Multimodal temporal machine learning for Bipolar Disorder and Depression Recognition

Mental disorder is a serious public health concern that affects the life of millions of people throughout the world. Early diagnosis is essential to ensure timely treatment and to improve the well-being of those affected by a mental disorder. In this paper, we present a novel multimodal framework to...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 25; no. 3; pp. 493 - 504
Main Authors Ceccarelli, Francesco, Mahmoud, Marwa
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mental disorder is a serious public health concern that affects the life of millions of people throughout the world. Early diagnosis is essential to ensure timely treatment and to improve the well-being of those affected by a mental disorder. In this paper, we present a novel multimodal framework to perform mental disorder recognition from videos. The proposed approach employs a combination of audio, video and textual modalities. Using recurrent neural network architectures, we incorporate the temporal information in the learning process and model the dynamic evolution of the features extracted for each patient. For multimodal fusion, we propose an efficient late fusion strategy based on a simple feed-forward neural network that we call adaptive nonlinear judge classifier . We evaluate the proposed framework on two mental disorder datasets. On both, the experimental results demonstrate that the proposed framework outperforms the state-of-the-art approaches. We also study the importance of each modality for mental disorder recognition and infer interesting conclusions about the temporal nature of each modality. Our findings demonstrate that careful consideration of the temporal evolution of each modality is of crucial importance to accurately perform mental disorder recognition.
AbstractList Mental disorder is a serious public health concern that affects the life of millions of people throughout the world. Early diagnosis is essential to ensure timely treatment and to improve the well-being of those affected by a mental disorder. In this paper, we present a novel multimodal framework to perform mental disorder recognition from videos. The proposed approach employs a combination of audio, video and textual modalities. Using recurrent neural network architectures, we incorporate the temporal information in the learning process and model the dynamic evolution of the features extracted for each patient. For multimodal fusion, we propose an efficient late fusion strategy based on a simple feed-forward neural network that we call adaptive nonlinear judge classifier . We evaluate the proposed framework on two mental disorder datasets. On both, the experimental results demonstrate that the proposed framework outperforms the state-of-the-art approaches. We also study the importance of each modality for mental disorder recognition and infer interesting conclusions about the temporal nature of each modality. Our findings demonstrate that careful consideration of the temporal evolution of each modality is of crucial importance to accurately perform mental disorder recognition.
Mental disorder is a serious public health concern that affects the life of millions of people throughout the world. Early diagnosis is essential to ensure timely treatment and to improve the well-being of those affected by a mental disorder. In this paper, we present a novel multimodal framework to perform mental disorder recognition from videos. The proposed approach employs a combination of audio, video and textual modalities. Using recurrent neural network architectures, we incorporate the temporal information in the learning process and model the dynamic evolution of the features extracted for each patient. For multimodal fusion, we propose an efficient late fusion strategy based on a simple feed-forward neural network that we call adaptive nonlinear judge classifier. We evaluate the proposed framework on two mental disorder datasets. On both, the experimental results demonstrate that the proposed framework outperforms the state-of-the-art approaches. We also study the importance of each modality for mental disorder recognition and infer interesting conclusions about the temporal nature of each modality. Our findings demonstrate that careful consideration of the temporal evolution of each modality is of crucial importance to accurately perform mental disorder recognition.
Author Ceccarelli, Francesco
Mahmoud, Marwa
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0002-5995-5077
  surname: Ceccarelli
  fullname: Ceccarelli, Francesco
  email: fceccare@uci.edu
  organization: Donald Bren School of Information and Computer Sciences (ICS), University of California
– sequence: 2
  givenname: Marwa
  surname: Mahmoud
  fullname: Mahmoud, Marwa
  organization: Department of Computer Science and Technology, University of Cambridge
BookMark eNp9kEtLAzEUhYMo2Fb_gKuA69Fkknlkqa0vqAhSwV3IZJKaMpOMSbrovzd1RMFFN_eexfnu40zBsXVWAXCB0RVGqLoOqVKaoRxnKEmc7Y7ABFNCsqoo3o9_NcWnYBrCBiFCSF5PwOp520XTu1Z0MKp-cD6JXsgPYxXslPDW2DXUzsNbM7hOeLgwwflWeShsCxdq8CoE4yx8VdKtrYlJn4ETLbqgzn_6DLzd363mj9ny5eFpfrPMJMEsZg1GQmvGCspkLUtdtpSwCmlStK1mTcNqTKtcMFUSUTdMN01bSkmxqiqZ40aSGbgc5w7efW5ViHzjtt6mlTwva4bTYEKTKx9d0rsQvNJ88KYXfscx4vv0-JgeT-nx7_T4LkH1P0iaKPbPRS9MdxglIxrSHrtW_u-qA9QX-1OIKA
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125025
crossref_primary_10_3389_fpsyt_2024_1466507
crossref_primary_10_1080_09540261_2024_2405174
crossref_primary_10_1007_s11042_023_14351_y
crossref_primary_10_1016_j_health_2024_100350
crossref_primary_10_36548_jtcsst_2022_4_001
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_1016_j_psychres_2024_115896
crossref_primary_10_1142_S0219519424400463
crossref_primary_10_1016_j_heliyon_2024_e32548
crossref_primary_10_32604_iasc_2024_041535
crossref_primary_10_1007_s13755_022_00197_5
crossref_primary_10_1109_ACCESS_2024_3362233
crossref_primary_10_3390_diagnostics12112683
crossref_primary_10_3390_s24020348
crossref_primary_10_1038_s41746_022_00712_8
crossref_primary_10_3389_fpsyt_2024_1346059
Cites_doi 10.1145/3266302.3266308
10.1109/TPAMI.2005.159
10.1109/CVPR.2016.308
10.1145/1101149.1101236
10.1109/FG.2015.7163113
10.1145/2647868.2654978
10.1145/2818346.2820776
10.1007/s00406-009-0085-2
10.1177/1745691610393527
10.1145/3133944.3133946
10.1145/2512530.2512531
10.1371/journal.pmed.1001547
10.1016/j.jad.2013.10.002
10.1037/0022-3514.77.3.538
10.1162/0899766042321814
10.1145/3266302.3266311
10.1007/s11263-013-0636-x
10.1145/1873951.1874246
10.1109/TPAMI.2018.2798607
10.1109/ACIIAsia.2018.8470362
10.1016/j.jad.2008.06.026
10.1007/978-1-4302-5990-9_4
10.1145/3266302.3268997
10.1001/jamainternmed.2013.12179
10.1145/3266302.3266316
10.1097/00005053-199908000-00006
10.1192/bjp.133.5.429
10.1117/12.290336
10.1037/0033-2909.111.2.256
10.1145/2522848.2522851
10.1001/archpsyc.62.6.603
10.1016/j.neucom.2012.08.010
10.1145/2988257.2988267
10.24095/hpcdp.37.5.02
10.1037/0022-3514.83.4.947
10.1046/j.1525-1497.2001.016009606.x
10.1109/JBHI.2017.2676878
10.1001/archinte.166.10.1092
10.1007/978-3-642-15561-1_11
10.1109/FG.2018.00019
10.1609/aaai.v31i1.11231
10.1016/j.jrp.2006.07.004
10.1109/FG47880.2020.00033
10.1214/aos/1013203451
10.1109/TAFFC.2015.2457417
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s10044-021-01001-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
Public Health
EISSN 1433-755X
EndPage 504
ExternalDocumentID 10_1007_s10044_021_01001_y
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-b10aff99549c8c6f6d43970f35ddf9bb981472a9e63a8b9fbbd6cc41e77c21bc3
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 05:56:11 EDT 2025
Tue Jul 01 01:15:17 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Fri Feb 21 02:45:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Mental disorder
Multimodal
Recurrent neural network
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b10aff99549c8c6f6d43970f35ddf9bb981472a9e63a8b9fbbd6cc41e77c21bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5995-5077
PQID 2689154934
PQPubID 2043691
PageCount 12
ParticipantIDs proquest_journals_2689154934
crossref_primary_10_1007_s10044_021_01001_y
crossref_citationtrail_10_1007_s10044_021_01001_y
springer_journals_10_1007_s10044_021_01001_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References CarloAltamura ABernardoDell’OssoBerlin HeatherAMassimilianoBuoliRobertaBassettiEmanuelaMundoDuration of untreated illness and suicide in bipolar disorder: a naturalistic studyEur Arch Psychiatry Clin Neurosci2010260538539110.1007/s00406-009-0085-2
Dibeklioğlu Hamdi, Hammal Zakia, Yang Ying, Cohn Jeffrey F (2015) Multimodal detection of depression in clinical interviews. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pages 307–310
Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232, 2001
Williamson James R, Quatieri Thomas F, Helfer Brian S, Horwitz Rachelle, Yu Bea, Mehta Daryush D (2013) Vocal biomarkers of depression based on motor incoordination. In Proceedings of the 3rd ACM international workshop on Audio/visual emotion challenge, pages 41–48
Wang PhilipSPatriciaBerglundMarkOlfsonPincus HaroldAWells KennethBKessler RonaldCFailure and delay in initial treatment contact after first onset of mental disorders in the national comorbidity survey replicationArch Gen Psychiatry200562660361310.1001/archpsyc.62.6.603
Song Yale, Morency Louis-Philippe, Davis Randall (2013) Learning a sparse codebook of facial and body microexpressions for emotion recognition. In Proceedings of the 15th ACM on International conference on multimodal interaction, pages 237–244
CorinnaCortesVladimirVapnikSupport-vector networksMachine learning19952032732970831.68098
Florian Eyben, Klaus R Scherer, Björn W Schuller, Johan Sundberg, Elisabeth André, Carlos Busso, Laurence Y Devillers, Julien Epps, Petri Laukka, Shrikanth S Narayanan, et al. The geneva minimalistic acoustic parameter set (gemaps) for voice research and affective computing. IEEE transactions on affective computing, 7(2):190–202, 2015
LucioGhioSimonaGotelliMaurizioMarcenaroMarioAmoreWernerNattaDuration of untreated illness and outcomes in unipolar depression: a systematic review and meta-analysisJ Affect Disord20141524551
Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In International conference on machine learning, pages 1188–1196, 2014
Szegedy Christian, Vanhoucke Vincent, Ioffe Sergey, Shlens Jon, Wojna Zbigniew (2016) Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826
CheungRickyO’DonnellSiobhan Madi NawafFactors associated with delayed diagnosis of mood and/or anxiety disordersHealth promotion and chronic disease prevention in Canada: research, policy and practice201737513710.24095/hpcdp.37.5.02
Xiaofen Xing, Bolun Cai, Yinhu Zhao, Shuzhen Li, Zhiwei He, and Weiquan Fan. Multi-modality hierarchical recall based on gbdts for bipolar disorder classification. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 31–37, 2018
Yang Le, Li Yan, Chen Haifeng, Jiang Dongmei, Oveneke Meshia Cédric, Sahli Hichem (2018) Bipolar disorder recognition with histogram features of arousal and body gestures. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 15–21
Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368, 2016
Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-scale image classification. In European conference on computer vision, pages 143–156. Springer, 2010
NaliniAmbadyRobertRosenthalThin slices of expressive behavior as predictors of interpersonal consequences: a meta-analysisPsychol Bull1992111225610.1037/0033-2909.111.2.256
Jacqueline NW Friedman, Thomas F Oltmanns, and Eric Turkheimer. Interpersonal perception and personality disorders: Utilization of a thin slice approach. Journal of Research in Personality, 41(3):667–688, 2007
NaliniAmbadyMarkHallahanBrettConnerAccuracy of judgments of sexual orientation from thin slices of behaviorJ Pers Soc Psychol199977353810.1037/0022-3514.77.3.538
TadasBaltrušaitisChaitanyaAhujaLouis-PhilippeMorencyMultimodal machine learning: a survey and taxonomyIEEE Trans Pattern Anal Mach Intell2018412423443
HanchuanPengFuhuiLongChrisDingFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancyIEEE Trans Pattern Anal Mach Intell20052781226123810.1109/TPAMI.2005.159
Ringeval Fabien, Schuller Björn, Valstar Michel, Cowie Roddy, Kaya Heysem, Schmitt Maximilian, Amiriparian Shahin, Cummins Nicholas, Lalanne Denis, Michaud Adrien, et al. (2018) Avec 2018 workshop and challenge: Bipolar disorder and cross-cultural affect recognition. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 3–13. ACM
Sheldon Cohen, T Kamarck, R Mermelstein, et al. Perceived stress scale. Measuring stress: A guide for health and social scientists, 10, 1994
Snoek Cees GM, Worring Marcel, Smeulders Arnold WM (2005) Early versus late fusion in semantic video analysis. In Proceedings of the 13th annual ACM international conference on Multimedia, pages 399–402
Kurt Kroenke, Tara W Strine, Robert L Spitzer, Janet BW Williams, Joyce T Berry, and Ali H Mokdad. The phq-8 as a measure of current depression in the general population. Journal of affective disorders, 114(1-3):163–173, 2009
FrancineCournosMcKinnon KarenMGreerSullivanSchizophrenia and comorbid human immunodeficiency virus or hepatitis c virusJ Clin Psychiatry2005662005
Awad Mariette, Khanna Rahul (2015) Support Vector Regression, pages 67–80. Apress, Berkeley, CA
Jonathan T Foote. Content-based retrieval of music and audio. In Multimedia Storage and Archiving Systems II, volume 3229, pages 138–147. International Society for Optics and Photonics, 1997
Ringeval Fabien, Schuller Björn, Valstar Michel, Gratch Jonathan, Cowie Roddy, Scherer Stefan, Mozgai Sharon, Cummins Nicholas, Schmitt Maximilian, Pantic Maja (2017) Avec 2017: Real-life depression, and affect recognition workshop and challenge. In Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pages 3–9
Ma Xingchen, Yang Hongyu, Chen Qiang, Huang Di, Wang Yunhong (2016) Depaudionet: An efficient deep model for audio based depression classification. In Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, pages 35–42
Zafi Sherhan Syed, Kirill Sidorov, and David Marshall. Automated screening for bipolar disorder from audio/visual modalities. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 39–45, 2018
Kaya Heysem, Salah Albert Ali (2014) Eyes whisper depression: A cca based multimodal approach. In Proceedings of the 22nd ACM international conference on Multimedia, pages 961–964
Szegedy Christian, Ioffe Sergey, Vanhoucke Vincent, Alemi Alexander A (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence
Orton Indigo JD (2020) Vision based body gesture meta features for affective computing. arXiv preprint arXiv:2003.00809
Kurt Kroenke, Robert L Spitzer, and Janet BW Williams. The phq-9: validity of a brief depression severity measure. Journal of general internal medicine, 16(9):606–613, 2001
Weizhe Lin, Indigo Orton, Mingyu Liu, and Marwa Mahmoud. Automatic detection of self-adaptors for psychological distress. In 2020 15th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2020). IEEE, 2020
Çiftçi Elvan, Kaya Heysem, Güleç Hüseyin, Salah Albert Ali (2018) The turkish audio-visual bipolar disorder corpus. In 2018 First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia), pages 1–6. IEEE
Huang Jian, Li Ya, Tao Jianhua, Lian Zheng, Wen Zhengqi, Yang Minghao, Yi Jiangyan (2017) Continuous multimodal emotion prediction based on long short term memory recurrent neural network. In Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pages 11–18
Robert L Spitzer, Kurt Kroenke, Janet BW Williams, and Bernd Löwe. A brief measure for assessing generalized anxiety disorder: the gad-7. Archives of internal medicine, 166(10):1092–1097, 2006
Hardoon DavidRSandorSzedmakJohnShawe-TaylorCanonical correlation analysis: An overview with application to learning methodsNeural Comput200416122639266410.1162/0899766042321814
BenjaminGierkSebastianKohlmannKurtKroenkeLenaSpangenbergMarkusZengerElmarBrählerBerndLöweThe somatic symptom scale-8 (sss-8): a brief measure of somatic symptom burdenJAMA internal medicine2014174339940710.1001/jamainternmed.2013.12179
Hamdi Dibeklioğlu, Zakia Hammal, and Jeffrey F Cohn. Dynamic multimodal measurement of depression severity using deep autoencoding. IEEE journal of biomedical and health informatics, 22(2):525–536, 2017
BethLoganMel frequency cepstral coefficients for music modelingIsmir2000270111
Ferrari Alize J, Charlson Fiona J, Norman Rosana E, Patten Scott B, Freedman Greg, Murray Christopher JL, Vos Theo, Whiteford Harvey A (2013) Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS medicine, 10(11)
Kazdin AlanEBlase StaceyLRebooting psychotherapy research and practice to reduce the burden of mental illnessPerspectives on psychological science201161213710.1177/1745691610393527
Alghowinem Sharifa, Goecke Roland, Cohn Jeffrey F, Wagner Michael, Parker Gordon, Breakspear Michael (2015) Cross-cultural detection of depression from nonverbal behaviour. In 2015 11th IEEE International conference and workshops on automatic face and gesture recognition (FG), volume 1, pages 1–8. IEEE
Robert C Young, Jeffery T Biggs, Veronika E Ziegler, and Dolores A Meyer. A rating scale for mania: reliability, validity and sensitivity. The British journal of psychiatry, 133(5):429–435, 1978
Ritchie Hannah, Roser Max (2020) Mental health. Our World in Data. https://ourworldindata.org/mental-health
Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. Openface 2.0: Facial behav
1001_CR28
1001_CR29
Ambady Nalini (1001_CR46) 1999; 77
Sánchez Jorge (1001_CR48) 2013; 105
1001_CR24
E Kazdin Alan (1001_CR8) 2011; 6
1001_CR25
1001_CR26
1001_CR27
Cortes Corinna (1001_CR23) 1995; 20
Gierk Benjamin (1001_CR41) 2014; 174
1001_CR20
1001_CR22
S Wang Philip (1001_CR9) 2005; 62
1001_CR17
1001_CR18
1001_CR13
1001_CR57
1001_CR14
1001_CR16
Zong Weiwei (1001_CR34) 2013; 101
Dixon Lisa (1001_CR2) 1999; 187
Peng Hanchuan (1001_CR21) 2005; 27
Ambady Nalini (1001_CR44) 1992; 111
1001_CR53
1001_CR10
1001_CR11
R Hardoon David (1001_CR19) 2004; 16
1001_CR55
1001_CR12
1001_CR56
1001_CR50
1001_CR51
1001_CR52
1001_CR47
Cournos Francine (1001_CR3) 2005; 66
1001_CR49
1001_CR4
Ricky Cheung (1001_CR7) 2017; 37
1001_CR1
1001_CR42
1001_CR43
1001_CR45
1001_CR40
1001_CR39
1001_CR35
1001_CR36
1001_CR37
Altamura A Carlo (1001_CR6) 2010; 260
1001_CR38
Logan Beth (1001_CR54) 2000; 270
1001_CR31
1001_CR32
Baltrušaitis Tadas (1001_CR15) 2018; 41
1001_CR33
Ghio Lucio (1001_CR5) 2014; 152
1001_CR30
References_xml – reference: HanchuanPengFuhuiLongChrisDingFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancyIEEE Trans Pattern Anal Mach Intell20052781226123810.1109/TPAMI.2005.159
– reference: Ngiam Jiquan, Khosla Aditya, Kim Mingyu, Nam Juhan, Lee Honglak, Ng Andrew Y (2011) Multimodal deep learning. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 689–696
– reference: Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232, 2001
– reference: JorgeSánchezFlorentPerronninThomasMensinkJakobVerbeekImage classification with the fisher vector: theory and practiceInt J Comput Vision20131053222245310402010.1007/s11263-013-0636-x
– reference: Robert L Spitzer, Kurt Kroenke, Janet BW Williams, and Bernd Löwe. A brief measure for assessing generalized anxiety disorder: the gad-7. Archives of internal medicine, 166(10):1092–1097, 2006
– reference: Yang Le, Li Yan, Chen Haifeng, Jiang Dongmei, Oveneke Meshia Cédric, Sahli Hichem (2018) Bipolar disorder recognition with histogram features of arousal and body gestures. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 15–21
– reference: Robert C Young, Jeffery T Biggs, Veronika E Ziegler, and Dolores A Meyer. A rating scale for mania: reliability, validity and sensitivity. The British journal of psychiatry, 133(5):429–435, 1978
– reference: Wang PhilipSPatriciaBerglundMarkOlfsonPincus HaroldAWells KennethBKessler RonaldCFailure and delay in initial treatment contact after first onset of mental disorders in the national comorbidity survey replicationArch Gen Psychiatry200562660361310.1001/archpsyc.62.6.603
– reference: Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: the munich versatile and fast open-source audio feature extractor. In Proceedings of the 18th ACM international conference on Multimedia, pages 1459–1462, 2010
– reference: BethLoganMel frequency cepstral coefficients for music modelingIsmir2000270111
– reference: Hamdi Dibeklioğlu, Zakia Hammal, and Jeffrey F Cohn. Dynamic multimodal measurement of depression severity using deep autoencoding. IEEE journal of biomedical and health informatics, 22(2):525–536, 2017
– reference: NaliniAmbadyRobertRosenthalThin slices of expressive behavior as predictors of interpersonal consequences: a meta-analysisPsychol Bull1992111225610.1037/0033-2909.111.2.256
– reference: Szegedy Christian, Vanhoucke Vincent, Ioffe Sergey, Shlens Jon, Wojna Zbigniew (2016) Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826
– reference: Orton Indigo JD (2020) Vision based body gesture meta features for affective computing. arXiv preprint arXiv:2003.00809,
– reference: Jacqueline NW Friedman, Thomas F Oltmanns, and Eric Turkheimer. Interpersonal perception and personality disorders: Utilization of a thin slice approach. Journal of Research in Personality, 41(3):667–688, 2007
– reference: Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. Openface 2.0: Facial behavior analysis toolkit. In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pages 59–66. IEEE, 2018
– reference: CarloAltamura ABernardoDell’OssoBerlin HeatherAMassimilianoBuoliRobertaBassettiEmanuelaMundoDuration of untreated illness and suicide in bipolar disorder: a naturalistic studyEur Arch Psychiatry Clin Neurosci2010260538539110.1007/s00406-009-0085-2
– reference: Song Yale, Morency Louis-Philippe, Davis Randall (2013) Learning a sparse codebook of facial and body microexpressions for emotion recognition. In Proceedings of the 15th ACM on International conference on multimodal interaction, pages 237–244
– reference: LucioGhioSimonaGotelliMaurizioMarcenaroMarioAmoreWernerNattaDuration of untreated illness and outcomes in unipolar depression: a systematic review and meta-analysisJ Affect Disord20141524551
– reference: FrancineCournosMcKinnon KarenMGreerSullivanSchizophrenia and comorbid human immunodeficiency virus or hepatitis c virusJ Clin Psychiatry2005662005
– reference: CheungRickyO’DonnellSiobhan Madi NawafFactors associated with delayed diagnosis of mood and/or anxiety disordersHealth promotion and chronic disease prevention in Canada: research, policy and practice201737513710.24095/hpcdp.37.5.02
– reference: Ziheng Zhang, Weizhe Lin, Mingyu Liu, and Marwa Mahmoud. Multimodal deep learning framework for mental disorder recognition. In 2020 15th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2020). IEEE, 2020
– reference: Snoek Cees GM, Worring Marcel, Smeulders Arnold WM (2005) Early versus late fusion in semantic video analysis. In Proceedings of the 13th annual ACM international conference on Multimedia, pages 399–402
– reference: Weizhe Lin, Indigo Orton, Mingyu Liu, and Marwa Mahmoud. Automatic detection of self-adaptors for psychological distress. In 2020 15th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2020). IEEE, 2020
– reference: Dibeklioğlu Hamdi, Hammal Zakia, Yang Ying, Cohn Jeffrey F (2015) Multimodal detection of depression in clinical interviews. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pages 307–310
– reference: Szegedy Christian, Ioffe Sergey, Vanhoucke Vincent, Alemi Alexander A (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence
– reference: Xiaofen Xing, Bolun Cai, Yinhu Zhao, Shuzhen Li, Zhiwei He, and Weiquan Fan. Multi-modality hierarchical recall based on gbdts for bipolar disorder classification. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 31–37, 2018
– reference: CorinnaCortesVladimirVapnikSupport-vector networksMachine learning19952032732970831.68098
– reference: Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368, 2016
– reference: Florian Eyben, Klaus R Scherer, Björn W Schuller, Johan Sundberg, Elisabeth André, Carlos Busso, Laurence Y Devillers, Julien Epps, Petri Laukka, Shrikanth S Narayanan, et al. The geneva minimalistic acoustic parameter set (gemaps) for voice research and affective computing. IEEE transactions on affective computing, 7(2):190–202, 2015
– reference: Alghowinem Sharifa, Goecke Roland, Cohn Jeffrey F, Wagner Michael, Parker Gordon, Breakspear Michael (2015) Cross-cultural detection of depression from nonverbal behaviour. In 2015 11th IEEE International conference and workshops on automatic face and gesture recognition (FG), volume 1, pages 1–8. IEEE
– reference: Ma Xingchen, Yang Hongyu, Chen Qiang, Huang Di, Wang Yunhong (2016) Depaudionet: An efficient deep model for audio based depression classification. In Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, pages 35–42
– reference: Sheldon Cohen, T Kamarck, R Mermelstein, et al. Perceived stress scale. Measuring stress: A guide for health and social scientists, 10, 1994
– reference: BenjaminGierkSebastianKohlmannKurtKroenkeLenaSpangenbergMarkusZengerElmarBrählerBerndLöweThe somatic symptom scale-8 (sss-8): a brief measure of somatic symptom burdenJAMA internal medicine2014174339940710.1001/jamainternmed.2013.12179
– reference: Ringeval Fabien, Schuller Björn, Valstar Michel, Cowie Roddy, Kaya Heysem, Schmitt Maximilian, Amiriparian Shahin, Cummins Nicholas, Lalanne Denis, Michaud Adrien, et al. (2018) Avec 2018 workshop and challenge: Bipolar disorder and cross-cultural affect recognition. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 3–13. ACM
– reference: Du Zhengyin, Li Weixin, Huang Di, Wang Yunhong (2018) Bipolar disorder recognition via multi-scale discriminative audio temporal representation. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 23–30
– reference: Awad Mariette, Khanna Rahul (2015) Support Vector Regression, pages 67–80. Apress, Berkeley, CA
– reference: Nalini Ambady and Heather M Gray. On being sad and mistaken: Mood effects on the accuracy of thin-slice judgments. Journal of personality and social psychology, 83(4):947, 2002
– reference: Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In International conference on machine learning, pages 1188–1196, 2014
– reference: Jonathan T Foote. Content-based retrieval of music and audio. In Multimedia Storage and Archiving Systems II, volume 3229, pages 138–147. International Society for Optics and Photonics, 1997
– reference: Huang Jian, Li Ya, Tao Jianhua, Lian Zheng, Wen Zhengqi, Yang Minghao, Yi Jiangyan (2017) Continuous multimodal emotion prediction based on long short term memory recurrent neural network. In Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pages 11–18
– reference: Kurt Kroenke, Tara W Strine, Robert L Spitzer, Janet BW Williams, Joyce T Berry, and Ali H Mokdad. The phq-8 as a measure of current depression in the general population. Journal of affective disorders, 114(1-3):163–173, 2009
– reference: Çiftçi Elvan, Kaya Heysem, Güleç Hüseyin, Salah Albert Ali (2018) The turkish audio-visual bipolar disorder corpus. In 2018 First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia), pages 1–6. IEEE
– reference: WeiweiZongGuang-BinHuangYiqiangChenWeighted extreme learning machine for imbalance learningNeurocomputing201310122924210.1016/j.neucom.2012.08.010
– reference: Hardoon DavidRSandorSzedmakJohnShawe-TaylorCanonical correlation analysis: An overview with application to learning methodsNeural Comput200416122639266410.1162/0899766042321814
– reference: Ritchie Hannah, Roser Max (2020) Mental health. Our World in Data. https://ourworldindata.org/mental-health
– reference: LisaDixonLeticiaPostradoJanineDelahantyFischer PamelaJAnthonyLehmanThe association of medical comorbidity in schizophrenia with poor physical and mental healthJ Nerv Ment Dis1999187849650210.1097/00005053-199908000-00006
– reference: Kazdin AlanEBlase StaceyLRebooting psychotherapy research and practice to reduce the burden of mental illnessPerspectives on psychological science201161213710.1177/1745691610393527
– reference: Williamson James R, Quatieri Thomas F, Helfer Brian S, Horwitz Rachelle, Yu Bea, Mehta Daryush D (2013) Vocal biomarkers of depression based on motor incoordination. In Proceedings of the 3rd ACM international workshop on Audio/visual emotion challenge, pages 41–48
– reference: TadasBaltrušaitisChaitanyaAhujaLouis-PhilippeMorencyMultimodal machine learning: a survey and taxonomyIEEE Trans Pattern Anal Mach Intell2018412423443
– reference: Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-scale image classification. In European conference on computer vision, pages 143–156. Springer, 2010
– reference: Ferrari Alize J, Charlson Fiona J, Norman Rosana E, Patten Scott B, Freedman Greg, Murray Christopher JL, Vos Theo, Whiteford Harvey A (2013) Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS medicine, 10(11)
– reference: Zafi Sherhan Syed, Kirill Sidorov, and David Marshall. Automated screening for bipolar disorder from audio/visual modalities. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 39–45, 2018
– reference: NaliniAmbadyMarkHallahanBrettConnerAccuracy of judgments of sexual orientation from thin slices of behaviorJ Pers Soc Psychol199977353810.1037/0022-3514.77.3.538
– reference: Kaya Heysem, Salah Albert Ali (2014) Eyes whisper depression: A cca based multimodal approach. In Proceedings of the 22nd ACM international conference on Multimedia, pages 961–964
– reference: Ringeval Fabien, Schuller Björn, Valstar Michel, Gratch Jonathan, Cowie Roddy, Scherer Stefan, Mozgai Sharon, Cummins Nicholas, Schmitt Maximilian, Pantic Maja (2017) Avec 2017: Real-life depression, and affect recognition workshop and challenge. In Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pages 3–9
– reference: Kurt Kroenke, Robert L Spitzer, and Janet BW Williams. The phq-9: validity of a brief depression severity measure. Journal of general internal medicine, 16(9):606–613, 2001
– ident: 1001_CR13
  doi: 10.1145/3266302.3266308
– ident: 1001_CR50
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 1001_CR21
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– ident: 1001_CR29
  doi: 10.1109/CVPR.2016.308
– ident: 1001_CR16
– ident: 1001_CR17
  doi: 10.1145/1101149.1101236
– ident: 1001_CR22
  doi: 10.1109/FG.2015.7163113
– ident: 1001_CR11
  doi: 10.1145/2647868.2654978
– ident: 1001_CR20
  doi: 10.1145/2818346.2820776
– volume: 260
  start-page: 385
  issue: 5
  year: 2010
  ident: 1001_CR6
  publication-title: Eur Arch Psychiatry Clin Neurosci
  doi: 10.1007/s00406-009-0085-2
– volume: 6
  start-page: 21
  issue: 1
  year: 2011
  ident: 1001_CR8
  publication-title: Perspectives on psychological science
  doi: 10.1177/1745691610393527
– ident: 1001_CR24
  doi: 10.1145/3133944.3133946
– ident: 1001_CR10
  doi: 10.1145/2512530.2512531
– ident: 1001_CR26
– ident: 1001_CR36
– ident: 1001_CR1
– ident: 1001_CR4
  doi: 10.1371/journal.pmed.1001547
– volume: 152
  start-page: 45
  year: 2014
  ident: 1001_CR5
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2013.10.002
– volume: 77
  start-page: 538
  issue: 3
  year: 1999
  ident: 1001_CR46
  publication-title: J Pers Soc Psychol
  doi: 10.1037/0022-3514.77.3.538
– ident: 1001_CR57
– volume: 16
  start-page: 2639
  issue: 12
  year: 2004
  ident: 1001_CR19
  publication-title: Neural Comput
  doi: 10.1162/0899766042321814
– ident: 1001_CR31
  doi: 10.1145/3266302.3266311
– ident: 1001_CR42
– volume: 105
  start-page: 222
  issue: 3
  year: 2013
  ident: 1001_CR48
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-013-0636-x
– ident: 1001_CR52
  doi: 10.1145/1873951.1874246
– volume: 41
  start-page: 423
  issue: 2
  year: 2018
  ident: 1001_CR15
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2798607
– ident: 1001_CR12
  doi: 10.1109/ACIIAsia.2018.8470362
– ident: 1001_CR38
  doi: 10.1016/j.jad.2008.06.026
– ident: 1001_CR33
– ident: 1001_CR25
  doi: 10.1007/978-1-4302-5990-9_4
– ident: 1001_CR30
  doi: 10.1145/3266302.3268997
– volume: 174
  start-page: 399
  issue: 3
  year: 2014
  ident: 1001_CR41
  publication-title: JAMA internal medicine
  doi: 10.1001/jamainternmed.2013.12179
– ident: 1001_CR56
– ident: 1001_CR14
  doi: 10.1145/3266302.3266316
– volume: 187
  start-page: 496
  issue: 8
  year: 1999
  ident: 1001_CR2
  publication-title: J Nerv Ment Dis
  doi: 10.1097/00005053-199908000-00006
– ident: 1001_CR37
  doi: 10.1192/bjp.133.5.429
– ident: 1001_CR53
  doi: 10.1117/12.290336
– volume: 111
  start-page: 256
  issue: 2
  year: 1992
  ident: 1001_CR44
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.111.2.256
– ident: 1001_CR18
  doi: 10.1145/2522848.2522851
– volume: 62
  start-page: 603
  issue: 6
  year: 2005
  ident: 1001_CR9
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.62.6.603
– volume: 101
  start-page: 229
  year: 2013
  ident: 1001_CR34
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.010
– volume: 270
  start-page: 1
  year: 2000
  ident: 1001_CR54
  publication-title: Ismir
– ident: 1001_CR27
  doi: 10.1145/2988257.2988267
– volume: 37
  start-page: 137
  issue: 5
  year: 2017
  ident: 1001_CR7
  publication-title: Health promotion and chronic disease prevention in Canada: research, policy and practice
  doi: 10.24095/hpcdp.37.5.02
– ident: 1001_CR45
  doi: 10.1037/0022-3514.83.4.947
– ident: 1001_CR39
  doi: 10.1046/j.1525-1497.2001.016009606.x
– ident: 1001_CR43
  doi: 10.1109/JBHI.2017.2676878
– ident: 1001_CR40
  doi: 10.1001/archinte.166.10.1092
– ident: 1001_CR49
  doi: 10.1007/978-3-642-15561-1_11
– ident: 1001_CR51
  doi: 10.1109/FG.2018.00019
– ident: 1001_CR28
  doi: 10.1609/aaai.v31i1.11231
– ident: 1001_CR47
  doi: 10.1016/j.jrp.2006.07.004
– volume: 66
  start-page: 2005
  year: 2005
  ident: 1001_CR3
  publication-title: J Clin Psychiatry
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 1001_CR23
  publication-title: Machine learning
– ident: 1001_CR35
  doi: 10.1109/FG47880.2020.00033
– ident: 1001_CR32
  doi: 10.1214/aos/1013203451
– ident: 1001_CR55
  doi: 10.1109/TAFFC.2015.2457417
SSID ssj0033328
Score 2.477479
Snippet Mental disorder is a serious public health concern that affects the life of millions of people throughout the world. Early diagnosis is essential to ensure...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 493
SubjectTerms Bipolar disorder
Computer architecture
Computer Science
Evolution
Feature extraction
Machine learning
Mental depression
Mental disorders
Neural networks
Original Article
Pattern Recognition
Public health
Recognition
Recurrent neural networks
Special Issue on Computer Vision and Machine Learning for Healthcare Applications
Title Multimodal temporal machine learning for Bipolar Disorder and Depression Recognition
URI https://link.springer.com/article/10.1007/s10044-021-01001-y
https://www.proquest.com/docview/2689154934
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BXVh4Iwql8sAGlpLYceKxQEsFEgNqpTJF8SMIqU0RLUP_PbZrU0CAxJLBsT2cfb7v7LvvAM6olMYqKY1LwjWmyqiUyM1HG-vKqNSCScf2ec_6Q3o7Skc-KWwWot3Dk6Q7qT8lu0WUYhtSEFniILxYh0ZqfXezi4dJJ5y_hBBXUdUAAYKzlMY-VebnOb6aoxXG_PYs6qxNbwe2PExEneW67sKarvdg20NG5BVyZppCVYbQtg8Dl1M7mSoz3hNPjdHExUxq5ItEPCGDVdHl84t1bFFg4ERlrdB1CI2t0UMILprWBzDsdQdXfexrJ2Ajez7HIo7KqrJkb1zmklVMWeQRVSRVquJC8DymWVJyzUiZC14JoZiUNNZZJpNYSHIIG_W01keADOCxl1XGkcpySiIqlLSMPvbJNIkIT5sQBxEW0hOL2_oW42JFiWzFXhixF07sxaIJ5x9jXpa0Gn_2boWVKbyKzYqE5dzyyxHahIuwWqvfv892_L_uJ7CZ2JQHF_TXgo3565s-NUBkLtrQ6Nw83nXbbv-9Az911QY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGADS0nsOPFYHlWB0gG1UjcrfgQhtWlFy9B_j-3aFBAgsWRwbA_n2Pc59913AJwTKY1XUhoVmGlElNlSIjcPbbwrJVILKp3aZ5e2--R-kA58Utg0sN1DSNKd1J-S3SJCkKUURFY4CM1XwZoBA7klcvWTZjh_McauoqoBAhhlKYl9qszPc3x1R0uM-S0s6rxNaxtsepgIm4t13QErutoFWx4yQr8hp6YpVGUIbXug53JqR2NlxnvhqSEcOc6khr5IxDM0WBVevUzsxRYGBU5YVAreBGpsBZ8CuWhc7YN-67Z33Ua-dgIytmczJOKoKEsr9sZkLmlJlUUeUYlTpUomBMtjkiUF0xQXuWClEIpKSWKdZTKJhcQHoFaNK30IoAE89meVuUhlOcEREUpaRR8bMk0izNI6iIMJufTC4ra-xZAvJZGt2bkxO3dm5_M6uPgYM1nIavzZuxFWhvstNuUJzZnVl8OkDi7Dai1f_z7b0f-6n4H1du-xwzt33YdjsJHY9AdHAGyA2uz1TZ8YUDITp-4bfAe-ntZl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbRCSx48RjoVTloQqhVupmxY8gpDataBj677FdmxYESCwZHNvDne377Lv7DoBzLIS2SlIFOaIqwFJvKZ7pj9LWlWChOBGW7bNLOn18P0gGS1n8NtrduyTnOQ2GpamsriayuFpKfAsxDkx4QWhIhILZKljTx3Fk1nU_bvqzGCFkq6tqUICCNMGRS5v5eY6vpmmBN7-5SK3laW-DTQcZYXOu4x2wospdsOXgI3Sbc6qbfIUG37YHeja_djSWerwjoRrCkY2fVNAVjHiBGrfC69eJueRCz8YJ81LClg-TLeGzDzQal_ug377t3XQCV0ch0HqgVcCjMC8KQ_xGRSZIQaRBIWGBEikLyjnNIpzGOVUE5RmnBeeSCIEjlaYijrhAB6BWjkt1CKAGP-bhSl-q0gyjEHMpDLuPcZ_GIaJJHURehEw4knFT62LIFvTIRuxMi51ZsbNZHVx8jpnMKTb-7N3wmmFuu01ZTDJquOYQroNLr63F799nO_pf9zOw_tRqs8e77sMx2IhNJoSNBWyAWvX2rk40Pqn4qV2CH1YG2qE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+temporal+machine+learning+for+Bipolar+Disorder+and+Depression+Recognition&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Ceccarelli%2C+Francesco&rft.au=Mahmoud%2C+Marwa&rft.date=2022-08-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=25&rft.issue=3&rft.spage=493&rft.epage=504&rft_id=info:doi/10.1007%2Fs10044-021-01001-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_021_01001_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon