Automatic speech recognition: a survey
Recently great strides have been made in the field of automatic speech recognition (ASR) by using various deep learning techniques. In this study, we present a thorough comparison between cutting-edged techniques currently being used in this area, with a special focus on the various deep learning me...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 6; pp. 9411 - 9457 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recently great strides have been made in the field of automatic speech recognition (ASR) by using various deep learning techniques. In this study, we present a thorough comparison between cutting-edged techniques currently being used in this area, with a special focus on the various deep learning methods. This study explores different feature extraction methods, state-of-the-art classification models, and vis-a-vis their impact on an ASR. As deep learning techniques are very data-dependent different speech datasets that are available online are also discussed in detail. In the end, the various online toolkits, resources, and language models that can be helpful in the formulation of an ASR are also proffered. In this study, we captured every aspect that can impact the performance of an ASR. Hence, we speculate that this work is a good starting point for academics interested in ASR research. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-020-10073-7 |