Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted
The micromorphology and semiconductor properties of TiO 2 thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysi...
Saved in:
Published in | Optical and quantum electronics Vol. 52; no. 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The micromorphology and semiconductor properties of TiO
2
thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysis are essential for the accurate characterization of the 3-D surface topographic features and allow the determination of the 3-D surface texture parameters that influence the optical properties of the material. The samples were divided into four groups to discuss the obtained results, according to the ion beam energy applied in the sample preparation. The results obtained from experimental measurements suggested that the surface of samples prepared at lower beam energy had the most regular surface (Sq = 6.25 nm), while the most irregular surface was found in samples prepared with the highest ion beam energy (Sq = 13.40 nm). The transmittance (%) and reflectance (%) spectra, and the band gap energy experienced noticeable changes with increasing applied energy and deposition pressures due to the increase of the surface tension and decrease of the grain sizes. Our investigation shows that the deposition pressure and applied energy affect the optical and the roughness of titania thin films, which partially contribute to the functionality of the surface that, in turn, makes titania useful for the fabrication of different optoelectronic devices. |
---|---|
AbstractList | The micromorphology and semiconductor properties of TiO
2
thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysis are essential for the accurate characterization of the 3-D surface topographic features and allow the determination of the 3-D surface texture parameters that influence the optical properties of the material. The samples were divided into four groups to discuss the obtained results, according to the ion beam energy applied in the sample preparation. The results obtained from experimental measurements suggested that the surface of samples prepared at lower beam energy had the most regular surface (Sq = 6.25 nm), while the most irregular surface was found in samples prepared with the highest ion beam energy (Sq = 13.40 nm). The transmittance (%) and reflectance (%) spectra, and the band gap energy experienced noticeable changes with increasing applied energy and deposition pressures due to the increase of the surface tension and decrease of the grain sizes. Our investigation shows that the deposition pressure and applied energy affect the optical and the roughness of titania thin films, which partially contribute to the functionality of the surface that, in turn, makes titania useful for the fabrication of different optoelectronic devices. The micromorphology and semiconductor properties of TiO2 thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysis are essential for the accurate characterization of the 3-D surface topographic features and allow the determination of the 3-D surface texture parameters that influence the optical properties of the material. The samples were divided into four groups to discuss the obtained results, according to the ion beam energy applied in the sample preparation. The results obtained from experimental measurements suggested that the surface of samples prepared at lower beam energy had the most regular surface (Sq = 6.25 nm), while the most irregular surface was found in samples prepared with the highest ion beam energy (Sq = 13.40 nm). The transmittance (%) and reflectance (%) spectra, and the band gap energy experienced noticeable changes with increasing applied energy and deposition pressures due to the increase of the surface tension and decrease of the grain sizes. Our investigation shows that the deposition pressure and applied energy affect the optical and the roughness of titania thin films, which partially contribute to the functionality of the surface that, in turn, makes titania useful for the fabrication of different optoelectronic devices. |
ArticleNumber | 270 |
Author | Shakoury, Reza Ţălu, Ştefan Arman, Ali Luna, Carlos Dastan, Davoud Rezaee, Sahar |
Author_xml | – sequence: 1 givenname: Reza surname: Shakoury fullname: Shakoury, Reza organization: Department of Physics, Faculty of Science, Imam Khomeini International University – sequence: 2 givenname: Ali orcidid: 0000-0003-1246-0453 surname: Arman fullname: Arman, Ali organization: Vacuum Technology Group, ACECR, Sharif University Branch – sequence: 3 givenname: Ştefan orcidid: 0000-0003-1311-7657 surname: Ţălu fullname: Ţălu, Ştefan organization: Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, The Directorate of Research – sequence: 4 givenname: Davoud surname: Dastan fullname: Dastan, Davoud organization: School of Materials Science and Engineering, Georgia Institute of Technology – sequence: 5 givenname: Carlos orcidid: 0000-0002-0149-9814 surname: Luna fullname: Luna, Carlos organization: Facultad de Ciencias Físico Matemáticas (FCFM), Universidad Autónoma de Nuevo León (UANL) – sequence: 6 givenname: Sahar orcidid: 0000-0001-5034-0810 surname: Rezaee fullname: Rezaee, Sahar email: saharrezaee593@iauksh.ac.ir organization: Department of Physics, KermanshahBranch, IslamicAzadUniversity |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uTZLObPUrxCwoVrOAtZLOJpuxuapIe-u-NVhA89DDMwMwzvDwzNBn9aBC6JHBNAOqbSAgIWgCFXEyIojxBU8JrWghSv03QFBhUhWhIc4ZmMW4AoCo5TNHzSzLB-MGk4DRWo-r30UXsLV67FcXpw43Yun6IuDNbH10yHW732PRGp-BH3Bo1YJcHFTOXt-fo1Ko-movfPkev93frxWOxXD08LW6XhWakSYXqCNdtW1NrCWhCWNmysibCMK6oqJqK0aoEy5Vg3FjTdUo0dVOJjragu7Zmc3R1-LsN_nNnYpIbvws5f5S0BMqBi2xijsThSgcfYzBWapdUyoFTUK6XBOS3P3nwJ7M_-eNPlhml_9BtcIMK--MQO0AxH4_vJvylOkJ9AZswhGo |
CitedBy_id | crossref_primary_10_1007_s10854_020_04643_6 crossref_primary_10_1016_j_physa_2023_128989 crossref_primary_10_1016_j_ijleo_2024_171818 crossref_primary_10_1016_j_ijhydene_2020_11_101 crossref_primary_10_1016_j_matchemphys_2021_124647 crossref_primary_10_1007_s11082_022_04295_2 crossref_primary_10_1002_jemt_23905 crossref_primary_10_1007_s10854_020_03987_3 crossref_primary_10_1016_j_ceramint_2020_10_131 crossref_primary_10_1016_j_micron_2020_102996 crossref_primary_10_1007_s10854_020_04518_w crossref_primary_10_1007_s10854_021_05740_w crossref_primary_10_1080_14328917_2021_1963577 crossref_primary_10_1016_j_matpr_2023_02_273 crossref_primary_10_1002_adts_202300238 crossref_primary_10_1016_j_jcis_2022_06_114 crossref_primary_10_1016_j_ijhydene_2020_06_146 crossref_primary_10_1007_s11082_021_03079_4 crossref_primary_10_1002_jemt_24138 crossref_primary_10_1016_j_matchemphys_2020_123756 crossref_primary_10_1007_s10854_020_04858_7 crossref_primary_10_1007_s10854_021_06366_8 crossref_primary_10_1007_s11243_020_00419_3 crossref_primary_10_1016_j_apt_2020_10_015 crossref_primary_10_1007_s10765_021_02830_z crossref_primary_10_1016_j_physa_2024_130165 crossref_primary_10_1007_s10854_020_04189_7 crossref_primary_10_1016_j_surfin_2020_100905 crossref_primary_10_1016_j_surfin_2020_100706 crossref_primary_10_1016_j_matchemphys_2021_124302 crossref_primary_10_1016_j_ceramint_2021_04_271 crossref_primary_10_1002_jemt_23974 crossref_primary_10_1007_s10008_021_04932_y crossref_primary_10_1080_02670836_2022_2131127 crossref_primary_10_1111_jmi_12990 crossref_primary_10_1007_s00339_022_05611_z crossref_primary_10_1016_j_physb_2021_413534 crossref_primary_10_1016_j_ijhydene_2021_12_016 crossref_primary_10_1016_j_surfin_2021_101190 crossref_primary_10_1088_2051_672X_ac459c crossref_primary_10_1007_s10008_021_04927_9 crossref_primary_10_1016_j_tsf_2021_138573 crossref_primary_10_1016_j_vacuum_2021_110533 crossref_primary_10_1007_s10854_021_06421_4 crossref_primary_10_1016_j_matdes_2021_109722 crossref_primary_10_1007_s00339_021_04392_1 crossref_primary_10_1016_j_apsusc_2021_149924 crossref_primary_10_1016_j_mssp_2020_105506 crossref_primary_10_1016_j_physb_2021_413360 crossref_primary_10_1002_vipr_202200772 crossref_primary_10_1007_s11082_021_02942_8 crossref_primary_10_1016_j_surfin_2020_100762 crossref_primary_10_31875_2410_4701_2023_10_09 crossref_primary_10_1007_s10854_021_06172_2 crossref_primary_10_1016_j_jallcom_2020_157465 crossref_primary_10_1016_j_matpr_2022_06_026 crossref_primary_10_3390_mi13081361 |
Cites_doi | 10.1039/C6RA28795F 10.3390/nano10010181 10.1016/j.spmi.2015.08.007 10.1080/03067319.2019.1662414 10.1016/j.surfin.2020.100463 10.1016/j.compositesa.2020.105814 10.1002/jemt.22945 10.1016/j.apsusc.2017.10.131 10.1007/s11664-017-5552-3 10.1016/j.matchemphys.2008.04.048 10.1016/j.matpr.2020.02.316 10.1016/j.jallcom.2020.154105 10.1039/C5TA07515G 10.1007/s10854-019-01592-7 10.1039/D0TA00903B 10.1016/j.triboint.2019.04.011 10.1515/msp-2015-0010 10.1088/1361-6633/ab42fb 10.1007/s10854-016-4985-4 10.1016/j.apsusc.2019.04.170 10.1007/s10854-016-5774-9 10.1063/1.4928695 10.1007/s10854-015-3628-5 10.1021/acssuschemeng.6b01671 10.1038/s41598-018-29247-3 10.1016/j.ijleo.2018.10.050 10.1002/adma.200900525 10.1016/j.rinp.2017.08.018 10.1149/2.039401jes 10.26713/jamcnp.v2i2.331 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11082-020-02388-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1572-817X |
ExternalDocumentID | 10_1007_s11082_020_02388_4 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8Z Z92 ZMTXR ZY4 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-ad15cbb72ff10c1134b34718e35a2869632640f5a835efedda897968d2b0cdb73 |
IEDL.DBID | U2A |
ISSN | 0306-8919 |
IngestDate | Fri Jul 25 11:05:44 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 Tue Jul 01 00:53:31 EDT 2025 Fri Feb 21 02:25:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | AFM TiO 3-D surface microtexture Stereometric analysis Optical properties thin films |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ad15cbb72ff10c1134b34718e35a2869632640f5a835efedda897968d2b0cdb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1311-7657 0000-0001-5034-0810 0000-0002-0149-9814 0000-0003-1246-0453 |
PQID | 2402505802 |
PQPubID | 2043598 |
ParticipantIDs | proquest_journals_2402505802 crossref_citationtrail_10_1007_s11082_020_02388_4 crossref_primary_10_1007_s11082_020_02388_4 springer_journals_10_1007_s11082_020_02388_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200500 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Optical and quantum electronics |
PublicationTitleAbbrev | Opt Quant Electron |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Dastan, Panahi, Chaure (CR8) 2016; 27 Yadav, Kumar, Mittal, Pandey (CR27) 2015; 25 Dastan, Chaure (CR7) 2014; 2 Ţălu, Morozov (CR33) 2019; 484 Ţălu, Stach, Valedbagi, Elahi, Bavadi (CR35) 2015; 33 Dastan (CR5) 2015; 2 Liu, Sheng, Liu, Dienwiebel, Zhang, Dastan (CR17) 2019; 140 Zhao, Ma, Jiang (CR31) 2018; 434 CR12 CR11 Ţălu, Stach, Mendez, Trejo, Talu (CR34) 2013; 161 Astinchap (CR3) 2019; 178 Qiu, Paetzold, Gehlhaar, Smirnov, Boyen, Tait, Conings, Zhang, Nielsen, McCulloch, Froyen, Heremans, Cheyns (CR22) 2015 Dastan (CR6) 2017; 123 Guo, Xiao, Fan, Yu (CR10) 2017; 5 Jafari, Alam, Dastan, Ziakhodadadian, Shi, Garmestani, Weidenbach, Ţălu (CR13) 2019; 30 Grayeli-Korpi, Luna, Arman, Ţălu (CR9) 2017; 7 Zare, Solaymani, Shafiekhani, Kulesza, Ţălu, Bramowicz (CR30) 2018; 8 Masood, Qudsia, Hadadian, Weinberger, Nyman, Ahläng, Dahlström, Liu, Vivo, Österbacka, Smått (CR18) 2020; 10 Ţălu (CR32) 2015 Abbasi, Hasanpour, Ahmadpoor, Sillanpä, Dastan, Achour (CR1) 2019 Naseri, Solaymani, Ghaderi, Bramowicz, Kulesza, Ţălu, Pourreza, Ghasemi (CR20) 2017; 7 Jafari, Tahani, Dastan, Asgary, Shi, Yin, Zhou, Garmestani, Ţălu (CR14) 2020; 18 Qian, Liu, Xiao, Jiang, Cao, Ai, Yang (CR21) 2009; 21 Yin, Lv, Li, Jafari, Wu, Wang, Dastan, Shi, Yu, Garmestani (CR29) 2020; 825 Jiang, Xie, Zhou, Sornette (CR15) 2019; 82 Shikhgasan, Ţălu, Dinara, Sebastian, Guseyn (CR23) 2015; 86 Sobola, Ţălu, Solaymani, Grmela (CR24) 2017; 80 Kruchinin, Perevalov, Atuchin, Gritsenko, Komonov, Korolkov, Pokrovsky, Shih, Chin (CR16) 2017; 46 Chawla, Jayaganthan, Chawla, Chandra (CR4) 2008; 111 Stach, Sapota, Ţălu, Ahmadpourian, Luna, Ghobadi, Arman (CR25) 2017; 28 Yang, Zhu, Wang, Wang, Hao, Fan, Dastan, Shi (CR28) 2020; 131 Sun, Shi, Wang, Zhang, Dastan, Sun, Fan (CR26) 2020 Arman, Ţălu, Luna, Ahmadpourian, Naseri, Molamohammadi (CR2) 2015; 26 Mwema, Akinlabi, Oladijo (CR19) 2020 Ş Ţălu (2388_CR32) 2015 S Abbasi (2388_CR1) 2019 AR Grayeli-Korpi (2388_CR9) 2017; 7 A Jafari (2388_CR13) 2019; 30 Z-Q Jiang (2388_CR15) 2019; 82 J Yang (2388_CR28) 2020; 131 D Dastan (2388_CR6) 2017; 123 Ş Ţălu (2388_CR33) 2019; 484 F Zhao (2388_CR31) 2018; 434 A Jafari (2388_CR14) 2020; 18 S Stach (2388_CR25) 2017; 28 2388_CR11 VN Kruchinin (2388_CR16) 2017; 46 2388_CR12 D Guo (2388_CR10) 2017; 5 N Naseri (2388_CR20) 2017; 7 L Liu (2388_CR17) 2019; 140 W Qiu (2388_CR22) 2015 M Zare (2388_CR30) 2018; 8 RP Yadav (2388_CR27) 2015; 25 R Shikhgasan (2388_CR23) 2015; 86 B Astinchap (2388_CR3) 2019; 178 Ş Ţălu (2388_CR34) 2013; 161 L Sun (2388_CR26) 2020 A Arman (2388_CR2) 2015; 26 FM Mwema (2388_CR19) 2020 X-T Yin (2388_CR29) 2020; 825 D Dastan (2388_CR5) 2015; 2 MT Masood (2388_CR18) 2020; 10 J Qian (2388_CR21) 2009; 21 D Sobola (2388_CR24) 2017; 80 D Dastan (2388_CR8) 2016; 27 Ş Ţălu (2388_CR35) 2015; 33 V Chawla (2388_CR4) 2008; 111 D Dastan (2388_CR7) 2014; 2 |
References_xml | – volume: 7 start-page: 12923 issue: 21 year: 2017 end-page: 12930 ident: CR20 article-title: Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro- and nanoscale publication-title: RSC Adv doi: 10.1039/C6RA28795F – volume: 10 start-page: 181 issue: 1 year: 2020 ident: CR18 article-title: Investigation of well-defined pinholes in TiO electron selective layers used in planar heterojunction perovskite solar cells publication-title: Nanomaterials doi: 10.3390/nano10010181 – volume: 86 start-page: 395 year: 2015 end-page: 402 ident: CR23 article-title: Epitaxy of silicon carbide on silicon: micromorphological analysis of growth surface evolution publication-title: Superlatt Microstruct doi: 10.1016/j.spmi.2015.08.007 – year: 2019 ident: CR1 article-title: Application of the statistical analysis methodology for photodegradation of methyl orange using a new nanocomposite contining modified TiO semiconductor with SnO publication-title: Int. J. Environ. An. Chem. doi: 10.1080/03067319.2019.1662414 – volume: 18 start-page: 100463 year: 2020 ident: CR14 article-title: Ion Implantation of copper oxide thin films; statistical and experimental results publication-title: Surf Interfaces doi: 10.1016/j.surfin.2020.100463 – volume: 131 start-page: 105814 year: 2020 ident: CR28 article-title: Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks publication-title: Compos. Part A Compos. A doi: 10.1016/j.compositesa.2020.105814 – ident: CR12 – volume: 80 start-page: 1328 issue: 12 year: 2017 end-page: 1336 ident: CR24 article-title: Influence of scanning rate on quality of AFM image: study of surface statistical metrics publication-title: Microsc Res Technol doi: 10.1002/jemt.22945 – volume: 434 start-page: 11 year: 2018 end-page: 15 ident: CR31 article-title: Strong efficiency improvement in dye-sensitized solar cells by novel multi-dimensional TiO photoelectrode publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.10.131 – volume: 46 start-page: 6089 year: 2017 end-page: 6095 ident: CR16 article-title: Optical properties of TiO films deposited by reactive electron beam sputtering publication-title: J. Elec. Mater. doi: 10.1007/s11664-017-5552-3 – volume: 111 start-page: 414 year: 2008 end-page: 418 ident: CR4 article-title: Morphological study of magnetron sputtered Ti thin films on silicon substrate publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2008.04.048 – year: 2020 ident: CR19 article-title: Dependence of fractal characteristics on the scan size of atomic force microscopy (AFM) phase imaging of aluminum thin films publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.02.316 – year: 2015 ident: CR32 publication-title: Micro and nanoscale characterization of three dimensional surfaces – volume: 825 start-page: 154105 year: 2020 ident: CR29 article-title: Nanostructured tungsten trioxide prepared at various growth temperatures for sensing applications publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154105 – year: 2015 ident: CR22 article-title: An electron beam evaporated TiO layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates publication-title: J. Mater. Chem. A doi: 10.1039/C5TA07515G – volume: 30 start-page: 21185 year: 2019 end-page: 21198 ident: CR13 article-title: Statistical, morphological, and corrosion behavior of PECVD derived cobalt oxide thin flms publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-01592-7 – year: 2020 ident: CR26 article-title: Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO /P(VDF-HFP) composites publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00903B – volume: 140 start-page: 105727 year: 2019 ident: CR17 article-title: Formation of the third bodies of steel sliding against brass under lubricated conditions publication-title: Tribol Int doi: 10.1016/j.triboint.2019.04.011 – volume: 123 start-page: 1 issue: 699 year: 2017 end-page: 13 ident: CR6 article-title: Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel publication-title: Appl Phys A – volume: 33 start-page: 137 issue: 1 year: 2015 end-page: 143 ident: CR35 article-title: Surface morphology of titanium nitride thin films synthesised by DC reactive magnetronsputtering publication-title: Mater Sci Poland doi: 10.1515/msp-2015-0010 – volume: 82 start-page: 125901 issue: 12 year: 2019 ident: CR15 article-title: Multifractal analysis of financial markets: a review publication-title: Rep Prog Phys doi: 10.1088/1361-6633/ab42fb – volume: 27 start-page: 12291 year: 2016 end-page: 12296 ident: CR8 article-title: Characterization of titania thin films grown by dip-coating technique publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-016-4985-4 – volume: 484 start-page: 892 year: 2019 end-page: 898 ident: CR33 article-title: Yadav RP (2019) Multifractal analysis of sputtered indium tin oxide thin film surfaces publication-title: Appl Surf Sci. doi: 10.1016/j.apsusc.2019.04.170 – volume: 28 start-page: 2113 issue: 2 year: 2017 end-page: 2122 ident: CR25 article-title: Ganji M (2017) 3D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-016-5774-9 – volume: 25 start-page: 083115 issue: 8 year: 2015 ident: CR27 article-title: Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces publication-title: Chaos doi: 10.1063/1.4928695 – volume: 2 start-page: 109 issue: 2 year: 2015 end-page: 114 ident: CR5 article-title: Nanostructured Anatase Titania Thin Films Prepared by Sol-Gel Dip Coating Technique publication-title: J Atomic Molecul Condensate Nano Phys JAMCNP – volume: 26 start-page: 9630 year: 2015 end-page: 9639 ident: CR2 article-title: Micromorphology characterization of copper thin films by AFM and fractal analysis publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-015-3628-5 – ident: CR11 – volume: 2 start-page: 21 issue: 1 year: 2014 end-page: 24 ident: CR7 article-title: Influence of surfactants on TiO nanoparticles grown by Sol-Gel technique publication-title: J Mater Mech Manufact – volume: 5 start-page: 1315 issue: 2 year: 2017 end-page: 1321 ident: CR10 article-title: Hierarchical TiO submicrorods improve the photovoltaic performance of dye-sensitized solar cells publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.6b01671 – volume: 8 start-page: 1 year: 2018 end-page: 11 ident: CR30 article-title: Evolution of rough-surface geometry and crystalline structures of aligned TiO nanotubes for photoelectrochemical water splitting publication-title: Sci. Rep. doi: 10.1038/s41598-018-29247-3 – volume: 178 start-page: 231 year: 2019 end-page: 242 ident: CR3 article-title: Fractal and statistical characterization of Ti thin films deposited by RF-magnetron sputtering: the effects of deposition time publication-title: Optik doi: 10.1016/j.ijleo.2018.10.050 – volume: 21 start-page: 3663 issue: 36 year: 2009 end-page: 3667 ident: CR21 article-title: TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells publication-title: Adv. Mater. doi: 10.1002/adma.200900525 – volume: 7 start-page: 3349 year: 2017 end-page: 3352 ident: CR9 article-title: Influence of the oxygen partial pressure on the growth and optical properties of RF-sputtered anatase TiO thin films publication-title: Results Phys. doi: 10.1016/j.rinp.2017.08.018 – volume: 161 start-page: D44 year: 2013 end-page: D47 ident: CR34 article-title: Multifractal characterization of nanostructure surfaces of electrodeposited ni-p coatings publication-title: J. Electrochem. Soc. doi: 10.1149/2.039401jes – volume: 46 start-page: 6089 year: 2017 ident: 2388_CR16 publication-title: J. Elec. Mater. doi: 10.1007/s11664-017-5552-3 – volume: 80 start-page: 1328 issue: 12 year: 2017 ident: 2388_CR24 publication-title: Microsc Res Technol doi: 10.1002/jemt.22945 – volume: 28 start-page: 2113 issue: 2 year: 2017 ident: 2388_CR25 publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-016-5774-9 – year: 2019 ident: 2388_CR1 publication-title: Int. J. Environ. An. Chem. doi: 10.1080/03067319.2019.1662414 – year: 2020 ident: 2388_CR19 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.02.316 – volume: 7 start-page: 12923 issue: 21 year: 2017 ident: 2388_CR20 publication-title: RSC Adv doi: 10.1039/C6RA28795F – volume: 18 start-page: 100463 year: 2020 ident: 2388_CR14 publication-title: Surf Interfaces doi: 10.1016/j.surfin.2020.100463 – volume: 33 start-page: 137 issue: 1 year: 2015 ident: 2388_CR35 publication-title: Mater Sci Poland doi: 10.1515/msp-2015-0010 – volume: 111 start-page: 414 year: 2008 ident: 2388_CR4 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2008.04.048 – volume: 161 start-page: D44 year: 2013 ident: 2388_CR34 publication-title: J. Electrochem. Soc. doi: 10.1149/2.039401jes – volume: 7 start-page: 3349 year: 2017 ident: 2388_CR9 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.08.018 – volume: 10 start-page: 181 issue: 1 year: 2020 ident: 2388_CR18 publication-title: Nanomaterials doi: 10.3390/nano10010181 – year: 2020 ident: 2388_CR26 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00903B – volume: 434 start-page: 11 year: 2018 ident: 2388_CR31 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.10.131 – volume: 27 start-page: 12291 year: 2016 ident: 2388_CR8 publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-016-4985-4 – volume: 484 start-page: 892 year: 2019 ident: 2388_CR33 publication-title: Appl Surf Sci. doi: 10.1016/j.apsusc.2019.04.170 – volume: 123 start-page: 1 issue: 699 year: 2017 ident: 2388_CR6 publication-title: Appl Phys A – ident: 2388_CR11 – volume: 86 start-page: 395 year: 2015 ident: 2388_CR23 publication-title: Superlatt Microstruct doi: 10.1016/j.spmi.2015.08.007 – volume: 26 start-page: 9630 year: 2015 ident: 2388_CR2 publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-015-3628-5 – volume: 140 start-page: 105727 year: 2019 ident: 2388_CR17 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.04.011 – volume: 21 start-page: 3663 issue: 36 year: 2009 ident: 2388_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.200900525 – year: 2015 ident: 2388_CR22 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA07515G – volume: 825 start-page: 154105 year: 2020 ident: 2388_CR29 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154105 – volume: 5 start-page: 1315 issue: 2 year: 2017 ident: 2388_CR10 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.6b01671 – volume: 25 start-page: 083115 issue: 8 year: 2015 ident: 2388_CR27 publication-title: Chaos doi: 10.1063/1.4928695 – volume: 131 start-page: 105814 year: 2020 ident: 2388_CR28 publication-title: Compos. Part A Compos. A doi: 10.1016/j.compositesa.2020.105814 – volume: 2 start-page: 21 issue: 1 year: 2014 ident: 2388_CR7 publication-title: J Mater Mech Manufact – volume-title: Micro and nanoscale characterization of three dimensional surfaces year: 2015 ident: 2388_CR32 – volume: 30 start-page: 21185 year: 2019 ident: 2388_CR13 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-01592-7 – volume: 178 start-page: 231 year: 2019 ident: 2388_CR3 publication-title: Optik doi: 10.1016/j.ijleo.2018.10.050 – volume: 8 start-page: 1 year: 2018 ident: 2388_CR30 publication-title: Sci. Rep. doi: 10.1038/s41598-018-29247-3 – volume: 2 start-page: 109 issue: 2 year: 2015 ident: 2388_CR5 publication-title: J Atomic Molecul Condensate Nano Phys JAMCNP doi: 10.26713/jamcnp.v2i2.331 – volume: 82 start-page: 125901 issue: 12 year: 2019 ident: 2388_CR15 publication-title: Rep Prog Phys doi: 10.1088/1361-6633/ab42fb – ident: 2388_CR12 |
SSID | ssj0006450 |
Score | 2.4644306 |
Snippet | The micromorphology and semiconductor properties of TiO
2
thin films growth using different ion beam energies have been finely analyzed using atomic force... The micromorphology and semiconductor properties of TiO2 thin films growth using different ion beam energies have been finely analyzed using atomic force... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atomic force microscopy Characterization and Evaluation of Materials Computer Communication Networks Deposition Electrical Engineering Electron beams Energy Energy gap Grain size Ion beams Lasers Optical Devices Optical properties Optics Optoelectronic devices Photonics Physics Physics and Astronomy Spectrum analysis Surface layers Surface tension Thin films Titanium dioxide |
Title | Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted |
URI | https://link.springer.com/article/10.1007/s11082-020-02388-4 https://www.proquest.com/docview/2402505802 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oi6AHl6pYrWUO3nQgmZkkk2OrraK4gC3UU8gswUIXMfXgv3cmnbQqKnjKITPv8JZ53-NtACciVSLkRGLjXilmyoQ7XEURFnZ6uqKMEM_2Dt_ehVd9dj0IBq4pLC-r3cuUZPFSL5vdfOOusA13rJ_hmK1CNTCxuy3k6pPW4v0NWbGX1YJhzGM_dq0yP9P46o6WGPNbWrTwNt1t2HQwEbXmct2BFT2pwZaDjMgZZF6DjU_zBGuwVtRzynwXHh4Nv_R0bPdlSZS6ySNomqHe8J6g2fNwgrLhaJwjpYu6LUNVvKNyKQ4SOh0jIzJksLVVBLUH_W6nd36F3fIELI1VzXCq_EAKEZEs8z3p-5QJah2RpkFKeGjszkAhLwtSA8F0ppVKeRzFIVdEeFKJiO5DZTKd6ANA2oQtNAxSSUPBaCRiLRmxqwA51URmYR38koeJdJPF7YKLUbKciWz5nhi-JwXfE1aH08Wdl_lcjT9PN0rRJM7G8sTmhQx-4x6pw1kpruXv36kd_u_4EayTQmNslWMDKrPXN31skMhMNKHaal-0u_Z7-XTTaRaK-AG_U9Qr |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEAIOBbZFbMvDBzi1lhLbSZxDD6gtWt6VuitxS-NH1JXYXUQWIf4PP5SxcVioAIkD5ziWNfN55ht5HgDbqjQqlUxTdK-cCoPhjjRZRpXrnm64YCxytcPHJ2mnJw7OkrMpuG1qYXy2e_Mk6S31pNgtRndFXbjj_IykIqRSHtqbawzU6u_7P1GrO4zt_er-6NAwS4BqBNmYliZOtFIZq6o40nHMheLOLluelEymCENkBlGVlMhIbGWNKWWe5ak0TEXaqIzjvtMwi-RDurvTY7sP9j4Vfg6sI99U5nEeSnOeP_NT9zfhtP89w3rvtrcMHwItJbv3OFqBKTtswVKgqCQYgLoFi4_6F7ZgzueP6voj_P6D-rGjgZvPpUkZOp2QUUW6_VNGxv_6Q1L1zwc1MdbnieGu6oY0Q3iIsuWAIEQIcnkHPPMJeu8i4FWYGY6Gdg2IxTCJp0mpeaoEz1RutWBu9KDklukqbUPcyLDQoZO5G6hxXkx6MDu5Fyj3wsu9EG34-vDPxX0fj1dXrzeqKcKdrgv3DoV8UUasDd8adU0-v7zb57ct34L5Tvf4qDjaPzn8AgvMo8dlWK7DzPjyym4gCxqrTQ9CAn_fG_V39JQOAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1tqVrBAdotFctH60N7ai0S20mcAwcErKC0W6SyErc0_oi60m52RYIQ_4qfyDjrsBS1lXrgnMSKZp49b-SZNwAfVG5ULJmmGF45FQbTHWmShCqnnm64YCxwvcPfBvHxUHy5iC46cNv2wjTV7u2V5Lynwak0lfXuzBS7i8a3EEMXdamPizmSCl9WeWpvrjFpq_ZODtHDHxnrH50fHFM_V4BqBFxNcxNGWqmEFUUY6DDkQnF3Rlse5UzGCElkCUER5chObGGNyWWapLE0TAXaqITjus_guXDdx7iDhmz__uyPRTMT1hFxKtMw9W06f_7n30Phgt8-upJtIl3_Fax6ikr255h6DR1bdmHN01XiD4OqCysPtAy78KKpJdXVGzj7gb6y04mb1aVJ7lVPyLQg56PvjNS_RiUpRuNJRYxtasZwVXVD2oE8RNl8QhAuBHm9A6FZh-GTGPgtLJXT0m4AsZgy8TjKNY-V4IlKrRbMjSGU3DJdxD0IWxtm2quau-Ea42yhx-zsnqHds8bumejBp_tvZnNNj3--vd26JvP7u8rcnRRyRxmwHnxu3bV4_PfVNv_v9ffw8uywn309GZxuwTJrwOOKLbdhqb68sjtIiGr1rsEggZ9PDfo7_roSNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stereometric+analysis+of+TiO2+thin+films+deposited+by+electron+beam+ion+assisted&rft.jtitle=Optical+and+quantum+electronics&rft.au=Shakoury%2C+Reza&rft.au=Arman%2C+Ali&rft.au=%C5%A2%C4%83lu%2C+%C5%9Etefan&rft.au=Dastan%2C+Davoud&rft.date=2020-05-01&rft.pub=Springer+US&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=52&rft.issue=5&rft_id=info:doi/10.1007%2Fs11082-020-02388-4&rft.externalDocID=10_1007_s11082_020_02388_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon |