First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co2TaGa
The structural, elastic, electronic, magnetic and thermodynamic properties of Co 2 TaGa full-Heusler alloy are investigated using density functional theory-based full-potential linearized augmented plane waves method. Our results present Co 2 TaGa full-Heusler in CuHg 2 Ti-type structure FM phase th...
Saved in:
Published in | Indian journal of physics Vol. 94; no. 6; pp. 767 - 777 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The structural, elastic, electronic, magnetic and thermodynamic properties of Co
2
TaGa full-Heusler alloy are investigated using density functional theory-based full-potential linearized augmented plane waves method. Our results present Co
2
TaGa full-Heusler in CuHg
2
Ti-type structure FM phase that is mechanically and dynamically stable at pressure. The negative formation energy of Co
2
TaGa is −1.516 eV that can be synthesized experimentally. The electronic properties of 3
d
transition metal-based full-Heusler compound Co
2
TaGa are calculated within Perdew–Burke–Ernzerhof generalized gradient approximation. Co
2
TaGa is predicted to be half-metallic ferrimagnet with an indirect band gap and 100% spin polarization. The calculated total magnetic moment is 2 μ
B
, which is mainly determined by Co partial moment, and total spin magnetic moment is in conformity with Slater–Pauling rule Mt that gives a simple function of valence electrons number, Zt, formulated as Mt = Zt − 18. |
---|---|
AbstractList | The structural, elastic, electronic, magnetic and thermodynamic properties of Co2TaGa full-Heusler alloy are investigated using density functional theory-based full-potential linearized augmented plane waves method. Our results present Co2TaGa full-Heusler in CuHg2Ti-type structure FM phase that is mechanically and dynamically stable at pressure. The negative formation energy of Co2TaGa is −1.516 eV that can be synthesized experimentally. The electronic properties of 3d transition metal-based full-Heusler compound Co2TaGa are calculated within Perdew–Burke–Ernzerhof generalized gradient approximation. Co2TaGa is predicted to be half-metallic ferrimagnet with an indirect band gap and 100% spin polarization. The calculated total magnetic moment is 2 μB, which is mainly determined by Co partial moment, and total spin magnetic moment is in conformity with Slater–Pauling rule Mt that gives a simple function of valence electrons number, Zt, formulated as Mt = Zt − 18. The structural, elastic, electronic, magnetic and thermodynamic properties of Co 2 TaGa full-Heusler alloy are investigated using density functional theory-based full-potential linearized augmented plane waves method. Our results present Co 2 TaGa full-Heusler in CuHg 2 Ti-type structure FM phase that is mechanically and dynamically stable at pressure. The negative formation energy of Co 2 TaGa is −1.516 eV that can be synthesized experimentally. The electronic properties of 3 d transition metal-based full-Heusler compound Co 2 TaGa are calculated within Perdew–Burke–Ernzerhof generalized gradient approximation. Co 2 TaGa is predicted to be half-metallic ferrimagnet with an indirect band gap and 100% spin polarization. The calculated total magnetic moment is 2 μ B , which is mainly determined by Co partial moment, and total spin magnetic moment is in conformity with Slater–Pauling rule Mt that gives a simple function of valence electrons number, Zt, formulated as Mt = Zt − 18. |
Author | Belkharroubi, F. Zoubir, M. K. Ameri, I. Al-Douri, Y. Boufadi, F. Z. Khorsi, M. Ayad, M. Bidai, K. Ameri, M. Bensaid, D. |
Author_xml | – sequence: 1 givenname: M. surname: Ayad fullname: Ayad, M. organization: Laboratory of Physical Chemistry of Advanced Materials, University of Djillali Liabes – sequence: 2 givenname: F. surname: Belkharroubi fullname: Belkharroubi, F. organization: Laboratory of Physical Chemistry of Advanced Materials, University of Djillali Liabes – sequence: 3 givenname: F. Z. surname: Boufadi fullname: Boufadi, F. Z. organization: Laboratory of Physical Chemistry of Advanced Materials, University of Djillali Liabes, Physics Department, Faculty of Science, University of Sidi-Bel-Abbes – sequence: 4 givenname: M. surname: Khorsi fullname: Khorsi, M. organization: Laboratory of Physical Chemistry of Advanced Materials, University of Djillali Liabes – sequence: 5 givenname: M. K. surname: Zoubir fullname: Zoubir, M. K. organization: Laboratory of Physical Chemistry of Advanced Materials, University of Djillali Liabes – sequence: 6 givenname: M. surname: Ameri fullname: Ameri, M. organization: Laboratory of Physical Chemistry of Advanced Materials, University of Djillali Liabes, Physics Department, Faculty of Science, University of Sidi-Bel-Abbes – sequence: 7 givenname: I. surname: Ameri fullname: Ameri, I. organization: Physics Department, Faculty of Science, University of Sidi-Bel-Abbes – sequence: 8 givenname: Y. surname: Al-Douri fullname: Al-Douri, Y. email: yaldouri@yahoo.com organization: University Research Center, Cihan University Sulaimaniya, Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University – sequence: 9 givenname: K. surname: Bidai fullname: Bidai, K. organization: Laboratory of Physical Chemistry of Advanced Materials, University of Djillali Liabes, Department of Biology, Faculty of Science of Nature and Life, University of Mascara – sequence: 10 givenname: D. surname: Bensaid fullname: Bensaid, D. organization: Laboratory of Physical Chemistry of Advanced Materials, University of Djillali Liabes |
BookMark | eNp9kc2KHCEUhSVMIPOTF8hKmLUTb2lV6TI0mR8YyKZnLbalHRtLO2ol9D4PPnb3QCCLWYgi9zscP6_QRUzRIvQF6B1QOn4t0A1cEAqyrR4EYR_QJZUjJ1Lw_uJ0ZgR4Lz6hq1J2lA4Sxv4S_b33uVSyzz4avw-2YKODWYKuPsWCa8I-_ral-q2uFs96G231Bus44frT5jlNh6jndrPPaW9z9S0hORztHzwvoXq3RHOM0gG7JQTyaJcSbMY6hHTAq9St9YO-QR-dDsV-ftuv0cv99_XqkTz_eHhafXsmhoGsRE9WSumEoZJSu9kIphmMVA7dBkYjB8kdc84CwDT2lsM4mo1jfGIdZ4PoenaNbs-5reyvpb1K7dKSW7eiOk4pUAlStClxnjI5lZKtU8bXk4-atQ8KqDo6V2fnqjlXJ-eKNbT7D21iZ50P70PsDJXjL2xt_tfqHeoV2USY3A |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2023_03_212 crossref_primary_10_3390_ma15031267 crossref_primary_10_1016_j_jmrt_2022_11_052 crossref_primary_10_1016_j_mssp_2023_107983 crossref_primary_10_1142_S2811086223500085 crossref_primary_10_1016_j_mseb_2021_115200 crossref_primary_10_1007_s11082_025_08089_0 crossref_primary_10_1016_j_chemphys_2023_112024 crossref_primary_10_1002_qua_26582 crossref_primary_10_1142_S0217979223501631 crossref_primary_10_1016_j_mseb_2024_117183 crossref_primary_10_1016_j_inoche_2023_111007 crossref_primary_10_1016_j_physb_2025_416900 crossref_primary_10_1016_j_mtcomm_2022_105188 crossref_primary_10_1007_s10948_021_05848_4 crossref_primary_10_1016_j_jmmm_2021_168953 crossref_primary_10_1142_S0217979224502254 crossref_primary_10_1016_j_rinp_2021_103848 crossref_primary_10_1016_j_solidstatesciences_2021_106633 crossref_primary_10_1016_j_chemphys_2022_111728 crossref_primary_10_1016_j_physb_2024_416500 crossref_primary_10_1016_j_jmmm_2022_169766 crossref_primary_10_1016_j_jmrt_2021_07_073 crossref_primary_10_1016_j_physe_2021_115074 crossref_primary_10_1016_j_mseb_2022_115838 crossref_primary_10_1016_j_ijleo_2023_170565 crossref_primary_10_1016_j_jmrt_2022_03_046 crossref_primary_10_1016_j_ssc_2023_115189 crossref_primary_10_1021_acs_energyfuels_2c03642 crossref_primary_10_1088_1402_4896_ace8ce crossref_primary_10_1016_j_rinp_2021_104361 crossref_primary_10_1088_1402_4896_ad2b31 crossref_primary_10_3390_cryst14010035 crossref_primary_10_1007_s12648_023_02785_x crossref_primary_10_1016_j_rinp_2020_103690 crossref_primary_10_1088_1402_4896_ac3fcd crossref_primary_10_1016_j_chemphys_2024_112279 crossref_primary_10_1016_j_chemphys_2022_111585 crossref_primary_10_1016_j_physe_2021_114667 crossref_primary_10_1016_j_jmrt_2022_12_148 crossref_primary_10_1007_s00214_025_03173_w crossref_primary_10_1016_j_cocom_2021_e00629 crossref_primary_10_1016_j_cocom_2022_e00684 crossref_primary_10_1016_j_jpcs_2023_111858 crossref_primary_10_1007_s12648_023_02829_2 crossref_primary_10_1016_j_physb_2023_415242 crossref_primary_10_1007_s11664_022_09659_8 crossref_primary_10_1016_j_jpcs_2022_110705 crossref_primary_10_1016_j_cocom_2022_e00686 crossref_primary_10_1016_j_physb_2022_413881 crossref_primary_10_1016_j_ijleo_2023_171088 crossref_primary_10_1016_j_matchemphys_2023_127691 crossref_primary_10_1016_j_physb_2024_415829 crossref_primary_10_1016_j_physe_2021_114790 crossref_primary_10_1080_08927022_2022_2124297 crossref_primary_10_1016_j_cplett_2022_139992 crossref_primary_10_1016_j_rinp_2022_105237 crossref_primary_10_1088_1361_648X_ad2388 crossref_primary_10_1016_j_comptc_2021_113506 crossref_primary_10_1016_j_mseb_2022_115781 crossref_primary_10_1016_j_physb_2021_412917 crossref_primary_10_1007_s11082_023_05970_8 crossref_primary_10_1016_j_mseb_2021_115266 crossref_primary_10_1016_j_cjph_2024_03_013 crossref_primary_10_1016_j_rinp_2023_106251 crossref_primary_10_1016_j_chemphys_2022_111473 crossref_primary_10_1016_j_vacuum_2022_111380 crossref_primary_10_1063_5_0250608 crossref_primary_10_1016_j_ijleo_2021_167536 crossref_primary_10_1140_epjb_e2020_10295_x crossref_primary_10_1002_cphc_202400921 crossref_primary_10_1155_2022_3619600 crossref_primary_10_1007_s12648_022_02550_6 crossref_primary_10_1016_j_ceramint_2025_01_078 crossref_primary_10_1080_00319104_2024_2325119 crossref_primary_10_1016_j_jmrt_2022_11_119 crossref_primary_10_1007_s10853_021_06168_7 crossref_primary_10_1016_j_heliyon_2023_e13687 crossref_primary_10_1142_S0217984924500957 crossref_primary_10_1016_j_comptc_2022_113833 crossref_primary_10_1016_j_physleta_2022_128178 crossref_primary_10_1016_j_rinp_2021_103860 crossref_primary_10_1080_15567265_2023_2167532 crossref_primary_10_1007_s12648_024_03279_0 crossref_primary_10_1016_j_comptc_2022_114006 crossref_primary_10_1016_j_matchemphys_2023_128115 crossref_primary_10_1016_j_jmmm_2022_170298 crossref_primary_10_1515_ijmr_2021_8544 crossref_primary_10_1016_j_mseb_2021_115096 crossref_primary_10_1016_j_ssc_2023_115361 crossref_primary_10_1080_14786435_2021_1972176 crossref_primary_10_1016_j_mtcomm_2023_107019 crossref_primary_10_1016_j_apsusc_2022_154739 crossref_primary_10_1021_acs_jpcc_3c04086 crossref_primary_10_1016_j_comptc_2023_114251 crossref_primary_10_1080_08927022_2023_2193644 crossref_primary_10_1016_j_physleta_2024_130211 crossref_primary_10_1016_j_solidstatesciences_2022_106964 crossref_primary_10_1080_08927022_2023_2165127 crossref_primary_10_1016_j_ssc_2022_114932 crossref_primary_10_1016_j_comptc_2024_114715 crossref_primary_10_1088_1402_4896_ad5e14 crossref_primary_10_1016_j_comptc_2022_113943 crossref_primary_10_1016_j_jmrt_2022_11_088 crossref_primary_10_1007_s11581_023_05172_y crossref_primary_10_1016_j_jpcs_2021_110305 crossref_primary_10_1142_S0217979224501716 crossref_primary_10_1007_s42247_021_00221_6 crossref_primary_10_1016_j_comptc_2022_113928 crossref_primary_10_1016_j_mseb_2021_115362 crossref_primary_10_1016_j_mseb_2023_116338 crossref_primary_10_1016_j_chemphys_2023_112065 crossref_primary_10_1016_j_ssc_2025_115896 crossref_primary_10_1016_j_ceramint_2025_02_296 crossref_primary_10_1080_14786435_2023_2180682 crossref_primary_10_1016_j_memori_2023_100046 crossref_primary_10_1016_j_matchemphys_2021_125459 crossref_primary_10_1002_pssb_202400603 crossref_primary_10_1007_s10948_021_05981_0 crossref_primary_10_1016_j_jallcom_2023_172037 crossref_primary_10_1016_j_intermet_2021_107392 crossref_primary_10_1016_j_mtcomm_2024_108378 crossref_primary_10_1016_j_physb_2021_413554 crossref_primary_10_1016_j_cplett_2022_139680 crossref_primary_10_1016_j_rinp_2020_103408 crossref_primary_10_1080_08927022_2022_2078816 crossref_primary_10_1016_j_jssc_2021_122870 crossref_primary_10_1007_s12648_021_02242_7 crossref_primary_10_1007_s42250_023_00836_8 crossref_primary_10_1016_j_jmmm_2024_172611 crossref_primary_10_1016_j_ssc_2022_114950 crossref_primary_10_1140_epjp_s13360_022_02843_z crossref_primary_10_1002_qua_27368 crossref_primary_10_1007_s12648_020_01736_0 crossref_primary_10_1016_j_jmmm_2021_168872 crossref_primary_10_1016_j_jmrt_2022_10_037 crossref_primary_10_1016_j_cplett_2022_140254 crossref_primary_10_1155_2022_1440774 crossref_primary_10_1016_j_comptc_2023_114354 crossref_primary_10_1016_j_jpcs_2021_110049 crossref_primary_10_1007_s11082_024_07212_x crossref_primary_10_1016_j_jpcs_2021_110046 crossref_primary_10_1016_j_physb_2022_414252 crossref_primary_10_1016_j_jmrt_2022_04_111 crossref_primary_10_1016_j_physleta_2024_129534 crossref_primary_10_1016_j_comptc_2022_113766 crossref_primary_10_1016_j_mtcomm_2023_107396 crossref_primary_10_1002_crat_202300238 crossref_primary_10_1016_j_rinp_2023_106741 crossref_primary_10_1016_j_comptc_2021_113304 crossref_primary_10_1557_s43578_022_00624_z crossref_primary_10_1016_j_physb_2021_413307 crossref_primary_10_1142_S0217979222502332 crossref_primary_10_1016_j_mseb_2023_116875 crossref_primary_10_1016_j_rinp_2023_106212 crossref_primary_10_1016_j_jmrt_2022_08_017 crossref_primary_10_1515_htmp_2022_0241 crossref_primary_10_1016_j_rinp_2022_106132 crossref_primary_10_1016_j_vacuum_2023_112870 crossref_primary_10_1016_j_cocom_2021_e00551 crossref_primary_10_1016_j_rinp_2021_104518 crossref_primary_10_1016_j_rinp_2021_103827 crossref_primary_10_1016_j_chemphys_2020_111075 crossref_primary_10_1140_epjp_s13360_023_04121_y crossref_primary_10_1016_j_jmmm_2022_169822 crossref_primary_10_1016_j_comptc_2022_113993 crossref_primary_10_1016_j_jmrt_2023_04_169 crossref_primary_10_1007_s42247_021_00211_8 crossref_primary_10_1016_j_jmrt_2023_08_009 crossref_primary_10_1016_j_ijhydene_2023_11_199 crossref_primary_10_1002_qua_70013 crossref_primary_10_1016_j_rinp_2023_106443 crossref_primary_10_1007_s42247_021_00257_8 crossref_primary_10_1016_j_jpcs_2023_111231 crossref_primary_10_1016_j_matchemphys_2022_127164 crossref_primary_10_1016_j_jmgm_2022_108370 crossref_primary_10_1007_s10948_021_05888_w crossref_primary_10_1021_acs_jpcc_3c03627 crossref_primary_10_1016_j_ssc_2022_115022 crossref_primary_10_1109_JPHOTOV_2023_3307815 crossref_primary_10_1140_epjb_s10051_023_00633_9 crossref_primary_10_1088_1402_4896_ad8687 crossref_primary_10_1016_j_comptc_2025_115066 crossref_primary_10_1016_j_jpcs_2023_111232 crossref_primary_10_1016_j_mtcomm_2023_106001 crossref_primary_10_1016_j_rinp_2021_104068 crossref_primary_10_1002_er_6559 crossref_primary_10_1016_j_comptc_2022_113624 crossref_primary_10_1016_j_mseb_2022_115745 crossref_primary_10_1080_10408436_2024_2407463 crossref_primary_10_1016_j_rinp_2022_105977 crossref_primary_10_1016_j_rinp_2021_104864 |
Cites_doi | 10.1103/PhysRevB.45.13244 10.1063/1.4823820 10.1016/S0921-4526(00)00575-5 10.1016/j.commatsci.2008.05.026 10.1016/j.intermet.2015.09.004 10.1103/RevModPhys.76.323 10.1103/PhysRevB.82.144415 10.1103/PhysRevB.66.174429 10.1179/mst.1992.8.4.345 10.1103/PhysRevLett.77.3865 10.1103/PhysRevLett.102.226401 10.1007/s10948-016-3390-9 10.1088/0022-3727/42/8/084013 10.1016/j.physb.2008.02.022 10.1063/1.3619844 10.1103/PhysRevB.47.2493 10.1146/annurev.matsci.31.1.1 10.1016/j.jsamd.2016.05.006 10.1016/j.jmmm.2006.10.481 10.1016/j.cjph.2018.01.015 10.1063/1.4867917 10.1007/s10948-017-4206-2 10.1103/PhysRev.51.846 10.1016/j.ssc.2007.10.030 10.1073/pnas.30.9.244 10.1016/j.physb.2007.06.020 10.1016/j.intermet.2016.02.008 10.1016/j.mssp.2014.06.054 10.1016/j.compstruct.2016.11.056 10.1103/PhysRevLett.50.2024 10.1016/j.comphy.2003.12.001 10.1088/0953-8984/26/8/086003 10.1016/j.euromechsol.2017.03.006 10.1103/PhysRevB.28.1745 10.1080/14786440808520496 10.1016/j.jmmm.2008.09.015 10.1017/CBO9780511623103 10.1080/08927022.2013.854898 10.1016/S0304-8853(96)00338-1 10.1088/0022-3727/40/6/S01 10.1103/PhysRevB.68.144425 10.1016/j.jmmm.2011.12.037 10.1016/j.jmmm.2017.06.048 10.1088/1468-6996/9/1/014102 10.1016/S0022-3697(71)80180-4 10.1016/j.physleta.2014.04.013 10.1016/S0038-1098(99)00577-3 10.1016/j.cap.2014.08.009 10.1016/j.jmmm.2014.10.161 10.1017/S0305004100017138 10.1007/s10948-016-3770-1 |
ContentType | Journal Article |
Copyright | Indian Association for the Cultivation of Science 2019 Indian Association for the Cultivation of Science 2019. |
Copyright_xml | – notice: Indian Association for the Cultivation of Science 2019 – notice: Indian Association for the Cultivation of Science 2019. |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1007/s12648-019-01518-3 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0974-9845 |
EndPage | 777 |
ExternalDocumentID | 10_1007_s12648_019_01518_3 |
GroupedDBID | -EM 04Q 04W 06D 0R~ 0VY 203 29I 29~ 2JN 2KG 2VQ 30V 3V. 406 408 5GY 5VS 67Z 8FE 8FG 8G5 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACCUX ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY AZQEC BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP C~6 DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M2O M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P62 P9T PQQKQ PROAC PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 Z7X Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7U5 8FD ABRTQ H8D L7M |
ID | FETCH-LOGICAL-c319t-ade999f8c0900ebb83a3170962b17c9694f3ffe111d75e4177cbf34d324368253 |
IEDL.DBID | U2A |
ISSN | 0973-1458 |
IngestDate | Sun Jul 13 04:10:43 EDT 2025 Tue Jul 01 03:02:30 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Fri Feb 21 02:35:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 78.40.Kc Magnetic 63.20.dk 88.05.De First-principles 75.50.Ee Full-Heusler alloy Thermodynamic |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ade999f8c0900ebb83a3170962b17c9694f3ffe111d75e4177cbf34d324368253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2400109198 |
PQPubID | 2034531 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2400109198 crossref_citationtrail_10_1007_s12648_019_01518_3 crossref_primary_10_1007_s12648_019_01518_3 springer_journals_10_1007_s12648_019_01518_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: West Bengal |
PublicationTitle | Indian journal of physics |
PublicationTitleAbbrev | Indian J Phys |
PublicationYear | 2020 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | AzarSMHamadBAKhalifehJMJ. Magn. Magn. Mater.201232417762012JMMM..324.1776A BornMHuangKDynamical Theory of Crystal Lattice1954OxfordOxford University Press0057.44601 SjostedENordstromLSinghDJSolid State Commun.2000114152000SSCom.114...15S TranFBlahaPPhys. Rev. Lett.20091022264012009PhRvL.102v6401T SchreiberEAndersonOLSogaNElastic Constants and Their Measurements1973New YorkMc Graw-Hill ThoeneJChadovSFecherGFelserCKüblerJJ. Phys. D Appl. Phys.2009420840132009JPhD...42h4013T FadilaBJ. Magn. Magn Mater.20184482082018JMMM..448..208F BornMProc. Camb. Philos. Soc.1940361601940PCPS...36..160B BensaidDJ. Supercond. Nov. Magn.2016291843 PerdewJPBurkeSErnzerhofMPhys. Rev. Lett.19967738651996PhRvL..77.3865P SemariFChin. J. Phys.201856567 PengFFuHZChengXLPhysica B Condens. Matter.2007400832007PhyB..400...83P WebsterPJJ. Phys. Chem. Solids19713212211971JPCS...32.1221W YahiaouiIELazregADridiZAl-DouriYBouhafsBJ. Supercond. Nov. Magn.201730421 CarbonariAWJ Magn. Magn. Mater.19961633131996JMMM..163..313C WangXTPhys. Lett A20143781662 SchreiberEAndersonOLSogaNElastic Constants and Their Measurements1973New YorkMcGraw-Hill PerdewJPWangYPhys. Rev. B199245132441992PhRvB..4513244P ZhangXJIntermetallics20167326 PettiforDGMater. Sci. Technol.19928345 BirsanACurr. Appl. Phys.20141414342014CAP....14.1434B Saadi Berri Journal of ScienceJ. Sci. Adv. Mater. Devices20161286 FuHLiDPengFGaoTChangXComput. Mater. Sci.200844774 GalanakisIÖzdoǧanKŞaşıoğluEBlugelSJ. Appl. Phys.20141150939082014JAP...115i3908G KandpalHCFecherGHFelserCJ. Magn. Magn. Mater.200731016262007JMMM..310.1626K MiCEur. J. Mech. A Solids201765592017EJMS...65...59M3667147 GalanakisIÖzdoǧanKŞaşıoğluEJ. Phys. Condens. Matter2014260860032014JPCM...26h6003G VoigtWLehrbush Der Kristallphysik1928LeipzigTaubner KanomataTPhys. Rev. B2010821444152010PhRvB..82n4415K KandpalHCFecherGHFelserCJ. Phys. D Appl. Phys.20074015072007JPhD...40.1507K GalanakisIŞaşıoğluEAppl. Phys. Lett.2011990525092011ApPhL..99e2509G BalkeBWurmehlSFecherGHFelserCKüblerJSci. Technol. Adv. Mater.20089014102 GreenDJAn Introduction to the Mechanical Properties of Ceramics1998CambridgeCambridge University Press AmeriMMol. Simul.2013401236 PengFFuHZYangXDPhysica B Condens. Matter.200840328512008PhyB..403.2851P HainesJLegerJMBocquillonGAnnu. Rev. Mater. Res.20013112001AnRMS..31....1H ZuticIFabianJSarmaSDRev. Mod. Phys.2004763232004RvMP...76..323Z PetitATDulongPLAnn. Chim. Phys.181910395 de GrootRAPhys. Rev. Lett.19835020241983PhRvL..50.2024D ChioncelLKatsnelsonMIde GrootRALichtensteinAIPhys. Rev. B2003681444252003PhRvB..68n4425C WachterPM Filzmoser and J Rebiant Physica B.2001293199 AmrichOJ. Supercond. Nov. Magn.201831241 BlancoMAFrancisEComput. Phys. Commun.2004158572004CoPhC.158...57B VoigtWSemiconductors and Semimetals Lehrbuch der Kristall-physik1929TaubnerLeipzing KüblerJWilliamsARSommersCBPhys. Rev. B19832817451983PhRvB..28.1745K PengFFuHZYangXDSolid State Commun.2008145912008SSCom.145...91P BlahaPSchwarzKMadsenGKHHvasnickaDLuitzJWIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties2001AustriaVienna University of Technology WangXTJ. Magn. Magn. Mater.2015378162015JMMM..378...16W GalanakisIÖzdoǧanKŞaşıoğluEAppl. Phys. Lett.20131031424042013ApPhL.103n2404G AkricheAAbidriBHiadsiSBouafiaHSahliBIntermetallics20166842 MehlMJKleinBKPapaconstantopoulosDAWestbrookJHFleischeirRLIntermetallic Compounds Principle and PracticePrinciples1995HobokenWiley BrownPJNeumannKUWebsterPJZiebeckKRAJ. Phys. Condens. Matter2000128 Thomas Charpin, Lab. Géométraux de l’IPGP (Paris, France) PughSFLond. Edinb. Dublin Philos. Mag. J. Sci.195445823 MurnaghanFDProc. Natl. Acad. Sci. USA1944302441944PNAS...30..244M GalanakisIDederichsPHPapanikolaouNPhys. Rev. B2002661744292002PhRvB..66q4429G AmeriMMater. Sci. Semicond. Process.201427379 AiLGaoXLCompos. Struct.201716270 LiJLiYDaiXXuXJ. Magn. Magn. Mater.20093213652009JMMM..321..365L SlaterJCPhys. Rev. B1937518461937PhRv...51..846S MehlMJPhys. Rev. B19934724931993PhRvB..47.2493M PughSFPhilos. Mag.195445823 I Galanakis (1518_CR5) 2002; 66 J Thoene (1518_CR1) 2009; 42 DG Pettifor (1518_CR55) 1992; 8 J Li (1518_CR16) 2009; 321 MA Blanco (1518_CR31) 2004; 158 C Mi (1518_CR56) 2017; 65 Saadi Berri Journal of Science (1518_CR39) 2016; 1 DJ Green (1518_CR57) 1998 F Semari (1518_CR3) 2018; 56 E Schreiber (1518_CR60) 1973 I Galanakis (1518_CR7) 2014; 26 F Peng (1518_CR32) 2007; 400 P Blaha (1518_CR20) 2001 JP Perdew (1518_CR23) 1992; 45 A Birsan (1518_CR30) 2014; 14 M Born (1518_CR47) 1954 MJ Mehl (1518_CR44) 1993; 47 T Kanomata (1518_CR40) 2010; 82 XT Wang (1518_CR42) 2014; 378 1518_CR45 HC Kandpal (1518_CR19) 2007; 40 SF Pugh (1518_CR35) 1954; 45 P Wachter (1518_CR58) 2001; 293 JP Perdew (1518_CR24) 1996; 77 M Ameri (1518_CR36) 2013; 40 PJ Brown (1518_CR14) 2000; 12 MJ Mehl (1518_CR49) 1995 PJ Webster (1518_CR12) 1971; 32 J Haines (1518_CR53) 2001; 31 W Voigt (1518_CR50) 1928 XJ Zhang (1518_CR28) 2016; 73 FD Murnaghan (1518_CR38) 1944; 30 RA de Groot (1518_CR2) 1983; 50 E Sjosted (1518_CR22) 2000; 114 H Fu (1518_CR52) 2008; 44 AT Petit (1518_CR62) 1819; 10 I Galanakis (1518_CR6) 2013; 103 L Chioncel (1518_CR4) 2003; 68 F Peng (1518_CR33) 2008; 145 SF Pugh (1518_CR48) 1954; 45 F Peng (1518_CR34) 2008; 403 JC Slater (1518_CR21) 1937; 51 I Galanakis (1518_CR9) 2014; 115 M Ameri (1518_CR37) 2014; 27 I Zutic (1518_CR11) 2004; 76 J Kübler (1518_CR13) 1983; 28 A Akriche (1518_CR15) 2016; 68 HC Kandpal (1518_CR18) 2007; 310 SM Azar (1518_CR61) 2012; 324 L Ai (1518_CR54) 2017; 162 D Bensaid (1518_CR29) 2016; 29 E Schreiber (1518_CR51) 1973 W Voigt (1518_CR59) 1929 O Amrich (1518_CR10) 2018; 31 IE Yahiaoui (1518_CR27) 2017; 30 M Born (1518_CR46) 1940; 36 AW Carbonari (1518_CR41) 1996; 163 I Galanakis (1518_CR8) 2011; 99 B Balke (1518_CR17) 2008; 9 F Tran (1518_CR25) 2009; 102 XT Wang (1518_CR43) 2015; 378 B Fadila (1518_CR26) 2018; 448 |
References_xml | – reference: WebsterPJJ. Phys. Chem. Solids19713212211971JPCS...32.1221W – reference: GalanakisIDederichsPHPapanikolaouNPhys. Rev. B2002661744292002PhRvB..66q4429G – reference: BensaidDJ. Supercond. Nov. Magn.2016291843 – reference: AiLGaoXLCompos. Struct.201716270 – reference: ZhangXJIntermetallics20167326 – reference: Thomas Charpin, Lab. Géométraux de l’IPGP (Paris, France) – reference: KüblerJWilliamsARSommersCBPhys. Rev. B19832817451983PhRvB..28.1745K – reference: MurnaghanFDProc. Natl. Acad. Sci. USA1944302441944PNAS...30..244M – reference: de GrootRAPhys. Rev. Lett.19835020241983PhRvL..50.2024D – reference: MehlMJPhys. Rev. B19934724931993PhRvB..47.2493M – reference: HainesJLegerJMBocquillonGAnnu. Rev. Mater. Res.20013112001AnRMS..31....1H – reference: PengFFuHZYangXDSolid State Commun.2008145912008SSCom.145...91P – reference: PerdewJPBurkeSErnzerhofMPhys. Rev. Lett.19967738651996PhRvL..77.3865P – reference: AmeriMMol. Simul.2013401236 – reference: SjostedENordstromLSinghDJSolid State Commun.2000114152000SSCom.114...15S – reference: GalanakisIÖzdoǧanKŞaşıoğluEBlugelSJ. Appl. Phys.20141150939082014JAP...115i3908G – reference: AmrichOJ. Supercond. Nov. Magn.201831241 – reference: AkricheAAbidriBHiadsiSBouafiaHSahliBIntermetallics20166842 – reference: KanomataTPhys. Rev. B2010821444152010PhRvB..82n4415K – reference: MehlMJKleinBKPapaconstantopoulosDAWestbrookJHFleischeirRLIntermetallic Compounds Principle and PracticePrinciples1995HobokenWiley – reference: SchreiberEAndersonOLSogaNElastic Constants and Their Measurements1973New YorkMc Graw-Hill – reference: ThoeneJChadovSFecherGFelserCKüblerJJ. Phys. D Appl. Phys.2009420840132009JPhD...42h4013T – reference: WangXTPhys. Lett A20143781662 – reference: BrownPJNeumannKUWebsterPJZiebeckKRAJ. Phys. Condens. Matter2000128 – reference: AzarSMHamadBAKhalifehJMJ. Magn. Magn. Mater.201232417762012JMMM..324.1776A – reference: FadilaBJ. Magn. Magn Mater.20184482082018JMMM..448..208F – reference: MiCEur. J. Mech. A Solids201765592017EJMS...65...59M3667147 – reference: PengFFuHZYangXDPhysica B Condens. Matter.200840328512008PhyB..403.2851P – reference: PughSFLond. Edinb. Dublin Philos. Mag. J. Sci.195445823 – reference: GalanakisIŞaşıoğluEAppl. Phys. Lett.2011990525092011ApPhL..99e2509G – reference: YahiaouiIELazregADridiZAl-DouriYBouhafsBJ. Supercond. Nov. Magn.201730421 – reference: PetitATDulongPLAnn. Chim. Phys.181910395 – reference: GalanakisIÖzdoǧanKŞaşıoğluEAppl. Phys. Lett.20131031424042013ApPhL.103n2404G – reference: VoigtWSemiconductors and Semimetals Lehrbuch der Kristall-physik1929TaubnerLeipzing – reference: ZuticIFabianJSarmaSDRev. Mod. Phys.2004763232004RvMP...76..323Z – reference: ChioncelLKatsnelsonMIde GrootRALichtensteinAIPhys. Rev. B2003681444252003PhRvB..68n4425C – reference: WachterPM Filzmoser and J Rebiant Physica B.2001293199 – reference: SemariFChin. J. Phys.201856567 – reference: KandpalHCFecherGHFelserCJ. Magn. Magn. Mater.200731016262007JMMM..310.1626K – reference: FuHLiDPengFGaoTChangXComput. Mater. Sci.200844774 – reference: BlahaPSchwarzKMadsenGKHHvasnickaDLuitzJWIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties2001AustriaVienna University of Technology – reference: SchreiberEAndersonOLSogaNElastic Constants and Their Measurements1973New YorkMcGraw-Hill – reference: BirsanACurr. Appl. Phys.20141414342014CAP....14.1434B – reference: GreenDJAn Introduction to the Mechanical Properties of Ceramics1998CambridgeCambridge University Press – reference: PettiforDGMater. Sci. Technol.19928345 – reference: BlancoMAFrancisEComput. Phys. Commun.2004158572004CoPhC.158...57B – reference: PughSFPhilos. Mag.195445823 – reference: BornMHuangKDynamical Theory of Crystal Lattice1954OxfordOxford University Press0057.44601 – reference: LiJLiYDaiXXuXJ. Magn. Magn. Mater.20093213652009JMMM..321..365L – reference: BornMProc. Camb. Philos. Soc.1940361601940PCPS...36..160B – reference: BalkeBWurmehlSFecherGHFelserCKüblerJSci. Technol. Adv. Mater.20089014102 – reference: TranFBlahaPPhys. Rev. Lett.20091022264012009PhRvL.102v6401T – reference: AmeriMMater. Sci. Semicond. Process.201427379 – reference: SlaterJCPhys. Rev. B1937518461937PhRv...51..846S – reference: KandpalHCFecherGHFelserCJ. Phys. D Appl. Phys.20074015072007JPhD...40.1507K – reference: PerdewJPWangYPhys. Rev. B199245132441992PhRvB..4513244P – reference: CarbonariAWJ Magn. Magn. Mater.19961633131996JMMM..163..313C – reference: Saadi Berri Journal of ScienceJ. Sci. Adv. Mater. Devices20161286 – reference: GalanakisIÖzdoǧanKŞaşıoğluEJ. Phys. Condens. Matter2014260860032014JPCM...26h6003G – reference: PengFFuHZChengXLPhysica B Condens. Matter.2007400832007PhyB..400...83P – reference: WangXTJ. Magn. Magn. Mater.2015378162015JMMM..378...16W – reference: VoigtWLehrbush Der Kristallphysik1928LeipzigTaubner – volume: 45 start-page: 13244 year: 1992 ident: 1518_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13244 – volume: 103 start-page: 142404 year: 2013 ident: 1518_CR6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4823820 – volume: 293 start-page: 199 year: 2001 ident: 1518_CR58 publication-title: M Filzmoser and J Rebiant Physica B. doi: 10.1016/S0921-4526(00)00575-5 – volume: 44 start-page: 774 year: 2008 ident: 1518_CR52 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2008.05.026 – volume: 68 start-page: 42 year: 2016 ident: 1518_CR15 publication-title: Intermetallics doi: 10.1016/j.intermet.2015.09.004 – volume: 76 start-page: 323 year: 2004 ident: 1518_CR11 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.323 – volume: 82 start-page: 144415 year: 2010 ident: 1518_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.144415 – volume: 66 start-page: 174429 year: 2002 ident: 1518_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.174429 – volume: 8 start-page: 345 year: 1992 ident: 1518_CR55 publication-title: Mater. Sci. Technol. doi: 10.1179/mst.1992.8.4.345 – volume: 77 start-page: 3865 year: 1996 ident: 1518_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 102 start-page: 226401 year: 2009 ident: 1518_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 – volume-title: Dynamical Theory of Crystal Lattice year: 1954 ident: 1518_CR47 – volume: 10 start-page: 395 year: 1819 ident: 1518_CR62 publication-title: Ann. Chim. Phys. – volume: 29 start-page: 1843 year: 2016 ident: 1518_CR29 publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-016-3390-9 – volume: 42 start-page: 084013 year: 2009 ident: 1518_CR1 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/42/8/084013 – volume: 403 start-page: 2851 year: 2008 ident: 1518_CR34 publication-title: Physica B Condens. Matter. doi: 10.1016/j.physb.2008.02.022 – volume: 99 start-page: 052509 year: 2011 ident: 1518_CR8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3619844 – volume: 47 start-page: 2493 year: 1993 ident: 1518_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.2493 – volume: 31 start-page: 1 year: 2001 ident: 1518_CR53 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.31.1.1 – volume: 1 start-page: 286 year: 2016 ident: 1518_CR39 publication-title: J. Sci. Adv. Mater. Devices doi: 10.1016/j.jsamd.2016.05.006 – volume-title: WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties year: 2001 ident: 1518_CR20 – volume: 310 start-page: 1626 year: 2007 ident: 1518_CR18 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.10.481 – volume: 56 start-page: 567 year: 2018 ident: 1518_CR3 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2018.01.015 – volume: 115 start-page: 093908 year: 2014 ident: 1518_CR9 publication-title: J. Appl. Phys. doi: 10.1063/1.4867917 – volume: 31 start-page: 241 year: 2018 ident: 1518_CR10 publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-017-4206-2 – volume: 51 start-page: 846 year: 1937 ident: 1518_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRev.51.846 – volume: 145 start-page: 91 year: 2008 ident: 1518_CR33 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2007.10.030 – volume-title: Semiconductors and Semimetals Lehrbuch der Kristall-physik year: 1929 ident: 1518_CR59 – volume: 30 start-page: 244 year: 1944 ident: 1518_CR38 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.30.9.244 – volume: 400 start-page: 83 year: 2007 ident: 1518_CR32 publication-title: Physica B Condens. Matter. doi: 10.1016/j.physb.2007.06.020 – volume: 73 start-page: 26 year: 2016 ident: 1518_CR28 publication-title: Intermetallics doi: 10.1016/j.intermet.2016.02.008 – volume: 27 start-page: 379 year: 2014 ident: 1518_CR37 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2014.06.054 – volume: 162 start-page: 70 year: 2017 ident: 1518_CR54 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.11.056 – volume: 50 start-page: 2024 year: 1983 ident: 1518_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.2024 – volume: 158 start-page: 57 year: 2004 ident: 1518_CR31 publication-title: Comput. Phys. Commun. doi: 10.1016/j.comphy.2003.12.001 – volume: 26 start-page: 086003 year: 2014 ident: 1518_CR7 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/26/8/086003 – volume: 65 start-page: 59 year: 2017 ident: 1518_CR56 publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2017.03.006 – volume: 28 start-page: 1745 year: 1983 ident: 1518_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.1745 – volume: 45 start-page: 823 year: 1954 ident: 1518_CR35 publication-title: Philos. Mag. doi: 10.1080/14786440808520496 – ident: 1518_CR45 – volume: 321 start-page: 365 year: 2009 ident: 1518_CR16 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2008.09.015 – volume-title: An Introduction to the Mechanical Properties of Ceramics year: 1998 ident: 1518_CR57 doi: 10.1017/CBO9780511623103 – volume: 40 start-page: 1236 year: 2013 ident: 1518_CR36 publication-title: Mol. Simul. doi: 10.1080/08927022.2013.854898 – volume: 12 start-page: 8 year: 2000 ident: 1518_CR14 publication-title: J. Phys. Condens. Matter – volume: 163 start-page: 313 year: 1996 ident: 1518_CR41 publication-title: J Magn. Magn. Mater. doi: 10.1016/S0304-8853(96)00338-1 – volume-title: Elastic Constants and Their Measurements year: 1973 ident: 1518_CR60 – volume: 40 start-page: 1507 year: 2007 ident: 1518_CR19 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/40/6/S01 – volume: 45 start-page: 823 year: 1954 ident: 1518_CR48 publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440808520496 – volume: 68 start-page: 144425 year: 2003 ident: 1518_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.144425 – volume-title: Elastic Constants and Their Measurements year: 1973 ident: 1518_CR51 – volume: 324 start-page: 1776 year: 2012 ident: 1518_CR61 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2011.12.037 – volume: 448 start-page: 208 year: 2018 ident: 1518_CR26 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2017.06.048 – volume-title: Principles year: 1995 ident: 1518_CR49 – volume: 9 start-page: 014102 year: 2008 ident: 1518_CR17 publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/9/1/014102 – volume: 32 start-page: 1221 year: 1971 ident: 1518_CR12 publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(71)80180-4 – volume: 378 start-page: 1662 year: 2014 ident: 1518_CR42 publication-title: Phys. Lett A doi: 10.1016/j.physleta.2014.04.013 – volume: 114 start-page: 15 year: 2000 ident: 1518_CR22 publication-title: Solid State Commun. doi: 10.1016/S0038-1098(99)00577-3 – volume: 14 start-page: 1434 year: 2014 ident: 1518_CR30 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2014.08.009 – volume: 378 start-page: 16 year: 2015 ident: 1518_CR43 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.10.161 – volume: 36 start-page: 160 year: 1940 ident: 1518_CR46 publication-title: Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100017138 – volume: 30 start-page: 421 year: 2017 ident: 1518_CR27 publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-016-3770-1 – volume-title: Lehrbush Der Kristallphysik year: 1928 ident: 1518_CR50 |
SSID | ssj0069175 |
Score | 2.5742402 |
Snippet | The structural, elastic, electronic, magnetic and thermodynamic properties of Co
2
TaGa full-Heusler alloy are investigated using density functional... The structural, elastic, electronic, magnetic and thermodynamic properties of Co2TaGa full-Heusler alloy are investigated using density functional theory-based... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 767 |
SubjectTerms | Astrophysics and Astroparticles Density functional theory Electronic properties Ferrimagnetism First principles Free energy Heat of formation Heusler alloys Magnetic moments Magnetic properties Mathematical analysis Original Paper Physics Physics and Astronomy Plane waves Polarization (spin alignment) Thermodynamic properties Transition metals |
Title | First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co2TaGa |
URI | https://link.springer.com/article/10.1007/s12648-019-01518-3 https://www.proquest.com/docview/2400109198 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagCIkF8RTlJQ9sYCmJ7TgZC6JUIJioBFPkJ6pUkqppB3Z-OGc3oQIBElOGJB78-fHd3Xd3CJ0xTYW0GSM2hBlFpIlSIiXc5NYI6nIb8tbuH9LBkN0-8acmKaxu1e5tSDKc1MtkNy_GAtPX63t4nBG6ita4t91hFQ-TXnv-pmCABOFiLiiJGc-aVJmfx_h6HS055rewaLht-ltos6GJuLfAdRut2HIHrQe5pq530Xt_BKyNTFpPeY1hqnXTiavGswqPPutnWPwqX0qfq4hlabAnfK-VWTSixxPvi5_6oqq4chgoNg4KQ3_bLZyE2PvnycDO67GdYh-lf8NXVfIob-QeGvavH68GpOmnQDRstBmRxgIddJmO8iiySmVUAnsAGyZRsdB5mjNHnbNw-hnBLYuF0MpRZoBz0RQsSbqPOmVV2gOEAUMbccdilXLmgGRFLol0YpRxnMpUdlHcTmuhm2LjvufFuFiWSfZQFABFEaAoaBedf_4zWZTa-PPr4xatotl2deEFsb7SaZ510UWL4PL176Md_u_zI7SReLs7eGOOUWc2ndsTICczdYrWev3Lywf_vHm-uz4Na_MDs1PfUw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYhOCCWEVZfeAGlpLYiZMjqihlPbVSb5FXVIkmVdMeuPPhjN2kFQiQOMfxwc_Lm5k3MwhdMkW5MCkjxocZeaCIlDwhsc6M5tRmxuetPb8k3T57GMSDOimsatTuTUjS39TLZDcnxgLT1-l74jAldBWtAxlInZCrH900928CBogXLmackpDFaZ0q8_McX5-jJcf8Fhb1r01nB23XNBHfzHHdRSum2EMbXq6pqn300RkCayPjxlNeYVhqVXfiqvC0xMNF_QyDR-K1cLmKWBQaO8I3KvW8ET0eO1_8xBVVxaXFQLGxVxi6127uJMTOP0-6Zla9mQl2Ufp33C6jnrgTB6jfue21u6Tup0AUHLQpEdoAHbSpCrIgMFKmVAB7ABsmkiFXWZIxS601cPtpHhsWcq6kpUwD56IJWJL0EK0VZWGOEAYMTRBbFsokZhZIVmCjQEVaahtTkYgWCptlzVVdbNz1vHjLl2WSHRQ5QJF7KHLaQleLf8bzUht_jj5t0MrrY1flThDrKp1maQtdNwguP_8-2_H_hl-gzW7v-Sl_un95PEFbkbPBvWfmFK1NJzNzBkRlKs_9vvwEYa_fNg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7RoFZcKmhBTQmwh95gFdu79trHqiWkPCIOiZSbtc8qUmJHsXPg3h_O7NqOAQFSz17vYWcf38x88w1CV0xRLkzKiPFpRh4oIiVPSKwzozm1mfF1a99myXTBPi_j5S9V_J7t3qUkm5oGp9JU1OOttuO-8M0Rs8ANdlyfOEwJPUJP4ToO3b5eRNfdXZyAM-JJjBmnJGRx2pbN_H2O35-mHm_-kSL1L8_kOTptISO-bmz8Aj0xxRk69tRNVZ2jh8kKEBzZdlHzCsOyq7YrV4XrEq8OWhoGb8R94eoWsSg0duBvU-qmKT3eurj8zgms4tJigNvYsw3dy9cEDLGL1ZOp2Vdrs8MuY_8D35TRXHwSL9Fi8nF-MyVtbwWiYJVqIrQBaGhTFWRBYKRMqQAkAf5MJEOusiRjllpr4CbUPDYs5FxJS5kG_EUT8CrpKzQoysJcIAz2NEFsWSiTmFkAXIGNAhVpqW1MRSKGKOyWNVet8Ljrf7HOe8lkZ4ocTJF7U-R0iN4f_tk2shv_HT3qrJW3R7DKHTnWqZ5m6RB96CzYf_73bJePG_4OnXy_neRf72ZfXqNnkXPHfZBmhAb1bm_eAGap5Vu_LX8CSfrjcg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-principles+calculations+to+investigate+magnetic+and+thermodynamic+properties+of+new+multifunctional+full-Heusler+alloy+Co2TaGa&rft.jtitle=Indian+journal+of+physics&rft.au=Ayad%2C+M.&rft.au=Belkharroubi%2C+F.&rft.au=Boufadi%2C+F.+Z.&rft.au=Khorsi%2C+M.&rft.date=2020-06-01&rft.pub=Springer+India&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=94&rft.issue=6&rft.spage=767&rft.epage=777&rft_id=info:doi/10.1007%2Fs12648-019-01518-3&rft.externalDocID=10_1007_s12648_019_01518_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon |