Effective Thermal Conductivity Estimation of Fractured Rock Masses
In this work, effective thermal conductivity ( λ Eff ) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN) model of the fractured rock masses was established based on the statistic results of natural fracture development in a potential area for hi...
Saved in:
Published in | Rock mechanics and rock engineering Vol. 54; no. 12; pp. 6191 - 6206 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, effective thermal conductivity (
λ
Eff
) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN) model of the fractured rock masses was established based on the statistic results of natural fracture development in a potential area for high level radioactive waste disposal in China. Steady state heat transfer processes in the fractured granite rock masses were numerically simulated using finite element method (FEM). The calculated
λ
Eff
values of the fractured granite rock masses in dry and saturated conditions are 1.99 W/(m K) and 2.31 W/(m K), respectively. Compared with the thermal conductivity of intact granite [
λ
Intact
, 2.5 W/(m K)], the drop rates are 20.4% and 7.6%, respectively. Sensitivity analysis was conducted on the main model parameters including fracture density (
F
Density
), trace length (
F
Length
), thermal contact resistance (
F
TCR
), and
λ
Intact
. The results indicate the relation between
λ
Eff
and three fracture parameters (
F
Density
,
F
length
and
F
TCR
) can be fitted using power law or negative exponent functions with good consistency. When fracture network parameters remain unchanged,
λ
Eff
is in linear positive correlation to
λ
Intact
. The slop of the fitted line is determined by the fracture network parameters. Due to the fact that distribution of generated fractures in different directions are quite uniform,
λ
Eff
did not show significant difference in different directions. On the basis of the above-mentioned results, an estimation model was proposed for the determination of
λ
Eff
of fractured rock masses using P
21
(total length of fracture traces per unit area),
F
TCR
, and
λ
Intact
. The proposed estimation model shows good consistency to the calculated results of FEM model. |
---|---|
AbstractList | In this work, effective thermal conductivity (λEff) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN) model of the fractured rock masses was established based on the statistic results of natural fracture development in a potential area for high level radioactive waste disposal in China. Steady state heat transfer processes in the fractured granite rock masses were numerically simulated using finite element method (FEM). The calculated λEff values of the fractured granite rock masses in dry and saturated conditions are 1.99 W/(m K) and 2.31 W/(m K), respectively. Compared with the thermal conductivity of intact granite [λIntact, 2.5 W/(m K)], the drop rates are 20.4% and 7.6%, respectively. Sensitivity analysis was conducted on the main model parameters including fracture density (FDensity), trace length (FLength), thermal contact resistance (FTCR), and λIntact. The results indicate the relation between λEff and three fracture parameters (FDensity, Flength and FTCR) can be fitted using power law or negative exponent functions with good consistency. When fracture network parameters remain unchanged, λEff is in linear positive correlation to λIntact. The slop of the fitted line is determined by the fracture network parameters. Due to the fact that distribution of generated fractures in different directions are quite uniform, λEff did not show significant difference in different directions. On the basis of the above-mentioned results, an estimation model was proposed for the determination of λEff of fractured rock masses using P21 (total length of fracture traces per unit area), FTCR, and λIntact. The proposed estimation model shows good consistency to the calculated results of FEM model. In this work, effective thermal conductivity ( λ Eff ) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN) model of the fractured rock masses was established based on the statistic results of natural fracture development in a potential area for high level radioactive waste disposal in China. Steady state heat transfer processes in the fractured granite rock masses were numerically simulated using finite element method (FEM). The calculated λ Eff values of the fractured granite rock masses in dry and saturated conditions are 1.99 W/(m K) and 2.31 W/(m K), respectively. Compared with the thermal conductivity of intact granite [ λ Intact , 2.5 W/(m K)], the drop rates are 20.4% and 7.6%, respectively. Sensitivity analysis was conducted on the main model parameters including fracture density ( F Density ), trace length ( F Length ), thermal contact resistance ( F TCR ), and λ Intact . The results indicate the relation between λ Eff and three fracture parameters ( F Density , F length and F TCR ) can be fitted using power law or negative exponent functions with good consistency. When fracture network parameters remain unchanged, λ Eff is in linear positive correlation to λ Intact . The slop of the fitted line is determined by the fracture network parameters. Due to the fact that distribution of generated fractures in different directions are quite uniform, λ Eff did not show significant difference in different directions. On the basis of the above-mentioned results, an estimation model was proposed for the determination of λ Eff of fractured rock masses using P 21 (total length of fracture traces per unit area), F TCR , and λ Intact . The proposed estimation model shows good consistency to the calculated results of FEM model. |
Author | Xing, Shi-Cheng Li, Zheng-Wei Liu, Yuan Wang, Xiao-Kai Mei, Shi-Ming |
Author_xml | – sequence: 1 givenname: Zheng-Wei surname: Li fullname: Li, Zheng-Wei email: lizhengwei@mail.neu.edu.cn organization: Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University – sequence: 2 givenname: Yuan surname: Liu fullname: Liu, Yuan organization: Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University – sequence: 3 givenname: Shi-Ming surname: Mei fullname: Mei, Shi-Ming organization: Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University – sequence: 4 givenname: Shi-Cheng surname: Xing fullname: Xing, Shi-Cheng organization: Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University – sequence: 5 givenname: Xiao-Kai surname: Wang fullname: Wang, Xiao-Kai organization: Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Lnlfztdndo5ZWhYogFbyFbDLRre2mJqnQf2_aFQQPPQwDM-8zH-8IDTrXAUKXBF8TjMubgLHALMeUpCjqOi9O0JBwxnNesLcBGuKSspwKRs_QKIQlxqlZVkN0N7UWdGy_IVt8gF-rVTZxndnuS23cZdMQ27WKresyZ7OZVzpuPZjsxenP7EmFAOEcnVq1CnDxm8fodTZdTB7y-fP94-R2nmtG6pgrI7QxpTa8EbUxVAHlBDRmmlArDOVgdUl5A1DhmgggpgRquK1JwwxtGjZGV_3cjXdfWwhRLt3Wd2mlpALTSnBGyqSqepX2LgQPVuo2Hh6IXrUrSbDcOyZ7x2RyTB4ck0VC6T9049PzfnccYj0Ukrh7B_931RHqB66qgNs |
CitedBy_id | crossref_primary_10_1007_s00603_023_03450_9 crossref_primary_10_1007_s11440_022_01726_y crossref_primary_10_1016_j_icheatmasstransfer_2024_108217 crossref_primary_10_1002_nag_3634 crossref_primary_10_1016_j_tca_2022_179424 crossref_primary_10_1016_j_enggeo_2023_107181 crossref_primary_10_1016_j_ijrmms_2023_105528 crossref_primary_10_1093_gji_ggaf046 crossref_primary_10_1038_s41598_023_29992_0 crossref_primary_10_1016_j_clay_2025_107719 |
Cites_doi | 10.5194/npg-24-23-2017 10.1016/j.geothermics.2019.101736 10.1115/1.2110231 10.1016/j.enggeo.2017.10.007 10.1016/j.ijrmms.2009.04.011 10.1016/j.geothermics.2018.01.002 10.1016/j.epsl.2009.02.005 10.1007/s00603-019-01956-9 10.1007/s00603-016-1070-5 10.1029/95JB00960 10.1016/j.jappgeo.2017.03.018 10.1016/S1474-7065(03)00069-X 10.1016/j.jrmge.2018.03.002 10.1029/JB095iB06p09209 10.1007/s00603-018-1479-0 10.1016/j.geothermics.2021.102113 10.1007/s00603-017-1248-5 10.1002/jgrb.50373 10.1016/j.geothermics.2018.08.001 10.3724/SP.J.1235.2011.00302 10.1016/S1364-0321(02)00002-3 10.1016/0040-1951(94)00224-W 10.1631/jzus.A1200153 10.1016/j.jappgeo.2005.05.002 10.1680/geot.2009.59.4.377 10.1016/j.geothermics.2016.11.006 10.1016/j.enconman.2003.09.015 10.1016/j.jhydrol.2020.125603 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s00603-021-02599-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1434-453X |
EndPage | 6206 |
ExternalDocumentID | 10_1007_s00603_021_02599_5 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41702332 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: N2001017 funderid: http://dx.doi.org/10.13039/501100012226 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V L8X LAS LK5 LLZTM M2P M4Y M7R M7S MA- MK~ MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 Y6R YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TN 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-ad6cdd7cd4b69dd2ae241ec03c12f6d24efc724bee80916e1d7e2d4f91b3d2bb3 |
IEDL.DBID | U2A |
ISSN | 0723-2632 |
IngestDate | Fri Jul 25 19:10:27 EDT 2025 Tue Jul 01 03:35:22 EDT 2025 Thu Apr 24 22:49:11 EDT 2025 Fri Feb 21 02:47:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Fractured rock mass Effective thermal conductivity Discrete fracture network Thermal contact resistance Estimation model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ad6cdd7cd4b69dd2ae241ec03c12f6d24efc724bee80916e1d7e2d4f91b3d2bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2602864317 |
PQPubID | 60272 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2602864317 crossref_citationtrail_10_1007_s00603_021_02599_5 crossref_primary_10_1007_s00603_021_02599_5 springer_journals_10_1007_s00603_021_02599_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Wien |
PublicationTitle | Rock mechanics and rock engineering |
PublicationTitleAbbrev | Rock Mech Rock Eng |
PublicationYear | 2021 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | Xie, Pei, Zuo, Zhang (CR31) 2011; 4 Zhang, Zhao, Huang, Ma, Chen, Xu, Que (CR34) 2017; 50 Popov, Beardsmore, Clauser, Roy (CR26) 2016; 49 Cherubini, Pastore, Giasi, Allegretti (CR6) 2017; 24 Mügler, Filippi, Montarnal, Martinez, Wileveau (CR21) 2006; 58 Bahrami, Culham, Yananovich, Schneider (CR3) 2006; 59 Long, Hestir, Karasaki, Davey, Peterson, Kemeny, Landsfeld, Bear, Corapcioglu (CR18) 1991 Wang, Chen, Su, Zhao (CR29) 2018; 10 Zhao, Zhao, Guo, Cai, Wang (CR36) 2018; 51 CR11 Nguyen, Vu, Vu, Tang (CR23) 2017; 140 Lu, Xiang (CR19) 2012; 13 Zhang, Wu, Zhai, Ye (CR35) 2021; 593 Deere, Stagg, Zienkiewicz (CR7) 1968 Burkhardt, Honarmand, Pribnow (CR5) 1995; 244 Li, Zhang, Gong, Zhu (CR17) 2020; 83 Pribnow, Sass (CR27) 1995; 100 Ou, Jin, Wang, Xu, Jin (CR24) 2004; 20 Jorand, Vogt, Marquart, Clauser (CR13) 2013; 118 Luo, Wang, Jiang, Zhao, Jin (CR20) 2019; 43 Lei, Yang, Wang, Wei, Chen, Ji, Huo (CR14) 2016; 35 Nemoto, Watanabe, Hirano, Tsuchiya (CR22) 2009; 281 Gens, Sánchez, Guimarães, Do, Alonso, Lloret, Olivella, Villar, Huertas (CR10) 2009; 59 Popov, Berezin, Soloviov, Romuschkevitch, Korosteliov, Kostiurin, Kulikov (CR25) 1987; 23 Li, Feng, Zhang, Xu (CR15) 2018; 73 Jia, Tao, Meng, Ma, Chai, Jin (CR12) 2019; 77 Li, Feng, Zhang, Gong, Zhu (CR16) 2020; 53 Zhang, Xu (CR32) 2008; 29 Farid, Khudhair, Razack, Hallaj (CR8) 2004; 45 Zhang, Chen, Qin, Hong, Meng, Zhang (CR33) 2017; 231 Vosteen, Schellschmidt (CR28) 2003; 28 Albert, Schulze, Franz, Koenigsdorff, Zosseder (CR2) 2017; 66 Williams, Anderson (CR30) 1990; 95 Garcia, Santamarina (CR9) 2021; 95 Abdulagatova, Abdulagatov, Emirov (CR1) 2009; 46 Barbier (CR4) 2002; 6 HD Vosteen (2599_CR28) 2003; 28 ZW Li (2599_CR16) 2020; 53 W Lu (2599_CR19) 2012; 13 GS Jia (2599_CR12) 2019; 77 R Jorand (2599_CR13) 2013; 118 JCS Long (2599_CR18) 1991 W Zhang (2599_CR34) 2017; 50 X Zhang (2599_CR35) 2021; 593 Y Popov (2599_CR25) 1987; 23 DU Deere (2599_CR7) 1968 DFC Pribnow (2599_CR27) 1995; 100 H Xie (2599_CR31) 2011; 4 H Burkhardt (2599_CR5) 1995; 244 MM Farid (2599_CR8) 2004; 45 A Gens (2599_CR10) 2009; 59 Z Abdulagatova (2599_CR1) 2009; 46 C Cherubini (2599_CR6) 2017; 24 AV Garcia (2599_CR9) 2021; 95 E Barbier (2599_CR4) 2002; 6 J Wang (2599_CR29) 2018; 10 K Nemoto (2599_CR22) 2009; 281 ST Nguyen (2599_CR23) 2017; 140 Y Popov (2599_CR26) 2016; 49 ZW Li (2599_CR15) 2018; 73 2599_CR11 C Zhang (2599_CR33) 2017; 231 K Albert (2599_CR2) 2017; 66 H Luo (2599_CR20) 2019; 43 GK Zhang (2599_CR32) 2008; 29 CF Williams (2599_CR30) 1990; 95 C Mügler (2599_CR21) 2006; 58 XG Ou (2599_CR24) 2004; 20 XG Zhao (2599_CR36) 2018; 51 M Bahrami (2599_CR3) 2006; 59 G Lei (2599_CR14) 2016; 35 ZW Li (2599_CR17) 2020; 83 |
References_xml | – volume: 24 start-page: 23 year: 2017 end-page: 42 ident: CR6 article-title: Laboratory experimental investigation of heat transport in fractured media publication-title: Nonlin Process Geophys doi: 10.5194/npg-24-23-2017 – volume: 20 start-page: 109 issue: 1 year: 2004 end-page: 118 ident: CR24 article-title: Thermal conductivity and its anisotropy of rocks from the depth of 100–2000m mainhole of Chinese continental scientific drilling: revelations to the study on thermal structure of subduction zone publication-title: Acta Petrol Sin – volume: 83 start-page: 101736 year: 2020 ident: CR17 article-title: Influences of mechanical damage and water saturation on the distributed thermal conductivity of granite publication-title: Geothermics doi: 10.1016/j.geothermics.2019.101736 – volume: 59 start-page: 411 issue: 1 year: 2006 end-page: 431 ident: CR3 article-title: Review of thermal joint resistance models for nonconforming rough surfaces publication-title: Appl Mech Rev doi: 10.1115/1.2110231 – volume: 29 start-page: 1675 issue: 6 year: 2008 end-page: 1680 ident: CR32 article-title: Analysis of joint network simulation method and REV scale publication-title: Rock Soil Mech – volume: 231 start-page: 218 year: 2017 end-page: 229 ident: CR33 article-title: In-situ stress and fracture characterization of a candidate repository for spent nuclear fuel in Gansu, northwestern China publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.10.007 – volume: 46 start-page: 1055 year: 2009 end-page: 1071 ident: CR1 article-title: Effect of temperature and pressure on the thermal conductivity of sandstone publication-title: Int J Rock Mech Min doi: 10.1016/j.ijrmms.2009.04.011 – volume: 43 start-page: 568 issue: 3 year: 2019 end-page: 575 ident: CR20 article-title: Construction and application of three-dimensional geological model in Xinchang Block for high-level radioactive waste disposal publication-title: Geophys Geochem Explor – volume: 73 start-page: 1 year: 2018 end-page: 15 ident: CR15 article-title: Feasibility study of developing a geothermal heating system in naturally fractured formations: reservoir hydraulic properties determination and heat production forecast publication-title: Geothermics doi: 10.1016/j.geothermics.2018.01.002 – volume: 281 start-page: 81 year: 2009 end-page: 87 ident: CR22 article-title: Direct measurement of contact area and stress dependence of anisotropic flow through rock fracture with heterogeneous aperture distribution publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2009.02.005 – volume: 23 start-page: 245 issue: 3 year: 1987 end-page: 253 ident: CR25 article-title: Thermal conductivity of minerals publication-title: Izv-Phys Solid Earth – volume: 53 start-page: 1039 year: 2020 end-page: 1051 ident: CR16 article-title: Effect of mechanical damage on the thermal conductivity of granite publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-019-01956-9 – volume: 49 start-page: 4179 issue: 10 year: 2016 end-page: 4207 ident: CR26 article-title: ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1070-5 – volume: 100 start-page: 9981 issue: B6 year: 1995 end-page: 9994 ident: CR27 article-title: Determination of thermal conductivity for deep boreholes publication-title: J Geophys Res-Sol Earth doi: 10.1029/95JB00960 – volume: 140 start-page: 117 year: 2017 end-page: 122 ident: CR23 article-title: Modeling of heat flow and effective thermal conductivity of fractured media: analytical and numerical methods publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2017.03.018 – volume: 28 start-page: 499 issue: 9 year: 2003 end-page: 509 ident: CR28 article-title: Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock publication-title: Phys Chem Earth doi: 10.1016/S1474-7065(03)00069-X – volume: 10 start-page: 411 year: 2018 end-page: 435 ident: CR29 article-title: The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests publication-title: J Rock Mech Geotech doi: 10.1016/j.jrmge.2018.03.002 – year: 1991 ident: CR18 article-title: Fluid flow in fractured rock: theory and application publication-title: Transport Processes in porous media. NATO ASI Series (Series E: Applied Sciences) – volume: 95 start-page: 9209 issue: B6 year: 1990 end-page: 9236 ident: CR30 article-title: Thermophysical properties of the Earth's crust: In situ measurements from continental and ocean drilling publication-title: J Geophys Res-Sol Ea doi: 10.1029/JB095iB06p09209 – volume: 51 start-page: 2055 issue: 7 year: 2018 end-page: 2074 ident: CR36 article-title: Influence of thermal treatment on the thermal conductivity of Beishan granite publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1479-0 – volume: 35 start-page: 896 issue: 5 year: 2016 end-page: 905 ident: CR14 article-title: Geometric features of joints and quality evaluation of rock mass in Xinchang section publication-title: Beishan Chin J Rock Mech Eng – volume: 593 start-page: 125603 year: 2021 ident: CR35 article-title: Coupling analysis of the heat-water dynamics and frozen depth in a seasonally frozen zone publication-title: J Hydrol – volume: 95 start-page: 10213 year: 2021 ident: CR9 article-title: Heat flow in fractured rocks: stress and moisture-dependent thermal contact resistance publication-title: Geothermics doi: 10.1016/j.geothermics.2021.102113 – volume: 50 start-page: 2817 year: 2017 end-page: 2825 ident: CR34 article-title: Determination of representative volume element considering the probability that a sample can represent the investigated rock mass at Baihetan Dam site, China publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1248-5 – volume: 118 start-page: 5225 issue: 10 year: 2013 end-page: 5235 ident: CR13 article-title: Effective thermal conductivity of heterogeneous rocks from laboratory experiments and numerical modeling publication-title: J Geophys Res-Sol Earth doi: 10.1002/jgrb.50373 – volume: 77 start-page: 1 year: 2019 end-page: 11 ident: CR12 article-title: Review of effective thermal conductivity models of rock-soil for geothermal energy applications publication-title: Geothermics doi: 10.1016/j.geothermics.2018.08.001 – volume: 4 start-page: 302 year: 2011 end-page: 313 ident: CR31 article-title: Investigation of mechanical properties of fractured marbles by uniaxial compression tests publication-title: J Rock Mech Geotech doi: 10.3724/SP.J.1235.2011.00302 – ident: CR11 – volume: 6 start-page: 3 issue: 1 year: 2002 end-page: 65 ident: CR4 article-title: Geothermal energy technology and current status: an overview publication-title: Renew Sust Energ Rev doi: 10.1016/S1364-0321(02)00002-3 – volume: 244 start-page: 161 issue: s 1–3 year: 1995 end-page: 165 ident: CR5 article-title: Test measurements with a new thermal conductivity borehole tool publication-title: Tectonophysics doi: 10.1016/0040-1951(94)00224-W – volume: 13 start-page: 958 issue: 12 year: 2012 end-page: 968 ident: CR19 article-title: Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow publication-title: J Zhejiang Univ-Sci A (appl Phys & Eng) doi: 10.1631/jzus.A1200153 – volume: 58 start-page: 112 year: 2006 end-page: 129 ident: CR21 article-title: Determination of the thermal conductivity of Opalinus Clay via simulations of experiments performed at the Mont Terri underground laboratory publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2005.05.002 – volume: 59 start-page: 377 year: 2009 end-page: 399 ident: CR10 article-title: A full-scale in situ heating test for high-level nuclear waste disposal: observations, analysis and interpretation publication-title: Geotechnique doi: 10.1680/geot.2009.59.4.377 – volume: 66 start-page: 1 year: 2017 end-page: 12 ident: CR2 article-title: Thermal conductivity estimation model considering the effect of water saturation explaining the heterogeneity of rock thermal conductivity publication-title: Geothermics doi: 10.1016/j.geothermics.2016.11.006 – start-page: 1 year: 1968 end-page: 20 ident: CR7 article-title: Geological consideration publication-title: Rock mechanics in engineering practice – volume: 45 start-page: 1597 issue: 9 year: 2004 end-page: 1615 ident: CR8 article-title: A review on phase change energy storage: materials and applications publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2003.09.015 – volume: 35 start-page: 896 issue: 5 year: 2016 ident: 2599_CR14 publication-title: Beishan Chin J Rock Mech Eng – volume-title: Transport Processes in porous media. NATO ASI Series (Series E: Applied Sciences) year: 1991 ident: 2599_CR18 – ident: 2599_CR11 – volume: 100 start-page: 9981 issue: B6 year: 1995 ident: 2599_CR27 publication-title: J Geophys Res-Sol Earth doi: 10.1029/95JB00960 – volume: 83 start-page: 101736 year: 2020 ident: 2599_CR17 publication-title: Geothermics doi: 10.1016/j.geothermics.2019.101736 – volume: 59 start-page: 411 issue: 1 year: 2006 ident: 2599_CR3 publication-title: Appl Mech Rev doi: 10.1115/1.2110231 – volume: 4 start-page: 302 year: 2011 ident: 2599_CR31 publication-title: J Rock Mech Geotech doi: 10.3724/SP.J.1235.2011.00302 – volume: 45 start-page: 1597 issue: 9 year: 2004 ident: 2599_CR8 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2003.09.015 – volume: 118 start-page: 5225 issue: 10 year: 2013 ident: 2599_CR13 publication-title: J Geophys Res-Sol Earth doi: 10.1002/jgrb.50373 – volume: 51 start-page: 2055 issue: 7 year: 2018 ident: 2599_CR36 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1479-0 – volume: 77 start-page: 1 year: 2019 ident: 2599_CR12 publication-title: Geothermics doi: 10.1016/j.geothermics.2018.08.001 – volume: 46 start-page: 1055 year: 2009 ident: 2599_CR1 publication-title: Int J Rock Mech Min doi: 10.1016/j.ijrmms.2009.04.011 – volume: 66 start-page: 1 year: 2017 ident: 2599_CR2 publication-title: Geothermics doi: 10.1016/j.geothermics.2016.11.006 – volume: 244 start-page: 161 issue: s 1–3 year: 1995 ident: 2599_CR5 publication-title: Tectonophysics doi: 10.1016/0040-1951(94)00224-W – volume: 23 start-page: 245 issue: 3 year: 1987 ident: 2599_CR25 publication-title: Izv-Phys Solid Earth – volume: 50 start-page: 2817 year: 2017 ident: 2599_CR34 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1248-5 – volume: 53 start-page: 1039 year: 2020 ident: 2599_CR16 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-019-01956-9 – volume: 29 start-page: 1675 issue: 6 year: 2008 ident: 2599_CR32 publication-title: Rock Soil Mech – volume: 95 start-page: 9209 issue: B6 year: 1990 ident: 2599_CR30 publication-title: J Geophys Res-Sol Ea doi: 10.1029/JB095iB06p09209 – volume: 20 start-page: 109 issue: 1 year: 2004 ident: 2599_CR24 publication-title: Acta Petrol Sin – volume: 6 start-page: 3 issue: 1 year: 2002 ident: 2599_CR4 publication-title: Renew Sust Energ Rev doi: 10.1016/S1364-0321(02)00002-3 – volume: 43 start-page: 568 issue: 3 year: 2019 ident: 2599_CR20 publication-title: Geophys Geochem Explor – start-page: 1 volume-title: Rock mechanics in engineering practice year: 1968 ident: 2599_CR7 – volume: 49 start-page: 4179 issue: 10 year: 2016 ident: 2599_CR26 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1070-5 – volume: 10 start-page: 411 year: 2018 ident: 2599_CR29 publication-title: J Rock Mech Geotech doi: 10.1016/j.jrmge.2018.03.002 – volume: 58 start-page: 112 year: 2006 ident: 2599_CR21 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2005.05.002 – volume: 140 start-page: 117 year: 2017 ident: 2599_CR23 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2017.03.018 – volume: 593 start-page: 125603 year: 2021 ident: 2599_CR35 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125603 – volume: 95 start-page: 10213 year: 2021 ident: 2599_CR9 publication-title: Geothermics doi: 10.1016/j.geothermics.2021.102113 – volume: 73 start-page: 1 year: 2018 ident: 2599_CR15 publication-title: Geothermics doi: 10.1016/j.geothermics.2018.01.002 – volume: 24 start-page: 23 year: 2017 ident: 2599_CR6 publication-title: Nonlin Process Geophys doi: 10.5194/npg-24-23-2017 – volume: 281 start-page: 81 year: 2009 ident: 2599_CR22 publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2009.02.005 – volume: 13 start-page: 958 issue: 12 year: 2012 ident: 2599_CR19 publication-title: J Zhejiang Univ-Sci A (appl Phys & Eng) doi: 10.1631/jzus.A1200153 – volume: 28 start-page: 499 issue: 9 year: 2003 ident: 2599_CR28 publication-title: Phys Chem Earth doi: 10.1016/S1474-7065(03)00069-X – volume: 59 start-page: 377 year: 2009 ident: 2599_CR10 publication-title: Geotechnique doi: 10.1680/geot.2009.59.4.377 – volume: 231 start-page: 218 year: 2017 ident: 2599_CR33 publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.10.007 |
SSID | ssj0014378 |
Score | 2.3669577 |
Snippet | In this work, effective thermal conductivity (
λ
Eff
) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN)... In this work, effective thermal conductivity (λEff) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN)... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6191 |
SubjectTerms | Civil Engineering Consistency Contact resistance Earth and Environmental Science Earth Sciences Finite element method Fractures Geophysics/Geodesy Granite Heat conductivity Heat transfer High level radioactive wastes Mathematical models Original Paper Parameter sensitivity Parameters Radioactive waste disposal Radioactive wastes Rock masses Rocks Sensitivity analysis Thermal conductivity Thermal contact resistance Thermal resistance Two dimensional models Waste disposal |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgFRIMCAqIQkEe2MCicRwnmRBFLRVSK1RRqVvkr0xVU_ox8O85O04LSHRO4uF89-7Zl3uH0F1EIylCCc4bpoYwznIiU50QaQKRa9VOpBNJGgx5f8zeJtHEX7gt_W-VFSY6oNaFsnfkj8C7acJtunuafxI7NcpWV_0IjX1UBwhO4PBV73SH76NNHYGFJRbHNCRWmdy3zbjmOStFYmuYcJyGM0BKot-pacs3_5RIXebpnaBjTxnxc7nHp2jPzBro6IeQYAMdvLoBvV9nqFPKEQOGYfAAQN0pfilmVtTVTYnAXQjpslsRFznu2R6p9cJoPAJcxANhS8DnaNzrfrz0iZ-TQBQE0IoIzZXWsdJM8lRrKgykZaPaoQpozjVlJlcxZdKYBNgBN4GODdUsTwMZaipleIFqs2JmLhEG_iSBYnETRzGD0JSRAQ4i4lwoERnKmyioTJQpLyJuZ1lMs438sTNrBmbNnFmzqInuN9_MSwmNnW-3KstnPpyW2Xbzm-ih2o3t4_9Xu9q92jU6pNYB3O8pLVRbLdbmBkjGSt56T_oGJJHMsw priority: 102 providerName: ProQuest |
Title | Effective Thermal Conductivity Estimation of Fractured Rock Masses |
URI | https://link.springer.com/article/10.1007/s00603-021-02599-5 https://www.proquest.com/docview/2602864317 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RdCDaFWsj7IHbxpoNrub5NhK06K0SLGgp5B95FRa6ePgv3d2k7QqKnjaQzZ7mJ3HN8zONwA3nHKZBRKVN4iNxwTLPRnryJPGz3Kt2pF0JEnDkRhM2MMLfymbwpbVa_eqJOk89abZzVKH2Jojpr-I2WOP70Kd29wdtXhCO5vaAQsK_xvSwLNs5GWrzM9nfA1HW4z5rSzqok1yBIclTCSd4l6PYcfMGnDwiTywAXt9N5T3_QS6BQUx-i2Ct46edkru5zNL5OomQ5AemnHRoUjmOUlsX9R6YTQZoy8kw8yWfU9hkvSe7wdeORvBU2g0Ky_TQmkdKs2kiLWmmcFQbFQ7UD7NhabM5CqkTBoTISIQxtehoZrlsS8DTaUMzqA2m8_MORDETBJhlTAhDxmao-QGcUcW5pnKuKGiCX4lolSVxOF2fsU03VAeO7GmKNbUiTXlTbjd_PNW0Gb8ufuqknxamtAyxUSLRsLimybcVbex_fz7aRf_234J-9QqhHuicgW11WJtrhForGQLdqOk34J6J-l2R3btvz72cO32Rk_jltO6D3v0zcg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xCAEF4hTL6QIqsCCO4yQFQlzLciwFAokuxPakQrscixA_xTcydpJdQIKOOoklj5_fjDOeNwAbkYh0HmoCb5gil0oWXKc24RqDvLBmN9FeJKl9pVq38vwuuhuCj7oWxl2rrDnRE7XtGvePfIfibpEo5-72H5-46xrlsqt1C40SFhf4_kZHtpe9s2Na300hmic3Ry1edRXghuDW47lVxtrYWKlVaq3IkZwYmt3QBKJQVkgsTCykRkzIlyoMbIzCyiINdGiF1iGNOwyjkibndlTSPO1nLWRYMn8sQu500KsiHV-q54RPXMaUDu904kh59N0RDqLbHwlZ7-ea0zBVBajsoETUDAxhZxYmv8gWzsLYqW8H_D4Hh6X4MTEmI7wRxz-wo27HScj6nhTshAikrI1k3YI1XUXW6zNadk0szNq5SzjPw-2_2G8BRjrdDi4Co2hNU0CnMI5iSUSgI6SIJ4-L3OQRCtWAoDZRZirJctc54yHriy17s2Zk1sybNYsasNX_5rEU7Pjz7ZXa8lm1eV-yAdQasF2vxuDx76Mt_T3aOoy3btqX2eXZ1cUyTAgHBn8xZgVGes-vuErhTU-veUwxuP9vEH8CGA4K6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtNAEB2FVKD2UEEAkVJgD3CCVeL1eh0fqqpJE1pCoioiUm6ud3d8qpI0TVX11_p1zK7tBJDorWfbe5h9O_PGs_MG4HMkIp2FmsAbJsilkjnXie1wjUGWW9PuaC-SNBqrs6n8MYtmNXioemHctcrKJ3pHbRfG_SNvEe8WHeXCXSsvr0VcnA6Ol9fcTZByldZqnEYBkSHe31H6dnN0fkp7_UWIQf9X74yXEwa4IeiteWaVsTY2VmqVWCsypICGph2aQOTKCom5iYXUiB2KqwoDG6OwMk8CHVqhdUjrPoOdmLKidh12uv3xxWRTw5BhEQdiEXKnil627PjGPSeD4uqnlMpT_pHw6O-wuOW6_5RnfdQbvIT9kq6ykwJfr6CG8wbs_SFi2IDn3_1w4PvX0C2kkMl_MkIfefwr1lvMnaCsn1DB-uROik5JtsjZwPVn3a7Qsgn5ZDbKXPn5DUyfxIJvoT5fzPEdMOJumuidwjiKJbkFHSHxnyzOM5NFKFQTgspEqSkFzN0cjat0I73szZqSWVNv1jRqwtfNN8tCvuPRtw8ry6flUb5Jt8BrwrdqN7aP_7_aweOrfYIXBOD05_l4-B52hcOCvyVzCPX16hY_ENdZ648lqBhcPjWOfwP5OhB8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Thermal+Conductivity+Estimation+of+Fractured+Rock+Masses&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Li%2C+Zheng-Wei&rft.au=Liu%2C+Yuan&rft.au=Mei%2C+Shi-Ming&rft.au=Xing%2C+Shi-Cheng&rft.date=2021-12-01&rft.pub=Springer+Vienna&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=54&rft.issue=12&rft.spage=6191&rft.epage=6206&rft_id=info:doi/10.1007%2Fs00603-021-02599-5&rft.externalDocID=10_1007_s00603_021_02599_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon |