Effective Thermal Conductivity Estimation of Fractured Rock Masses

In this work, effective thermal conductivity ( λ Eff ) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN) model of the fractured rock masses was established based on the statistic results of natural fracture development in a potential area for hi...

Full description

Saved in:
Bibliographic Details
Published inRock mechanics and rock engineering Vol. 54; no. 12; pp. 6191 - 6206
Main Authors Li, Zheng-Wei, Liu, Yuan, Mei, Shi-Ming, Xing, Shi-Cheng, Wang, Xiao-Kai
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, effective thermal conductivity ( λ Eff ) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN) model of the fractured rock masses was established based on the statistic results of natural fracture development in a potential area for high level radioactive waste disposal in China. Steady state heat transfer processes in the fractured granite rock masses were numerically simulated using finite element method (FEM). The calculated λ Eff values of the fractured granite rock masses in dry and saturated conditions are 1.99 W/(m K) and 2.31 W/(m K), respectively. Compared with the thermal conductivity of intact granite [ λ Intact , 2.5 W/(m K)], the drop rates are 20.4% and 7.6%, respectively. Sensitivity analysis was conducted on the main model parameters including fracture density ( F Density ), trace length ( F Length ), thermal contact resistance ( F TCR ), and λ Intact . The results indicate the relation between λ Eff and three fracture parameters ( F Density , F length and F TCR ) can be fitted using power law or negative exponent functions with good consistency. When fracture network parameters remain unchanged, λ Eff is in linear positive correlation to λ Intact . The slop of the fitted line is determined by the fracture network parameters. Due to the fact that distribution of generated fractures in different directions are quite uniform, λ Eff did not show significant difference in different directions. On the basis of the above-mentioned results, an estimation model was proposed for the determination of λ Eff of fractured rock masses using P 21 (total length of fracture traces per unit area), F TCR , and λ Intact . The proposed estimation model shows good consistency to the calculated results of FEM model.
AbstractList In this work, effective thermal conductivity (λEff) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN) model of the fractured rock masses was established based on the statistic results of natural fracture development in a potential area for high level radioactive waste disposal in China. Steady state heat transfer processes in the fractured granite rock masses were numerically simulated using finite element method (FEM). The calculated λEff values of the fractured granite rock masses in dry and saturated conditions are 1.99 W/(m K) and 2.31 W/(m K), respectively. Compared with the thermal conductivity of intact granite [λIntact, 2.5 W/(m K)], the drop rates are 20.4% and 7.6%, respectively. Sensitivity analysis was conducted on the main model parameters including fracture density (FDensity), trace length (FLength), thermal contact resistance (FTCR), and λIntact. The results indicate the relation between λEff and three fracture parameters (FDensity, Flength and FTCR) can be fitted using power law or negative exponent functions with good consistency. When fracture network parameters remain unchanged, λEff is in linear positive correlation to λIntact. The slop of the fitted line is determined by the fracture network parameters. Due to the fact that distribution of generated fractures in different directions are quite uniform, λEff did not show significant difference in different directions. On the basis of the above-mentioned results, an estimation model was proposed for the determination of λEff of fractured rock masses using P21 (total length of fracture traces per unit area), FTCR, and λIntact. The proposed estimation model shows good consistency to the calculated results of FEM model.
In this work, effective thermal conductivity ( λ Eff ) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN) model of the fractured rock masses was established based on the statistic results of natural fracture development in a potential area for high level radioactive waste disposal in China. Steady state heat transfer processes in the fractured granite rock masses were numerically simulated using finite element method (FEM). The calculated λ Eff values of the fractured granite rock masses in dry and saturated conditions are 1.99 W/(m K) and 2.31 W/(m K), respectively. Compared with the thermal conductivity of intact granite [ λ Intact , 2.5 W/(m K)], the drop rates are 20.4% and 7.6%, respectively. Sensitivity analysis was conducted on the main model parameters including fracture density ( F Density ), trace length ( F Length ), thermal contact resistance ( F TCR ), and λ Intact . The results indicate the relation between λ Eff and three fracture parameters ( F Density , F length and F TCR ) can be fitted using power law or negative exponent functions with good consistency. When fracture network parameters remain unchanged, λ Eff is in linear positive correlation to λ Intact . The slop of the fitted line is determined by the fracture network parameters. Due to the fact that distribution of generated fractures in different directions are quite uniform, λ Eff did not show significant difference in different directions. On the basis of the above-mentioned results, an estimation model was proposed for the determination of λ Eff of fractured rock masses using P 21 (total length of fracture traces per unit area), F TCR , and λ Intact . The proposed estimation model shows good consistency to the calculated results of FEM model.
Author Xing, Shi-Cheng
Li, Zheng-Wei
Liu, Yuan
Wang, Xiao-Kai
Mei, Shi-Ming
Author_xml – sequence: 1
  givenname: Zheng-Wei
  surname: Li
  fullname: Li, Zheng-Wei
  email: lizhengwei@mail.neu.edu.cn
  organization: Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University
– sequence: 2
  givenname: Yuan
  surname: Liu
  fullname: Liu, Yuan
  organization: Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University
– sequence: 3
  givenname: Shi-Ming
  surname: Mei
  fullname: Mei, Shi-Ming
  organization: Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University
– sequence: 4
  givenname: Shi-Cheng
  surname: Xing
  fullname: Xing, Shi-Cheng
  organization: Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University
– sequence: 5
  givenname: Xiao-Kai
  surname: Wang
  fullname: Wang, Xiao-Kai
  organization: Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Lnlfztdndo5ZWhYogFbyFbDLRre2mJqnQf2_aFQQPPQwDM-8zH-8IDTrXAUKXBF8TjMubgLHALMeUpCjqOi9O0JBwxnNesLcBGuKSspwKRs_QKIQlxqlZVkN0N7UWdGy_IVt8gF-rVTZxndnuS23cZdMQ27WKresyZ7OZVzpuPZjsxenP7EmFAOEcnVq1CnDxm8fodTZdTB7y-fP94-R2nmtG6pgrI7QxpTa8EbUxVAHlBDRmmlArDOVgdUl5A1DhmgggpgRquK1JwwxtGjZGV_3cjXdfWwhRLt3Wd2mlpALTSnBGyqSqepX2LgQPVuo2Hh6IXrUrSbDcOyZ7x2RyTB4ck0VC6T9049PzfnccYj0Ukrh7B_931RHqB66qgNs
CitedBy_id crossref_primary_10_1007_s00603_023_03450_9
crossref_primary_10_1007_s11440_022_01726_y
crossref_primary_10_1016_j_icheatmasstransfer_2024_108217
crossref_primary_10_1002_nag_3634
crossref_primary_10_1016_j_tca_2022_179424
crossref_primary_10_1016_j_enggeo_2023_107181
crossref_primary_10_1016_j_ijrmms_2023_105528
crossref_primary_10_1093_gji_ggaf046
crossref_primary_10_1038_s41598_023_29992_0
crossref_primary_10_1016_j_clay_2025_107719
Cites_doi 10.5194/npg-24-23-2017
10.1016/j.geothermics.2019.101736
10.1115/1.2110231
10.1016/j.enggeo.2017.10.007
10.1016/j.ijrmms.2009.04.011
10.1016/j.geothermics.2018.01.002
10.1016/j.epsl.2009.02.005
10.1007/s00603-019-01956-9
10.1007/s00603-016-1070-5
10.1029/95JB00960
10.1016/j.jappgeo.2017.03.018
10.1016/S1474-7065(03)00069-X
10.1016/j.jrmge.2018.03.002
10.1029/JB095iB06p09209
10.1007/s00603-018-1479-0
10.1016/j.geothermics.2021.102113
10.1007/s00603-017-1248-5
10.1002/jgrb.50373
10.1016/j.geothermics.2018.08.001
10.3724/SP.J.1235.2011.00302
10.1016/S1364-0321(02)00002-3
10.1016/0040-1951(94)00224-W
10.1631/jzus.A1200153
10.1016/j.jappgeo.2005.05.002
10.1680/geot.2009.59.4.377
10.1016/j.geothermics.2016.11.006
10.1016/j.enconman.2003.09.015
10.1016/j.jhydrol.2020.125603
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00603-021-02599-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1434-453X
EndPage 6206
ExternalDocumentID 10_1007_s00603_021_02599_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41702332
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: N2001017
  funderid: http://dx.doi.org/10.13039/501100012226
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MK~
MM-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TN
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H96
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-ad6cdd7cd4b69dd2ae241ec03c12f6d24efc724bee80916e1d7e2d4f91b3d2bb3
IEDL.DBID U2A
ISSN 0723-2632
IngestDate Fri Jul 25 19:10:27 EDT 2025
Tue Jul 01 03:35:22 EDT 2025
Thu Apr 24 22:49:11 EDT 2025
Fri Feb 21 02:47:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Fractured rock mass
Effective thermal conductivity
Discrete fracture network
Thermal contact resistance
Estimation model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ad6cdd7cd4b69dd2ae241ec03c12f6d24efc724bee80916e1d7e2d4f91b3d2bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2602864317
PQPubID 60272
PageCount 16
ParticipantIDs proquest_journals_2602864317
crossref_citationtrail_10_1007_s00603_021_02599_5
crossref_primary_10_1007_s00603_021_02599_5
springer_journals_10_1007_s00603_021_02599_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Rock mechanics and rock engineering
PublicationTitleAbbrev Rock Mech Rock Eng
PublicationYear 2021
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Xie, Pei, Zuo, Zhang (CR31) 2011; 4
Zhang, Zhao, Huang, Ma, Chen, Xu, Que (CR34) 2017; 50
Popov, Beardsmore, Clauser, Roy (CR26) 2016; 49
Cherubini, Pastore, Giasi, Allegretti (CR6) 2017; 24
Mügler, Filippi, Montarnal, Martinez, Wileveau (CR21) 2006; 58
Bahrami, Culham, Yananovich, Schneider (CR3) 2006; 59
Long, Hestir, Karasaki, Davey, Peterson, Kemeny, Landsfeld, Bear, Corapcioglu (CR18) 1991
Wang, Chen, Su, Zhao (CR29) 2018; 10
Zhao, Zhao, Guo, Cai, Wang (CR36) 2018; 51
CR11
Nguyen, Vu, Vu, Tang (CR23) 2017; 140
Lu, Xiang (CR19) 2012; 13
Zhang, Wu, Zhai, Ye (CR35) 2021; 593
Deere, Stagg, Zienkiewicz (CR7) 1968
Burkhardt, Honarmand, Pribnow (CR5) 1995; 244
Li, Zhang, Gong, Zhu (CR17) 2020; 83
Pribnow, Sass (CR27) 1995; 100
Ou, Jin, Wang, Xu, Jin (CR24) 2004; 20
Jorand, Vogt, Marquart, Clauser (CR13) 2013; 118
Luo, Wang, Jiang, Zhao, Jin (CR20) 2019; 43
Lei, Yang, Wang, Wei, Chen, Ji, Huo (CR14) 2016; 35
Nemoto, Watanabe, Hirano, Tsuchiya (CR22) 2009; 281
Gens, Sánchez, Guimarães, Do, Alonso, Lloret, Olivella, Villar, Huertas (CR10) 2009; 59
Popov, Berezin, Soloviov, Romuschkevitch, Korosteliov, Kostiurin, Kulikov (CR25) 1987; 23
Li, Feng, Zhang, Xu (CR15) 2018; 73
Jia, Tao, Meng, Ma, Chai, Jin (CR12) 2019; 77
Li, Feng, Zhang, Gong, Zhu (CR16) 2020; 53
Zhang, Xu (CR32) 2008; 29
Farid, Khudhair, Razack, Hallaj (CR8) 2004; 45
Zhang, Chen, Qin, Hong, Meng, Zhang (CR33) 2017; 231
Vosteen, Schellschmidt (CR28) 2003; 28
Albert, Schulze, Franz, Koenigsdorff, Zosseder (CR2) 2017; 66
Williams, Anderson (CR30) 1990; 95
Garcia, Santamarina (CR9) 2021; 95
Abdulagatova, Abdulagatov, Emirov (CR1) 2009; 46
Barbier (CR4) 2002; 6
HD Vosteen (2599_CR28) 2003; 28
ZW Li (2599_CR16) 2020; 53
W Lu (2599_CR19) 2012; 13
GS Jia (2599_CR12) 2019; 77
R Jorand (2599_CR13) 2013; 118
JCS Long (2599_CR18) 1991
W Zhang (2599_CR34) 2017; 50
X Zhang (2599_CR35) 2021; 593
Y Popov (2599_CR25) 1987; 23
DU Deere (2599_CR7) 1968
DFC Pribnow (2599_CR27) 1995; 100
H Xie (2599_CR31) 2011; 4
H Burkhardt (2599_CR5) 1995; 244
MM Farid (2599_CR8) 2004; 45
A Gens (2599_CR10) 2009; 59
Z Abdulagatova (2599_CR1) 2009; 46
C Cherubini (2599_CR6) 2017; 24
AV Garcia (2599_CR9) 2021; 95
E Barbier (2599_CR4) 2002; 6
J Wang (2599_CR29) 2018; 10
K Nemoto (2599_CR22) 2009; 281
ST Nguyen (2599_CR23) 2017; 140
Y Popov (2599_CR26) 2016; 49
ZW Li (2599_CR15) 2018; 73
2599_CR11
C Zhang (2599_CR33) 2017; 231
K Albert (2599_CR2) 2017; 66
H Luo (2599_CR20) 2019; 43
GK Zhang (2599_CR32) 2008; 29
CF Williams (2599_CR30) 1990; 95
C Mügler (2599_CR21) 2006; 58
XG Ou (2599_CR24) 2004; 20
XG Zhao (2599_CR36) 2018; 51
M Bahrami (2599_CR3) 2006; 59
G Lei (2599_CR14) 2016; 35
ZW Li (2599_CR17) 2020; 83
References_xml – volume: 24
  start-page: 23
  year: 2017
  end-page: 42
  ident: CR6
  article-title: Laboratory experimental investigation of heat transport in fractured media
  publication-title: Nonlin Process Geophys
  doi: 10.5194/npg-24-23-2017
– volume: 20
  start-page: 109
  issue: 1
  year: 2004
  end-page: 118
  ident: CR24
  article-title: Thermal conductivity and its anisotropy of rocks from the depth of 100–2000m mainhole of Chinese continental scientific drilling: revelations to the study on thermal structure of subduction zone
  publication-title: Acta Petrol Sin
– volume: 83
  start-page: 101736
  year: 2020
  ident: CR17
  article-title: Influences of mechanical damage and water saturation on the distributed thermal conductivity of granite
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.101736
– volume: 59
  start-page: 411
  issue: 1
  year: 2006
  end-page: 431
  ident: CR3
  article-title: Review of thermal joint resistance models for nonconforming rough surfaces
  publication-title: Appl Mech Rev
  doi: 10.1115/1.2110231
– volume: 29
  start-page: 1675
  issue: 6
  year: 2008
  end-page: 1680
  ident: CR32
  article-title: Analysis of joint network simulation method and REV scale
  publication-title: Rock Soil Mech
– volume: 231
  start-page: 218
  year: 2017
  end-page: 229
  ident: CR33
  article-title: In-situ stress and fracture characterization of a candidate repository for spent nuclear fuel in Gansu, northwestern China
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.10.007
– volume: 46
  start-page: 1055
  year: 2009
  end-page: 1071
  ident: CR1
  article-title: Effect of temperature and pressure on the thermal conductivity of sandstone
  publication-title: Int J Rock Mech Min
  doi: 10.1016/j.ijrmms.2009.04.011
– volume: 43
  start-page: 568
  issue: 3
  year: 2019
  end-page: 575
  ident: CR20
  article-title: Construction and application of three-dimensional geological model in Xinchang Block for high-level radioactive waste disposal
  publication-title: Geophys Geochem Explor
– volume: 73
  start-page: 1
  year: 2018
  end-page: 15
  ident: CR15
  article-title: Feasibility study of developing a geothermal heating system in naturally fractured formations: reservoir hydraulic properties determination and heat production forecast
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.01.002
– volume: 281
  start-page: 81
  year: 2009
  end-page: 87
  ident: CR22
  article-title: Direct measurement of contact area and stress dependence of anisotropic flow through rock fracture with heterogeneous aperture distribution
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/j.epsl.2009.02.005
– volume: 23
  start-page: 245
  issue: 3
  year: 1987
  end-page: 253
  ident: CR25
  article-title: Thermal conductivity of minerals
  publication-title: Izv-Phys Solid Earth
– volume: 53
  start-page: 1039
  year: 2020
  end-page: 1051
  ident: CR16
  article-title: Effect of mechanical damage on the thermal conductivity of granite
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-019-01956-9
– volume: 49
  start-page: 4179
  issue: 10
  year: 2016
  end-page: 4207
  ident: CR26
  article-title: ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1070-5
– volume: 100
  start-page: 9981
  issue: B6
  year: 1995
  end-page: 9994
  ident: CR27
  article-title: Determination of thermal conductivity for deep boreholes
  publication-title: J Geophys Res-Sol Earth
  doi: 10.1029/95JB00960
– volume: 140
  start-page: 117
  year: 2017
  end-page: 122
  ident: CR23
  article-title: Modeling of heat flow and effective thermal conductivity of fractured media: analytical and numerical methods
  publication-title: J Appl Geophys
  doi: 10.1016/j.jappgeo.2017.03.018
– volume: 28
  start-page: 499
  issue: 9
  year: 2003
  end-page: 509
  ident: CR28
  article-title: Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock
  publication-title: Phys Chem Earth
  doi: 10.1016/S1474-7065(03)00069-X
– volume: 10
  start-page: 411
  year: 2018
  end-page: 435
  ident: CR29
  article-title: The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests
  publication-title: J Rock Mech Geotech
  doi: 10.1016/j.jrmge.2018.03.002
– year: 1991
  ident: CR18
  article-title: Fluid flow in fractured rock: theory and application
  publication-title: Transport Processes in porous media. NATO ASI Series (Series E: Applied Sciences)
– volume: 95
  start-page: 9209
  issue: B6
  year: 1990
  end-page: 9236
  ident: CR30
  article-title: Thermophysical properties of the Earth's crust: In situ measurements from continental and ocean drilling
  publication-title: J Geophys Res-Sol Ea
  doi: 10.1029/JB095iB06p09209
– volume: 51
  start-page: 2055
  issue: 7
  year: 2018
  end-page: 2074
  ident: CR36
  article-title: Influence of thermal treatment on the thermal conductivity of Beishan granite
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1479-0
– volume: 35
  start-page: 896
  issue: 5
  year: 2016
  end-page: 905
  ident: CR14
  article-title: Geometric features of joints and quality evaluation of rock mass in Xinchang section
  publication-title: Beishan Chin J Rock Mech Eng
– volume: 593
  start-page: 125603
  year: 2021
  ident: CR35
  article-title: Coupling analysis of the heat-water dynamics and frozen depth in a seasonally frozen zone
  publication-title: J Hydrol
– volume: 95
  start-page: 10213
  year: 2021
  ident: CR9
  article-title: Heat flow in fractured rocks: stress and moisture-dependent thermal contact resistance
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2021.102113
– volume: 50
  start-page: 2817
  year: 2017
  end-page: 2825
  ident: CR34
  article-title: Determination of representative volume element considering the probability that a sample can represent the investigated rock mass at Baihetan Dam site, China
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-017-1248-5
– volume: 118
  start-page: 5225
  issue: 10
  year: 2013
  end-page: 5235
  ident: CR13
  article-title: Effective thermal conductivity of heterogeneous rocks from laboratory experiments and numerical modeling
  publication-title: J Geophys Res-Sol Earth
  doi: 10.1002/jgrb.50373
– volume: 77
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR12
  article-title: Review of effective thermal conductivity models of rock-soil for geothermal energy applications
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.08.001
– volume: 4
  start-page: 302
  year: 2011
  end-page: 313
  ident: CR31
  article-title: Investigation of mechanical properties of fractured marbles by uniaxial compression tests
  publication-title: J Rock Mech Geotech
  doi: 10.3724/SP.J.1235.2011.00302
– ident: CR11
– volume: 6
  start-page: 3
  issue: 1
  year: 2002
  end-page: 65
  ident: CR4
  article-title: Geothermal energy technology and current status: an overview
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/S1364-0321(02)00002-3
– volume: 244
  start-page: 161
  issue: s 1–3
  year: 1995
  end-page: 165
  ident: CR5
  article-title: Test measurements with a new thermal conductivity borehole tool
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(94)00224-W
– volume: 13
  start-page: 958
  issue: 12
  year: 2012
  end-page: 968
  ident: CR19
  article-title: Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow
  publication-title: J Zhejiang Univ-Sci A (appl Phys & Eng)
  doi: 10.1631/jzus.A1200153
– volume: 58
  start-page: 112
  year: 2006
  end-page: 129
  ident: CR21
  article-title: Determination of the thermal conductivity of Opalinus Clay via simulations of experiments performed at the Mont Terri underground laboratory
  publication-title: J Appl Geophys
  doi: 10.1016/j.jappgeo.2005.05.002
– volume: 59
  start-page: 377
  year: 2009
  end-page: 399
  ident: CR10
  article-title: A full-scale in situ heating test for high-level nuclear waste disposal: observations, analysis and interpretation
  publication-title: Geotechnique
  doi: 10.1680/geot.2009.59.4.377
– volume: 66
  start-page: 1
  year: 2017
  end-page: 12
  ident: CR2
  article-title: Thermal conductivity estimation model considering the effect of water saturation explaining the heterogeneity of rock thermal conductivity
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2016.11.006
– start-page: 1
  year: 1968
  end-page: 20
  ident: CR7
  article-title: Geological consideration
  publication-title: Rock mechanics in engineering practice
– volume: 45
  start-page: 1597
  issue: 9
  year: 2004
  end-page: 1615
  ident: CR8
  article-title: A review on phase change energy storage: materials and applications
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2003.09.015
– volume: 35
  start-page: 896
  issue: 5
  year: 2016
  ident: 2599_CR14
  publication-title: Beishan Chin J Rock Mech Eng
– volume-title: Transport Processes in porous media. NATO ASI Series (Series E: Applied Sciences)
  year: 1991
  ident: 2599_CR18
– ident: 2599_CR11
– volume: 100
  start-page: 9981
  issue: B6
  year: 1995
  ident: 2599_CR27
  publication-title: J Geophys Res-Sol Earth
  doi: 10.1029/95JB00960
– volume: 83
  start-page: 101736
  year: 2020
  ident: 2599_CR17
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.101736
– volume: 59
  start-page: 411
  issue: 1
  year: 2006
  ident: 2599_CR3
  publication-title: Appl Mech Rev
  doi: 10.1115/1.2110231
– volume: 4
  start-page: 302
  year: 2011
  ident: 2599_CR31
  publication-title: J Rock Mech Geotech
  doi: 10.3724/SP.J.1235.2011.00302
– volume: 45
  start-page: 1597
  issue: 9
  year: 2004
  ident: 2599_CR8
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2003.09.015
– volume: 118
  start-page: 5225
  issue: 10
  year: 2013
  ident: 2599_CR13
  publication-title: J Geophys Res-Sol Earth
  doi: 10.1002/jgrb.50373
– volume: 51
  start-page: 2055
  issue: 7
  year: 2018
  ident: 2599_CR36
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1479-0
– volume: 77
  start-page: 1
  year: 2019
  ident: 2599_CR12
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.08.001
– volume: 46
  start-page: 1055
  year: 2009
  ident: 2599_CR1
  publication-title: Int J Rock Mech Min
  doi: 10.1016/j.ijrmms.2009.04.011
– volume: 66
  start-page: 1
  year: 2017
  ident: 2599_CR2
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2016.11.006
– volume: 244
  start-page: 161
  issue: s 1–3
  year: 1995
  ident: 2599_CR5
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(94)00224-W
– volume: 23
  start-page: 245
  issue: 3
  year: 1987
  ident: 2599_CR25
  publication-title: Izv-Phys Solid Earth
– volume: 50
  start-page: 2817
  year: 2017
  ident: 2599_CR34
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-017-1248-5
– volume: 53
  start-page: 1039
  year: 2020
  ident: 2599_CR16
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-019-01956-9
– volume: 29
  start-page: 1675
  issue: 6
  year: 2008
  ident: 2599_CR32
  publication-title: Rock Soil Mech
– volume: 95
  start-page: 9209
  issue: B6
  year: 1990
  ident: 2599_CR30
  publication-title: J Geophys Res-Sol Ea
  doi: 10.1029/JB095iB06p09209
– volume: 20
  start-page: 109
  issue: 1
  year: 2004
  ident: 2599_CR24
  publication-title: Acta Petrol Sin
– volume: 6
  start-page: 3
  issue: 1
  year: 2002
  ident: 2599_CR4
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/S1364-0321(02)00002-3
– volume: 43
  start-page: 568
  issue: 3
  year: 2019
  ident: 2599_CR20
  publication-title: Geophys Geochem Explor
– start-page: 1
  volume-title: Rock mechanics in engineering practice
  year: 1968
  ident: 2599_CR7
– volume: 49
  start-page: 4179
  issue: 10
  year: 2016
  ident: 2599_CR26
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1070-5
– volume: 10
  start-page: 411
  year: 2018
  ident: 2599_CR29
  publication-title: J Rock Mech Geotech
  doi: 10.1016/j.jrmge.2018.03.002
– volume: 58
  start-page: 112
  year: 2006
  ident: 2599_CR21
  publication-title: J Appl Geophys
  doi: 10.1016/j.jappgeo.2005.05.002
– volume: 140
  start-page: 117
  year: 2017
  ident: 2599_CR23
  publication-title: J Appl Geophys
  doi: 10.1016/j.jappgeo.2017.03.018
– volume: 593
  start-page: 125603
  year: 2021
  ident: 2599_CR35
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125603
– volume: 95
  start-page: 10213
  year: 2021
  ident: 2599_CR9
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2021.102113
– volume: 73
  start-page: 1
  year: 2018
  ident: 2599_CR15
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.01.002
– volume: 24
  start-page: 23
  year: 2017
  ident: 2599_CR6
  publication-title: Nonlin Process Geophys
  doi: 10.5194/npg-24-23-2017
– volume: 281
  start-page: 81
  year: 2009
  ident: 2599_CR22
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/j.epsl.2009.02.005
– volume: 13
  start-page: 958
  issue: 12
  year: 2012
  ident: 2599_CR19
  publication-title: J Zhejiang Univ-Sci A (appl Phys & Eng)
  doi: 10.1631/jzus.A1200153
– volume: 28
  start-page: 499
  issue: 9
  year: 2003
  ident: 2599_CR28
  publication-title: Phys Chem Earth
  doi: 10.1016/S1474-7065(03)00069-X
– volume: 59
  start-page: 377
  year: 2009
  ident: 2599_CR10
  publication-title: Geotechnique
  doi: 10.1680/geot.2009.59.4.377
– volume: 231
  start-page: 218
  year: 2017
  ident: 2599_CR33
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.10.007
SSID ssj0014378
Score 2.3669577
Snippet In this work, effective thermal conductivity ( λ Eff ) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN)...
In this work, effective thermal conductivity (λEff) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6191
SubjectTerms Civil Engineering
Consistency
Contact resistance
Earth and Environmental Science
Earth Sciences
Finite element method
Fractures
Geophysics/Geodesy
Granite
Heat conductivity
Heat transfer
High level radioactive wastes
Mathematical models
Original Paper
Parameter sensitivity
Parameters
Radioactive waste disposal
Radioactive wastes
Rock masses
Rocks
Sensitivity analysis
Thermal conductivity
Thermal contact resistance
Thermal resistance
Two dimensional models
Waste disposal
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgFRIMCAqIQkEe2MCicRwnmRBFLRVSK1RRqVvkr0xVU_ox8O85O04LSHRO4uF89-7Zl3uH0F1EIylCCc4bpoYwznIiU50QaQKRa9VOpBNJGgx5f8zeJtHEX7gt_W-VFSY6oNaFsnfkj8C7acJtunuafxI7NcpWV_0IjX1UBwhO4PBV73SH76NNHYGFJRbHNCRWmdy3zbjmOStFYmuYcJyGM0BKot-pacs3_5RIXebpnaBjTxnxc7nHp2jPzBro6IeQYAMdvLoBvV9nqFPKEQOGYfAAQN0pfilmVtTVTYnAXQjpslsRFznu2R6p9cJoPAJcxANhS8DnaNzrfrz0iZ-TQBQE0IoIzZXWsdJM8lRrKgykZaPaoQpozjVlJlcxZdKYBNgBN4GODdUsTwMZaipleIFqs2JmLhEG_iSBYnETRzGD0JSRAQ4i4lwoERnKmyioTJQpLyJuZ1lMs438sTNrBmbNnFmzqInuN9_MSwmNnW-3KstnPpyW2Xbzm-ih2o3t4_9Xu9q92jU6pNYB3O8pLVRbLdbmBkjGSt56T_oGJJHMsw
  priority: 102
  providerName: ProQuest
Title Effective Thermal Conductivity Estimation of Fractured Rock Masses
URI https://link.springer.com/article/10.1007/s00603-021-02599-5
https://www.proquest.com/docview/2602864317
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RdCDaFWsj7IHbxpoNrub5NhK06K0SLGgp5B95FRa6ePgv3d2k7QqKnjaQzZ7mJ3HN8zONwA3nHKZBRKVN4iNxwTLPRnryJPGz3Kt2pF0JEnDkRhM2MMLfymbwpbVa_eqJOk89abZzVKH2Jojpr-I2WOP70Kd29wdtXhCO5vaAQsK_xvSwLNs5GWrzM9nfA1HW4z5rSzqok1yBIclTCSd4l6PYcfMGnDwiTywAXt9N5T3_QS6BQUx-i2Ct46edkru5zNL5OomQ5AemnHRoUjmOUlsX9R6YTQZoy8kw8yWfU9hkvSe7wdeORvBU2g0Ky_TQmkdKs2kiLWmmcFQbFQ7UD7NhabM5CqkTBoTISIQxtehoZrlsS8DTaUMzqA2m8_MORDETBJhlTAhDxmao-QGcUcW5pnKuKGiCX4lolSVxOF2fsU03VAeO7GmKNbUiTXlTbjd_PNW0Gb8ufuqknxamtAyxUSLRsLimybcVbex_fz7aRf_234J-9QqhHuicgW11WJtrhForGQLdqOk34J6J-l2R3btvz72cO32Rk_jltO6D3v0zcg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xCAEF4hTL6QIqsCCO4yQFQlzLciwFAokuxPakQrscixA_xTcydpJdQIKOOoklj5_fjDOeNwAbkYh0HmoCb5gil0oWXKc24RqDvLBmN9FeJKl9pVq38vwuuhuCj7oWxl2rrDnRE7XtGvePfIfibpEo5-72H5-46xrlsqt1C40SFhf4_kZHtpe9s2Na300hmic3Ry1edRXghuDW47lVxtrYWKlVaq3IkZwYmt3QBKJQVkgsTCykRkzIlyoMbIzCyiINdGiF1iGNOwyjkibndlTSPO1nLWRYMn8sQu500KsiHV-q54RPXMaUDu904kh59N0RDqLbHwlZ7-ea0zBVBajsoETUDAxhZxYmv8gWzsLYqW8H_D4Hh6X4MTEmI7wRxz-wo27HScj6nhTshAikrI1k3YI1XUXW6zNadk0szNq5SzjPw-2_2G8BRjrdDi4Co2hNU0CnMI5iSUSgI6SIJ4-L3OQRCtWAoDZRZirJctc54yHriy17s2Zk1sybNYsasNX_5rEU7Pjz7ZXa8lm1eV-yAdQasF2vxuDx76Mt_T3aOoy3btqX2eXZ1cUyTAgHBn8xZgVGes-vuErhTU-veUwxuP9vEH8CGA4K6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtNAEB2FVKD2UEEAkVJgD3CCVeL1eh0fqqpJE1pCoioiUm6ud3d8qpI0TVX11_p1zK7tBJDorWfbe5h9O_PGs_MG4HMkIp2FmsAbJsilkjnXie1wjUGWW9PuaC-SNBqrs6n8MYtmNXioemHctcrKJ3pHbRfG_SNvEe8WHeXCXSsvr0VcnA6Ol9fcTZByldZqnEYBkSHe31H6dnN0fkp7_UWIQf9X74yXEwa4IeiteWaVsTY2VmqVWCsypICGph2aQOTKCom5iYXUiB2KqwoDG6OwMk8CHVqhdUjrPoOdmLKidh12uv3xxWRTw5BhEQdiEXKnil627PjGPSeD4uqnlMpT_pHw6O-wuOW6_5RnfdQbvIT9kq6ykwJfr6CG8wbs_SFi2IDn3_1w4PvX0C2kkMl_MkIfefwr1lvMnaCsn1DB-uROik5JtsjZwPVn3a7Qsgn5ZDbKXPn5DUyfxIJvoT5fzPEdMOJumuidwjiKJbkFHSHxnyzOM5NFKFQTgspEqSkFzN0cjat0I73szZqSWVNv1jRqwtfNN8tCvuPRtw8ry6flUb5Jt8BrwrdqN7aP_7_aweOrfYIXBOD05_l4-B52hcOCvyVzCPX16hY_ENdZ648lqBhcPjWOfwP5OhB8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Thermal+Conductivity+Estimation+of+Fractured+Rock+Masses&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Li%2C+Zheng-Wei&rft.au=Liu%2C+Yuan&rft.au=Mei%2C+Shi-Ming&rft.au=Xing%2C+Shi-Cheng&rft.date=2021-12-01&rft.pub=Springer+Vienna&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=54&rft.issue=12&rft.spage=6191&rft.epage=6206&rft_id=info:doi/10.1007%2Fs00603-021-02599-5&rft.externalDocID=10_1007_s00603_021_02599_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon