantInformation_xml | – fundername: Scientific Research Project Fund of Sivas Cumhuriyet University grantid: M745; M745 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 1N0 203 2JN 2KG 2VQ 2~H 30V 3V. 4.4 406 408 40D 67M 67Z 6NX 88I 8FE 8FG 8FH 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD AYJHY AZQEC B-. BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXD IZQ J-C J0Z JBSCW JZLTJ K6V K7- KOV L8X LK5 LLZTM M0N M2P M4Y M7R MK~ NPVJJ NQJWS NU0 O9- O93 O9J P62 PCBAR PQQKQ PROAC PT4 Q2X QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TG 7XB 8AL 8FD 8FK ABRTQ JQ2 KL. L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-b39779c8b913e8eff0c12e2a0d3662c511061f84b23c303622d6c6664b8461b13 |
IEDL.DBID | U2A |
ISSN | 1865-0473 |
IngestDate | Sat Jul 26 01:23:04 EDT 2025 Thu Apr 24 22:58:32 EDT 2025 Tue Jul 01 01:18:02 EDT 2025 Fri Feb 21 02:44:44 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | PPP UAV Direct georeferencing Photogrammetry PPP-AR |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-b39779c8b913e8eff0c12e2a0d3662c511061f84b23c303622d6c6664b8461b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2736504419 |
PQPubID | 54345 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2736504419 crossref_citationtrail_10_1007_s12145_022_00868_7 crossref_primary_10_1007_s12145_022_00868_7 springer_journals_10_1007_s12145_022_00868_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221200 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Earth science informatics |
PublicationTitleAbbrev | Earth Sci Inform |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ZhangHAldana-JagueEClapuytFWilkenFVanackerVOostKVEvaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detectionEarth Surf Dyn20197380782710.5194/esurf-7-807-2019 HérouxPKoubaJGPS precise point positioning using IGS orbit productsPhys Chem Earth Part A2001266–857357810.1016/S1464-1895(01)00103-X TomaštíkJMokrošMSurovýPGrznárováAMerganičJUAV RTK/PPK Method-An Optimal Solution for Mapping Inaccessible Forested Areas?Remote Sens201911672110.3390/rs11060721 Seepersad GG (2018) Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution. York University, Toronto, Canada, PhD Dissertation, pp 185 Khodabandeh A, Teunissen PJG (2015) Single-epoch GNSS array integrity: an analytical study. In: VIII Hotine-Marussi symposium on mathematical geodesy. Cham: Springer, 263–272. https://doi.org/10.1007/1345_2015_64 LiPZhangXIntegrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioningGPS Solutions201418346147110.1007/s10291-013-0345-5 GaoYShenXA New Method for Carrier-Phase‐Based Precise Point PositioningNavigation200249210911610.1002/j.2161-4296.2002.tb00260.x LouYZhengFGuSWangCGuoHFengYMulti-GNSS precise point positioning with raw single-frequency and dual-frequency measurement modelsGPS Solutions201620484986210.1007/s10291-015-0495-8 Lipatnikov LA, Shevchuk SO (2019) Cost Effective Precise Positioning with GNSS, 82. Denmark: International Federation of Surveyors (FIG). https://www.fig.net/resources/publications/figpub/pub74/Figpub74.pdf Wu Q, Sun M, Zhou C, Zhang P (2019) Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone. Sensors (Basel). 2019 May 11;19(9):2189. https://doi.org/10.3390/s19092189 ErdoganBKarlitepeFOcalanTTunaliogluNPerformance analysis of Real Time PPP for transit of MercuryMeasurement201812935836710.1016/j.measurement.2018.07.050 TunaliogluNTekrarlı yaya yürüyüşü ve kısa süreli kinematik GPS + GLONASS gözlemleriyle PPP yönteminin performans analizi. (In Turkish)Jeodezi ve Jeoinformasyon Dergisi2020712113210.9733/JGG.2020R0008.T Collins P, Lahaye F, Heroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of the 21st International Technical Meeting of the satellite division of the Institute of Navigation (ION GNSS 2008), 1315–1322 GraysonBPennaNTMillsJPGrantDSGPS precise point positioning for UAV photogrammetryPhotogram Rec20183316442744710.1111/phor.12259 KrasuskiKWierzbickiDJafernikHUtilization PPP method in aircraft positioning in post-processing modeAircr Eng Aerosp Technol201810.1108/AEAT-05-2016-0078 OcalanTErdoganBTunaliogluNDurdagUMAccuracy investigation of PPP method versus relative positioning using different satellite ephemerides products near/under forest environmentEarth Sci Res J20162041910.15446/esrj.v20n4.59496 KoubaJHérouxPPrecise point positioning using IGS orbit and clock productsGPS Solutions200152122810.1007/PL00012883 LoyerSPerosanzFMercierFCapdevilleHMartyJCZero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis CenterJ Geodesy20128611991100310.1007/s00190-012-0559-2 SeepersadGBisnathSAn assessment of the interoperability of PPP-AR network productsJ global Position Syst201715111210.1186/s41445-017-0009-9 RobustelliUBaiocchiVPuglianoGAssessment of dual frequency GNSS observations from a Xiaomi Mi 8 Android smartphone and positioning performance analysisElectronics2019819110.3390/electronics8010091 Mercier F, Laurichesse D (2007) Receiver/payload hardware biases stability requirements for undifferenced Widelane ambiguity blocking. In: Scientifics and fundamental aspects of the Galileo program Colloquium, Fall 2007 Rizos C, Janssen V, Roberts C, Grinter T (2012) Precise Point Positioning: Is the era of differential GNSS positioning drawing to an end?. FIG Working Week 2012, Knowing to manage the territory, protect the environment, evaluate the cultural heritage Aggrey J, Bisnath S (2017) Analysis of multi-GNSS PPP initialization using dual-and triple-frequency data. In: Proceedings of the 2017 international technical meeting of the institute of navigation, Monterey, CA, USA, 445–458. https://doi.org/10.33012/2017.14909 BertigerWDesaiSDHainesBHarveyNMooreAWOwenSWeissJPSingle receiver phase ambiguity resolution with GPS dataJ Geod20108432733710.1007/s00190-010-0371-9 ChenWHuCLiZChenYDingXGaoSJiSKinematic GPS precise point positioning for sea level monitoring with GPS buoyJ Global Position Syst200431–230230710.5081/jgps.3.1.302 GengJShiCGeMDodsonAHLouYZhaoQLiuJImproving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioningJ Geodesy201286857958910.1007/s00190-011-0537-0 ChenCXiaoGChangGXuTYangLAssessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution Using Products from Different Analysis CentersRemote Sens20211316326610.3390/rs13163266 Chen K, Gao Y (2005) Real-time precise point positioning using single frequency data. In: Proceedings of the 18th international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), pp 1514–1523 LiXLiXYuanYZhangKZhangXWickertJMulti-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, GalileoJ Geodesy201892657960810.1007/s00190-017-1081-3 ZhangBTeunissenPOdijkDA novel un-differenced PPP-RTK conceptJ Navig201164S180S19110.1017/S0373463311000361 GrossJNWatsonRMD’UrsoSGuYFlight-test evaluation of kinematic precise point positioning of small UAVsInt J Aerosp Eng201610.1155/2016/1259893 GuoJGengJWangCImpact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergencesGPS Solutions2021253010.1007/s10291-020-01079-7 TurkTOcalanTPPK GNSS Sistemine Sahip İnsansız Hava Araçları ile Elde Edilen Fotogrametrik Ürünlerin Doğruluğunun Farklı Yaklaşımlarla İrdelenmesi. (In Turkish)Türkiye Fotogrametri Dergisi2020212228 URL-1 : https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en DoganAHTunaliogluNErdoganBOcalanTEvaluation of the GPS Precise Point Positioning technique during the 21 July 2017 Kos-Bodrum (East Aegean Sea) Mw 6.6 earthquakeArab J Geosci2018112411010.1007/s12517-018-4140-z ZumbergeJFHeflinMBJeffersonDCWatkinsMMWebbFHPrecise point positioning for the efficient and robust analysis of GPS data from large networksJ Geophys research: solid earth1997102B35005501710.1029/96JB03860 Brovelli MA, Minghini M, Zamboni G (2016) Public participation in GIS via mobile applications. ISPRS J. Photogramm. Sens. 2016, 114, 306–315. https://doi.org/10.1016/j.isprsjprs.2015.04.002 GlanerMWeberRPPP with integer ambiguity resolution for GPS and Galileo using satellite products from different analysis centersGPS Solutions202125311310.1007/s10291-021-01140-z ShiJYuanXCaiYWangGGPS real-time precise point positioning for aerial triangulationGPS Solutions201721240541410.1007/s10291-016-0532-2 LiXZhangXImproving the estimation of uncalibrated fractional phase offsets for PPP ambiguity resolutionJ Navig201265351352910.1017/S0373463312000112 GengJMengXDodsonAHTeferleFNInteger ambiguity resolution in precise point positioning: method comparisonJ Geodesy201084956958110.1007/s00190-010-0399-x LaurichesseDMercierFBerthiasJPBrocaPCerriLInteger ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determinationNavigation200956213514910.1002/j.2161-4296.2009.tb01750.x LiXZhangXGeMRegional reference network augmented precise point positioning for instantaneous ambiguity resolutionJ Geodesy201185315115810.1007/s00190-010-0424-0 Ćwiklak J, Kozuba J, Krasuski K, Jafernik H (2018) Determination of the aircraft position in PPP method in an in-flight test–case study. In: International multidisciplinary scientific GEOCONference: SGEM, 18(2.2), pp 133–140 868_CR19 JN Gross (868_CR16) 2016 AH Dogan (868_CR9) 2018; 11 M Glaner (868_CR14) 2021; 25 P Héroux (868_CR18) 2001; 26 868_CR34 B Erdogan (868_CR10) 2018; 129 J Geng (868_CR13) 2012; 86 868_CR30 868_CR32 H Zhang (868_CR42) 2019; 7 X Li (868_CR26) 2011; 85 B Zhang (868_CR41) 2011; 64 N Tunalioglu (868_CR39) 2020; 7 868_CR1 868_CR3 C Chen (868_CR4) 2021; 13 868_CR8 B Grayson (868_CR15) 2018; 33 Y Gao (868_CR11) 2002; 49 U Robustelli (868_CR33) 2019; 8 868_CR5 868_CR27 J Tomaštík (868_CR37) 2019; 11 W Bertiger (868_CR2) 2010; 84 868_CR7 Y Lou (868_CR28) 2016; 20 868_CR44 J Shi (868_CR36) 2017; 21 P Li (868_CR24) 2014; 18 J Guo (868_CR17) 2021; 25 T Ocalan (868_CR31) 2016; 20 868_CR40 W Chen (868_CR6) 2004; 3 JF Zumberge (868_CR43) 1997; 102 K Krasuski (868_CR21) 2018 J Geng (868_CR12) 2010; 84 X Li (868_CR23) 2012; 65 X Li (868_CR25) 2018; 92 S Loyer (868_CR29) 2012; 86 G Seepersad (868_CR35) 2017; 15 T Turk (868_CR38) 2020; 2 J Kouba (868_CR20) 2001; 5 D Laurichesse (868_CR22) 2009; 56 |
References_xml | – reference: KoubaJHérouxPPrecise point positioning using IGS orbit and clock productsGPS Solutions200152122810.1007/PL00012883 – reference: DoganAHTunaliogluNErdoganBOcalanTEvaluation of the GPS Precise Point Positioning technique during the 21 July 2017 Kos-Bodrum (East Aegean Sea) Mw 6.6 earthquakeArab J Geosci2018112411010.1007/s12517-018-4140-z – reference: Lipatnikov LA, Shevchuk SO (2019) Cost Effective Precise Positioning with GNSS, 82. Denmark: International Federation of Surveyors (FIG). https://www.fig.net/resources/publications/figpub/pub74/Figpub74.pdf – reference: LoyerSPerosanzFMercierFCapdevilleHMartyJCZero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis CenterJ Geodesy20128611991100310.1007/s00190-012-0559-2 – reference: SeepersadGBisnathSAn assessment of the interoperability of PPP-AR network productsJ global Position Syst201715111210.1186/s41445-017-0009-9 – reference: GuoJGengJWangCImpact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergencesGPS Solutions2021253010.1007/s10291-020-01079-7 – reference: TunaliogluNTekrarlı yaya yürüyüşü ve kısa süreli kinematik GPS + GLONASS gözlemleriyle PPP yönteminin performans analizi. (In Turkish)Jeodezi ve Jeoinformasyon Dergisi2020712113210.9733/JGG.2020R0008.T – reference: URL-1 : https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en – reference: Chen K, Gao Y (2005) Real-time precise point positioning using single frequency data. In: Proceedings of the 18th international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), pp 1514–1523 – reference: GengJShiCGeMDodsonAHLouYZhaoQLiuJImproving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioningJ Geodesy201286857958910.1007/s00190-011-0537-0 – reference: LiXZhangXImproving the estimation of uncalibrated fractional phase offsets for PPP ambiguity resolutionJ Navig201265351352910.1017/S0373463312000112 – reference: ChenCXiaoGChangGXuTYangLAssessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution Using Products from Different Analysis CentersRemote Sens20211316326610.3390/rs13163266 – reference: Collins P, Lahaye F, Heroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of the 21st International Technical Meeting of the satellite division of the Institute of Navigation (ION GNSS 2008), 1315–1322 – reference: Rizos C, Janssen V, Roberts C, Grinter T (2012) Precise Point Positioning: Is the era of differential GNSS positioning drawing to an end?. FIG Working Week 2012, Knowing to manage the territory, protect the environment, evaluate the cultural heritage – reference: GrossJNWatsonRMD’UrsoSGuYFlight-test evaluation of kinematic precise point positioning of small UAVsInt J Aerosp Eng201610.1155/2016/1259893 – reference: LiXZhangXGeMRegional reference network augmented precise point positioning for instantaneous ambiguity resolutionJ Geodesy201185315115810.1007/s00190-010-0424-0 – reference: ErdoganBKarlitepeFOcalanTTunaliogluNPerformance analysis of Real Time PPP for transit of MercuryMeasurement201812935836710.1016/j.measurement.2018.07.050 – reference: Seepersad GG (2018) Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution. York University, Toronto, Canada, PhD Dissertation, pp 185 – reference: GlanerMWeberRPPP with integer ambiguity resolution for GPS and Galileo using satellite products from different analysis centersGPS Solutions202125311310.1007/s10291-021-01140-z – reference: LiXLiXYuanYZhangKZhangXWickertJMulti-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, GalileoJ Geodesy201892657960810.1007/s00190-017-1081-3 – reference: Brovelli MA, Minghini M, Zamboni G (2016) Public participation in GIS via mobile applications. ISPRS J. Photogramm. Sens. 2016, 114, 306–315. https://doi.org/10.1016/j.isprsjprs.2015.04.002 – reference: KrasuskiKWierzbickiDJafernikHUtilization PPP method in aircraft positioning in post-processing modeAircr Eng Aerosp Technol201810.1108/AEAT-05-2016-0078 – reference: GaoYShenXA New Method for Carrier-Phase‐Based Precise Point PositioningNavigation200249210911610.1002/j.2161-4296.2002.tb00260.x – reference: Mercier F, Laurichesse D (2007) Receiver/payload hardware biases stability requirements for undifferenced Widelane ambiguity blocking. In: Scientifics and fundamental aspects of the Galileo program Colloquium, Fall 2007 – reference: RobustelliUBaiocchiVPuglianoGAssessment of dual frequency GNSS observations from a Xiaomi Mi 8 Android smartphone and positioning performance analysisElectronics2019819110.3390/electronics8010091 – reference: TomaštíkJMokrošMSurovýPGrznárováAMerganičJUAV RTK/PPK Method-An Optimal Solution for Mapping Inaccessible Forested Areas?Remote Sens201911672110.3390/rs11060721 – reference: LiPZhangXIntegrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioningGPS Solutions201418346147110.1007/s10291-013-0345-5 – reference: LaurichesseDMercierFBerthiasJPBrocaPCerriLInteger ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determinationNavigation200956213514910.1002/j.2161-4296.2009.tb01750.x – reference: BertigerWDesaiSDHainesBHarveyNMooreAWOwenSWeissJPSingle receiver phase ambiguity resolution with GPS dataJ Geod20108432733710.1007/s00190-010-0371-9 – reference: TurkTOcalanTPPK GNSS Sistemine Sahip İnsansız Hava Araçları ile Elde Edilen Fotogrametrik Ürünlerin Doğruluğunun Farklı Yaklaşımlarla İrdelenmesi. (In Turkish)Türkiye Fotogrametri Dergisi2020212228 – reference: ShiJYuanXCaiYWangGGPS real-time precise point positioning for aerial triangulationGPS Solutions201721240541410.1007/s10291-016-0532-2 – reference: Wu Q, Sun M, Zhou C, Zhang P (2019) Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone. Sensors (Basel). 2019 May 11;19(9):2189. https://doi.org/10.3390/s19092189 – reference: GraysonBPennaNTMillsJPGrantDSGPS precise point positioning for UAV photogrammetryPhotogram Rec20183316442744710.1111/phor.12259 – reference: GengJMengXDodsonAHTeferleFNInteger ambiguity resolution in precise point positioning: method comparisonJ Geodesy201084956958110.1007/s00190-010-0399-x – reference: LouYZhengFGuSWangCGuoHFengYMulti-GNSS precise point positioning with raw single-frequency and dual-frequency measurement modelsGPS Solutions201620484986210.1007/s10291-015-0495-8 – reference: Khodabandeh A, Teunissen PJG (2015) Single-epoch GNSS array integrity: an analytical study. In: VIII Hotine-Marussi symposium on mathematical geodesy. Cham: Springer, 263–272. https://doi.org/10.1007/1345_2015_64 – reference: OcalanTErdoganBTunaliogluNDurdagUMAccuracy investigation of PPP method versus relative positioning using different satellite ephemerides products near/under forest environmentEarth Sci Res J20162041910.15446/esrj.v20n4.59496 – reference: ZumbergeJFHeflinMBJeffersonDCWatkinsMMWebbFHPrecise point positioning for the efficient and robust analysis of GPS data from large networksJ Geophys research: solid earth1997102B35005501710.1029/96JB03860 – reference: Ćwiklak J, Kozuba J, Krasuski K, Jafernik H (2018) Determination of the aircraft position in PPP method in an in-flight test–case study. In: International multidisciplinary scientific GEOCONference: SGEM, 18(2.2), pp 133–140 – reference: ZhangHAldana-JagueEClapuytFWilkenFVanackerVOostKVEvaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detectionEarth Surf Dyn20197380782710.5194/esurf-7-807-2019 – reference: ChenWHuCLiZChenYDingXGaoSJiSKinematic GPS precise point positioning for sea level monitoring with GPS buoyJ Global Position Syst200431–230230710.5081/jgps.3.1.302 – reference: Aggrey J, Bisnath S (2017) Analysis of multi-GNSS PPP initialization using dual-and triple-frequency data. In: Proceedings of the 2017 international technical meeting of the institute of navigation, Monterey, CA, USA, 445–458. https://doi.org/10.33012/2017.14909 – reference: HérouxPKoubaJGPS precise point positioning using IGS orbit productsPhys Chem Earth Part A2001266–857357810.1016/S1464-1895(01)00103-X – reference: ZhangBTeunissenPOdijkDA novel un-differenced PPP-RTK conceptJ Navig201164S180S19110.1017/S0373463311000361 – volume: 129 start-page: 358 year: 2018 ident: 868_CR10 publication-title: Measurement doi: 10.1016/j.measurement.2018.07.050 – ident: 868_CR1 doi: 10.33012/2017.14909 – volume: 25 start-page: 30 year: 2021 ident: 868_CR17 publication-title: GPS Solutions doi: 10.1007/s10291-020-01079-7 – ident: 868_CR19 doi: 10.1007/1345_2015_64 – volume: 11 start-page: 721 issue: 6 year: 2019 ident: 868_CR37 publication-title: Remote Sens doi: 10.3390/rs11060721 – volume: 86 start-page: 579 issue: 8 year: 2012 ident: 868_CR13 publication-title: J Geodesy doi: 10.1007/s00190-011-0537-0 – volume: 92 start-page: 579 issue: 6 year: 2018 ident: 868_CR25 publication-title: J Geodesy doi: 10.1007/s00190-017-1081-3 – ident: 868_CR40 doi: 10.3390/s19092189 – volume: 18 start-page: 461 issue: 3 year: 2014 ident: 868_CR24 publication-title: GPS Solutions doi: 10.1007/s10291-013-0345-5 – ident: 868_CR27 – volume: 102 start-page: 5005 issue: B3 year: 1997 ident: 868_CR43 publication-title: J Geophys research: solid earth doi: 10.1029/96JB03860 – ident: 868_CR3 doi: 10.1016/j.isprsjprs.2015.04.002 – ident: 868_CR8 doi: 10.5593/sgem2018/2.2/S08.018 – volume: 86 start-page: 991 issue: 11 year: 2012 ident: 868_CR29 publication-title: J Geodesy doi: 10.1007/s00190-012-0559-2 – volume: 20 start-page: 1 issue: 4 year: 2016 ident: 868_CR31 publication-title: Earth Sci Res J doi: 10.15446/esrj.v20n4.59496 – volume: 5 start-page: 12 issue: 2 year: 2001 ident: 868_CR20 publication-title: GPS Solutions doi: 10.1007/PL00012883 – year: 2016 ident: 868_CR16 publication-title: Int J Aerosp Eng doi: 10.1155/2016/1259893 – volume: 21 start-page: 405 issue: 2 year: 2017 ident: 868_CR36 publication-title: GPS Solutions doi: 10.1007/s10291-016-0532-2 – year: 2018 ident: 868_CR21 publication-title: Aircr Eng Aerosp Technol doi: 10.1108/AEAT-05-2016-0078 – volume: 65 start-page: 513 issue: 3 year: 2012 ident: 868_CR23 publication-title: J Navig doi: 10.1017/S0373463312000112 – volume: 25 start-page: 1 issue: 3 year: 2021 ident: 868_CR14 publication-title: GPS Solutions doi: 10.1007/s10291-021-01140-z – volume: 8 start-page: 91 issue: 1 year: 2019 ident: 868_CR33 publication-title: Electronics doi: 10.3390/electronics8010091 – ident: 868_CR44 – volume: 2 start-page: 22 issue: 1 year: 2020 ident: 868_CR38 publication-title: Türkiye Fotogrametri Dergisi – volume: 33 start-page: 427 issue: 164 year: 2018 ident: 868_CR15 publication-title: Photogram Rec doi: 10.1111/phor.12259 – volume: 84 start-page: 327 year: 2010 ident: 868_CR2 publication-title: J Geod doi: 10.1007/s00190-010-0371-9 – volume: 3 start-page: 302 issue: 1–2 year: 2004 ident: 868_CR6 publication-title: J Global Position Syst doi: 10.5081/jgps.3.1.302 – volume: 11 start-page: 1 issue: 24 year: 2018 ident: 868_CR9 publication-title: Arab J Geosci doi: 10.1007/s12517-018-4140-z – volume: 7 start-page: 121 year: 2020 ident: 868_CR39 publication-title: Jeodezi ve Jeoinformasyon Dergisi doi: 10.9733/JGG.2020R0008.T – volume: 56 start-page: 135 issue: 2 year: 2009 ident: 868_CR22 publication-title: Navigation doi: 10.1002/j.2161-4296.2009.tb01750.x – volume: 7 start-page: 807 issue: 3 year: 2019 ident: 868_CR42 publication-title: Earth Surf Dyn doi: 10.5194/esurf-7-807-2019 – volume: 13 start-page: 3266 issue: 16 year: 2021 ident: 868_CR4 publication-title: Remote Sens doi: 10.3390/rs13163266 – volume: 85 start-page: 151 issue: 3 year: 2011 ident: 868_CR26 publication-title: J Geodesy doi: 10.1007/s00190-010-0424-0 – volume: 84 start-page: 569 issue: 9 year: 2010 ident: 868_CR12 publication-title: J Geodesy doi: 10.1007/s00190-010-0399-x – volume: 15 start-page: 1 issue: 1 year: 2017 ident: 868_CR35 publication-title: J global Position Syst doi: 10.1186/s41445-017-0009-9 – ident: 868_CR34 – volume: 49 start-page: 109 issue: 2 year: 2002 ident: 868_CR11 publication-title: Navigation doi: 10.1002/j.2161-4296.2002.tb00260.x – ident: 868_CR32 – ident: 868_CR30 – volume: 64 start-page: S180 year: 2011 ident: 868_CR41 publication-title: J Navig doi: 10.1017/S0373463311000361 – volume: 26 start-page: 573 issue: 6–8 year: 2001 ident: 868_CR18 publication-title: Phys Chem Earth Part A doi: 10.1016/S1464-1895(01)00103-X – volume: 20 start-page: 849 issue: 4 year: 2016 ident: 868_CR28 publication-title: GPS Solutions doi: 10.1007/s10291-015-0495-8 – ident: 868_CR7 – ident: 868_CR5 |
SSID | ssib031263228 ssj0062140 |
Score | 2.33351 |
Snippet | Traditionally, photogrammetric product accuracy at cm level is obtained with Ground Control Points (GCP) in UAV photogrammetry. In recent years, UAVs equipped... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2231 |
SubjectTerms | Accuracy Agriculture Ambiguity resolution (mathematics) Earth and Environmental Science Earth Sciences Earth System Sciences Forest management Information Systems Applications (incl.Internet) Kinematics Ontology Photogrammetry Simulation and Modeling Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Sustainability management Sustainable forestry Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6IeiD6FScTsmDbxpsk7VLn2TKdAiOMZzsreRrU5B27uNh_72XNl1VcE8ttCnl7pLf73KXO4SupDbg-FBOjI6sg8IZAVTUJDQ61OBPKJFFTF96YXfYfB4FI7fhNndplcWamC3UOlV2j_wWYBbIBIB3dDf9IrZrlI2uuhYa26gKSzAH56t63-n1B4VFMd-WI6fruEJI3RFJHgbEa7aYO0aTH6azRbuJzW63PJ-T1m-oKvnnn5BphkSPB2jfUUjcznV-iLZMUkN77cnMldEwNbTzlDXsXR0h9aOQRprgdIyFUsuZUCt73-_3sUi0vZL2AOftpOcYiCzOsQ5PzLoTCfwM_kjwsP2Gp-_pIsvrghGz1TEaPnZeH7rENVYgCmbcgkjL-iLFZeQzw8147CmfGio8zcKQKuBggPJj3pSUqQziqA4V-DlNCWzFlz47QZUkTcwpwhGomAUMnCglAQ8D4StPKOBxXPhaeLKO_EKGsXJVx23zi8-4rJds5R6D3ONM7nGrjq7XY6Z5zY2NbzcK1cRu_s3j0lrq6KZQV_n4_6-dbf7aOdql1kKyfJYGqixmS3MBrGQhL53pfQPi_9j4 priority: 102 providerName: ProQuest |
Title | Investigation of accuracy of PPP and PPP-AR methods for direct georeferencing in UAV photogrammetry |
URI | https://link.springer.com/article/10.1007/s12145-022-00868-7 https://www.proquest.com/docview/2736504419 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5si-BFfGJ9lD1404Vmt003x1T6QLEUsaKnsK-qIElp66H_3tlt0qqo4GkD2dnAzGzmG-YFcK6MRceHCWpN5BwUwSlaRUNDa0KD_oSWPmJ6Owj7o8b1Y_MxLwqbFdnuRUjS_6nXxW6uqTZ12ecOhwvaKkGl6Xx31OIRiwst4oFrQc5WsYSQ5WWRIkTqRovnpTM_n_nVPK0x57cwqbc-3R3YzmEjiZdy3oUNm-7BZs-P5V3sg_7ULiNLSTYmUuv3qdQL9zwcDolMjVtpfEeWQ6NnBOEqWVo08mxX80bw8-Q1JaP4gUxesrnP3kKK6eIARt3O_VWf5uMTqMZ7NafKYbtICxUF3Ao7Htd1wCyTdcPDkGlEWmjLx6KhGNfekDETavRmGgoxSaACfgjlNEvtEZAIBcmbHF0lrdDqNWWg61IjWhMyMLKuqhAUXEt03lvcjbh4S9ZdkR2nE-R04jmdtKpwsaKZLDtr_Ln7tBBGkt-yWYLQCwEmArqoCpeFgNavfz_t-H_bT2CLOR3xWSynUJ5P3-0ZYpG5qkFJdHs1qMTddnvg1t7TTQfXdmcwvKt5xfwA10TVbA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xILTLAQG7iPL0YTmx1iZ2mjoHhCqglOWhakVX3IJfZVdaJaUtQv1T_EbGTtICEtw4JVJiKxp_9vdNxp4B-K6MRceHCWpN4hwUwSmyoqGxNbFBf0JLHzG9uIzb3ejXdf16Bh6rszBuW2W1JvqF2uTa_SP_iTSLYgLJOzno31FXNcpFV6sSGgUszuz4AV224f7pEY7vLmOt46vDNi2rClCNcBtR5SRPooVKQm6F7fUCHTLLZGB4HDONAgQpricixbj26zszsUaRHymk6lCFHPv9BHMR54mbUaJ1UuGXhy75OZtEMWJWHsgUcZ0GUYOXh3aKo3suRTh1e-mdVyFo4yUxTtXuqwCt573WEiyWgpU0C4Qtw4zNVmCheTsok3bYFZg_8eWBx19BP0vbkWck7xGp9f1A6rG773Q6RGbGXWnzNymKVw8JymZSMCu5tZO6J_gx5F9Gus0_pP83H_ldZNhiMP4G3Q8x-CrMZnlm14AkCChe5-iyaYXsW5ehDqRG1ShkaGSgahBWNkx1mePcldr4n06zMzu7p2j31Ns9bdRgb9KmX2T4ePftzWpo0nK2D9MpNmvwoxqu6eO3e1t_v7cd-Ny-ujhPz08vzzbgC3No8TtpNmF2NLi3W6iHRmrbg5DAzUej_glBbRJV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9tAFH6iQa3ooWIVaVnmAKd2hD2TOPYBVWEJayMLEcTNzOaAhOw0CUL5a_11fWOPk1IJbpxsyfbIevN5vu953gKwI7VBx4eF1OjIOighp8iKmgZGBxr9CSWKHdNf3eC01zi_bd7OwZ8qF8aGVVZrYrFQ61zZf-R7SLMoJpC8o73UhUXER52fg9_UdpCyO61VO40SIhdm8ozu22j_7AjnepexzvH14Sl1HQaoQuiNqbTyJ1KhjHxuQpOmnvKZYcLTPAiYQjGCdJeGDcm4KtZ6pgOFgr8hkbZ96XMc9wPMt9Ar8mowf3Dcja8qNHPflkJn0z2NgLn0zDBoUq_R4i6Fp0zkswXDqY2stz5GSFsvaXKmff_bri1YsLMIX5x8Je0Sb0swZ7Jl-NzuD10JD7MMH0-KZsGTFVD_FPHIM5KnRCj1NBRqYs_jOCYi0_ZI21ekbGU9IiiiScmzpG-mXVDwZchDRnrtGzK4z8dFTBk-MZysQu9dTL4GtSzPzDqQCOHFmxwdOCWRi5vCV55QqCFD4WvhyTr4lQ0T5Sqe28Ybj8msVrO1e4J2Twq7J606fJ8-Myjrfbx590Y1NYn79kfJDKl1-FFN1-zy66N9fXu0bfiEiE8uz7oX32CBWbAUYTUbUBsPn8wmiqOx3HIoJHD33sD_CyDQF-c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+accuracy+of+PPP+and+PPP-AR+methods+for+direct+georeferencing+in+UAV+photogrammetry&rft.jtitle=Earth+science+informatics&rft.au=Ocalan%2C+Taylan&rft.au=Turk%2C+Tarik&rft.au=Tunalioglu%2C+Nursu&rft.au=Gurturk%2C+Mert&rft.date=2022-12-01&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=15&rft.issue=4&rft.spage=2231&rft.epage=2238&rft_id=info:doi/10.1007%2Fs12145-022-00868-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12145_022_00868_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon |