An improved small object detection method based on Yolo V3

In this paper, an improved algorithm based on Yolo V3 is proposed, which can effectively improve the accuracy of small target detection. First of all, the feature map acquisition network is improved. The image double-segmentation and bilinear upsampling network are used to replace the 2-step downsam...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 24; no. 3; pp. 1347 - 1355
Main Authors Xianbao, Cheng, Guihua, Qiu, Yu, Jiang, Zhaomin, Zhu
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, an improved algorithm based on Yolo V3 is proposed, which can effectively improve the accuracy of small target detection. First of all, the feature map acquisition network is improved. The image double-segmentation and bilinear upsampling network are used to replace the 2-step downsampling convolution network in the original network architecture, and the feature values of large and small objects are amplified. Secondly, a size recognition module is added to the input image to reduce the loss of morpheme features caused by no-feature value filling and enhance the recognition ability of small objects. Thirdly, in order to avoid the gradient fading of the network, the residual network element of the output network layer is added to enhance the feature channel of small object detection. Compared with Yolo V3, our algorithm improves the detection accuracy of small objects from 82.4 to 88.5%, the recall rate from 84.6 to 91.3%, and the average accuracy from 95.5 to 97.3%, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1433-7541
1433-755X
DOI:10.1007/s10044-021-00989-7