Evaluation of Source Rock Potentiality and Prediction of Total Organic Carbon Using Well Log Data and Integrated Methods of Multivariate Analysis, Machine Learning, and Geochemical Analysis

In this study, integrated approaches based on multivariate analysis (MVA), machine learning (ML), and geochemical analysis are proposed to investigate the potential of hydrocarbon reserves and total organic carbon (TOC) prediction. These approaches employed the MVA technique as a future selection me...

Full description

Saved in:
Bibliographic Details
Published inNatural resources research (New York, N.Y.) Vol. 31; no. 1; pp. 619 - 641
Main Authors Nyakilla, Edwin E., Silingi, Selemani N., Shen, Chuanbo, Jun, Gu, Mulashani, Alvin K., Chibura, Patrick E.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, integrated approaches based on multivariate analysis (MVA), machine learning (ML), and geochemical analysis are proposed to investigate the potential of hydrocarbon reserves and total organic carbon (TOC) prediction. These approaches employed the MVA technique as a future selection method in source rock evaluation. We used geochemical data from 30 core samples taken equally from wells SS-5 and SS-7. Geochemical parameters, namely TOC, free hydrocarbon, thermal pyrolysis hydrocarbon, hydrogen index, production index, and oxygen index, were determined for statistical evaluation. IBM SPSS statistical software and MATLAB (R2020a) were used for MVA and ML, respectively. The performance of the models built using MVA and ML were evaluated by, among others, coefficient of determination (R 2 ) and mean square error (MSE). Findings revealed that fair through good to excellent source rock with TOC ranging from 0.85 to 2.95 wt% are hosted in the Triassic beds of Tanga. A high 1.61% Ro at a mature peak of 463 °C predominates with the existence of type III/II kerogen that can produce both oil and gas. Considering TOC prediction from conventional well log data, optimized Gaussian process regression showed the best performance followed by MVA and support vector machine, giving the MSEs of 0.5629, 0.6172, and 0.7023, respectively. In terms of prediction accuracy, their R 2 values of 0.952, 0.9346, and 0.835, respectively, were in good agreement with the geochemical results. The concurrence of geochemical analysis, ML, and MVA revealed that the Tanga basin has great hydrocarbon potential of great economic importance. The study revealed that combining MVA and other methods can be applied to assess the hydrocarbon resource potential of other prospects around the globe.
AbstractList In this study, integrated approaches based on multivariate analysis (MVA), machine learning (ML), and geochemical analysis are proposed to investigate the potential of hydrocarbon reserves and total organic carbon (TOC) prediction. These approaches employed the MVA technique as a future selection method in source rock evaluation. We used geochemical data from 30 core samples taken equally from wells SS-5 and SS-7. Geochemical parameters, namely TOC, free hydrocarbon, thermal pyrolysis hydrocarbon, hydrogen index, production index, and oxygen index, were determined for statistical evaluation. IBM SPSS statistical software and MATLAB (R2020a) were used for MVA and ML, respectively. The performance of the models built using MVA and ML were evaluated by, among others, coefficient of determination (R 2 ) and mean square error (MSE). Findings revealed that fair through good to excellent source rock with TOC ranging from 0.85 to 2.95 wt% are hosted in the Triassic beds of Tanga. A high 1.61% Ro at a mature peak of 463 °C predominates with the existence of type III/II kerogen that can produce both oil and gas. Considering TOC prediction from conventional well log data, optimized Gaussian process regression showed the best performance followed by MVA and support vector machine, giving the MSEs of 0.5629, 0.6172, and 0.7023, respectively. In terms of prediction accuracy, their R 2 values of 0.952, 0.9346, and 0.835, respectively, were in good agreement with the geochemical results. The concurrence of geochemical analysis, ML, and MVA revealed that the Tanga basin has great hydrocarbon potential of great economic importance. The study revealed that combining MVA and other methods can be applied to assess the hydrocarbon resource potential of other prospects around the globe.
In this study, integrated approaches based on multivariate analysis (MVA), machine learning (ML), and geochemical analysis are proposed to investigate the potential of hydrocarbon reserves and total organic carbon (TOC) prediction. These approaches employed the MVA technique as a future selection method in source rock evaluation. We used geochemical data from 30 core samples taken equally from wells SS-5 and SS-7. Geochemical parameters, namely TOC, free hydrocarbon, thermal pyrolysis hydrocarbon, hydrogen index, production index, and oxygen index, were determined for statistical evaluation. IBM SPSS statistical software and MATLAB (R2020a) were used for MVA and ML, respectively. The performance of the models built using MVA and ML were evaluated by, among others, coefficient of determination (R2) and mean square error (MSE). Findings revealed that fair through good to excellent source rock with TOC ranging from 0.85 to 2.95 wt% are hosted in the Triassic beds of Tanga. A high 1.61% Ro at a mature peak of 463 °C predominates with the existence of type III/II kerogen that can produce both oil and gas. Considering TOC prediction from conventional well log data, optimized Gaussian process regression showed the best performance followed by MVA and support vector machine, giving the MSEs of 0.5629, 0.6172, and 0.7023, respectively. In terms of prediction accuracy, their R2 values of 0.952, 0.9346, and 0.835, respectively, were in good agreement with the geochemical results. The concurrence of geochemical analysis, ML, and MVA revealed that the Tanga basin has great hydrocarbon potential of great economic importance. The study revealed that combining MVA and other methods can be applied to assess the hydrocarbon resource potential of other prospects around the globe.
Author Shen, Chuanbo
Nyakilla, Edwin E.
Jun, Gu
Silingi, Selemani N.
Mulashani, Alvin K.
Chibura, Patrick E.
Author_xml – sequence: 1
  givenname: Edwin E.
  surname: Nyakilla
  fullname: Nyakilla, Edwin E.
  organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences
– sequence: 2
  givenname: Selemani N.
  surname: Silingi
  fullname: Silingi, Selemani N.
  organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences, Department of Geology, Earth Sciences Institute of Shinyanga, (ESIS
– sequence: 3
  givenname: Chuanbo
  surname: Shen
  fullname: Shen, Chuanbo
  email: cbshen@cug.edu.cn
  organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences, Department of Petroleum Geology School of Earth Resources, China University of Geosciences
– sequence: 4
  givenname: Gu
  surname: Jun
  fullname: Jun, Gu
  email: gujun@cug.edu.cn
  organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences
– sequence: 5
  givenname: Alvin K.
  surname: Mulashani
  fullname: Mulashani, Alvin K.
  organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences
– sequence: 6
  givenname: Patrick E.
  surname: Chibura
  fullname: Chibura, Patrick E.
  organization: Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences
BookMark eNp9kUtPGzEUhUeISjzaP9CVpW6Z1o95eYlSCkiJQC2oS-vGvjMxNTa1HaT8OP5bnaSoUhesbNnfOffqnJPq0AePVfWR0c-M0v5LYoy2oqac1VTKYajZQXXM2l7UgxzY4fbOad03Qh5VJyk90CISQ3tcvVw8g1tDtsGTMJIfYR01ku9B_yK3IaPPFpzNGwLekNuIxupX9C5kcOQmTuCtJjOIy_J-n6yfyE90jszDRL5Chp302mecImQ0ZIF5FUzaWizWLttniLZ8kHMPbpNsOiML0CvrkcwRoi9-ZzuLSwx6hY9Wl6mv7Pvq3Qgu4Ye_52l1_-3ibnZVz28ur2fn81oLJnO9FP2I2si26RpuxMA71sCy4W3HdclIGjEaBhyWkklu-o4jFSPvesOxQ0qZOK0-7X2fYvi9xpTVQwmqLJEUl2wQoi9QoYY9pWNIKeKotM27aHME6xSjaluW2pelSllqV5baDuD_SZ-ifYS4eVsk9qJUYD9h_LfVG6o_W2SrJQ
CitedBy_id crossref_primary_10_1007_s12665_024_11888_5
crossref_primary_10_1007_s00521_023_08865_7
crossref_primary_10_1016_j_energy_2023_129232
crossref_primary_10_1007_s11053_023_10207_2
crossref_primary_10_1016_j_coal_2025_104699
crossref_primary_10_3390_su17052048
crossref_primary_10_1016_j_earscirev_2024_104913
crossref_primary_10_3390_en16104159
crossref_primary_10_1007_s11053_024_10374_w
crossref_primary_10_1016_j_geoen_2025_213835
crossref_primary_10_1007_s11356_023_25886_w
crossref_primary_10_1007_s11053_024_10402_9
crossref_primary_10_1016_j_ptlrs_2022_06_002
crossref_primary_10_1007_s13202_023_01688_1
crossref_primary_10_1016_j_engappai_2025_110137
Cites_doi 10.1016/j.marpetgeo.2020.104347
10.1016/j.conbuildmat.2005.01.022
10.1016/j.petrol.2017.03.022
10.1016/j.ejpe.2015.05.012
10.1007/s11053-021-09908-3
10.1016/j.gexplo.2016.08.017
10.1016/j.petrol.2017.01.003
10.1016/j.jngse.2020.103433
10.1016/j.coal.2015.06.001
10.3390/en12081509
10.1016/j.petrol.2017.10.028
10.1016/j.coal.2015.05.003
10.1016/j.ejpe.2018.03.003
10.2516/ogst:1998036
10.1016/j.coal.2018.03.001
10.1016/j.coal.2019.02.003
10.1016/j.marpetgeo.2020.104429
10.1016/j.coal.2017.11.014
10.1016/j.coal.2016.11.012
10.1080/10916461003620495
10.1016/j.jafrearsci.2015.01.001
10.1016/j.marpetgeo.2019.104084
10.1016/0016-7037(87)90343-7
10.2516/ogst:2001013
10.1016/j.orggeochem.2016.05.002
10.1007/BF01031743
10.1016/j.petrol.2019.01.055
10.1007/s11053-019-09576-4
10.1016/j.conbuildmat.2019.117021
10.1016/S0166-5162(97)00027-X
10.1016/j.jafrearsci.2015.08.012
10.1016/j.coal.2017.11.004
10.1007/BF00893748
10.1306/10230808076
10.1016/j.jafrearsci.2019.02.018
10.1016/j.asoc.2015.04.046
10.3390/min8120580
10.1007/BF01093413
10.1071/AJ98017
10.1016/j.jnggs.2017.12.002
10.1016/j.foodres.2019.03.062
10.1016/S0899-5362(02)00016-7
10.1016/j.coal.2017.02.009
10.1016/j.conbuildmat.2020.120198
10.1016/S1874-5997(97)80013-5
10.1201/9780203009765
10.1117/3.633187
10.2523/iptc-19659-ms
10.1016/j.energy.2021.121915
10.5772/644
10.2118/198130-MS
10.1007/978-1-4471-7307-6_2
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2021
International Association for Mathematical Geosciences 2021.
Copyright_xml – notice: International Association for Mathematical Geosciences 2021
– notice: International Association for Mathematical Geosciences 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOI 10.1007/s11053-021-09988-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Geology
Physics
Computer Science
Statistics
EISSN 1573-8981
EndPage 641
ExternalDocumentID 10_1007_s11053_021_09988_1
GrantInformation_xml – fundername: Fundamental Research Fund for the Central Universities, China University of Geosciences
  grantid: No. CUGCJ1820
– fundername: National Natural Science Foundation of China
  grantid: Nos.41972326; 51774258
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Major National Science and Technology Programs in the “Thirteenth Five-Year” Plan period
  grantid: 2017ZX05032-002-004
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-b37fecd954642d382614ab42562c5739d3fd1a2ab9192d762e03f267d2e6e0013
IEDL.DBID U2A
ISSN 1520-7439
IngestDate Fri Jul 25 10:03:22 EDT 2025
Tue Jul 01 04:16:50 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Fri Feb 21 02:47:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cluster analysis
Factor analysis
Machine learning
Geochemical analysis
)
Pearson's correlation coefficient
Source rock
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b37fecd954642d382614ab42562c5739d3fd1a2ab9192d762e03f267d2e6e0013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918337013
PQPubID 2043663
PageCount 23
ParticipantIDs proquest_journals_2918337013
crossref_citationtrail_10_1007_s11053_021_09988_1
crossref_primary_10_1007_s11053_021_09988_1
springer_journals_10_1007_s11053_021_09988_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Official Journal of the International Association for Mathematical Geosciences
PublicationTitle Natural resources research (New York, N.Y.)
PublicationTitleAbbrev Nat Resour Res
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Mashhadi, Rabbani (CR34) 2015; 146
Hakimi, Abdullah, Ahmed (CR22) 2017; 153
Mulashani, Shen, Asante-okyere, Kerttu, Abelly (CR37) 2021
Bolandi, Kadkhodaie, Farzi (CR8) 2017; 151
Kapilima (CR28) 2003; 29
CR36
CR35
Handhal, Al-Abadi, Chafeet, Ismail (CR23) 2020; 116
CR33
CR32
Robison (CR42) 1997; 34
Walden, Smith, Dackombe (CR51) 1992; 24
Godfray, Seetharamaiah (CR20) 2019; 153
Hazra, Dutta, Kumar (CR24) 2017; 169
Said, Moder, Clark, Abdelmalak (CR46) 2015; 111
CR2
Langford, Blanc-Valleron (CR30) 1990; 74
Carvajal-Ortiz, Gentzis (CR11) 2015; 152
Temple (CR50) 1978; 10
Pan, Horsfield, Zou, Yang, Gao (CR39) 2017; 173
CR9
CR49
Wang, Gao, Kang, Zhu, Liu, Ding, Liu (CR52) 2020; 112
Romero-sarmiento, Ramiro-ramirez, Berthe, Fleury, Littke (CR44) 2017; 184
Azimi-Pour, Eskandari-Naddaf, Pakzad (CR5) 2020; 230
CR41
Zumberge (CR59) 1987; 51
Xie, Zhu, Zhou, Li, Liu, Tu (CR56) 2018; 160
El Nady, Lotfy, Ramadan, Hammad (CR16) 2015; 24
Kaloop, Kumar, Samui, Hu, Kim (CR27) 2020; 264
Gentzis (CR18) 2018; 190
Li, Chen, Cao, Ma, Liu, Li (CR31) 2018; 191
Wu, Lü, Wu (CR54) 2006; 20
Omran, Alareeq (CR38) 2018; 27
Shen, Asante-Okyere, Yevenyo Ziggah, Wang, Zhu (CR48) 2019; 12
Aziz, Ehsan, Ali, Khan, Khan (CR6) 2020; 81
Romero-Sarmiento, Euzen, Rohais, Jiang, Littke (CR43) 2016; 97
El Kammar (CR15) 2015; 104
Rui, Zhang, Ren, Yan, Guo, Zhang (CR45) 2020; 118
El Nady, Ramadan, Hammad, Lotfy (CR17) 2015; 24
CR10
Peters (CR40) 1986; 70
Amiri Bakhtiar, Telmadarreie, Shayesteh, Heidari Fard, Talebi, Shirband (CR3) 2011; 29
Shalaby, Jumat, Lai, Malik (CR47) 2019; 176
El Hajj, Baudin, Littke, Nader, Geze, Maksoud, Azar (CR14) 2019; 204
Lafargue, Marquis, Pillot (CR29) 1998; 53
Behar, Beaumont, Penteado (CR7) 2001; 56
Zaremotlagh, Hezarkhani, Sadeghi (CR57) 2016; 170
Golden, Rothrock, Mishra (CR21) 2019; 122
Giannakopoulou, Petrounias, Tsikouras, Kalaitzidis, Rogkala, Hatzipanagiotou, Tombros (CR19) 2018; 8
CR26
Izenman (CR25) 2008; 10
Al-Mohair, Saleh, Suandi (CR1) 2015; 33
Edwards, Struckmeyer, Bradshaw, Skinner (CR13) 1999; 39
Asante-Okyere, Shen, Ziggah, Rulegeya, Zhu (CR4) 2020; 29
Dembicki (CR12) 2009; 93
Wu, Chen, Zhao, Du, Zeng, Wang, Wang, Hu (CR55) 2017; 2
Zhou, Chang, Davis (CR58) 1983; 15
Wopfner (CR53) 2002; 34
MH Hakimi (9988_CR22) 2017; 153
H Aziz (9988_CR6) 2020; 81
AA Omran (9988_CR38) 2018; 27
HK Al-Mohair (9988_CR1) 2015; 33
Y Xie (9988_CR56) 2018; 160
S Zaremotlagh (9988_CR57) 2016; 170
KE Peters (9988_CR40) 1986; 70
H Wopfner (9988_CR53) 2002; 34
ZS Mashhadi (9988_CR34) 2015; 146
J Rui (9988_CR45) 2020; 118
MM El Nady (9988_CR17) 2015; 24
9988_CR26
H Dembicki Jr (9988_CR12) 2009; 93
AM Handhal (9988_CR23) 2020; 116
AK Mulashani (9988_CR37) 2021
FF Langford (9988_CR30) 1990; 74
G Godfray (9988_CR20) 2019; 153
H Amiri Bakhtiar (9988_CR3) 2011; 29
M-F Romero-Sarmiento (9988_CR43) 2016; 97
D Zhou (9988_CR58) 1983; 15
P Giannakopoulou (9988_CR19) 2018; 8
MR Shalaby (9988_CR47) 2019; 176
H Carvajal-Ortiz (9988_CR11) 2015; 152
C Shen (9988_CR48) 2019; 12
9988_CR10
9988_CR2
MM El Kammar (9988_CR15) 2015; 104
AJ Izenman (9988_CR25) 2008; 10
9988_CR9
X Wu (9988_CR55) 2017; 2
S Pan (9988_CR39) 2017; 173
M Azimi-Pour (9988_CR5) 2020; 230
9988_CR41
L El Hajj (9988_CR14) 2019; 204
JE Zumberge (9988_CR59) 1987; 51
T Gentzis (9988_CR18) 2018; 190
M Li (9988_CR31) 2018; 191
M Romero-sarmiento (9988_CR44) 2017; 184
9988_CR49
E Lafargue (9988_CR29) 1998; 53
G Wu (9988_CR54) 2006; 20
MR Kaloop (9988_CR27) 2020; 264
S Asante-Okyere (9988_CR4) 2020; 29
JT Temple (9988_CR50) 1978; 10
CR Robison (9988_CR42) 1997; 34
9988_CR33
S Kapilima (9988_CR28) 2003; 29
9988_CR32
V Bolandi (9988_CR8) 2017; 151
J Wang (9988_CR52) 2020; 112
DS Edwards (9988_CR13) 1999; 39
J Walden (9988_CR51) 1992; 24
B Hazra (9988_CR24) 2017; 169
9988_CR35
9988_CR36
A Said (9988_CR46) 2015; 111
MM El Nady (9988_CR16) 2015; 24
F Behar (9988_CR7) 2001; 56
CE Golden (9988_CR21) 2019; 122
References_xml – volume: 116
  year: 2020
  ident: CR23
  article-title: Prediction of total organic carbon at Rumaila oil field, Southern Iraq using conventional well logs and machine learning algorithms
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2020.104347
– volume: 20
  start-page: 134
  issue: 3
  year: 2006
  end-page: 148
  ident: CR54
  article-title: Strength and ductility of concrete cylinders confined with FRP composites
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2005.01.022
– ident: CR49
– volume: 153
  start-page: 23
  year: 2017
  end-page: 35
  ident: CR22
  article-title: Organic geochemical characteristics of oils from the offshore Jiza-Qamar Basin, Eastern Yemen: New insight on coal/coaly shale source rocks
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.03.022
– volume: 24
  start-page: 203
  issue: 2
  year: 2015
  end-page: 211
  ident: CR17
  article-title: Evaluation of organic matters, hydrocarbon potential and thermal maturity of source rocks based on geochemical and statistical methods: Case study of source rocks in Ras Gharib oilfield, central Gulf of Suez Egypt
  publication-title: Egyptian Journal of Petroleum
  doi: 10.1016/j.ejpe.2015.05.012
– year: 2021
  ident: CR37
  article-title: Group Method of Data Handling ( GMDH ) Neural Network for Estimating Total Organic Carbon ( TOC ) and hydrocar- bon potential distribution ( S 1, S 2) using well logs
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09908-3
– volume: 170
  start-page: 94
  year: 2016
  end-page: 106
  ident: CR57
  article-title: Detecting homogenous clusters using whole-rock chemical compositions and REE patterns: A graph-based geochemical approach
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2016.08.017
– ident: CR35
– volume: 151
  start-page: 224
  year: 2017
  end-page: 234
  ident: CR8
  article-title: Analyzing organic richness of source rocks from well log data by using SVM and ANN classifiers: A case study from the Kazhdumi formation, the Persian Gulf basin, offshore Iran
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.01.003
– volume: 81
  year: 2020
  ident: CR6
  article-title: Hydrocarbon source rock evaluation and quantification of organic richness from correlation of well logs and geochemical data: A case study from the sembar formation, Southern Indus Basin, Pakistan
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2020.103433
– volume: 152
  start-page: 113
  year: 2015
  end-page: 122
  ident: CR11
  article-title: Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2015.06.001
– volume: 12
  start-page: 1509
  issue: 8
  year: 2019
  ident: CR48
  article-title: Group method of data handling (GMDH) lithology identification based on wavelet analysis and dimensionality reduction as well log data pre-processing techniques
  publication-title: Energies
  doi: 10.3390/en12081509
– volume: 160
  start-page: 182
  year: 2018
  end-page: 193
  ident: CR56
  article-title: Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.10.028
– volume: 146
  start-page: 118
  year: 2015
  end-page: 144
  ident: CR34
  article-title: International journal of coal geology organic geochemistry of crude oils and cretaceous source rocks in the iranian sector of the Persian Gulf : An oil – oil and oil – source rock correlation study
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2015.05.003
– volume: 27
  start-page: 997
  issue: 4
  year: 2018
  end-page: 1012
  ident: CR38
  article-title: Joint geophysical and geochemical evaluation of source rocks–A case study in Sayun-Masila basin Yemen
  publication-title: Egyptian Journal of Petroleum
  doi: 10.1016/j.ejpe.2018.03.003
– volume: 53
  start-page: 421
  issue: 4
  year: 1998
  end-page: 437
  ident: CR29
  article-title: Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies
  publication-title: Revue De L’institut Français Du Pétrole
  doi: 10.2516/ogst:1998036
– ident: CR9
– volume: 191
  start-page: 37
  year: 2018
  end-page: 48
  ident: CR31
  article-title: International journal of coal geology expelled oils and their impacts on rock-eval data interpretation, Eocene Qianjiang formation in Jianghan Basin, China
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2018.03.001
– volume: 204
  start-page: 70
  year: 2019
  end-page: 84
  ident: CR14
  article-title: Geochemical and petrographic analyses of new petroleum source rocks from the onshore upper jurassic and lower cretaceous of Lebanon
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2019.02.003
– ident: CR32
– ident: CR36
– volume: 118
  year: 2020
  ident: CR45
  article-title: TOC content prediction based on a combined Gaussian process regression model
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2020.104429
– volume: 190
  start-page: 56
  year: 2018
  end-page: 69
  ident: CR18
  article-title: International Journal of Coal Geology Geochemical screening of source rocks and reservoirs : The importance of using the proper analytical program
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2017.11.014
– volume: 169
  start-page: 106
  year: 2017
  end-page: 115
  ident: CR24
  article-title: TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis: Critical consideration and insights
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2016.11.012
– volume: 70
  start-page: 318
  issue: 3
  year: 1986
  end-page: 329
  ident: CR40
  article-title: Guidelines for evaluating petroleum source rock using programmed pyrolysis
  publication-title: AAPG Bulletin
– ident: CR26
– ident: CR2
– volume: 29
  start-page: 1691
  issue: 16
  year: 2011
  end-page: 1704
  ident: CR3
  article-title: Estimating total organic carbon content and source rock evaluation, applying ΔlogR and neural network methods: Ahwaz and Marun oilfields, SW of Iran
  publication-title: Petroleum Science and Technology
  doi: 10.1080/10916461003620495
– volume: 104
  start-page: 19
  year: 2015
  end-page: 26
  ident: CR15
  article-title: Source-rock evaluation of the Dakhla Formation black shale in Gebel Duwi, Quseir area Egypt
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2015.01.001
– volume: 112
  start-page: 104084
  year: 2020
  ident: CR52
  article-title: Geochemical characteristics, hydrocarbon potential and depositional environment of the Yangye Formation source rocks in Kashi sag, southwestern Tarim Basin, NW China
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2019.104084
– volume: 51
  start-page: 1625
  issue: 6
  year: 1987
  end-page: 1637
  ident: CR59
  article-title: Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach
  publication-title: Geochimica Et Cosmochimica Acta
  doi: 10.1016/0016-7037(87)90343-7
– ident: CR10
– volume: 56
  start-page: 111
  issue: 2
  year: 2001
  end-page: 134
  ident: CR7
  article-title: Rock-Eval 6 technology: Performances and developments
  publication-title: Oil & Gas Science and Technology
  doi: 10.2516/ogst:2001013
– volume: 10
  start-page: 970
  year: 2008
  end-page: 978
  ident: CR25
  article-title: Modern multivariate statistical techniques
  publication-title: Regression, Classification and Manifold Learning
– ident: CR33
– volume: 97
  start-page: 148
  year: 2016
  end-page: 162
  ident: CR43
  article-title: Artificial thermal maturation of source rocks at different thermal maturity levels: Application to the Triassic Montney and Doig formations in the Western Canada Sedimentary Basin
  publication-title: Organic Geochemistry
  doi: 10.1016/j.orggeochem.2016.05.002
– volume: 10
  start-page: 379
  year: 1978
  end-page: 387
  ident: CR50
  article-title: The use of factor analysis in geology
  publication-title: Journal of International Association of Mathematics and Geology
  doi: 10.1007/BF01031743
– volume: 74
  start-page: 799
  issue: 6
  year: 1990
  end-page: 804
  ident: CR30
  article-title: Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs total organic carbon (1)
  publication-title: AAPG Bulletin
– volume: 176
  start-page: 369
  year: 2019
  end-page: 380
  ident: CR47
  article-title: Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: Case study from the Jurassic source rocks in Shams Field, NW Desert Egypt
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2019.01.055
– volume: 29
  start-page: 2257
  issue: 4
  year: 2020
  end-page: 2273
  ident: CR4
  article-title: A novel hybrid technique of integrating gradient-boosted machine and clustering algorithms for lithology classification
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09576-4
– volume: 230
  year: 2020
  ident: CR5
  article-title: Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2019.117021
– volume: 34
  start-page: 287
  issue: 3–4
  year: 1997
  end-page: 305
  ident: CR42
  article-title: Hydrocarbon source rock variability within the Austin chalk and Eagle Ford shale (upper cretaceous), East Texas, USA
  publication-title: International Journal of Coal Geology
  doi: 10.1016/S0166-5162(97)00027-X
– volume: 111
  start-page: 288
  year: 2015
  end-page: 295
  ident: CR46
  article-title: Sedimentary budgets of the Tanzania coastal basin and implications for uplift history of the East African rift system
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2015.08.012
– volume: 29
  start-page: 1
  issue: 1
  year: 2003
  end-page: 16
  ident: CR28
  article-title: Tectonic and sedimentary evolution of the coastal basin of Tanzania during the Mesozoic times
  publication-title: Tanzania Journal of Science
– volume: 184
  start-page: 27
  year: 2017
  end-page: 41
  ident: CR44
  article-title: International journal of coal geology geochemical and petrophysical source rock characterization of the Vaca Muerta formation, Argentina : Implications for unconventional petroleum resource estimations
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2017.11.004
– volume: 24
  start-page: 227
  issue: 3
  year: 1992
  end-page: 247
  ident: CR51
  article-title: The use of simultaneous R-and Q-mode factor analysis as a tool for assisting interpretation of mineral magnetic data
  publication-title: Mathematical Geology
  doi: 10.1007/BF00893748
– volume: 93
  start-page: 341
  issue: 3
  year: 2009
  end-page: 356
  ident: CR12
  article-title: Three common source rock evaluation errors made by geologists during prospect or play appraisals
  publication-title: AAPG Bulletin
  doi: 10.1306/10230808076
– volume: 24
  start-page: 203
  issue: 2
  year: 2015
  end-page: 211
  ident: CR16
  article-title: Evaluation of organic matters, hydrocarbon potential and thermal maturity of source rocks based on geochemical and statistical methods : Case study of source rocks in Ras Gharib oilfield, central Gulf of Suez Egypt
  publication-title: Egyptian Journal of Petroleum
  doi: 10.1016/j.ejpe.2015.05.012
– volume: 153
  start-page: 9
  year: 2019
  end-page: 16
  ident: CR20
  article-title: Geochemical and well logs evaluation of the Triassic source rocks of the Mandawa basin, SE Tanzania: Implication on richness and hydrocarbon generation potential
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2019.02.018
– volume: 33
  start-page: 337
  year: 2015
  end-page: 347
  ident: CR1
  article-title: Hybrid human skin detection using neural network and K-means clustering technique
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.04.046
– volume: 8
  start-page: 580
  issue: 12
  year: 2018
  ident: CR19
  article-title: Using factor analysis to determine the interrelationships between the engineering properties of aggregates from igneous rocks in Greece
  publication-title: Minerals
  doi: 10.3390/min8120580
– volume: 15
  start-page: 581
  issue: 5
  year: 1983
  end-page: 606
  ident: CR58
  article-title: Dual extraction ofR-mode andQ-mode factor solutions
  publication-title: Journal of the International Association for Mathematical Geology
  doi: 10.1007/BF01093413
– volume: 39
  start-page: 297
  issue: 1
  year: 1999
  end-page: 321
  ident: CR13
  article-title: Geochemical characteristics of Australia’s southern margin petroleum systems
  publication-title: The APPEA Journal
  doi: 10.1071/AJ98017
– volume: 2
  start-page: 253
  issue: 4
  year: 2017
  end-page: 262
  ident: CR55
  article-title: Evaluation of source rocks in the 5th member of the Upper Triassic Xujiahe formation in the Xinchang gas field, the Western Sichuan depression China
  publication-title: Journal of Natural Gas Geoscience
  doi: 10.1016/j.jnggs.2017.12.002
– volume: 122
  start-page: 47
  year: 2019
  end-page: 55
  ident: CR21
  article-title: Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2019.03.062
– volume: 34
  start-page: 167
  issue: 3–4
  year: 2002
  end-page: 177
  ident: CR53
  article-title: Tectonic and climatic events controlling deposition in Tanzanian Karoo basins
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/S0899-5362(02)00016-7
– volume: 173
  start-page: 51
  year: 2017
  end-page: 64
  ident: CR39
  article-title: Statistical analysis as a tool for assisting geochemical interpretation of the upper triassic yanchang formation, Ordos Basin, Central China
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2017.02.009
– ident: CR41
– volume: 264
  start-page: 120198
  year: 2020
  ident: CR27
  article-title: Compressive strength prediction of high-performance concrete using gradient tree boosting machine
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2020.120198
– volume: 29
  start-page: 1691
  issue: 16
  year: 2011
  ident: 9988_CR3
  publication-title: Petroleum Science and Technology
  doi: 10.1080/10916461003620495
– volume: 10
  start-page: 379
  year: 1978
  ident: 9988_CR50
  publication-title: Journal of International Association of Mathematics and Geology
  doi: 10.1007/BF01031743
– year: 2021
  ident: 9988_CR37
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09908-3
– ident: 9988_CR2
– volume: 39
  start-page: 297
  issue: 1
  year: 1999
  ident: 9988_CR13
  publication-title: The APPEA Journal
  doi: 10.1071/AJ98017
– volume: 104
  start-page: 19
  year: 2015
  ident: 9988_CR15
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2015.01.001
– volume: 152
  start-page: 113
  year: 2015
  ident: 9988_CR11
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2015.06.001
– ident: 9988_CR35
  doi: 10.1016/S1874-5997(97)80013-5
– volume: 2
  start-page: 253
  issue: 4
  year: 2017
  ident: 9988_CR55
  publication-title: Journal of Natural Gas Geoscience
  doi: 10.1016/j.jnggs.2017.12.002
– volume: 24
  start-page: 203
  issue: 2
  year: 2015
  ident: 9988_CR16
  publication-title: Egyptian Journal of Petroleum
  doi: 10.1016/j.ejpe.2015.05.012
– volume: 29
  start-page: 2257
  issue: 4
  year: 2020
  ident: 9988_CR4
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09576-4
– volume: 230
  year: 2020
  ident: 9988_CR5
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2019.117021
– ident: 9988_CR26
– volume: 20
  start-page: 134
  issue: 3
  year: 2006
  ident: 9988_CR54
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2005.01.022
– volume: 81
  year: 2020
  ident: 9988_CR6
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2020.103433
– volume: 116
  year: 2020
  ident: 9988_CR23
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2020.104347
– volume: 53
  start-page: 421
  issue: 4
  year: 1998
  ident: 9988_CR29
  publication-title: Revue De L’institut Français Du Pétrole
  doi: 10.2516/ogst:1998036
– ident: 9988_CR10
  doi: 10.1201/9780203009765
– volume: 190
  start-page: 56
  year: 2018
  ident: 9988_CR18
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2017.11.014
– volume: 27
  start-page: 997
  issue: 4
  year: 2018
  ident: 9988_CR38
  publication-title: Egyptian Journal of Petroleum
  doi: 10.1016/j.ejpe.2018.03.003
– ident: 9988_CR41
  doi: 10.1117/3.633187
– volume: 24
  start-page: 227
  issue: 3
  year: 1992
  ident: 9988_CR51
  publication-title: Mathematical Geology
  doi: 10.1007/BF00893748
– volume: 112
  start-page: 104084
  year: 2020
  ident: 9988_CR52
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2019.104084
– volume: 191
  start-page: 37
  year: 2018
  ident: 9988_CR31
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2018.03.001
– volume: 173
  start-page: 51
  year: 2017
  ident: 9988_CR39
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2017.02.009
– volume: 15
  start-page: 581
  issue: 5
  year: 1983
  ident: 9988_CR58
  publication-title: Journal of the International Association for Mathematical Geology
  doi: 10.1007/BF01093413
– volume: 34
  start-page: 287
  issue: 3–4
  year: 1997
  ident: 9988_CR42
  publication-title: International Journal of Coal Geology
  doi: 10.1016/S0166-5162(97)00027-X
– volume: 264
  start-page: 120198
  year: 2020
  ident: 9988_CR27
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2020.120198
– volume: 153
  start-page: 9
  year: 2019
  ident: 9988_CR20
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2019.02.018
– ident: 9988_CR33
  doi: 10.2523/iptc-19659-ms
– ident: 9988_CR36
  doi: 10.1016/j.energy.2021.121915
– volume: 29
  start-page: 1
  issue: 1
  year: 2003
  ident: 9988_CR28
  publication-title: Tanzania Journal of Science
– volume: 153
  start-page: 23
  year: 2017
  ident: 9988_CR22
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.03.022
– volume: 160
  start-page: 182
  year: 2018
  ident: 9988_CR56
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.10.028
– ident: 9988_CR49
  doi: 10.5772/644
– volume: 170
  start-page: 94
  year: 2016
  ident: 9988_CR57
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2016.08.017
– volume: 146
  start-page: 118
  year: 2015
  ident: 9988_CR34
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2015.05.003
– volume: 93
  start-page: 341
  issue: 3
  year: 2009
  ident: 9988_CR12
  publication-title: AAPG Bulletin
  doi: 10.1306/10230808076
– ident: 9988_CR32
  doi: 10.2118/198130-MS
– volume: 122
  start-page: 47
  year: 2019
  ident: 9988_CR21
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2019.03.062
– volume: 176
  start-page: 369
  year: 2019
  ident: 9988_CR47
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2019.01.055
– ident: 9988_CR9
  doi: 10.1007/978-1-4471-7307-6_2
– volume: 70
  start-page: 318
  issue: 3
  year: 1986
  ident: 9988_CR40
  publication-title: AAPG Bulletin
– volume: 118
  year: 2020
  ident: 9988_CR45
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2020.104429
– volume: 111
  start-page: 288
  year: 2015
  ident: 9988_CR46
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2015.08.012
– volume: 74
  start-page: 799
  issue: 6
  year: 1990
  ident: 9988_CR30
  publication-title: AAPG Bulletin
– volume: 8
  start-page: 580
  issue: 12
  year: 2018
  ident: 9988_CR19
  publication-title: Minerals
  doi: 10.3390/min8120580
– volume: 24
  start-page: 203
  issue: 2
  year: 2015
  ident: 9988_CR17
  publication-title: Egyptian Journal of Petroleum
  doi: 10.1016/j.ejpe.2015.05.012
– volume: 169
  start-page: 106
  year: 2017
  ident: 9988_CR24
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2016.11.012
– volume: 204
  start-page: 70
  year: 2019
  ident: 9988_CR14
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2019.02.003
– volume: 34
  start-page: 167
  issue: 3–4
  year: 2002
  ident: 9988_CR53
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/S0899-5362(02)00016-7
– volume: 56
  start-page: 111
  issue: 2
  year: 2001
  ident: 9988_CR7
  publication-title: Oil & Gas Science and Technology
  doi: 10.2516/ogst:2001013
– volume: 10
  start-page: 970
  year: 2008
  ident: 9988_CR25
  publication-title: Regression, Classification and Manifold Learning
– volume: 151
  start-page: 224
  year: 2017
  ident: 9988_CR8
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.01.003
– volume: 97
  start-page: 148
  year: 2016
  ident: 9988_CR43
  publication-title: Organic Geochemistry
  doi: 10.1016/j.orggeochem.2016.05.002
– volume: 51
  start-page: 1625
  issue: 6
  year: 1987
  ident: 9988_CR59
  publication-title: Geochimica Et Cosmochimica Acta
  doi: 10.1016/0016-7037(87)90343-7
– volume: 184
  start-page: 27
  year: 2017
  ident: 9988_CR44
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2017.11.004
– volume: 33
  start-page: 337
  year: 2015
  ident: 9988_CR1
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.04.046
– volume: 12
  start-page: 1509
  issue: 8
  year: 2019
  ident: 9988_CR48
  publication-title: Energies
  doi: 10.3390/en12081509
SSID ssj0007385
Score 2.3560934
Snippet In this study, integrated approaches based on multivariate analysis (MVA), machine learning (ML), and geochemical analysis are proposed to investigate the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 619
SubjectTerms Chemistry and Earth Sciences
Computer Science
Core analysis
Earth and Environmental Science
Earth Sciences
Economic importance
Fossil Fuels (incl. Carbon Capture)
Gaussian process
Geochemistry
Geography
Hydrocarbons
Kerogen
Learning algorithms
Machine learning
Mathematical Modeling and Industrial Mathematics
Mineral Resources
Multivariate analysis
Oil exploration
Organic carbon
Original Paper
Physics
Predictions
Pyrolysis
Rocks
Statistical analysis
Statistics
Statistics for Engineering
Support vector machines
Sustainable Development
Total organic carbon
Triassic
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6NoknsYWLd0AoM3cPe1mhNnMTJEwJWxqaBKgYab5F_9qVqoA1I--P2v-3sOC1DGq-xfYp05_N39t13AB-NtYyJkYqkGXEKUIoyKrUpImOyQgnO89T4bIuL_Ow6_X6T3YQLt2VIq-x8onfUulbujvxzUpLxMU6I5fD2LnJdo9zramihsQGb5IKLogebx-OLyeXKFzuuFs-YSkGSg96hbKYtniNo4d4wKZymmINiqX-PpjXefPJE6k-e0214HSAjHrU6fgMvzLwPrx4RCfbh5VffoPd3H7YcemzJl9_Cn_GKyxtriz_9RT1ekgvESd24PCGPwlHMNU4W7smmm3pVEyjHtlBT4YlYSPru0wvwl5nN8Ec9xS-iEX7pt45yQuO5b0i9dCJ8ae8DheI0gB33yRDPffamwUDsOh16EfT_KlAXrOa-g-vT8dXJWRT6NUSKNnITScatUbrMUgpqNKPAJU6FJKeQJyrjrNTM6lgkQpYEKzV5YTNiNsm5TkxuHBbdgd68npv3gEmcSmaFKDIrUm24VBlTqRKWE56RZT6AuFNVpQKZueupMavWNMxOvRWpt_LqreIBfFqtuW2pPJ6dvd9ZQBW29bJaG-EAhp1VrIf_L233eWl7sJW4sgqfDb4PvWZxbz4Q2GnkQbDov2ZB_EY
  priority: 102
  providerName: ProQuest
Title Evaluation of Source Rock Potentiality and Prediction of Total Organic Carbon Using Well Log Data and Integrated Methods of Multivariate Analysis, Machine Learning, and Geochemical Analysis
URI https://link.springer.com/article/10.1007/s11053-021-09988-1
https://www.proquest.com/docview/2918337013
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVgh6KBCKGlqiOXAjlmKvn8dQkpRHq6g0opysfZZDFKPErcSP478xu9lNAAESJ1ve9Wql2R1_n3fmG4CX2hjG-EBGQg8KIihlFVVKl5HWWSl5UeSpdtEWF_nZLH13nV37pLBViHYPR5LOU2-T3QgK2DNHor_EEYj77MBeRtzdBnLNkuHG_1p9FqeSSsTIwm2fKvPnMX79HG0x5m_Hou5rM34MBx4m4nBt1ydwTy868CiUYEC_Izuw_5OeYAce-JLmX7514P7E1ey1dy7KU66ewvfRRtsbG4Mf3Y97vCSXiNOmtXFDDpUjXyicLu0RTuh61RBIx3XipsRTvhT03IUb4Cc9n-OH5gbf8Ja7V98GCQqF565A9coO4VJ974iaUwMGLZQ-nrtoTo1e6PWm74agyUsvZbDpewiz8ejq9Czy9RsiSRu7jQQrjJaqylIiOYoRkYlTLshJ5InMClYpZlTMEy4qgpmKvLIeMJPkhUp0ri02fQa7i2ahjwCTOBXMcF5mhqdKF0JmTKaSm4LwjajyLsTBjLX04ua2xsa83soyW9PXZPramb6Ou_Bq887XtbTHP3ufhNVR-22-qpOKPCIraKpd6IcVs23--2jP_6_7MTxMbNqFixY_gd12eatfEBhqRQ92yvGkB3vDyef3I7q-Hl1ML3tuR_wAjI8EwQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VIkQ5IAggAgXmACdiEXttb3xACLVNE5pUFaSiN7OfvURxSQyof4p_wH9jdu1NAIneeo3Xo0jzMvsmM_MG4KWxljHRV5E0fU4JyqCICm0GkTHZQAnO89T4bovjfHSafjjLzrbgZ5iFcW2VISb6QK0r5f4jf5MUBD7GibG8u_gaua1RrroaVmg0sDgylz8oZVu9He-Tf18lyfBgtjeK2q0CkSK41ZFk3Bqliywl6q0Z0es4FZKgmycq46zQzOpYJEIWRH40xQrTZzbJuU5MbhxjIrs34GbK6CZ3k-nDw3Xkd8owXp-VUjJH9NshnWZUj4iMq5hS8k4ZDmVuf1-EG3b7T0HW33PDe3C3Jaj4vkHUfdgyiw7c-UO2sAO3Dv064MsO7Diu2kg9P4BfB2vlcKwsfvJlAfxIARdPqtp1JXnOj2Kh8WTpCkTh6KyiFACbsVCFe2Ip6XPfzICfzXyOk-oc90Ut_KvjIHChcerXX6-cCT9I_J0Sf3qAQWmlh1PfK2qwlZE973kT9P1VK5SwPvsQTq_Fj49ge1EtzGPAJE4ls0IMMitSbbhUGVOpEpYTe5JF3oU4uKpUrXS62-AxLzeiz869Jbm39O4t4y68Xr9z0QiHXHl6NyCgbIPIqtxAvgu9gIrN4_9be3K1tRdwezSbTsrJ-PjoKewkbqDD96Hvwna9_GaeEc2q5XOPbYQv1_1j-g2p_TZt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VImg58AigBgrMAU7EarzrR3zgUDUNDX0ogkb05q730SJFdpW4Rf1X_AH-G7ObdQIIkDj0Ztm7q5VndvYbzcw3AK-1MZyLrgwK3U3JQellQaZ0L9A67kmRpkmkXbbFUbI3jj6cxCcr8K2phXHZ7k1Icl7TYFmaynrrQpmtZeEbwQIbfyRXmPwF8oN8WuW-vv5KTtvs3bBPEn7D2GD3eGcv8H0FAkkKVwcFT42WKosjAt-KE8AOI1GQ8iZMxinPFDcqFEwUGcEfRdZCd7lhSaqYTrTFTLTuLbgd2epjOkFjtr2w_ZYbxjG0klNmob4v0_nznn-9Cpf49reQrLvpBg_hvoeouD3XqUewossWPGjaP6C3Bi249xOXYQvWfDv18-sW3Hnv-gXbJ5dhKmeP4fvuglccK4OfXNAAP5I5xlFlf_0X5xGgKBWOpjZ81Aw9rshBwHnRqMQdMS3ovUt1wM96MsGD6gz7ohZu6rChv1B46Jpjz-wSrsz4StBhqzU2PCwdPHSZpBo9yexZxy1Bm5eeRmEx9gmMb0TGT2G1rEq9AcjCqOBGiF5sRKR0WsiYy0gKkxK2KrKkDWEjxlx6YnXb32OSLymhrehzEn3uRJ-HbXi7mHMxpxX55-jNRjtyb2JmOcvIGvOUttqGTqMxy89_X-3Z_w1_BXdH_UF-MDzafw7rzFZ_uKT1TVitp5f6BWGyunjpjgHC6U2fux8xOEB9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Source+Rock+Potentiality+and+Prediction+of+Total+Organic+Carbon+Using+Well+Log+Data+and+Integrated+Methods+of+Multivariate+Analysis%2C+Machine+Learning%2C+and+Geochemical+Analysis&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Nyakilla%2C+Edwin+E.&rft.au=Silingi%2C+Selemani+N.&rft.au=Shen%2C+Chuanbo&rft.au=Jun%2C+Gu&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=31&rft.issue=1&rft.spage=619&rft.epage=641&rft_id=info:doi/10.1007%2Fs11053-021-09988-1&rft.externalDocID=10_1007_s11053_021_09988_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon