Multimodal temporal machine learning for Bipolar Disorder and Depression Recognition
Mental disorder is a serious public health concern that affects the life of millions of people throughout the world. Early diagnosis is essential to ensure timely treatment and to improve the well-being of those affected by a mental disorder. In this paper, we present a novel multimodal framework to...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 25; no. 3; pp. 493 - 504 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mental disorder is a serious public health concern that affects the life of millions of people throughout the world. Early diagnosis is essential to ensure timely treatment and to improve the well-being of those affected by a mental disorder. In this paper, we present a novel multimodal framework to perform mental disorder recognition from videos. The proposed approach employs a combination of audio, video and textual modalities. Using recurrent neural network architectures, we incorporate the temporal information in the learning process and model the dynamic evolution of the features extracted for each patient. For multimodal fusion, we propose an efficient late fusion strategy based on a simple feed-forward neural network that we call
adaptive nonlinear judge classifier
. We evaluate the proposed framework on two mental disorder datasets. On both, the experimental results demonstrate that the proposed framework outperforms the state-of-the-art approaches. We also study the importance of each modality for mental disorder recognition and infer interesting conclusions about the temporal nature of each modality. Our findings demonstrate that careful consideration of the temporal evolution of each modality is of crucial importance to accurately perform mental disorder recognition. |
---|---|
AbstractList | Mental disorder is a serious public health concern that affects the life of millions of people throughout the world. Early diagnosis is essential to ensure timely treatment and to improve the well-being of those affected by a mental disorder. In this paper, we present a novel multimodal framework to perform mental disorder recognition from videos. The proposed approach employs a combination of audio, video and textual modalities. Using recurrent neural network architectures, we incorporate the temporal information in the learning process and model the dynamic evolution of the features extracted for each patient. For multimodal fusion, we propose an efficient late fusion strategy based on a simple feed-forward neural network that we call
adaptive nonlinear judge classifier
. We evaluate the proposed framework on two mental disorder datasets. On both, the experimental results demonstrate that the proposed framework outperforms the state-of-the-art approaches. We also study the importance of each modality for mental disorder recognition and infer interesting conclusions about the temporal nature of each modality. Our findings demonstrate that careful consideration of the temporal evolution of each modality is of crucial importance to accurately perform mental disorder recognition. Mental disorder is a serious public health concern that affects the life of millions of people throughout the world. Early diagnosis is essential to ensure timely treatment and to improve the well-being of those affected by a mental disorder. In this paper, we present a novel multimodal framework to perform mental disorder recognition from videos. The proposed approach employs a combination of audio, video and textual modalities. Using recurrent neural network architectures, we incorporate the temporal information in the learning process and model the dynamic evolution of the features extracted for each patient. For multimodal fusion, we propose an efficient late fusion strategy based on a simple feed-forward neural network that we call adaptive nonlinear judge classifier. We evaluate the proposed framework on two mental disorder datasets. On both, the experimental results demonstrate that the proposed framework outperforms the state-of-the-art approaches. We also study the importance of each modality for mental disorder recognition and infer interesting conclusions about the temporal nature of each modality. Our findings demonstrate that careful consideration of the temporal evolution of each modality is of crucial importance to accurately perform mental disorder recognition. |
Author | Ceccarelli, Francesco Mahmoud, Marwa |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0002-5995-5077 surname: Ceccarelli fullname: Ceccarelli, Francesco email: fceccare@uci.edu organization: Donald Bren School of Information and Computer Sciences (ICS), University of California – sequence: 2 givenname: Marwa surname: Mahmoud fullname: Mahmoud, Marwa organization: Department of Computer Science and Technology, University of Cambridge |
BookMark | eNp9kEtLAzEUhYMo2Fb_gKuA69Fkknlkqa0vqAhSwV3IZJKaMpOMSbrovzd1RMFFN_eexfnu40zBsXVWAXCB0RVGqLoOqVKaoRxnKEmc7Y7ABFNCsqoo3o9_NcWnYBrCBiFCSF5PwOp520XTu1Z0MKp-cD6JXsgPYxXslPDW2DXUzsNbM7hOeLgwwflWeShsCxdq8CoE4yx8VdKtrYlJn4ETLbqgzn_6DLzd363mj9ny5eFpfrPMJMEsZg1GQmvGCspkLUtdtpSwCmlStK1mTcNqTKtcMFUSUTdMN01bSkmxqiqZ40aSGbgc5w7efW5ViHzjtt6mlTwva4bTYEKTKx9d0rsQvNJ88KYXfscx4vv0-JgeT-nx7_T4LkH1P0iaKPbPRS9MdxglIxrSHrtW_u-qA9QX-1OIKA |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125025 crossref_primary_10_3389_fpsyt_2024_1466507 crossref_primary_10_1080_09540261_2024_2405174 crossref_primary_10_1007_s11042_023_14351_y crossref_primary_10_1016_j_health_2024_100350 crossref_primary_10_36548_jtcsst_2022_4_001 crossref_primary_10_1016_j_inffus_2024_102690 crossref_primary_10_1016_j_psychres_2024_115896 crossref_primary_10_1142_S0219519424400463 crossref_primary_10_1016_j_heliyon_2024_e32548 crossref_primary_10_32604_iasc_2024_041535 crossref_primary_10_1007_s13755_022_00197_5 crossref_primary_10_1109_ACCESS_2024_3362233 crossref_primary_10_3390_diagnostics12112683 crossref_primary_10_3390_s24020348 crossref_primary_10_1038_s41746_022_00712_8 crossref_primary_10_3389_fpsyt_2024_1346059 |
Cites_doi | 10.1145/3266302.3266308 10.1109/TPAMI.2005.159 10.1109/CVPR.2016.308 10.1145/1101149.1101236 10.1109/FG.2015.7163113 10.1145/2647868.2654978 10.1145/2818346.2820776 10.1007/s00406-009-0085-2 10.1177/1745691610393527 10.1145/3133944.3133946 10.1145/2512530.2512531 10.1371/journal.pmed.1001547 10.1016/j.jad.2013.10.002 10.1037/0022-3514.77.3.538 10.1162/0899766042321814 10.1145/3266302.3266311 10.1007/s11263-013-0636-x 10.1145/1873951.1874246 10.1109/TPAMI.2018.2798607 10.1109/ACIIAsia.2018.8470362 10.1016/j.jad.2008.06.026 10.1007/978-1-4302-5990-9_4 10.1145/3266302.3268997 10.1001/jamainternmed.2013.12179 10.1145/3266302.3266316 10.1097/00005053-199908000-00006 10.1192/bjp.133.5.429 10.1117/12.290336 10.1037/0033-2909.111.2.256 10.1145/2522848.2522851 10.1001/archpsyc.62.6.603 10.1016/j.neucom.2012.08.010 10.1145/2988257.2988267 10.24095/hpcdp.37.5.02 10.1037/0022-3514.83.4.947 10.1046/j.1525-1497.2001.016009606.x 10.1109/JBHI.2017.2676878 10.1001/archinte.166.10.1092 10.1007/978-3-642-15561-1_11 10.1109/FG.2018.00019 10.1609/aaai.v31i1.11231 10.1016/j.jrp.2006.07.004 10.1109/FG47880.2020.00033 10.1214/aos/1013203451 10.1109/TAFFC.2015.2457417 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-021-01001-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science Public Health |
EISSN | 1433-755X |
EndPage | 504 |
ExternalDocumentID | 10_1007_s10044_021_01001_y |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-b10aff99549c8c6f6d43970f35ddf9bb981472a9e63a8b9fbbd6cc41e77c21bc3 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 05:56:11 EDT 2025 Tue Jul 01 01:15:17 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Fri Feb 21 02:45:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Mental disorder Multimodal Recurrent neural network Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-b10aff99549c8c6f6d43970f35ddf9bb981472a9e63a8b9fbbd6cc41e77c21bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5995-5077 |
PQID | 2689154934 |
PQPubID | 2043691 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2689154934 crossref_primary_10_1007_s10044_021_01001_y crossref_citationtrail_10_1007_s10044_021_01001_y springer_journals_10_1007_s10044_021_01001_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | CarloAltamura ABernardoDell’OssoBerlin HeatherAMassimilianoBuoliRobertaBassettiEmanuelaMundoDuration of untreated illness and suicide in bipolar disorder: a naturalistic studyEur Arch Psychiatry Clin Neurosci2010260538539110.1007/s00406-009-0085-2 Dibeklioğlu Hamdi, Hammal Zakia, Yang Ying, Cohn Jeffrey F (2015) Multimodal detection of depression in clinical interviews. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pages 307–310 Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232, 2001 Williamson James R, Quatieri Thomas F, Helfer Brian S, Horwitz Rachelle, Yu Bea, Mehta Daryush D (2013) Vocal biomarkers of depression based on motor incoordination. In Proceedings of the 3rd ACM international workshop on Audio/visual emotion challenge, pages 41–48 Wang PhilipSPatriciaBerglundMarkOlfsonPincus HaroldAWells KennethBKessler RonaldCFailure and delay in initial treatment contact after first onset of mental disorders in the national comorbidity survey replicationArch Gen Psychiatry200562660361310.1001/archpsyc.62.6.603 Song Yale, Morency Louis-Philippe, Davis Randall (2013) Learning a sparse codebook of facial and body microexpressions for emotion recognition. In Proceedings of the 15th ACM on International conference on multimodal interaction, pages 237–244 CorinnaCortesVladimirVapnikSupport-vector networksMachine learning19952032732970831.68098 Florian Eyben, Klaus R Scherer, Björn W Schuller, Johan Sundberg, Elisabeth André, Carlos Busso, Laurence Y Devillers, Julien Epps, Petri Laukka, Shrikanth S Narayanan, et al. The geneva minimalistic acoustic parameter set (gemaps) for voice research and affective computing. IEEE transactions on affective computing, 7(2):190–202, 2015 LucioGhioSimonaGotelliMaurizioMarcenaroMarioAmoreWernerNattaDuration of untreated illness and outcomes in unipolar depression: a systematic review and meta-analysisJ Affect Disord20141524551 Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In International conference on machine learning, pages 1188–1196, 2014 Szegedy Christian, Vanhoucke Vincent, Ioffe Sergey, Shlens Jon, Wojna Zbigniew (2016) Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826 CheungRickyO’DonnellSiobhan Madi NawafFactors associated with delayed diagnosis of mood and/or anxiety disordersHealth promotion and chronic disease prevention in Canada: research, policy and practice201737513710.24095/hpcdp.37.5.02 Xiaofen Xing, Bolun Cai, Yinhu Zhao, Shuzhen Li, Zhiwei He, and Weiquan Fan. Multi-modality hierarchical recall based on gbdts for bipolar disorder classification. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 31–37, 2018 Yang Le, Li Yan, Chen Haifeng, Jiang Dongmei, Oveneke Meshia Cédric, Sahli Hichem (2018) Bipolar disorder recognition with histogram features of arousal and body gestures. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 15–21 Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368, 2016 Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-scale image classification. In European conference on computer vision, pages 143–156. Springer, 2010 NaliniAmbadyRobertRosenthalThin slices of expressive behavior as predictors of interpersonal consequences: a meta-analysisPsychol Bull1992111225610.1037/0033-2909.111.2.256 Jacqueline NW Friedman, Thomas F Oltmanns, and Eric Turkheimer. Interpersonal perception and personality disorders: Utilization of a thin slice approach. Journal of Research in Personality, 41(3):667–688, 2007 NaliniAmbadyMarkHallahanBrettConnerAccuracy of judgments of sexual orientation from thin slices of behaviorJ Pers Soc Psychol199977353810.1037/0022-3514.77.3.538 TadasBaltrušaitisChaitanyaAhujaLouis-PhilippeMorencyMultimodal machine learning: a survey and taxonomyIEEE Trans Pattern Anal Mach Intell2018412423443 HanchuanPengFuhuiLongChrisDingFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancyIEEE Trans Pattern Anal Mach Intell20052781226123810.1109/TPAMI.2005.159 Ringeval Fabien, Schuller Björn, Valstar Michel, Cowie Roddy, Kaya Heysem, Schmitt Maximilian, Amiriparian Shahin, Cummins Nicholas, Lalanne Denis, Michaud Adrien, et al. (2018) Avec 2018 workshop and challenge: Bipolar disorder and cross-cultural affect recognition. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 3–13. ACM Sheldon Cohen, T Kamarck, R Mermelstein, et al. Perceived stress scale. Measuring stress: A guide for health and social scientists, 10, 1994 Snoek Cees GM, Worring Marcel, Smeulders Arnold WM (2005) Early versus late fusion in semantic video analysis. In Proceedings of the 13th annual ACM international conference on Multimedia, pages 399–402 Kurt Kroenke, Tara W Strine, Robert L Spitzer, Janet BW Williams, Joyce T Berry, and Ali H Mokdad. The phq-8 as a measure of current depression in the general population. Journal of affective disorders, 114(1-3):163–173, 2009 FrancineCournosMcKinnon KarenMGreerSullivanSchizophrenia and comorbid human immunodeficiency virus or hepatitis c virusJ Clin Psychiatry2005662005 Awad Mariette, Khanna Rahul (2015) Support Vector Regression, pages 67–80. Apress, Berkeley, CA Jonathan T Foote. Content-based retrieval of music and audio. In Multimedia Storage and Archiving Systems II, volume 3229, pages 138–147. International Society for Optics and Photonics, 1997 Ringeval Fabien, Schuller Björn, Valstar Michel, Gratch Jonathan, Cowie Roddy, Scherer Stefan, Mozgai Sharon, Cummins Nicholas, Schmitt Maximilian, Pantic Maja (2017) Avec 2017: Real-life depression, and affect recognition workshop and challenge. In Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pages 3–9 Ma Xingchen, Yang Hongyu, Chen Qiang, Huang Di, Wang Yunhong (2016) Depaudionet: An efficient deep model for audio based depression classification. In Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, pages 35–42 Zafi Sherhan Syed, Kirill Sidorov, and David Marshall. Automated screening for bipolar disorder from audio/visual modalities. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 39–45, 2018 Kaya Heysem, Salah Albert Ali (2014) Eyes whisper depression: A cca based multimodal approach. In Proceedings of the 22nd ACM international conference on Multimedia, pages 961–964 Szegedy Christian, Ioffe Sergey, Vanhoucke Vincent, Alemi Alexander A (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence Orton Indigo JD (2020) Vision based body gesture meta features for affective computing. arXiv preprint arXiv:2003.00809 Kurt Kroenke, Robert L Spitzer, and Janet BW Williams. The phq-9: validity of a brief depression severity measure. Journal of general internal medicine, 16(9):606–613, 2001 Weizhe Lin, Indigo Orton, Mingyu Liu, and Marwa Mahmoud. Automatic detection of self-adaptors for psychological distress. In 2020 15th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2020). IEEE, 2020 Çiftçi Elvan, Kaya Heysem, Güleç Hüseyin, Salah Albert Ali (2018) The turkish audio-visual bipolar disorder corpus. In 2018 First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia), pages 1–6. IEEE Huang Jian, Li Ya, Tao Jianhua, Lian Zheng, Wen Zhengqi, Yang Minghao, Yi Jiangyan (2017) Continuous multimodal emotion prediction based on long short term memory recurrent neural network. In Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pages 11–18 Robert L Spitzer, Kurt Kroenke, Janet BW Williams, and Bernd Löwe. A brief measure for assessing generalized anxiety disorder: the gad-7. Archives of internal medicine, 166(10):1092–1097, 2006 Hardoon DavidRSandorSzedmakJohnShawe-TaylorCanonical correlation analysis: An overview with application to learning methodsNeural Comput200416122639266410.1162/0899766042321814 BenjaminGierkSebastianKohlmannKurtKroenkeLenaSpangenbergMarkusZengerElmarBrählerBerndLöweThe somatic symptom scale-8 (sss-8): a brief measure of somatic symptom burdenJAMA internal medicine2014174339940710.1001/jamainternmed.2013.12179 Hamdi Dibeklioğlu, Zakia Hammal, and Jeffrey F Cohn. Dynamic multimodal measurement of depression severity using deep autoencoding. IEEE journal of biomedical and health informatics, 22(2):525–536, 2017 BethLoganMel frequency cepstral coefficients for music modelingIsmir2000270111 Ferrari Alize J, Charlson Fiona J, Norman Rosana E, Patten Scott B, Freedman Greg, Murray Christopher JL, Vos Theo, Whiteford Harvey A (2013) Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS medicine, 10(11) Kazdin AlanEBlase StaceyLRebooting psychotherapy research and practice to reduce the burden of mental illnessPerspectives on psychological science201161213710.1177/1745691610393527 Alghowinem Sharifa, Goecke Roland, Cohn Jeffrey F, Wagner Michael, Parker Gordon, Breakspear Michael (2015) Cross-cultural detection of depression from nonverbal behaviour. In 2015 11th IEEE International conference and workshops on automatic face and gesture recognition (FG), volume 1, pages 1–8. IEEE Robert C Young, Jeffery T Biggs, Veronika E Ziegler, and Dolores A Meyer. A rating scale for mania: reliability, validity and sensitivity. The British journal of psychiatry, 133(5):429–435, 1978 Ritchie Hannah, Roser Max (2020) Mental health. Our World in Data. https://ourworldindata.org/mental-health Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. Openface 2.0: Facial behav 1001_CR28 1001_CR29 Ambady Nalini (1001_CR46) 1999; 77 Sánchez Jorge (1001_CR48) 2013; 105 1001_CR24 E Kazdin Alan (1001_CR8) 2011; 6 1001_CR25 1001_CR26 1001_CR27 Cortes Corinna (1001_CR23) 1995; 20 Gierk Benjamin (1001_CR41) 2014; 174 1001_CR20 1001_CR22 S Wang Philip (1001_CR9) 2005; 62 1001_CR17 1001_CR18 1001_CR13 1001_CR57 1001_CR14 1001_CR16 Zong Weiwei (1001_CR34) 2013; 101 Dixon Lisa (1001_CR2) 1999; 187 Peng Hanchuan (1001_CR21) 2005; 27 Ambady Nalini (1001_CR44) 1992; 111 1001_CR53 1001_CR10 1001_CR11 R Hardoon David (1001_CR19) 2004; 16 1001_CR55 1001_CR12 1001_CR56 1001_CR50 1001_CR51 1001_CR52 1001_CR47 Cournos Francine (1001_CR3) 2005; 66 1001_CR49 1001_CR4 Ricky Cheung (1001_CR7) 2017; 37 1001_CR1 1001_CR42 1001_CR43 1001_CR45 1001_CR40 1001_CR39 1001_CR35 1001_CR36 1001_CR37 Altamura A Carlo (1001_CR6) 2010; 260 1001_CR38 Logan Beth (1001_CR54) 2000; 270 1001_CR31 1001_CR32 Baltrušaitis Tadas (1001_CR15) 2018; 41 1001_CR33 Ghio Lucio (1001_CR5) 2014; 152 1001_CR30 |
References_xml | – reference: HanchuanPengFuhuiLongChrisDingFeature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancyIEEE Trans Pattern Anal Mach Intell20052781226123810.1109/TPAMI.2005.159 – reference: Ngiam Jiquan, Khosla Aditya, Kim Mingyu, Nam Juhan, Lee Honglak, Ng Andrew Y (2011) Multimodal deep learning. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 689–696 – reference: Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232, 2001 – reference: JorgeSánchezFlorentPerronninThomasMensinkJakobVerbeekImage classification with the fisher vector: theory and practiceInt J Comput Vision20131053222245310402010.1007/s11263-013-0636-x – reference: Robert L Spitzer, Kurt Kroenke, Janet BW Williams, and Bernd Löwe. A brief measure for assessing generalized anxiety disorder: the gad-7. Archives of internal medicine, 166(10):1092–1097, 2006 – reference: Yang Le, Li Yan, Chen Haifeng, Jiang Dongmei, Oveneke Meshia Cédric, Sahli Hichem (2018) Bipolar disorder recognition with histogram features of arousal and body gestures. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 15–21 – reference: Robert C Young, Jeffery T Biggs, Veronika E Ziegler, and Dolores A Meyer. A rating scale for mania: reliability, validity and sensitivity. The British journal of psychiatry, 133(5):429–435, 1978 – reference: Wang PhilipSPatriciaBerglundMarkOlfsonPincus HaroldAWells KennethBKessler RonaldCFailure and delay in initial treatment contact after first onset of mental disorders in the national comorbidity survey replicationArch Gen Psychiatry200562660361310.1001/archpsyc.62.6.603 – reference: Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: the munich versatile and fast open-source audio feature extractor. In Proceedings of the 18th ACM international conference on Multimedia, pages 1459–1462, 2010 – reference: BethLoganMel frequency cepstral coefficients for music modelingIsmir2000270111 – reference: Hamdi Dibeklioğlu, Zakia Hammal, and Jeffrey F Cohn. Dynamic multimodal measurement of depression severity using deep autoencoding. IEEE journal of biomedical and health informatics, 22(2):525–536, 2017 – reference: NaliniAmbadyRobertRosenthalThin slices of expressive behavior as predictors of interpersonal consequences: a meta-analysisPsychol Bull1992111225610.1037/0033-2909.111.2.256 – reference: Szegedy Christian, Vanhoucke Vincent, Ioffe Sergey, Shlens Jon, Wojna Zbigniew (2016) Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826 – reference: Orton Indigo JD (2020) Vision based body gesture meta features for affective computing. arXiv preprint arXiv:2003.00809, – reference: Jacqueline NW Friedman, Thomas F Oltmanns, and Eric Turkheimer. Interpersonal perception and personality disorders: Utilization of a thin slice approach. Journal of Research in Personality, 41(3):667–688, 2007 – reference: Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. Openface 2.0: Facial behavior analysis toolkit. In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pages 59–66. IEEE, 2018 – reference: CarloAltamura ABernardoDell’OssoBerlin HeatherAMassimilianoBuoliRobertaBassettiEmanuelaMundoDuration of untreated illness and suicide in bipolar disorder: a naturalistic studyEur Arch Psychiatry Clin Neurosci2010260538539110.1007/s00406-009-0085-2 – reference: Song Yale, Morency Louis-Philippe, Davis Randall (2013) Learning a sparse codebook of facial and body microexpressions for emotion recognition. In Proceedings of the 15th ACM on International conference on multimodal interaction, pages 237–244 – reference: LucioGhioSimonaGotelliMaurizioMarcenaroMarioAmoreWernerNattaDuration of untreated illness and outcomes in unipolar depression: a systematic review and meta-analysisJ Affect Disord20141524551 – reference: FrancineCournosMcKinnon KarenMGreerSullivanSchizophrenia and comorbid human immunodeficiency virus or hepatitis c virusJ Clin Psychiatry2005662005 – reference: CheungRickyO’DonnellSiobhan Madi NawafFactors associated with delayed diagnosis of mood and/or anxiety disordersHealth promotion and chronic disease prevention in Canada: research, policy and practice201737513710.24095/hpcdp.37.5.02 – reference: Ziheng Zhang, Weizhe Lin, Mingyu Liu, and Marwa Mahmoud. Multimodal deep learning framework for mental disorder recognition. In 2020 15th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2020). IEEE, 2020 – reference: Snoek Cees GM, Worring Marcel, Smeulders Arnold WM (2005) Early versus late fusion in semantic video analysis. In Proceedings of the 13th annual ACM international conference on Multimedia, pages 399–402 – reference: Weizhe Lin, Indigo Orton, Mingyu Liu, and Marwa Mahmoud. Automatic detection of self-adaptors for psychological distress. In 2020 15th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2020). IEEE, 2020 – reference: Dibeklioğlu Hamdi, Hammal Zakia, Yang Ying, Cohn Jeffrey F (2015) Multimodal detection of depression in clinical interviews. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pages 307–310 – reference: Szegedy Christian, Ioffe Sergey, Vanhoucke Vincent, Alemi Alexander A (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence – reference: Xiaofen Xing, Bolun Cai, Yinhu Zhao, Shuzhen Li, Zhiwei He, and Weiquan Fan. Multi-modality hierarchical recall based on gbdts for bipolar disorder classification. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 31–37, 2018 – reference: CorinnaCortesVladimirVapnikSupport-vector networksMachine learning19952032732970831.68098 – reference: Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368, 2016 – reference: Florian Eyben, Klaus R Scherer, Björn W Schuller, Johan Sundberg, Elisabeth André, Carlos Busso, Laurence Y Devillers, Julien Epps, Petri Laukka, Shrikanth S Narayanan, et al. The geneva minimalistic acoustic parameter set (gemaps) for voice research and affective computing. IEEE transactions on affective computing, 7(2):190–202, 2015 – reference: Alghowinem Sharifa, Goecke Roland, Cohn Jeffrey F, Wagner Michael, Parker Gordon, Breakspear Michael (2015) Cross-cultural detection of depression from nonverbal behaviour. In 2015 11th IEEE International conference and workshops on automatic face and gesture recognition (FG), volume 1, pages 1–8. IEEE – reference: Ma Xingchen, Yang Hongyu, Chen Qiang, Huang Di, Wang Yunhong (2016) Depaudionet: An efficient deep model for audio based depression classification. In Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, pages 35–42 – reference: Sheldon Cohen, T Kamarck, R Mermelstein, et al. Perceived stress scale. Measuring stress: A guide for health and social scientists, 10, 1994 – reference: BenjaminGierkSebastianKohlmannKurtKroenkeLenaSpangenbergMarkusZengerElmarBrählerBerndLöweThe somatic symptom scale-8 (sss-8): a brief measure of somatic symptom burdenJAMA internal medicine2014174339940710.1001/jamainternmed.2013.12179 – reference: Ringeval Fabien, Schuller Björn, Valstar Michel, Cowie Roddy, Kaya Heysem, Schmitt Maximilian, Amiriparian Shahin, Cummins Nicholas, Lalanne Denis, Michaud Adrien, et al. (2018) Avec 2018 workshop and challenge: Bipolar disorder and cross-cultural affect recognition. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 3–13. ACM – reference: Du Zhengyin, Li Weixin, Huang Di, Wang Yunhong (2018) Bipolar disorder recognition via multi-scale discriminative audio temporal representation. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 23–30 – reference: Awad Mariette, Khanna Rahul (2015) Support Vector Regression, pages 67–80. Apress, Berkeley, CA – reference: Nalini Ambady and Heather M Gray. On being sad and mistaken: Mood effects on the accuracy of thin-slice judgments. Journal of personality and social psychology, 83(4):947, 2002 – reference: Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In International conference on machine learning, pages 1188–1196, 2014 – reference: Jonathan T Foote. Content-based retrieval of music and audio. In Multimedia Storage and Archiving Systems II, volume 3229, pages 138–147. International Society for Optics and Photonics, 1997 – reference: Huang Jian, Li Ya, Tao Jianhua, Lian Zheng, Wen Zhengqi, Yang Minghao, Yi Jiangyan (2017) Continuous multimodal emotion prediction based on long short term memory recurrent neural network. In Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pages 11–18 – reference: Kurt Kroenke, Tara W Strine, Robert L Spitzer, Janet BW Williams, Joyce T Berry, and Ali H Mokdad. The phq-8 as a measure of current depression in the general population. Journal of affective disorders, 114(1-3):163–173, 2009 – reference: Çiftçi Elvan, Kaya Heysem, Güleç Hüseyin, Salah Albert Ali (2018) The turkish audio-visual bipolar disorder corpus. In 2018 First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia), pages 1–6. IEEE – reference: WeiweiZongGuang-BinHuangYiqiangChenWeighted extreme learning machine for imbalance learningNeurocomputing201310122924210.1016/j.neucom.2012.08.010 – reference: Hardoon DavidRSandorSzedmakJohnShawe-TaylorCanonical correlation analysis: An overview with application to learning methodsNeural Comput200416122639266410.1162/0899766042321814 – reference: Ritchie Hannah, Roser Max (2020) Mental health. Our World in Data. https://ourworldindata.org/mental-health – reference: LisaDixonLeticiaPostradoJanineDelahantyFischer PamelaJAnthonyLehmanThe association of medical comorbidity in schizophrenia with poor physical and mental healthJ Nerv Ment Dis1999187849650210.1097/00005053-199908000-00006 – reference: Kazdin AlanEBlase StaceyLRebooting psychotherapy research and practice to reduce the burden of mental illnessPerspectives on psychological science201161213710.1177/1745691610393527 – reference: Williamson James R, Quatieri Thomas F, Helfer Brian S, Horwitz Rachelle, Yu Bea, Mehta Daryush D (2013) Vocal biomarkers of depression based on motor incoordination. In Proceedings of the 3rd ACM international workshop on Audio/visual emotion challenge, pages 41–48 – reference: TadasBaltrušaitisChaitanyaAhujaLouis-PhilippeMorencyMultimodal machine learning: a survey and taxonomyIEEE Trans Pattern Anal Mach Intell2018412423443 – reference: Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-scale image classification. In European conference on computer vision, pages 143–156. Springer, 2010 – reference: Ferrari Alize J, Charlson Fiona J, Norman Rosana E, Patten Scott B, Freedman Greg, Murray Christopher JL, Vos Theo, Whiteford Harvey A (2013) Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS medicine, 10(11) – reference: Zafi Sherhan Syed, Kirill Sidorov, and David Marshall. Automated screening for bipolar disorder from audio/visual modalities. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop, pages 39–45, 2018 – reference: NaliniAmbadyMarkHallahanBrettConnerAccuracy of judgments of sexual orientation from thin slices of behaviorJ Pers Soc Psychol199977353810.1037/0022-3514.77.3.538 – reference: Kaya Heysem, Salah Albert Ali (2014) Eyes whisper depression: A cca based multimodal approach. In Proceedings of the 22nd ACM international conference on Multimedia, pages 961–964 – reference: Ringeval Fabien, Schuller Björn, Valstar Michel, Gratch Jonathan, Cowie Roddy, Scherer Stefan, Mozgai Sharon, Cummins Nicholas, Schmitt Maximilian, Pantic Maja (2017) Avec 2017: Real-life depression, and affect recognition workshop and challenge. In Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pages 3–9 – reference: Kurt Kroenke, Robert L Spitzer, and Janet BW Williams. The phq-9: validity of a brief depression severity measure. Journal of general internal medicine, 16(9):606–613, 2001 – ident: 1001_CR13 doi: 10.1145/3266302.3266308 – ident: 1001_CR50 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 1001_CR21 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – ident: 1001_CR29 doi: 10.1109/CVPR.2016.308 – ident: 1001_CR16 – ident: 1001_CR17 doi: 10.1145/1101149.1101236 – ident: 1001_CR22 doi: 10.1109/FG.2015.7163113 – ident: 1001_CR11 doi: 10.1145/2647868.2654978 – ident: 1001_CR20 doi: 10.1145/2818346.2820776 – volume: 260 start-page: 385 issue: 5 year: 2010 ident: 1001_CR6 publication-title: Eur Arch Psychiatry Clin Neurosci doi: 10.1007/s00406-009-0085-2 – volume: 6 start-page: 21 issue: 1 year: 2011 ident: 1001_CR8 publication-title: Perspectives on psychological science doi: 10.1177/1745691610393527 – ident: 1001_CR24 doi: 10.1145/3133944.3133946 – ident: 1001_CR10 doi: 10.1145/2512530.2512531 – ident: 1001_CR26 – ident: 1001_CR36 – ident: 1001_CR1 – ident: 1001_CR4 doi: 10.1371/journal.pmed.1001547 – volume: 152 start-page: 45 year: 2014 ident: 1001_CR5 publication-title: J Affect Disord doi: 10.1016/j.jad.2013.10.002 – volume: 77 start-page: 538 issue: 3 year: 1999 ident: 1001_CR46 publication-title: J Pers Soc Psychol doi: 10.1037/0022-3514.77.3.538 – ident: 1001_CR57 – volume: 16 start-page: 2639 issue: 12 year: 2004 ident: 1001_CR19 publication-title: Neural Comput doi: 10.1162/0899766042321814 – ident: 1001_CR31 doi: 10.1145/3266302.3266311 – ident: 1001_CR42 – volume: 105 start-page: 222 issue: 3 year: 2013 ident: 1001_CR48 publication-title: Int J Comput Vision doi: 10.1007/s11263-013-0636-x – ident: 1001_CR52 doi: 10.1145/1873951.1874246 – volume: 41 start-page: 423 issue: 2 year: 2018 ident: 1001_CR15 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2798607 – ident: 1001_CR12 doi: 10.1109/ACIIAsia.2018.8470362 – ident: 1001_CR38 doi: 10.1016/j.jad.2008.06.026 – ident: 1001_CR33 – ident: 1001_CR25 doi: 10.1007/978-1-4302-5990-9_4 – ident: 1001_CR30 doi: 10.1145/3266302.3268997 – volume: 174 start-page: 399 issue: 3 year: 2014 ident: 1001_CR41 publication-title: JAMA internal medicine doi: 10.1001/jamainternmed.2013.12179 – ident: 1001_CR56 – ident: 1001_CR14 doi: 10.1145/3266302.3266316 – volume: 187 start-page: 496 issue: 8 year: 1999 ident: 1001_CR2 publication-title: J Nerv Ment Dis doi: 10.1097/00005053-199908000-00006 – ident: 1001_CR37 doi: 10.1192/bjp.133.5.429 – ident: 1001_CR53 doi: 10.1117/12.290336 – volume: 111 start-page: 256 issue: 2 year: 1992 ident: 1001_CR44 publication-title: Psychol Bull doi: 10.1037/0033-2909.111.2.256 – ident: 1001_CR18 doi: 10.1145/2522848.2522851 – volume: 62 start-page: 603 issue: 6 year: 2005 ident: 1001_CR9 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.62.6.603 – volume: 101 start-page: 229 year: 2013 ident: 1001_CR34 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.010 – volume: 270 start-page: 1 year: 2000 ident: 1001_CR54 publication-title: Ismir – ident: 1001_CR27 doi: 10.1145/2988257.2988267 – volume: 37 start-page: 137 issue: 5 year: 2017 ident: 1001_CR7 publication-title: Health promotion and chronic disease prevention in Canada: research, policy and practice doi: 10.24095/hpcdp.37.5.02 – ident: 1001_CR45 doi: 10.1037/0022-3514.83.4.947 – ident: 1001_CR39 doi: 10.1046/j.1525-1497.2001.016009606.x – ident: 1001_CR43 doi: 10.1109/JBHI.2017.2676878 – ident: 1001_CR40 doi: 10.1001/archinte.166.10.1092 – ident: 1001_CR49 doi: 10.1007/978-3-642-15561-1_11 – ident: 1001_CR51 doi: 10.1109/FG.2018.00019 – ident: 1001_CR28 doi: 10.1609/aaai.v31i1.11231 – ident: 1001_CR47 doi: 10.1016/j.jrp.2006.07.004 – volume: 66 start-page: 2005 year: 2005 ident: 1001_CR3 publication-title: J Clin Psychiatry – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 1001_CR23 publication-title: Machine learning – ident: 1001_CR35 doi: 10.1109/FG47880.2020.00033 – ident: 1001_CR32 doi: 10.1214/aos/1013203451 – ident: 1001_CR55 doi: 10.1109/TAFFC.2015.2457417 |
SSID | ssj0033328 |
Score | 2.477479 |
Snippet | Mental disorder is a serious public health concern that affects the life of millions of people throughout the world. Early diagnosis is essential to ensure... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 493 |
SubjectTerms | Bipolar disorder Computer architecture Computer Science Evolution Feature extraction Machine learning Mental depression Mental disorders Neural networks Original Article Pattern Recognition Public health Recognition Recurrent neural networks Special Issue on Computer Vision and Machine Learning for Healthcare Applications |
Title | Multimodal temporal machine learning for Bipolar Disorder and Depression Recognition |
URI | https://link.springer.com/article/10.1007/s10044-021-01001-y https://www.proquest.com/docview/2689154934 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BXVh4Iwql8sAGlpLYceKxQEsFEgNqpTJF8SMIqU0RLUP_PbZrU0CAxJLBsT2cfb7v7LvvAM6olMYqKY1LwjWmyqiUyM1HG-vKqNSCScf2ec_6Q3o7Skc-KWwWot3Dk6Q7qT8lu0WUYhtSEFniILxYh0ZqfXezi4dJJ5y_hBBXUdUAAYKzlMY-VebnOb6aoxXG_PYs6qxNbwe2PExEneW67sKarvdg20NG5BVyZppCVYbQtg8Dl1M7mSoz3hNPjdHExUxq5ItEPCGDVdHl84t1bFFg4ERlrdB1CI2t0UMILprWBzDsdQdXfexrJ2Ajez7HIo7KqrJkb1zmklVMWeQRVSRVquJC8DymWVJyzUiZC14JoZiUNNZZJpNYSHIIG_W01keADOCxl1XGkcpySiIqlLSMPvbJNIkIT5sQBxEW0hOL2_oW42JFiWzFXhixF07sxaIJ5x9jXpa0Gn_2boWVKbyKzYqE5dzyyxHahIuwWqvfv892_L_uJ7CZ2JQHF_TXgo3565s-NUBkLtrQ6Nw83nXbbv-9Az911QY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGADS0nsOPFYHlWB0gG1UjcrfgQhtWlFy9B_j-3aFBAgsWRwbA_n2Pc59913AJwTKY1XUhoVmGlElNlSIjcPbbwrJVILKp3aZ5e2--R-kA58Utg0sN1DSNKd1J-S3SJCkKUURFY4CM1XwZoBA7klcvWTZjh_McauoqoBAhhlKYl9qszPc3x1R0uM-S0s6rxNaxtsepgIm4t13QErutoFWx4yQr8hp6YpVGUIbXug53JqR2NlxnvhqSEcOc6khr5IxDM0WBVevUzsxRYGBU5YVAreBGpsBZ8CuWhc7YN-67Z33Ua-dgIytmczJOKoKEsr9sZkLmlJlUUeUYlTpUomBMtjkiUF0xQXuWClEIpKSWKdZTKJhcQHoFaNK30IoAE89meVuUhlOcEREUpaRR8bMk0izNI6iIMJufTC4ra-xZAvJZGt2bkxO3dm5_M6uPgYM1nIavzZuxFWhvstNuUJzZnVl8OkDi7Dai1f_z7b0f-6n4H1du-xwzt33YdjsJHY9AdHAGyA2uz1TZ8YUDITp-4bfAe-ntZl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbRCSx48RjoVTloQqhVupmxY8gpDataBj677FdmxYESCwZHNvDne377Lv7DoBzLIS2SlIFOaIqwFJvKZ7pj9LWlWChOBGW7bNLOn18P0gGS1n8NtrduyTnOQ2GpamsriayuFpKfAsxDkx4QWhIhILZKljTx3Fk1nU_bvqzGCFkq6tqUICCNMGRS5v5eY6vpmmBN7-5SK3laW-DTQcZYXOu4x2wospdsOXgI3Sbc6qbfIUG37YHeja_djSWerwjoRrCkY2fVNAVjHiBGrfC69eJueRCz8YJ81LClg-TLeGzDzQal_ug377t3XQCV0ch0HqgVcCjMC8KQ_xGRSZIQaRBIWGBEikLyjnNIpzGOVUE5RmnBeeSCIEjlaYijrhAB6BWjkt1CKAGP-bhSl-q0gyjEHMpDLuPcZ_GIaJJHURehEw4knFT62LIFvTIRuxMi51ZsbNZHVx8jpnMKTb-7N3wmmFuu01ZTDJquOYQroNLr63F799nO_pf9zOw_tRqs8e77sMx2IhNJoSNBWyAWvX2rk40Pqn4qV2CH1YG2qE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+temporal+machine+learning+for+Bipolar+Disorder+and+Depression+Recognition&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Ceccarelli%2C+Francesco&rft.au=Mahmoud%2C+Marwa&rft.date=2022-08-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=25&rft.issue=3&rft.spage=493&rft.epage=504&rft_id=info:doi/10.1007%2Fs10044-021-01001-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_021_01001_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |