Investigation of accuracy of PPP and PPP-AR methods for direct georeferencing in UAV photogrammetry

Traditionally, photogrammetric product accuracy at cm level is obtained with Ground Control Points (GCP) in UAV photogrammetry. In recent years, UAVs equipped with Post-Processing Kinematic & Real-Time Kinematic (PPK/RTK) have become widespread. Accuracy in cm-level can be obtained with relative...

Full description

Saved in:
Bibliographic Details
Published inEarth science informatics Vol. 15; no. 4; pp. 2231 - 2238
Main Authors Ocalan, Taylan, Turk, Tarik, Tunalioglu, Nursu, Gurturk, Mert
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1865-0473
1865-0481
DOI10.1007/s12145-022-00868-7

Cover

Loading…
Abstract Traditionally, photogrammetric product accuracy at cm level is obtained with Ground Control Points (GCP) in UAV photogrammetry. In recent years, UAVs equipped with Post-Processing Kinematic & Real-Time Kinematic (PPK/RTK) have become widespread. Accuracy in cm-level can be obtained with relative/differential positioning with these equipment. On the other hand, PPP (Precise Point Positioning), which is a special type of absolute positioning, is used effectively in many applications. In this study, performances of PPP and PPP-AR (PPP positioning with ambiguity resolution) solutions of kinematic GNSS data obtained from UAVs were investigated and compared with PPK solutions based on relative positioning. Especially, the performance and potential of the PPP-AR approach in terms of quality and accuracy of the products generated in UAV-photogrammetry has been demonstrated. Thus, this study can significantly contribute to subjects such as the production of fast, accurate, and cost-effective products with UAV photogrammetry, earth sciences applications, precise agriculture, sustainable forest management, forest planning.
AbstractList Traditionally, photogrammetric product accuracy at cm level is obtained with Ground Control Points (GCP) in UAV photogrammetry. In recent years, UAVs equipped with Post-Processing Kinematic & Real-Time Kinematic (PPK/RTK) have become widespread. Accuracy in cm-level can be obtained with relative/differential positioning with these equipment. On the other hand, PPP (Precise Point Positioning), which is a special type of absolute positioning, is used effectively in many applications. In this study, performances of PPP and PPP-AR (PPP positioning with ambiguity resolution) solutions of kinematic GNSS data obtained from UAVs were investigated and compared with PPK solutions based on relative positioning. Especially, the performance and potential of the PPP-AR approach in terms of quality and accuracy of the products generated in UAV-photogrammetry has been demonstrated. Thus, this study can significantly contribute to subjects such as the production of fast, accurate, and cost-effective products with UAV photogrammetry, earth sciences applications, precise agriculture, sustainable forest management, forest planning.
Author Ocalan, Taylan
Turk, Tarik
Gurturk, Mert
Tunalioglu, Nursu
Author_xml – sequence: 1
  givenname: Taylan
  surname: Ocalan
  fullname: Ocalan, Taylan
  email: tocalan@yildiz.edu.tr
  organization: Civil Engineering Faculty, Department of Geomatics Engineering, Yildiz Technical University
– sequence: 2
  givenname: Tarik
  surname: Turk
  fullname: Turk, Tarik
  organization: Faculty of Engineering, Department of Geomatics Engineering, Sivas Cumhuriyet University
– sequence: 3
  givenname: Nursu
  surname: Tunalioglu
  fullname: Tunalioglu, Nursu
  organization: Civil Engineering Faculty, Department of Geomatics Engineering, Yildiz Technical University
– sequence: 4
  givenname: Mert
  surname: Gurturk
  fullname: Gurturk, Mert
  organization: Civil Engineering Faculty, Department of Geomatics Engineering, Yildiz Technical University
BookMark eNp9kE9LAzEQxYMoWGu_gKeA59VMss1mj6X4p1CwiPUastnsNtImNdkK_famXVHw0NMMw_vNvHlX6Nx5ZxC6AXIHhBT3ESjk44xQmhEiuMiKMzQAwdMoF3D-2xfsEo1itBVhQDmjVAyQnrkvEzvbqs56h32Dlda7oPT-0C8WC6xcfajZ5BVvTLfydcSND7i2wegOt8YH05hgnLauxdbh5eQdb1e-821Qm0SE_TW6aNQ6mtFPHaLl48Pb9DmbvzzNppN5phmUXVaxsihKLaoSmBGmaYgGaqgiNeOc6jEA4dCIvKJMM8I4pTXXnPO8EjmHCtgQ3fZ7t8F_7tJX8sPvgksnJS0YH5M8hzKpRK_SwceYzEttu-P3XVB2LYHIQ6qyT1WmVOUxVVkklP5Dt8FuVNifhlgPxSR2rQl_rk5Q3_mOio0
CitedBy_id crossref_primary_10_1088_1361_6501_ad5ab9
crossref_primary_10_3390_drones7040265
crossref_primary_10_3390_drones9010015
crossref_primary_10_1080_00396265_2023_2259736
crossref_primary_10_1016_j_autcon_2023_105216
crossref_primary_10_3390_s23135858
crossref_primary_10_3390_rs15082034
crossref_primary_10_3390_drones8090456
crossref_primary_10_1007_s10291_023_01532_3
Cites_doi 10.1016/j.measurement.2018.07.050
10.33012/2017.14909
10.1007/s10291-020-01079-7
10.1007/1345_2015_64
10.3390/rs11060721
10.1007/s00190-011-0537-0
10.1007/s00190-017-1081-3
10.3390/s19092189
10.1007/s10291-013-0345-5
10.1029/96JB03860
10.1016/j.isprsjprs.2015.04.002
10.5593/sgem2018/2.2/S08.018
10.1007/s00190-012-0559-2
10.15446/esrj.v20n4.59496
10.1007/PL00012883
10.1155/2016/1259893
10.1007/s10291-016-0532-2
10.1108/AEAT-05-2016-0078
10.1017/S0373463312000112
10.1007/s10291-021-01140-z
10.3390/electronics8010091
10.1111/phor.12259
10.1007/s00190-010-0371-9
10.5081/jgps.3.1.302
10.1007/s12517-018-4140-z
10.9733/JGG.2020R0008.T
10.1002/j.2161-4296.2009.tb01750.x
10.5194/esurf-7-807-2019
10.3390/rs13163266
10.1007/s00190-010-0424-0
10.1007/s00190-010-0399-x
10.1186/s41445-017-0009-9
10.1002/j.2161-4296.2002.tb00260.x
10.1017/S0373463311000361
10.1016/S1464-1895(01)00103-X
10.1007/s10291-015-0495-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7TG
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
KL.
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s12145-022-00868-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Agriculture
EISSN 1865-0481
EndPage 2238
ExternalDocumentID 10_1007_s12145_022_00868_7
GrantInformation_xml – fundername: Scientific Research Project Fund of Sivas Cumhuriyet University
  grantid: M745; M745
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
1N0
203
2JN
2KG
2VQ
2~H
30V
3V.
4.4
406
408
40D
67M
67Z
6NX
88I
8FE
8FG
8FH
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
AUKKA
AXYYD
AYJHY
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXD
IZQ
J-C
J0Z
JBSCW
JZLTJ
K6V
K7-
KOV
L8X
LK5
LLZTM
M0N
M2P
M4Y
M7R
MK~
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
PCBAR
PQQKQ
PROAC
PT4
Q2X
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TG
7XB
8AL
8FD
8FK
ABRTQ
JQ2
KL.
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-b39779c8b913e8eff0c12e2a0d3662c511061f84b23c303622d6c6664b8461b13
IEDL.DBID U2A
ISSN 1865-0473
IngestDate Sat Jul 26 01:23:04 EDT 2025
Thu Apr 24 22:58:32 EDT 2025
Tue Jul 01 01:18:02 EDT 2025
Fri Feb 21 02:44:44 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords PPP
UAV
Direct georeferencing
Photogrammetry
PPP-AR
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b39779c8b913e8eff0c12e2a0d3662c511061f84b23c303622d6c6664b8461b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2736504419
PQPubID 54345
PageCount 8
ParticipantIDs proquest_journals_2736504419
crossref_citationtrail_10_1007_s12145_022_00868_7
crossref_primary_10_1007_s12145_022_00868_7
springer_journals_10_1007_s12145_022_00868_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Earth science informatics
PublicationTitleAbbrev Earth Sci Inform
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ZhangHAldana-JagueEClapuytFWilkenFVanackerVOostKVEvaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detectionEarth Surf Dyn20197380782710.5194/esurf-7-807-2019
HérouxPKoubaJGPS precise point positioning using IGS orbit productsPhys Chem Earth Part A2001266–857357810.1016/S1464-1895(01)00103-X
TomaštíkJMokrošMSurovýPGrznárováAMerganičJUAV RTK/PPK Method-An Optimal Solution for Mapping Inaccessible Forested Areas?Remote Sens201911672110.3390/rs11060721
Seepersad GG (2018) Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution. York University, Toronto, Canada, PhD Dissertation, pp 185
Khodabandeh A, Teunissen PJG (2015) Single-epoch GNSS array integrity: an analytical study. In: VIII Hotine-Marussi symposium on mathematical geodesy. Cham: Springer, 263–272. https://doi.org/10.1007/1345_2015_64
LiPZhangXIntegrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioningGPS Solutions201418346147110.1007/s10291-013-0345-5
GaoYShenXA New Method for Carrier-Phase‐Based Precise Point PositioningNavigation200249210911610.1002/j.2161-4296.2002.tb00260.x
LouYZhengFGuSWangCGuoHFengYMulti-GNSS precise point positioning with raw single-frequency and dual-frequency measurement modelsGPS Solutions201620484986210.1007/s10291-015-0495-8
Lipatnikov LA, Shevchuk SO (2019) Cost Effective Precise Positioning with GNSS, 82. Denmark: International Federation of Surveyors (FIG). https://www.fig.net/resources/publications/figpub/pub74/Figpub74.pdf
Wu Q, Sun M, Zhou C, Zhang P (2019) Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone. Sensors (Basel). 2019 May 11;19(9):2189. https://doi.org/10.3390/s19092189
ErdoganBKarlitepeFOcalanTTunaliogluNPerformance analysis of Real Time PPP for transit of MercuryMeasurement201812935836710.1016/j.measurement.2018.07.050
TunaliogluNTekrarlı yaya yürüyüşü ve kısa süreli kinematik GPS + GLONASS gözlemleriyle PPP yönteminin performans analizi. (In Turkish)Jeodezi ve Jeoinformasyon Dergisi2020712113210.9733/JGG.2020R0008.T
Collins P, Lahaye F, Heroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of the 21st International Technical Meeting of the satellite division of the Institute of Navigation (ION GNSS 2008), 1315–1322
GraysonBPennaNTMillsJPGrantDSGPS precise point positioning for UAV photogrammetryPhotogram Rec20183316442744710.1111/phor.12259
KrasuskiKWierzbickiDJafernikHUtilization PPP method in aircraft positioning in post-processing modeAircr Eng Aerosp Technol201810.1108/AEAT-05-2016-0078
OcalanTErdoganBTunaliogluNDurdagUMAccuracy investigation of PPP method versus relative positioning using different satellite ephemerides products near/under forest environmentEarth Sci Res J20162041910.15446/esrj.v20n4.59496
KoubaJHérouxPPrecise point positioning using IGS orbit and clock productsGPS Solutions200152122810.1007/PL00012883
LoyerSPerosanzFMercierFCapdevilleHMartyJCZero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis CenterJ Geodesy20128611991100310.1007/s00190-012-0559-2
SeepersadGBisnathSAn assessment of the interoperability of PPP-AR network productsJ global Position Syst201715111210.1186/s41445-017-0009-9
RobustelliUBaiocchiVPuglianoGAssessment of dual frequency GNSS observations from a Xiaomi Mi 8 Android smartphone and positioning performance analysisElectronics2019819110.3390/electronics8010091
Mercier F, Laurichesse D (2007) Receiver/payload hardware biases stability requirements for undifferenced Widelane ambiguity blocking. In: Scientifics and fundamental aspects of the Galileo program Colloquium, Fall 2007
Rizos C, Janssen V, Roberts C, Grinter T (2012) Precise Point Positioning: Is the era of differential GNSS positioning drawing to an end?. FIG Working Week 2012, Knowing to manage the territory, protect the environment, evaluate the cultural heritage
Aggrey J, Bisnath S (2017) Analysis of multi-GNSS PPP initialization using dual-and triple-frequency data. In: Proceedings of the 2017 international technical meeting of the institute of navigation, Monterey, CA, USA, 445–458. https://doi.org/10.33012/2017.14909
BertigerWDesaiSDHainesBHarveyNMooreAWOwenSWeissJPSingle receiver phase ambiguity resolution with GPS dataJ Geod20108432733710.1007/s00190-010-0371-9
ChenWHuCLiZChenYDingXGaoSJiSKinematic GPS precise point positioning for sea level monitoring with GPS buoyJ Global Position Syst200431–230230710.5081/jgps.3.1.302
GengJShiCGeMDodsonAHLouYZhaoQLiuJImproving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioningJ Geodesy201286857958910.1007/s00190-011-0537-0
ChenCXiaoGChangGXuTYangLAssessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution Using Products from Different Analysis CentersRemote Sens20211316326610.3390/rs13163266
Chen K, Gao Y (2005) Real-time precise point positioning using single frequency data. In: Proceedings of the 18th international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), pp 1514–1523
LiXLiXYuanYZhangKZhangXWickertJMulti-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, GalileoJ Geodesy201892657960810.1007/s00190-017-1081-3
ZhangBTeunissenPOdijkDA novel un-differenced PPP-RTK conceptJ Navig201164S180S19110.1017/S0373463311000361
GrossJNWatsonRMD’UrsoSGuYFlight-test evaluation of kinematic precise point positioning of small UAVsInt J Aerosp Eng201610.1155/2016/1259893
GuoJGengJWangCImpact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergencesGPS Solutions2021253010.1007/s10291-020-01079-7
TurkTOcalanTPPK GNSS Sistemine Sahip İnsansız Hava Araçları ile Elde Edilen Fotogrametrik Ürünlerin Doğruluğunun Farklı Yaklaşımlarla İrdelenmesi. (In Turkish)Türkiye Fotogrametri Dergisi2020212228
URL-1 : https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en
DoganAHTunaliogluNErdoganBOcalanTEvaluation of the GPS Precise Point Positioning technique during the 21 July 2017 Kos-Bodrum (East Aegean Sea) Mw 6.6 earthquakeArab J Geosci2018112411010.1007/s12517-018-4140-z
ZumbergeJFHeflinMBJeffersonDCWatkinsMMWebbFHPrecise point positioning for the efficient and robust analysis of GPS data from large networksJ Geophys research: solid earth1997102B35005501710.1029/96JB03860
Brovelli MA, Minghini M, Zamboni G (2016) Public participation in GIS via mobile applications. ISPRS J. Photogramm. Sens. 2016, 114, 306–315. https://doi.org/10.1016/j.isprsjprs.2015.04.002
GlanerMWeberRPPP with integer ambiguity resolution for GPS and Galileo using satellite products from different analysis centersGPS Solutions202125311310.1007/s10291-021-01140-z
ShiJYuanXCaiYWangGGPS real-time precise point positioning for aerial triangulationGPS Solutions201721240541410.1007/s10291-016-0532-2
LiXZhangXImproving the estimation of uncalibrated fractional phase offsets for PPP ambiguity resolutionJ Navig201265351352910.1017/S0373463312000112
GengJMengXDodsonAHTeferleFNInteger ambiguity resolution in precise point positioning: method comparisonJ Geodesy201084956958110.1007/s00190-010-0399-x
LaurichesseDMercierFBerthiasJPBrocaPCerriLInteger ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determinationNavigation200956213514910.1002/j.2161-4296.2009.tb01750.x
LiXZhangXGeMRegional reference network augmented precise point positioning for instantaneous ambiguity resolutionJ Geodesy201185315115810.1007/s00190-010-0424-0
Ćwiklak J, Kozuba J, Krasuski K, Jafernik H (2018) Determination of the aircraft position in PPP method in an in-flight test–case study. In: International multidisciplinary scientific GEOCONference: SGEM, 18(2.2), pp 133–140
868_CR19
JN Gross (868_CR16) 2016
AH Dogan (868_CR9) 2018; 11
M Glaner (868_CR14) 2021; 25
P Héroux (868_CR18) 2001; 26
868_CR34
B Erdogan (868_CR10) 2018; 129
J Geng (868_CR13) 2012; 86
868_CR30
868_CR32
H Zhang (868_CR42) 2019; 7
X Li (868_CR26) 2011; 85
B Zhang (868_CR41) 2011; 64
N Tunalioglu (868_CR39) 2020; 7
868_CR1
868_CR3
C Chen (868_CR4) 2021; 13
868_CR8
B Grayson (868_CR15) 2018; 33
Y Gao (868_CR11) 2002; 49
U Robustelli (868_CR33) 2019; 8
868_CR5
868_CR27
J Tomaštík (868_CR37) 2019; 11
W Bertiger (868_CR2) 2010; 84
868_CR7
Y Lou (868_CR28) 2016; 20
868_CR44
J Shi (868_CR36) 2017; 21
P Li (868_CR24) 2014; 18
J Guo (868_CR17) 2021; 25
T Ocalan (868_CR31) 2016; 20
868_CR40
W Chen (868_CR6) 2004; 3
JF Zumberge (868_CR43) 1997; 102
K Krasuski (868_CR21) 2018
J Geng (868_CR12) 2010; 84
X Li (868_CR23) 2012; 65
X Li (868_CR25) 2018; 92
S Loyer (868_CR29) 2012; 86
G Seepersad (868_CR35) 2017; 15
T Turk (868_CR38) 2020; 2
J Kouba (868_CR20) 2001; 5
D Laurichesse (868_CR22) 2009; 56
References_xml – reference: KoubaJHérouxPPrecise point positioning using IGS orbit and clock productsGPS Solutions200152122810.1007/PL00012883
– reference: DoganAHTunaliogluNErdoganBOcalanTEvaluation of the GPS Precise Point Positioning technique during the 21 July 2017 Kos-Bodrum (East Aegean Sea) Mw 6.6 earthquakeArab J Geosci2018112411010.1007/s12517-018-4140-z
– reference: Lipatnikov LA, Shevchuk SO (2019) Cost Effective Precise Positioning with GNSS, 82. Denmark: International Federation of Surveyors (FIG). https://www.fig.net/resources/publications/figpub/pub74/Figpub74.pdf
– reference: LoyerSPerosanzFMercierFCapdevilleHMartyJCZero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis CenterJ Geodesy20128611991100310.1007/s00190-012-0559-2
– reference: SeepersadGBisnathSAn assessment of the interoperability of PPP-AR network productsJ global Position Syst201715111210.1186/s41445-017-0009-9
– reference: GuoJGengJWangCImpact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergencesGPS Solutions2021253010.1007/s10291-020-01079-7
– reference: TunaliogluNTekrarlı yaya yürüyüşü ve kısa süreli kinematik GPS + GLONASS gözlemleriyle PPP yönteminin performans analizi. (In Turkish)Jeodezi ve Jeoinformasyon Dergisi2020712113210.9733/JGG.2020R0008.T
– reference: URL-1 : https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en
– reference: Chen K, Gao Y (2005) Real-time precise point positioning using single frequency data. In: Proceedings of the 18th international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), pp 1514–1523
– reference: GengJShiCGeMDodsonAHLouYZhaoQLiuJImproving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioningJ Geodesy201286857958910.1007/s00190-011-0537-0
– reference: LiXZhangXImproving the estimation of uncalibrated fractional phase offsets for PPP ambiguity resolutionJ Navig201265351352910.1017/S0373463312000112
– reference: ChenCXiaoGChangGXuTYangLAssessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution Using Products from Different Analysis CentersRemote Sens20211316326610.3390/rs13163266
– reference: Collins P, Lahaye F, Heroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of the 21st International Technical Meeting of the satellite division of the Institute of Navigation (ION GNSS 2008), 1315–1322
– reference: Rizos C, Janssen V, Roberts C, Grinter T (2012) Precise Point Positioning: Is the era of differential GNSS positioning drawing to an end?. FIG Working Week 2012, Knowing to manage the territory, protect the environment, evaluate the cultural heritage
– reference: GrossJNWatsonRMD’UrsoSGuYFlight-test evaluation of kinematic precise point positioning of small UAVsInt J Aerosp Eng201610.1155/2016/1259893
– reference: LiXZhangXGeMRegional reference network augmented precise point positioning for instantaneous ambiguity resolutionJ Geodesy201185315115810.1007/s00190-010-0424-0
– reference: ErdoganBKarlitepeFOcalanTTunaliogluNPerformance analysis of Real Time PPP for transit of MercuryMeasurement201812935836710.1016/j.measurement.2018.07.050
– reference: Seepersad GG (2018) Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution. York University, Toronto, Canada, PhD Dissertation, pp 185
– reference: GlanerMWeberRPPP with integer ambiguity resolution for GPS and Galileo using satellite products from different analysis centersGPS Solutions202125311310.1007/s10291-021-01140-z
– reference: LiXLiXYuanYZhangKZhangXWickertJMulti-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, GalileoJ Geodesy201892657960810.1007/s00190-017-1081-3
– reference: Brovelli MA, Minghini M, Zamboni G (2016) Public participation in GIS via mobile applications. ISPRS J. Photogramm. Sens. 2016, 114, 306–315. https://doi.org/10.1016/j.isprsjprs.2015.04.002
– reference: KrasuskiKWierzbickiDJafernikHUtilization PPP method in aircraft positioning in post-processing modeAircr Eng Aerosp Technol201810.1108/AEAT-05-2016-0078
– reference: GaoYShenXA New Method for Carrier-Phase‐Based Precise Point PositioningNavigation200249210911610.1002/j.2161-4296.2002.tb00260.x
– reference: Mercier F, Laurichesse D (2007) Receiver/payload hardware biases stability requirements for undifferenced Widelane ambiguity blocking. In: Scientifics and fundamental aspects of the Galileo program Colloquium, Fall 2007
– reference: RobustelliUBaiocchiVPuglianoGAssessment of dual frequency GNSS observations from a Xiaomi Mi 8 Android smartphone and positioning performance analysisElectronics2019819110.3390/electronics8010091
– reference: TomaštíkJMokrošMSurovýPGrznárováAMerganičJUAV RTK/PPK Method-An Optimal Solution for Mapping Inaccessible Forested Areas?Remote Sens201911672110.3390/rs11060721
– reference: LiPZhangXIntegrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioningGPS Solutions201418346147110.1007/s10291-013-0345-5
– reference: LaurichesseDMercierFBerthiasJPBrocaPCerriLInteger ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determinationNavigation200956213514910.1002/j.2161-4296.2009.tb01750.x
– reference: BertigerWDesaiSDHainesBHarveyNMooreAWOwenSWeissJPSingle receiver phase ambiguity resolution with GPS dataJ Geod20108432733710.1007/s00190-010-0371-9
– reference: TurkTOcalanTPPK GNSS Sistemine Sahip İnsansız Hava Araçları ile Elde Edilen Fotogrametrik Ürünlerin Doğruluğunun Farklı Yaklaşımlarla İrdelenmesi. (In Turkish)Türkiye Fotogrametri Dergisi2020212228
– reference: ShiJYuanXCaiYWangGGPS real-time precise point positioning for aerial triangulationGPS Solutions201721240541410.1007/s10291-016-0532-2
– reference: Wu Q, Sun M, Zhou C, Zhang P (2019) Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone. Sensors (Basel). 2019 May 11;19(9):2189. https://doi.org/10.3390/s19092189
– reference: GraysonBPennaNTMillsJPGrantDSGPS precise point positioning for UAV photogrammetryPhotogram Rec20183316442744710.1111/phor.12259
– reference: GengJMengXDodsonAHTeferleFNInteger ambiguity resolution in precise point positioning: method comparisonJ Geodesy201084956958110.1007/s00190-010-0399-x
– reference: LouYZhengFGuSWangCGuoHFengYMulti-GNSS precise point positioning with raw single-frequency and dual-frequency measurement modelsGPS Solutions201620484986210.1007/s10291-015-0495-8
– reference: Khodabandeh A, Teunissen PJG (2015) Single-epoch GNSS array integrity: an analytical study. In: VIII Hotine-Marussi symposium on mathematical geodesy. Cham: Springer, 263–272. https://doi.org/10.1007/1345_2015_64
– reference: OcalanTErdoganBTunaliogluNDurdagUMAccuracy investigation of PPP method versus relative positioning using different satellite ephemerides products near/under forest environmentEarth Sci Res J20162041910.15446/esrj.v20n4.59496
– reference: ZumbergeJFHeflinMBJeffersonDCWatkinsMMWebbFHPrecise point positioning for the efficient and robust analysis of GPS data from large networksJ Geophys research: solid earth1997102B35005501710.1029/96JB03860
– reference: Ćwiklak J, Kozuba J, Krasuski K, Jafernik H (2018) Determination of the aircraft position in PPP method in an in-flight test–case study. In: International multidisciplinary scientific GEOCONference: SGEM, 18(2.2), pp 133–140
– reference: ZhangHAldana-JagueEClapuytFWilkenFVanackerVOostKVEvaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detectionEarth Surf Dyn20197380782710.5194/esurf-7-807-2019
– reference: ChenWHuCLiZChenYDingXGaoSJiSKinematic GPS precise point positioning for sea level monitoring with GPS buoyJ Global Position Syst200431–230230710.5081/jgps.3.1.302
– reference: Aggrey J, Bisnath S (2017) Analysis of multi-GNSS PPP initialization using dual-and triple-frequency data. In: Proceedings of the 2017 international technical meeting of the institute of navigation, Monterey, CA, USA, 445–458. https://doi.org/10.33012/2017.14909
– reference: HérouxPKoubaJGPS precise point positioning using IGS orbit productsPhys Chem Earth Part A2001266–857357810.1016/S1464-1895(01)00103-X
– reference: ZhangBTeunissenPOdijkDA novel un-differenced PPP-RTK conceptJ Navig201164S180S19110.1017/S0373463311000361
– volume: 129
  start-page: 358
  year: 2018
  ident: 868_CR10
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.07.050
– ident: 868_CR1
  doi: 10.33012/2017.14909
– volume: 25
  start-page: 30
  year: 2021
  ident: 868_CR17
  publication-title: GPS Solutions
  doi: 10.1007/s10291-020-01079-7
– ident: 868_CR19
  doi: 10.1007/1345_2015_64
– volume: 11
  start-page: 721
  issue: 6
  year: 2019
  ident: 868_CR37
  publication-title: Remote Sens
  doi: 10.3390/rs11060721
– volume: 86
  start-page: 579
  issue: 8
  year: 2012
  ident: 868_CR13
  publication-title: J Geodesy
  doi: 10.1007/s00190-011-0537-0
– volume: 92
  start-page: 579
  issue: 6
  year: 2018
  ident: 868_CR25
  publication-title: J Geodesy
  doi: 10.1007/s00190-017-1081-3
– ident: 868_CR40
  doi: 10.3390/s19092189
– volume: 18
  start-page: 461
  issue: 3
  year: 2014
  ident: 868_CR24
  publication-title: GPS Solutions
  doi: 10.1007/s10291-013-0345-5
– ident: 868_CR27
– volume: 102
  start-page: 5005
  issue: B3
  year: 1997
  ident: 868_CR43
  publication-title: J Geophys research: solid earth
  doi: 10.1029/96JB03860
– ident: 868_CR3
  doi: 10.1016/j.isprsjprs.2015.04.002
– ident: 868_CR8
  doi: 10.5593/sgem2018/2.2/S08.018
– volume: 86
  start-page: 991
  issue: 11
  year: 2012
  ident: 868_CR29
  publication-title: J Geodesy
  doi: 10.1007/s00190-012-0559-2
– volume: 20
  start-page: 1
  issue: 4
  year: 2016
  ident: 868_CR31
  publication-title: Earth Sci Res J
  doi: 10.15446/esrj.v20n4.59496
– volume: 5
  start-page: 12
  issue: 2
  year: 2001
  ident: 868_CR20
  publication-title: GPS Solutions
  doi: 10.1007/PL00012883
– year: 2016
  ident: 868_CR16
  publication-title: Int J Aerosp Eng
  doi: 10.1155/2016/1259893
– volume: 21
  start-page: 405
  issue: 2
  year: 2017
  ident: 868_CR36
  publication-title: GPS Solutions
  doi: 10.1007/s10291-016-0532-2
– year: 2018
  ident: 868_CR21
  publication-title: Aircr Eng Aerosp Technol
  doi: 10.1108/AEAT-05-2016-0078
– volume: 65
  start-page: 513
  issue: 3
  year: 2012
  ident: 868_CR23
  publication-title: J Navig
  doi: 10.1017/S0373463312000112
– volume: 25
  start-page: 1
  issue: 3
  year: 2021
  ident: 868_CR14
  publication-title: GPS Solutions
  doi: 10.1007/s10291-021-01140-z
– volume: 8
  start-page: 91
  issue: 1
  year: 2019
  ident: 868_CR33
  publication-title: Electronics
  doi: 10.3390/electronics8010091
– ident: 868_CR44
– volume: 2
  start-page: 22
  issue: 1
  year: 2020
  ident: 868_CR38
  publication-title: Türkiye Fotogrametri Dergisi
– volume: 33
  start-page: 427
  issue: 164
  year: 2018
  ident: 868_CR15
  publication-title: Photogram Rec
  doi: 10.1111/phor.12259
– volume: 84
  start-page: 327
  year: 2010
  ident: 868_CR2
  publication-title: J Geod
  doi: 10.1007/s00190-010-0371-9
– volume: 3
  start-page: 302
  issue: 1–2
  year: 2004
  ident: 868_CR6
  publication-title: J Global Position Syst
  doi: 10.5081/jgps.3.1.302
– volume: 11
  start-page: 1
  issue: 24
  year: 2018
  ident: 868_CR9
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-018-4140-z
– volume: 7
  start-page: 121
  year: 2020
  ident: 868_CR39
  publication-title: Jeodezi ve Jeoinformasyon Dergisi
  doi: 10.9733/JGG.2020R0008.T
– volume: 56
  start-page: 135
  issue: 2
  year: 2009
  ident: 868_CR22
  publication-title: Navigation
  doi: 10.1002/j.2161-4296.2009.tb01750.x
– volume: 7
  start-page: 807
  issue: 3
  year: 2019
  ident: 868_CR42
  publication-title: Earth Surf Dyn
  doi: 10.5194/esurf-7-807-2019
– volume: 13
  start-page: 3266
  issue: 16
  year: 2021
  ident: 868_CR4
  publication-title: Remote Sens
  doi: 10.3390/rs13163266
– volume: 85
  start-page: 151
  issue: 3
  year: 2011
  ident: 868_CR26
  publication-title: J Geodesy
  doi: 10.1007/s00190-010-0424-0
– volume: 84
  start-page: 569
  issue: 9
  year: 2010
  ident: 868_CR12
  publication-title: J Geodesy
  doi: 10.1007/s00190-010-0399-x
– volume: 15
  start-page: 1
  issue: 1
  year: 2017
  ident: 868_CR35
  publication-title: J global Position Syst
  doi: 10.1186/s41445-017-0009-9
– ident: 868_CR34
– volume: 49
  start-page: 109
  issue: 2
  year: 2002
  ident: 868_CR11
  publication-title: Navigation
  doi: 10.1002/j.2161-4296.2002.tb00260.x
– ident: 868_CR32
– ident: 868_CR30
– volume: 64
  start-page: S180
  year: 2011
  ident: 868_CR41
  publication-title: J Navig
  doi: 10.1017/S0373463311000361
– volume: 26
  start-page: 573
  issue: 6–8
  year: 2001
  ident: 868_CR18
  publication-title: Phys Chem Earth Part A
  doi: 10.1016/S1464-1895(01)00103-X
– volume: 20
  start-page: 849
  issue: 4
  year: 2016
  ident: 868_CR28
  publication-title: GPS Solutions
  doi: 10.1007/s10291-015-0495-8
– ident: 868_CR7
– ident: 868_CR5
SSID ssib031263228
ssj0062140
Score 2.33351
Snippet Traditionally, photogrammetric product accuracy at cm level is obtained with Ground Control Points (GCP) in UAV photogrammetry. In recent years, UAVs equipped...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2231
SubjectTerms Accuracy
Agriculture
Ambiguity resolution (mathematics)
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Forest management
Information Systems Applications (incl.Internet)
Kinematics
Ontology
Photogrammetry
Simulation and Modeling
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Sustainability management
Sustainable forestry
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6IeiD6FScTsmDbxpsk7VLn2TKdAiOMZzsreRrU5B27uNh_72XNl1VcE8ttCnl7pLf73KXO4SupDbg-FBOjI6sg8IZAVTUJDQ61OBPKJFFTF96YXfYfB4FI7fhNndplcWamC3UOlV2j_wWYBbIBIB3dDf9IrZrlI2uuhYa26gKSzAH56t63-n1B4VFMd-WI6fruEJI3RFJHgbEa7aYO0aTH6azRbuJzW63PJ-T1m-oKvnnn5BphkSPB2jfUUjcznV-iLZMUkN77cnMldEwNbTzlDXsXR0h9aOQRprgdIyFUsuZUCt73-_3sUi0vZL2AOftpOcYiCzOsQ5PzLoTCfwM_kjwsP2Gp-_pIsvrghGz1TEaPnZeH7rENVYgCmbcgkjL-iLFZeQzw8147CmfGio8zcKQKuBggPJj3pSUqQziqA4V-DlNCWzFlz47QZUkTcwpwhGomAUMnCglAQ8D4StPKOBxXPhaeLKO_EKGsXJVx23zi8-4rJds5R6D3ONM7nGrjq7XY6Z5zY2NbzcK1cRu_s3j0lrq6KZQV_n4_6-dbf7aOdql1kKyfJYGqixmS3MBrGQhL53pfQPi_9j4
  priority: 102
  providerName: ProQuest
Title Investigation of accuracy of PPP and PPP-AR methods for direct georeferencing in UAV photogrammetry
URI https://link.springer.com/article/10.1007/s12145-022-00868-7
https://www.proquest.com/docview/2736504419
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5si-BFfGJ9lD1404Vmt003x1T6QLEUsaKnsK-qIElp66H_3tlt0qqo4GkD2dnAzGzmG-YFcK6MRceHCWpN5BwUwSlaRUNDa0KD_oSWPmJ6Owj7o8b1Y_MxLwqbFdnuRUjS_6nXxW6uqTZ12ecOhwvaKkGl6Xx31OIRiwst4oFrQc5WsYSQ5WWRIkTqRovnpTM_n_nVPK0x57cwqbc-3R3YzmEjiZdy3oUNm-7BZs-P5V3sg_7ULiNLSTYmUuv3qdQL9zwcDolMjVtpfEeWQ6NnBOEqWVo08mxX80bw8-Q1JaP4gUxesrnP3kKK6eIARt3O_VWf5uMTqMZ7NafKYbtICxUF3Ao7Htd1wCyTdcPDkGlEWmjLx6KhGNfekDETavRmGgoxSaACfgjlNEvtEZAIBcmbHF0lrdDqNWWg61IjWhMyMLKuqhAUXEt03lvcjbh4S9ZdkR2nE-R04jmdtKpwsaKZLDtr_Ln7tBBGkt-yWYLQCwEmArqoCpeFgNavfz_t-H_bT2CLOR3xWSynUJ5P3-0ZYpG5qkFJdHs1qMTddnvg1t7TTQfXdmcwvKt5xfwA10TVbA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xILTLAQG7iPL0YTmx1iZ2mjoHhCqglOWhakVX3IJfZVdaJaUtQv1T_EbGTtICEtw4JVJiKxp_9vdNxp4B-K6MRceHCWpN4hwUwSmyoqGxNbFBf0JLHzG9uIzb3ejXdf16Bh6rszBuW2W1JvqF2uTa_SP_iTSLYgLJOzno31FXNcpFV6sSGgUszuz4AV224f7pEY7vLmOt46vDNi2rClCNcBtR5SRPooVKQm6F7fUCHTLLZGB4HDONAgQpricixbj26zszsUaRHymk6lCFHPv9BHMR54mbUaJ1UuGXhy75OZtEMWJWHsgUcZ0GUYOXh3aKo3suRTh1e-mdVyFo4yUxTtXuqwCt573WEiyWgpU0C4Qtw4zNVmCheTsok3bYFZg_8eWBx19BP0vbkWck7xGp9f1A6rG773Q6RGbGXWnzNymKVw8JymZSMCu5tZO6J_gx5F9Gus0_pP83H_ldZNhiMP4G3Q8x-CrMZnlm14AkCChe5-iyaYXsW5ehDqRG1ShkaGSgahBWNkx1mePcldr4n06zMzu7p2j31Ns9bdRgb9KmX2T4ePftzWpo0nK2D9MpNmvwoxqu6eO3e1t_v7cd-Ny-ujhPz08vzzbgC3No8TtpNmF2NLi3W6iHRmrbg5DAzUej_glBbRJV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9tAFH6iQa3ooWIVaVnmAKd2hD2TOPYBVWEJayMLEcTNzOaAhOw0CUL5a_11fWOPk1IJbpxsyfbIevN5vu953gKwI7VBx4eF1OjIOighp8iKmgZGBxr9CSWKHdNf3eC01zi_bd7OwZ8qF8aGVVZrYrFQ61zZf-R7SLMoJpC8o73UhUXER52fg9_UdpCyO61VO40SIhdm8ozu22j_7AjnepexzvH14Sl1HQaoQuiNqbTyJ1KhjHxuQpOmnvKZYcLTPAiYQjGCdJeGDcm4KtZ6pgOFgr8hkbZ96XMc9wPMt9Ar8mowf3Dcja8qNHPflkJn0z2NgLn0zDBoUq_R4i6Fp0zkswXDqY2stz5GSFsvaXKmff_bri1YsLMIX5x8Je0Sb0swZ7Jl-NzuD10JD7MMH0-KZsGTFVD_FPHIM5KnRCj1NBRqYs_jOCYi0_ZI21ekbGU9IiiiScmzpG-mXVDwZchDRnrtGzK4z8dFTBk-MZysQu9dTL4GtSzPzDqQCOHFmxwdOCWRi5vCV55QqCFD4WvhyTr4lQ0T5Sqe28Ybj8msVrO1e4J2Twq7J606fJ8-Myjrfbx590Y1NYn79kfJDKl1-FFN1-zy66N9fXu0bfiEiE8uz7oX32CBWbAUYTUbUBsPn8wmiqOx3HIoJHD33sD_CyDQF-c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+accuracy+of+PPP+and+PPP-AR+methods+for+direct+georeferencing+in+UAV+photogrammetry&rft.jtitle=Earth+science+informatics&rft.au=Ocalan%2C+Taylan&rft.au=Turk%2C+Tarik&rft.au=Tunalioglu%2C+Nursu&rft.au=Gurturk%2C+Mert&rft.date=2022-12-01&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=15&rft.issue=4&rft.spage=2231&rft.epage=2238&rft_id=info:doi/10.1007%2Fs12145-022-00868-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12145_022_00868_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon