Evaluation of Source Rock Potentiality and Prediction of Total Organic Carbon Using Well Log Data and Integrated Methods of Multivariate Analysis, Machine Learning, and Geochemical Analysis
In this study, integrated approaches based on multivariate analysis (MVA), machine learning (ML), and geochemical analysis are proposed to investigate the potential of hydrocarbon reserves and total organic carbon (TOC) prediction. These approaches employed the MVA technique as a future selection me...
Saved in:
Published in | Natural resources research (New York, N.Y.) Vol. 31; no. 1; pp. 619 - 641 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, integrated approaches based on multivariate analysis (MVA), machine learning (ML), and geochemical analysis are proposed to investigate the potential of hydrocarbon reserves and total organic carbon (TOC) prediction. These approaches employed the MVA technique as a future selection method in source rock evaluation. We used geochemical data from 30 core samples taken equally from wells SS-5 and SS-7. Geochemical parameters, namely TOC, free hydrocarbon, thermal pyrolysis hydrocarbon, hydrogen index, production index, and oxygen index, were determined for statistical evaluation. IBM SPSS statistical software and MATLAB (R2020a) were used for MVA and ML, respectively. The performance of the models built using MVA and ML were evaluated by, among others, coefficient of determination (R
2
) and mean square error (MSE). Findings revealed that fair through good to excellent source rock with TOC ranging from 0.85 to 2.95 wt% are hosted in the Triassic beds of Tanga. A high 1.61% Ro at a mature peak of 463 °C predominates with the existence of type III/II kerogen that can produce both oil and gas. Considering TOC prediction from conventional well log data, optimized Gaussian process regression showed the best performance followed by MVA and support vector machine, giving the MSEs of 0.5629, 0.6172, and 0.7023, respectively. In terms of prediction accuracy, their R
2
values of 0.952, 0.9346, and 0.835, respectively, were in good agreement with the geochemical results. The concurrence of geochemical analysis, ML, and MVA revealed that the Tanga basin has great hydrocarbon potential of great economic importance. The study revealed that combining MVA and other methods can be applied to assess the hydrocarbon resource potential of other prospects around the globe. |
---|---|
AbstractList | In this study, integrated approaches based on multivariate analysis (MVA), machine learning (ML), and geochemical analysis are proposed to investigate the potential of hydrocarbon reserves and total organic carbon (TOC) prediction. These approaches employed the MVA technique as a future selection method in source rock evaluation. We used geochemical data from 30 core samples taken equally from wells SS-5 and SS-7. Geochemical parameters, namely TOC, free hydrocarbon, thermal pyrolysis hydrocarbon, hydrogen index, production index, and oxygen index, were determined for statistical evaluation. IBM SPSS statistical software and MATLAB (R2020a) were used for MVA and ML, respectively. The performance of the models built using MVA and ML were evaluated by, among others, coefficient of determination (R
2
) and mean square error (MSE). Findings revealed that fair through good to excellent source rock with TOC ranging from 0.85 to 2.95 wt% are hosted in the Triassic beds of Tanga. A high 1.61% Ro at a mature peak of 463 °C predominates with the existence of type III/II kerogen that can produce both oil and gas. Considering TOC prediction from conventional well log data, optimized Gaussian process regression showed the best performance followed by MVA and support vector machine, giving the MSEs of 0.5629, 0.6172, and 0.7023, respectively. In terms of prediction accuracy, their R
2
values of 0.952, 0.9346, and 0.835, respectively, were in good agreement with the geochemical results. The concurrence of geochemical analysis, ML, and MVA revealed that the Tanga basin has great hydrocarbon potential of great economic importance. The study revealed that combining MVA and other methods can be applied to assess the hydrocarbon resource potential of other prospects around the globe. In this study, integrated approaches based on multivariate analysis (MVA), machine learning (ML), and geochemical analysis are proposed to investigate the potential of hydrocarbon reserves and total organic carbon (TOC) prediction. These approaches employed the MVA technique as a future selection method in source rock evaluation. We used geochemical data from 30 core samples taken equally from wells SS-5 and SS-7. Geochemical parameters, namely TOC, free hydrocarbon, thermal pyrolysis hydrocarbon, hydrogen index, production index, and oxygen index, were determined for statistical evaluation. IBM SPSS statistical software and MATLAB (R2020a) were used for MVA and ML, respectively. The performance of the models built using MVA and ML were evaluated by, among others, coefficient of determination (R2) and mean square error (MSE). Findings revealed that fair through good to excellent source rock with TOC ranging from 0.85 to 2.95 wt% are hosted in the Triassic beds of Tanga. A high 1.61% Ro at a mature peak of 463 °C predominates with the existence of type III/II kerogen that can produce both oil and gas. Considering TOC prediction from conventional well log data, optimized Gaussian process regression showed the best performance followed by MVA and support vector machine, giving the MSEs of 0.5629, 0.6172, and 0.7023, respectively. In terms of prediction accuracy, their R2 values of 0.952, 0.9346, and 0.835, respectively, were in good agreement with the geochemical results. The concurrence of geochemical analysis, ML, and MVA revealed that the Tanga basin has great hydrocarbon potential of great economic importance. The study revealed that combining MVA and other methods can be applied to assess the hydrocarbon resource potential of other prospects around the globe. |
Author | Shen, Chuanbo Nyakilla, Edwin E. Jun, Gu Silingi, Selemani N. Mulashani, Alvin K. Chibura, Patrick E. |
Author_xml | – sequence: 1 givenname: Edwin E. surname: Nyakilla fullname: Nyakilla, Edwin E. organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences – sequence: 2 givenname: Selemani N. surname: Silingi fullname: Silingi, Selemani N. organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences, Department of Geology, Earth Sciences Institute of Shinyanga, (ESIS – sequence: 3 givenname: Chuanbo surname: Shen fullname: Shen, Chuanbo email: cbshen@cug.edu.cn organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences, Department of Petroleum Geology School of Earth Resources, China University of Geosciences – sequence: 4 givenname: Gu surname: Jun fullname: Jun, Gu email: gujun@cug.edu.cn organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences – sequence: 5 givenname: Alvin K. surname: Mulashani fullname: Mulashani, Alvin K. organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences – sequence: 6 givenname: Patrick E. surname: Chibura fullname: Chibura, Patrick E. organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences |
BookMark | eNp9kUtPGzEUhUeISjzaP9CVpW6Z1o95eYlSCkiJQC2oS-vGvjMxNTa1HaT8OP5bnaSoUhesbNnfOffqnJPq0AePVfWR0c-M0v5LYoy2oqac1VTKYajZQXXM2l7UgxzY4fbOad03Qh5VJyk90CISQ3tcvVw8g1tDtsGTMJIfYR01ku9B_yK3IaPPFpzNGwLekNuIxupX9C5kcOQmTuCtJjOIy_J-n6yfyE90jszDRL5Chp302mecImQ0ZIF5FUzaWizWLttniLZ8kHMPbpNsOiML0CvrkcwRoi9-ZzuLSwx6hY9Wl6mv7Pvq3Qgu4Ye_52l1_-3ibnZVz28ur2fn81oLJnO9FP2I2si26RpuxMA71sCy4W3HdclIGjEaBhyWkklu-o4jFSPvesOxQ0qZOK0-7X2fYvi9xpTVQwmqLJEUl2wQoi9QoYY9pWNIKeKotM27aHME6xSjaluW2pelSllqV5baDuD_SZ-ifYS4eVsk9qJUYD9h_LfVG6o_W2SrJQ |
CitedBy_id | crossref_primary_10_1007_s12665_024_11888_5 crossref_primary_10_1007_s00521_023_08865_7 crossref_primary_10_1016_j_energy_2023_129232 crossref_primary_10_1007_s11053_023_10207_2 crossref_primary_10_1016_j_coal_2025_104699 crossref_primary_10_3390_su17052048 crossref_primary_10_1016_j_earscirev_2024_104913 crossref_primary_10_3390_en16104159 crossref_primary_10_1007_s11053_024_10374_w crossref_primary_10_1016_j_geoen_2025_213835 crossref_primary_10_1007_s11356_023_25886_w crossref_primary_10_1007_s11053_024_10402_9 crossref_primary_10_1016_j_ptlrs_2022_06_002 crossref_primary_10_1007_s13202_023_01688_1 crossref_primary_10_1016_j_engappai_2025_110137 |
Cites_doi | 10.1016/j.marpetgeo.2020.104347 10.1016/j.conbuildmat.2005.01.022 10.1016/j.petrol.2017.03.022 10.1016/j.ejpe.2015.05.012 10.1007/s11053-021-09908-3 10.1016/j.gexplo.2016.08.017 10.1016/j.petrol.2017.01.003 10.1016/j.jngse.2020.103433 10.1016/j.coal.2015.06.001 10.3390/en12081509 10.1016/j.petrol.2017.10.028 10.1016/j.coal.2015.05.003 10.1016/j.ejpe.2018.03.003 10.2516/ogst:1998036 10.1016/j.coal.2018.03.001 10.1016/j.coal.2019.02.003 10.1016/j.marpetgeo.2020.104429 10.1016/j.coal.2017.11.014 10.1016/j.coal.2016.11.012 10.1080/10916461003620495 10.1016/j.jafrearsci.2015.01.001 10.1016/j.marpetgeo.2019.104084 10.1016/0016-7037(87)90343-7 10.2516/ogst:2001013 10.1016/j.orggeochem.2016.05.002 10.1007/BF01031743 10.1016/j.petrol.2019.01.055 10.1007/s11053-019-09576-4 10.1016/j.conbuildmat.2019.117021 10.1016/S0166-5162(97)00027-X 10.1016/j.jafrearsci.2015.08.012 10.1016/j.coal.2017.11.004 10.1007/BF00893748 10.1306/10230808076 10.1016/j.jafrearsci.2019.02.018 10.1016/j.asoc.2015.04.046 10.3390/min8120580 10.1007/BF01093413 10.1071/AJ98017 10.1016/j.jnggs.2017.12.002 10.1016/j.foodres.2019.03.062 10.1016/S0899-5362(02)00016-7 10.1016/j.coal.2017.02.009 10.1016/j.conbuildmat.2020.120198 10.1016/S1874-5997(97)80013-5 10.1201/9780203009765 10.1117/3.633187 10.2523/iptc-19659-ms 10.1016/j.energy.2021.121915 10.5772/644 10.2118/198130-MS 10.1007/978-1-4471-7307-6_2 |
ContentType | Journal Article |
Copyright | International Association for Mathematical Geosciences 2021 International Association for Mathematical Geosciences 2021. |
Copyright_xml | – notice: International Association for Mathematical Geosciences 2021 – notice: International Association for Mathematical Geosciences 2021. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY |
DOI | 10.1007/s11053-021-09988-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Geology Physics Computer Science Statistics |
EISSN | 1573-8981 |
EndPage | 641 |
ExternalDocumentID | 10_1007_s11053_021_09988_1 |
GrantInformation_xml | – fundername: Fundamental Research Fund for the Central Universities, China University of Geosciences grantid: No. CUGCJ1820 – fundername: National Natural Science Foundation of China grantid: Nos.41972326; 51774258 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Major National Science and Technology Programs in the “Thirteenth Five-Year” Plan period grantid: 2017ZX05032-002-004 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PDBOC PF0 PT4 PT5 PYCSY QOK QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-b37fecd954642d382614ab42562c5739d3fd1a2ab9192d762e03f267d2e6e0013 |
IEDL.DBID | U2A |
ISSN | 1520-7439 |
IngestDate | Fri Jul 25 10:03:22 EDT 2025 Tue Jul 01 04:16:50 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Fri Feb 21 02:47:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cluster analysis Factor analysis Machine learning Geochemical analysis ) Pearson's correlation coefficient Source rock |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-b37fecd954642d382614ab42562c5739d3fd1a2ab9192d762e03f267d2e6e0013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918337013 |
PQPubID | 2043663 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2918337013 crossref_citationtrail_10_1007_s11053_021_09988_1 crossref_primary_10_1007_s11053_021_09988_1 springer_journals_10_1007_s11053_021_09988_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | Official Journal of the International Association for Mathematical Geosciences |
PublicationTitle | Natural resources research (New York, N.Y.) |
PublicationTitleAbbrev | Nat Resour Res |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Mashhadi, Rabbani (CR34) 2015; 146 Hakimi, Abdullah, Ahmed (CR22) 2017; 153 Mulashani, Shen, Asante-okyere, Kerttu, Abelly (CR37) 2021 Bolandi, Kadkhodaie, Farzi (CR8) 2017; 151 Kapilima (CR28) 2003; 29 CR36 CR35 Handhal, Al-Abadi, Chafeet, Ismail (CR23) 2020; 116 CR33 CR32 Robison (CR42) 1997; 34 Walden, Smith, Dackombe (CR51) 1992; 24 Godfray, Seetharamaiah (CR20) 2019; 153 Hazra, Dutta, Kumar (CR24) 2017; 169 Said, Moder, Clark, Abdelmalak (CR46) 2015; 111 CR2 Langford, Blanc-Valleron (CR30) 1990; 74 Carvajal-Ortiz, Gentzis (CR11) 2015; 152 Temple (CR50) 1978; 10 Pan, Horsfield, Zou, Yang, Gao (CR39) 2017; 173 CR9 CR49 Wang, Gao, Kang, Zhu, Liu, Ding, Liu (CR52) 2020; 112 Romero-sarmiento, Ramiro-ramirez, Berthe, Fleury, Littke (CR44) 2017; 184 Azimi-Pour, Eskandari-Naddaf, Pakzad (CR5) 2020; 230 CR41 Zumberge (CR59) 1987; 51 Xie, Zhu, Zhou, Li, Liu, Tu (CR56) 2018; 160 El Nady, Lotfy, Ramadan, Hammad (CR16) 2015; 24 Kaloop, Kumar, Samui, Hu, Kim (CR27) 2020; 264 Gentzis (CR18) 2018; 190 Li, Chen, Cao, Ma, Liu, Li (CR31) 2018; 191 Wu, Lü, Wu (CR54) 2006; 20 Omran, Alareeq (CR38) 2018; 27 Shen, Asante-Okyere, Yevenyo Ziggah, Wang, Zhu (CR48) 2019; 12 Aziz, Ehsan, Ali, Khan, Khan (CR6) 2020; 81 Romero-Sarmiento, Euzen, Rohais, Jiang, Littke (CR43) 2016; 97 El Kammar (CR15) 2015; 104 Rui, Zhang, Ren, Yan, Guo, Zhang (CR45) 2020; 118 El Nady, Ramadan, Hammad, Lotfy (CR17) 2015; 24 CR10 Peters (CR40) 1986; 70 Amiri Bakhtiar, Telmadarreie, Shayesteh, Heidari Fard, Talebi, Shirband (CR3) 2011; 29 Shalaby, Jumat, Lai, Malik (CR47) 2019; 176 El Hajj, Baudin, Littke, Nader, Geze, Maksoud, Azar (CR14) 2019; 204 Lafargue, Marquis, Pillot (CR29) 1998; 53 Behar, Beaumont, Penteado (CR7) 2001; 56 Zaremotlagh, Hezarkhani, Sadeghi (CR57) 2016; 170 Golden, Rothrock, Mishra (CR21) 2019; 122 Giannakopoulou, Petrounias, Tsikouras, Kalaitzidis, Rogkala, Hatzipanagiotou, Tombros (CR19) 2018; 8 CR26 Izenman (CR25) 2008; 10 Al-Mohair, Saleh, Suandi (CR1) 2015; 33 Edwards, Struckmeyer, Bradshaw, Skinner (CR13) 1999; 39 Asante-Okyere, Shen, Ziggah, Rulegeya, Zhu (CR4) 2020; 29 Dembicki (CR12) 2009; 93 Wu, Chen, Zhao, Du, Zeng, Wang, Wang, Hu (CR55) 2017; 2 Zhou, Chang, Davis (CR58) 1983; 15 Wopfner (CR53) 2002; 34 MH Hakimi (9988_CR22) 2017; 153 H Aziz (9988_CR6) 2020; 81 AA Omran (9988_CR38) 2018; 27 HK Al-Mohair (9988_CR1) 2015; 33 Y Xie (9988_CR56) 2018; 160 S Zaremotlagh (9988_CR57) 2016; 170 KE Peters (9988_CR40) 1986; 70 H Wopfner (9988_CR53) 2002; 34 ZS Mashhadi (9988_CR34) 2015; 146 J Rui (9988_CR45) 2020; 118 MM El Nady (9988_CR17) 2015; 24 9988_CR26 H Dembicki Jr (9988_CR12) 2009; 93 AM Handhal (9988_CR23) 2020; 116 AK Mulashani (9988_CR37) 2021 FF Langford (9988_CR30) 1990; 74 G Godfray (9988_CR20) 2019; 153 H Amiri Bakhtiar (9988_CR3) 2011; 29 M-F Romero-Sarmiento (9988_CR43) 2016; 97 D Zhou (9988_CR58) 1983; 15 P Giannakopoulou (9988_CR19) 2018; 8 MR Shalaby (9988_CR47) 2019; 176 H Carvajal-Ortiz (9988_CR11) 2015; 152 C Shen (9988_CR48) 2019; 12 9988_CR10 9988_CR2 MM El Kammar (9988_CR15) 2015; 104 AJ Izenman (9988_CR25) 2008; 10 9988_CR9 X Wu (9988_CR55) 2017; 2 S Pan (9988_CR39) 2017; 173 M Azimi-Pour (9988_CR5) 2020; 230 9988_CR41 L El Hajj (9988_CR14) 2019; 204 JE Zumberge (9988_CR59) 1987; 51 T Gentzis (9988_CR18) 2018; 190 M Li (9988_CR31) 2018; 191 M Romero-sarmiento (9988_CR44) 2017; 184 9988_CR49 E Lafargue (9988_CR29) 1998; 53 G Wu (9988_CR54) 2006; 20 MR Kaloop (9988_CR27) 2020; 264 S Asante-Okyere (9988_CR4) 2020; 29 JT Temple (9988_CR50) 1978; 10 CR Robison (9988_CR42) 1997; 34 9988_CR33 S Kapilima (9988_CR28) 2003; 29 9988_CR32 V Bolandi (9988_CR8) 2017; 151 J Wang (9988_CR52) 2020; 112 DS Edwards (9988_CR13) 1999; 39 J Walden (9988_CR51) 1992; 24 B Hazra (9988_CR24) 2017; 169 9988_CR35 9988_CR36 A Said (9988_CR46) 2015; 111 MM El Nady (9988_CR16) 2015; 24 F Behar (9988_CR7) 2001; 56 CE Golden (9988_CR21) 2019; 122 |
References_xml | – volume: 116 year: 2020 ident: CR23 article-title: Prediction of total organic carbon at Rumaila oil field, Southern Iraq using conventional well logs and machine learning algorithms publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2020.104347 – volume: 20 start-page: 134 issue: 3 year: 2006 end-page: 148 ident: CR54 article-title: Strength and ductility of concrete cylinders confined with FRP composites publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2005.01.022 – ident: CR49 – volume: 153 start-page: 23 year: 2017 end-page: 35 ident: CR22 article-title: Organic geochemical characteristics of oils from the offshore Jiza-Qamar Basin, Eastern Yemen: New insight on coal/coaly shale source rocks publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.03.022 – volume: 24 start-page: 203 issue: 2 year: 2015 end-page: 211 ident: CR17 article-title: Evaluation of organic matters, hydrocarbon potential and thermal maturity of source rocks based on geochemical and statistical methods: Case study of source rocks in Ras Gharib oilfield, central Gulf of Suez Egypt publication-title: Egyptian Journal of Petroleum doi: 10.1016/j.ejpe.2015.05.012 – year: 2021 ident: CR37 article-title: Group Method of Data Handling ( GMDH ) Neural Network for Estimating Total Organic Carbon ( TOC ) and hydrocar- bon potential distribution ( S 1, S 2) using well logs publication-title: Natural Resources Research doi: 10.1007/s11053-021-09908-3 – volume: 170 start-page: 94 year: 2016 end-page: 106 ident: CR57 article-title: Detecting homogenous clusters using whole-rock chemical compositions and REE patterns: A graph-based geochemical approach publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2016.08.017 – ident: CR35 – volume: 151 start-page: 224 year: 2017 end-page: 234 ident: CR8 article-title: Analyzing organic richness of source rocks from well log data by using SVM and ANN classifiers: A case study from the Kazhdumi formation, the Persian Gulf basin, offshore Iran publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.01.003 – volume: 81 year: 2020 ident: CR6 article-title: Hydrocarbon source rock evaluation and quantification of organic richness from correlation of well logs and geochemical data: A case study from the sembar formation, Southern Indus Basin, Pakistan publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2020.103433 – volume: 152 start-page: 113 year: 2015 end-page: 122 ident: CR11 article-title: Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2015.06.001 – volume: 12 start-page: 1509 issue: 8 year: 2019 ident: CR48 article-title: Group method of data handling (GMDH) lithology identification based on wavelet analysis and dimensionality reduction as well log data pre-processing techniques publication-title: Energies doi: 10.3390/en12081509 – volume: 160 start-page: 182 year: 2018 end-page: 193 ident: CR56 article-title: Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.10.028 – volume: 146 start-page: 118 year: 2015 end-page: 144 ident: CR34 article-title: International journal of coal geology organic geochemistry of crude oils and cretaceous source rocks in the iranian sector of the Persian Gulf : An oil – oil and oil – source rock correlation study publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2015.05.003 – volume: 27 start-page: 997 issue: 4 year: 2018 end-page: 1012 ident: CR38 article-title: Joint geophysical and geochemical evaluation of source rocks–A case study in Sayun-Masila basin Yemen publication-title: Egyptian Journal of Petroleum doi: 10.1016/j.ejpe.2018.03.003 – volume: 53 start-page: 421 issue: 4 year: 1998 end-page: 437 ident: CR29 article-title: Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies publication-title: Revue De L’institut Français Du Pétrole doi: 10.2516/ogst:1998036 – ident: CR9 – volume: 191 start-page: 37 year: 2018 end-page: 48 ident: CR31 article-title: International journal of coal geology expelled oils and their impacts on rock-eval data interpretation, Eocene Qianjiang formation in Jianghan Basin, China publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2018.03.001 – volume: 204 start-page: 70 year: 2019 end-page: 84 ident: CR14 article-title: Geochemical and petrographic analyses of new petroleum source rocks from the onshore upper jurassic and lower cretaceous of Lebanon publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2019.02.003 – ident: CR32 – ident: CR36 – volume: 118 year: 2020 ident: CR45 article-title: TOC content prediction based on a combined Gaussian process regression model publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2020.104429 – volume: 190 start-page: 56 year: 2018 end-page: 69 ident: CR18 article-title: International Journal of Coal Geology Geochemical screening of source rocks and reservoirs : The importance of using the proper analytical program publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2017.11.014 – volume: 169 start-page: 106 year: 2017 end-page: 115 ident: CR24 article-title: TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis: Critical consideration and insights publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2016.11.012 – volume: 70 start-page: 318 issue: 3 year: 1986 end-page: 329 ident: CR40 article-title: Guidelines for evaluating petroleum source rock using programmed pyrolysis publication-title: AAPG Bulletin – ident: CR26 – ident: CR2 – volume: 29 start-page: 1691 issue: 16 year: 2011 end-page: 1704 ident: CR3 article-title: Estimating total organic carbon content and source rock evaluation, applying ΔlogR and neural network methods: Ahwaz and Marun oilfields, SW of Iran publication-title: Petroleum Science and Technology doi: 10.1080/10916461003620495 – volume: 104 start-page: 19 year: 2015 end-page: 26 ident: CR15 article-title: Source-rock evaluation of the Dakhla Formation black shale in Gebel Duwi, Quseir area Egypt publication-title: Journal of African Earth Sciences doi: 10.1016/j.jafrearsci.2015.01.001 – volume: 112 start-page: 104084 year: 2020 ident: CR52 article-title: Geochemical characteristics, hydrocarbon potential and depositional environment of the Yangye Formation source rocks in Kashi sag, southwestern Tarim Basin, NW China publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2019.104084 – volume: 51 start-page: 1625 issue: 6 year: 1987 end-page: 1637 ident: CR59 article-title: Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach publication-title: Geochimica Et Cosmochimica Acta doi: 10.1016/0016-7037(87)90343-7 – ident: CR10 – volume: 56 start-page: 111 issue: 2 year: 2001 end-page: 134 ident: CR7 article-title: Rock-Eval 6 technology: Performances and developments publication-title: Oil & Gas Science and Technology doi: 10.2516/ogst:2001013 – volume: 10 start-page: 970 year: 2008 end-page: 978 ident: CR25 article-title: Modern multivariate statistical techniques publication-title: Regression, Classification and Manifold Learning – ident: CR33 – volume: 97 start-page: 148 year: 2016 end-page: 162 ident: CR43 article-title: Artificial thermal maturation of source rocks at different thermal maturity levels: Application to the Triassic Montney and Doig formations in the Western Canada Sedimentary Basin publication-title: Organic Geochemistry doi: 10.1016/j.orggeochem.2016.05.002 – volume: 10 start-page: 379 year: 1978 end-page: 387 ident: CR50 article-title: The use of factor analysis in geology publication-title: Journal of International Association of Mathematics and Geology doi: 10.1007/BF01031743 – volume: 74 start-page: 799 issue: 6 year: 1990 end-page: 804 ident: CR30 article-title: Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs total organic carbon (1) publication-title: AAPG Bulletin – volume: 176 start-page: 369 year: 2019 end-page: 380 ident: CR47 article-title: Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: Case study from the Jurassic source rocks in Shams Field, NW Desert Egypt publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2019.01.055 – volume: 29 start-page: 2257 issue: 4 year: 2020 end-page: 2273 ident: CR4 article-title: A novel hybrid technique of integrating gradient-boosted machine and clustering algorithms for lithology classification publication-title: Natural Resources Research doi: 10.1007/s11053-019-09576-4 – volume: 230 year: 2020 ident: CR5 article-title: Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2019.117021 – volume: 34 start-page: 287 issue: 3–4 year: 1997 end-page: 305 ident: CR42 article-title: Hydrocarbon source rock variability within the Austin chalk and Eagle Ford shale (upper cretaceous), East Texas, USA publication-title: International Journal of Coal Geology doi: 10.1016/S0166-5162(97)00027-X – volume: 111 start-page: 288 year: 2015 end-page: 295 ident: CR46 article-title: Sedimentary budgets of the Tanzania coastal basin and implications for uplift history of the East African rift system publication-title: Journal of African Earth Sciences doi: 10.1016/j.jafrearsci.2015.08.012 – volume: 29 start-page: 1 issue: 1 year: 2003 end-page: 16 ident: CR28 article-title: Tectonic and sedimentary evolution of the coastal basin of Tanzania during the Mesozoic times publication-title: Tanzania Journal of Science – volume: 184 start-page: 27 year: 2017 end-page: 41 ident: CR44 article-title: International journal of coal geology geochemical and petrophysical source rock characterization of the Vaca Muerta formation, Argentina : Implications for unconventional petroleum resource estimations publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2017.11.004 – volume: 24 start-page: 227 issue: 3 year: 1992 end-page: 247 ident: CR51 article-title: The use of simultaneous R-and Q-mode factor analysis as a tool for assisting interpretation of mineral magnetic data publication-title: Mathematical Geology doi: 10.1007/BF00893748 – volume: 93 start-page: 341 issue: 3 year: 2009 end-page: 356 ident: CR12 article-title: Three common source rock evaluation errors made by geologists during prospect or play appraisals publication-title: AAPG Bulletin doi: 10.1306/10230808076 – volume: 24 start-page: 203 issue: 2 year: 2015 end-page: 211 ident: CR16 article-title: Evaluation of organic matters, hydrocarbon potential and thermal maturity of source rocks based on geochemical and statistical methods : Case study of source rocks in Ras Gharib oilfield, central Gulf of Suez Egypt publication-title: Egyptian Journal of Petroleum doi: 10.1016/j.ejpe.2015.05.012 – volume: 153 start-page: 9 year: 2019 end-page: 16 ident: CR20 article-title: Geochemical and well logs evaluation of the Triassic source rocks of the Mandawa basin, SE Tanzania: Implication on richness and hydrocarbon generation potential publication-title: Journal of African Earth Sciences doi: 10.1016/j.jafrearsci.2019.02.018 – volume: 33 start-page: 337 year: 2015 end-page: 347 ident: CR1 article-title: Hybrid human skin detection using neural network and K-means clustering technique publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.04.046 – volume: 8 start-page: 580 issue: 12 year: 2018 ident: CR19 article-title: Using factor analysis to determine the interrelationships between the engineering properties of aggregates from igneous rocks in Greece publication-title: Minerals doi: 10.3390/min8120580 – volume: 15 start-page: 581 issue: 5 year: 1983 end-page: 606 ident: CR58 article-title: Dual extraction ofR-mode andQ-mode factor solutions publication-title: Journal of the International Association for Mathematical Geology doi: 10.1007/BF01093413 – volume: 39 start-page: 297 issue: 1 year: 1999 end-page: 321 ident: CR13 article-title: Geochemical characteristics of Australia’s southern margin petroleum systems publication-title: The APPEA Journal doi: 10.1071/AJ98017 – volume: 2 start-page: 253 issue: 4 year: 2017 end-page: 262 ident: CR55 article-title: Evaluation of source rocks in the 5th member of the Upper Triassic Xujiahe formation in the Xinchang gas field, the Western Sichuan depression China publication-title: Journal of Natural Gas Geoscience doi: 10.1016/j.jnggs.2017.12.002 – volume: 122 start-page: 47 year: 2019 end-page: 55 ident: CR21 article-title: Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms publication-title: Food Research International doi: 10.1016/j.foodres.2019.03.062 – volume: 34 start-page: 167 issue: 3–4 year: 2002 end-page: 177 ident: CR53 article-title: Tectonic and climatic events controlling deposition in Tanzanian Karoo basins publication-title: Journal of African Earth Sciences doi: 10.1016/S0899-5362(02)00016-7 – volume: 173 start-page: 51 year: 2017 end-page: 64 ident: CR39 article-title: Statistical analysis as a tool for assisting geochemical interpretation of the upper triassic yanchang formation, Ordos Basin, Central China publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2017.02.009 – ident: CR41 – volume: 264 start-page: 120198 year: 2020 ident: CR27 article-title: Compressive strength prediction of high-performance concrete using gradient tree boosting machine publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2020.120198 – volume: 29 start-page: 1691 issue: 16 year: 2011 ident: 9988_CR3 publication-title: Petroleum Science and Technology doi: 10.1080/10916461003620495 – volume: 10 start-page: 379 year: 1978 ident: 9988_CR50 publication-title: Journal of International Association of Mathematics and Geology doi: 10.1007/BF01031743 – year: 2021 ident: 9988_CR37 publication-title: Natural Resources Research doi: 10.1007/s11053-021-09908-3 – ident: 9988_CR2 – volume: 39 start-page: 297 issue: 1 year: 1999 ident: 9988_CR13 publication-title: The APPEA Journal doi: 10.1071/AJ98017 – volume: 104 start-page: 19 year: 2015 ident: 9988_CR15 publication-title: Journal of African Earth Sciences doi: 10.1016/j.jafrearsci.2015.01.001 – volume: 152 start-page: 113 year: 2015 ident: 9988_CR11 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2015.06.001 – ident: 9988_CR35 doi: 10.1016/S1874-5997(97)80013-5 – volume: 2 start-page: 253 issue: 4 year: 2017 ident: 9988_CR55 publication-title: Journal of Natural Gas Geoscience doi: 10.1016/j.jnggs.2017.12.002 – volume: 24 start-page: 203 issue: 2 year: 2015 ident: 9988_CR16 publication-title: Egyptian Journal of Petroleum doi: 10.1016/j.ejpe.2015.05.012 – volume: 29 start-page: 2257 issue: 4 year: 2020 ident: 9988_CR4 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09576-4 – volume: 230 year: 2020 ident: 9988_CR5 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2019.117021 – ident: 9988_CR26 – volume: 20 start-page: 134 issue: 3 year: 2006 ident: 9988_CR54 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2005.01.022 – volume: 81 year: 2020 ident: 9988_CR6 publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2020.103433 – volume: 116 year: 2020 ident: 9988_CR23 publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2020.104347 – volume: 53 start-page: 421 issue: 4 year: 1998 ident: 9988_CR29 publication-title: Revue De L’institut Français Du Pétrole doi: 10.2516/ogst:1998036 – ident: 9988_CR10 doi: 10.1201/9780203009765 – volume: 190 start-page: 56 year: 2018 ident: 9988_CR18 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2017.11.014 – volume: 27 start-page: 997 issue: 4 year: 2018 ident: 9988_CR38 publication-title: Egyptian Journal of Petroleum doi: 10.1016/j.ejpe.2018.03.003 – ident: 9988_CR41 doi: 10.1117/3.633187 – volume: 24 start-page: 227 issue: 3 year: 1992 ident: 9988_CR51 publication-title: Mathematical Geology doi: 10.1007/BF00893748 – volume: 112 start-page: 104084 year: 2020 ident: 9988_CR52 publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2019.104084 – volume: 191 start-page: 37 year: 2018 ident: 9988_CR31 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2018.03.001 – volume: 173 start-page: 51 year: 2017 ident: 9988_CR39 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2017.02.009 – volume: 15 start-page: 581 issue: 5 year: 1983 ident: 9988_CR58 publication-title: Journal of the International Association for Mathematical Geology doi: 10.1007/BF01093413 – volume: 34 start-page: 287 issue: 3–4 year: 1997 ident: 9988_CR42 publication-title: International Journal of Coal Geology doi: 10.1016/S0166-5162(97)00027-X – volume: 264 start-page: 120198 year: 2020 ident: 9988_CR27 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2020.120198 – volume: 153 start-page: 9 year: 2019 ident: 9988_CR20 publication-title: Journal of African Earth Sciences doi: 10.1016/j.jafrearsci.2019.02.018 – ident: 9988_CR33 doi: 10.2523/iptc-19659-ms – ident: 9988_CR36 doi: 10.1016/j.energy.2021.121915 – volume: 29 start-page: 1 issue: 1 year: 2003 ident: 9988_CR28 publication-title: Tanzania Journal of Science – volume: 153 start-page: 23 year: 2017 ident: 9988_CR22 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.03.022 – volume: 160 start-page: 182 year: 2018 ident: 9988_CR56 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.10.028 – ident: 9988_CR49 doi: 10.5772/644 – volume: 170 start-page: 94 year: 2016 ident: 9988_CR57 publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2016.08.017 – volume: 146 start-page: 118 year: 2015 ident: 9988_CR34 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2015.05.003 – volume: 93 start-page: 341 issue: 3 year: 2009 ident: 9988_CR12 publication-title: AAPG Bulletin doi: 10.1306/10230808076 – ident: 9988_CR32 doi: 10.2118/198130-MS – volume: 122 start-page: 47 year: 2019 ident: 9988_CR21 publication-title: Food Research International doi: 10.1016/j.foodres.2019.03.062 – volume: 176 start-page: 369 year: 2019 ident: 9988_CR47 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2019.01.055 – ident: 9988_CR9 doi: 10.1007/978-1-4471-7307-6_2 – volume: 70 start-page: 318 issue: 3 year: 1986 ident: 9988_CR40 publication-title: AAPG Bulletin – volume: 118 year: 2020 ident: 9988_CR45 publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2020.104429 – volume: 111 start-page: 288 year: 2015 ident: 9988_CR46 publication-title: Journal of African Earth Sciences doi: 10.1016/j.jafrearsci.2015.08.012 – volume: 74 start-page: 799 issue: 6 year: 1990 ident: 9988_CR30 publication-title: AAPG Bulletin – volume: 8 start-page: 580 issue: 12 year: 2018 ident: 9988_CR19 publication-title: Minerals doi: 10.3390/min8120580 – volume: 24 start-page: 203 issue: 2 year: 2015 ident: 9988_CR17 publication-title: Egyptian Journal of Petroleum doi: 10.1016/j.ejpe.2015.05.012 – volume: 169 start-page: 106 year: 2017 ident: 9988_CR24 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2016.11.012 – volume: 204 start-page: 70 year: 2019 ident: 9988_CR14 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2019.02.003 – volume: 34 start-page: 167 issue: 3–4 year: 2002 ident: 9988_CR53 publication-title: Journal of African Earth Sciences doi: 10.1016/S0899-5362(02)00016-7 – volume: 56 start-page: 111 issue: 2 year: 2001 ident: 9988_CR7 publication-title: Oil & Gas Science and Technology doi: 10.2516/ogst:2001013 – volume: 10 start-page: 970 year: 2008 ident: 9988_CR25 publication-title: Regression, Classification and Manifold Learning – volume: 151 start-page: 224 year: 2017 ident: 9988_CR8 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.01.003 – volume: 97 start-page: 148 year: 2016 ident: 9988_CR43 publication-title: Organic Geochemistry doi: 10.1016/j.orggeochem.2016.05.002 – volume: 51 start-page: 1625 issue: 6 year: 1987 ident: 9988_CR59 publication-title: Geochimica Et Cosmochimica Acta doi: 10.1016/0016-7037(87)90343-7 – volume: 184 start-page: 27 year: 2017 ident: 9988_CR44 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2017.11.004 – volume: 33 start-page: 337 year: 2015 ident: 9988_CR1 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.04.046 – volume: 12 start-page: 1509 issue: 8 year: 2019 ident: 9988_CR48 publication-title: Energies doi: 10.3390/en12081509 |
SSID | ssj0007385 |
Score | 2.3560934 |
Snippet | In this study, integrated approaches based on multivariate analysis (MVA), machine learning (ML), and geochemical analysis are proposed to investigate the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 619 |
SubjectTerms | Chemistry and Earth Sciences Computer Science Core analysis Earth and Environmental Science Earth Sciences Economic importance Fossil Fuels (incl. Carbon Capture) Gaussian process Geochemistry Geography Hydrocarbons Kerogen Learning algorithms Machine learning Mathematical Modeling and Industrial Mathematics Mineral Resources Multivariate analysis Oil exploration Organic carbon Original Paper Physics Predictions Pyrolysis Rocks Statistical analysis Statistics Statistics for Engineering Support vector machines Sustainable Development Total organic carbon Triassic |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6NoknsYWLd0AoM3cPe1mhNnMTJEwJWxqaBKgYab5F_9qVqoA1I--P2v-3sOC1DGq-xfYp05_N39t13AB-NtYyJkYqkGXEKUIoyKrUpImOyQgnO89T4bIuL_Ow6_X6T3YQLt2VIq-x8onfUulbujvxzUpLxMU6I5fD2LnJdo9zramihsQGb5IKLogebx-OLyeXKFzuuFs-YSkGSg96hbKYtniNo4d4wKZymmINiqX-PpjXefPJE6k-e0214HSAjHrU6fgMvzLwPrx4RCfbh5VffoPd3H7YcemzJl9_Cn_GKyxtriz_9RT1ekgvESd24PCGPwlHMNU4W7smmm3pVEyjHtlBT4YlYSPru0wvwl5nN8Ec9xS-iEX7pt45yQuO5b0i9dCJ8ae8DheI0gB33yRDPffamwUDsOh16EfT_KlAXrOa-g-vT8dXJWRT6NUSKNnITScatUbrMUgpqNKPAJU6FJKeQJyrjrNTM6lgkQpYEKzV5YTNiNsm5TkxuHBbdgd68npv3gEmcSmaFKDIrUm24VBlTqRKWE56RZT6AuFNVpQKZueupMavWNMxOvRWpt_LqreIBfFqtuW2pPJ6dvd9ZQBW29bJaG-EAhp1VrIf_L233eWl7sJW4sgqfDb4PvWZxbz4Q2GnkQbDov2ZB_EY priority: 102 providerName: ProQuest |
Title | Evaluation of Source Rock Potentiality and Prediction of Total Organic Carbon Using Well Log Data and Integrated Methods of Multivariate Analysis, Machine Learning, and Geochemical Analysis |
URI | https://link.springer.com/article/10.1007/s11053-021-09988-1 https://www.proquest.com/docview/2918337013 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVgh6KBCKGlqiOXAjlmKvn8dQkpRHq6g0opysfZZDFKPErcSP478xu9lNAAESJ1ve9Wql2R1_n3fmG4CX2hjG-EBGQg8KIihlFVVKl5HWWSl5UeSpdtEWF_nZLH13nV37pLBViHYPR5LOU2-T3QgK2DNHor_EEYj77MBeRtzdBnLNkuHG_1p9FqeSSsTIwm2fKvPnMX79HG0x5m_Hou5rM34MBx4m4nBt1ydwTy868CiUYEC_Izuw_5OeYAce-JLmX7514P7E1ey1dy7KU66ewvfRRtsbG4Mf3Y97vCSXiNOmtXFDDpUjXyicLu0RTuh61RBIx3XipsRTvhT03IUb4Cc9n-OH5gbf8Ja7V98GCQqF565A9coO4VJ974iaUwMGLZQ-nrtoTo1e6PWm74agyUsvZbDpewiz8ejq9Czy9RsiSRu7jQQrjJaqylIiOYoRkYlTLshJ5InMClYpZlTMEy4qgpmKvLIeMJPkhUp0ri02fQa7i2ahjwCTOBXMcF5mhqdKF0JmTKaSm4LwjajyLsTBjLX04ua2xsa83soyW9PXZPramb6Ou_Bq887XtbTHP3ufhNVR-22-qpOKPCIraKpd6IcVs23--2jP_6_7MTxMbNqFixY_gd12eatfEBhqRQ92yvGkB3vDyef3I7q-Hl1ML3tuR_wAjI8EwQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VIkQ5IAggAgXmACdiEXttb3xACLVNE5pUFaSiN7OfvURxSQyof4p_wH9jdu1NAIneeo3Xo0jzMvsmM_MG4KWxljHRV5E0fU4JyqCICm0GkTHZQAnO89T4bovjfHSafjjLzrbgZ5iFcW2VISb6QK0r5f4jf5MUBD7GibG8u_gaua1RrroaVmg0sDgylz8oZVu9He-Tf18lyfBgtjeK2q0CkSK41ZFk3Bqliywl6q0Z0es4FZKgmycq46zQzOpYJEIWRH40xQrTZzbJuU5MbhxjIrs34GbK6CZ3k-nDw3Xkd8owXp-VUjJH9NshnWZUj4iMq5hS8k4ZDmVuf1-EG3b7T0HW33PDe3C3Jaj4vkHUfdgyiw7c-UO2sAO3Dv064MsO7Diu2kg9P4BfB2vlcKwsfvJlAfxIARdPqtp1JXnOj2Kh8WTpCkTh6KyiFACbsVCFe2Ip6XPfzICfzXyOk-oc90Ut_KvjIHChcerXX6-cCT9I_J0Sf3qAQWmlh1PfK2qwlZE973kT9P1VK5SwPvsQTq_Fj49ge1EtzGPAJE4ls0IMMitSbbhUGVOpEpYTe5JF3oU4uKpUrXS62-AxLzeiz869Jbm39O4t4y68Xr9z0QiHXHl6NyCgbIPIqtxAvgu9gIrN4_9be3K1tRdwezSbTsrJ-PjoKewkbqDD96Hvwna9_GaeEc2q5XOPbYQv1_1j-g2p_TZt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VImg58AigBgrMAU7EarzrR3zgUDUNDX0ogkb05q730SJFdpW4Rf1X_AH-G7ObdQIIkDj0Ztm7q5VndvYbzcw3AK-1MZyLrgwK3U3JQellQaZ0L9A67kmRpkmkXbbFUbI3jj6cxCcr8K2phXHZ7k1Icl7TYFmaynrrQpmtZeEbwQIbfyRXmPwF8oN8WuW-vv5KTtvs3bBPEn7D2GD3eGcv8H0FAkkKVwcFT42WKosjAt-KE8AOI1GQ8iZMxinPFDcqFEwUGcEfRdZCd7lhSaqYTrTFTLTuLbgd2epjOkFjtr2w_ZYbxjG0klNmob4v0_nznn-9Cpf49reQrLvpBg_hvoeouD3XqUewossWPGjaP6C3Bi249xOXYQvWfDv18-sW3Hnv-gXbJ5dhKmeP4fvuglccK4OfXNAAP5I5xlFlf_0X5xGgKBWOpjZ81Aw9rshBwHnRqMQdMS3ovUt1wM96MsGD6gz7ohZu6rChv1B46Jpjz-wSrsz4StBhqzU2PCwdPHSZpBo9yexZxy1Bm5eeRmEx9gmMb0TGT2G1rEq9AcjCqOBGiF5sRKR0WsiYy0gKkxK2KrKkDWEjxlx6YnXb32OSLymhrehzEn3uRJ-HbXi7mHMxpxX55-jNRjtyb2JmOcvIGvOUttqGTqMxy89_X-3Z_w1_BXdH_UF-MDzafw7rzFZ_uKT1TVitp5f6BWGyunjpjgHC6U2fux8xOEB9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Source+Rock+Potentiality+and+Prediction+of+Total+Organic+Carbon+Using+Well+Log+Data+and+Integrated+Methods+of+Multivariate+Analysis%2C+Machine+Learning%2C+and+Geochemical+Analysis&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Nyakilla%2C+Edwin+E.&rft.au=Silingi%2C+Selemani+N.&rft.au=Shen%2C+Chuanbo&rft.au=Jun%2C+Gu&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=31&rft.issue=1&rft.spage=619&rft.epage=641&rft_id=info:doi/10.1007%2Fs11053-021-09988-1&rft.externalDocID=10_1007_s11053_021_09988_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon |