Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted

The micromorphology and semiconductor properties of TiO 2 thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysi...

Full description

Saved in:
Bibliographic Details
Published inOptical and quantum electronics Vol. 52; no. 5
Main Authors Shakoury, Reza, Arman, Ali, Ţălu, Ştefan, Dastan, Davoud, Luna, Carlos, Rezaee, Sahar
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The micromorphology and semiconductor properties of TiO 2 thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysis are essential for the accurate characterization of the 3-D surface topographic features and allow the determination of the 3-D surface texture parameters that influence the optical properties of the material. The samples were divided into four groups to discuss the obtained results, according to the ion beam energy applied in the sample preparation. The results obtained from experimental measurements suggested that the surface of samples prepared at lower beam energy had the most regular surface (Sq = 6.25 nm), while the most irregular surface was found in samples prepared with the highest ion beam energy (Sq = 13.40 nm). The transmittance (%) and reflectance (%) spectra, and the band gap energy experienced noticeable changes with increasing applied energy and deposition pressures due to the increase of the surface tension and decrease of the grain sizes. Our investigation shows that the deposition pressure and applied energy affect the optical and the roughness of titania thin films, which partially contribute to the functionality of the surface that, in turn, makes titania useful for the fabrication of different optoelectronic devices.
AbstractList The micromorphology and semiconductor properties of TiO 2 thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysis are essential for the accurate characterization of the 3-D surface topographic features and allow the determination of the 3-D surface texture parameters that influence the optical properties of the material. The samples were divided into four groups to discuss the obtained results, according to the ion beam energy applied in the sample preparation. The results obtained from experimental measurements suggested that the surface of samples prepared at lower beam energy had the most regular surface (Sq = 6.25 nm), while the most irregular surface was found in samples prepared with the highest ion beam energy (Sq = 13.40 nm). The transmittance (%) and reflectance (%) spectra, and the band gap energy experienced noticeable changes with increasing applied energy and deposition pressures due to the increase of the surface tension and decrease of the grain sizes. Our investigation shows that the deposition pressure and applied energy affect the optical and the roughness of titania thin films, which partially contribute to the functionality of the surface that, in turn, makes titania useful for the fabrication of different optoelectronic devices.
The micromorphology and semiconductor properties of TiO2 thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysis are essential for the accurate characterization of the 3-D surface topographic features and allow the determination of the 3-D surface texture parameters that influence the optical properties of the material. The samples were divided into four groups to discuss the obtained results, according to the ion beam energy applied in the sample preparation. The results obtained from experimental measurements suggested that the surface of samples prepared at lower beam energy had the most regular surface (Sq = 6.25 nm), while the most irregular surface was found in samples prepared with the highest ion beam energy (Sq = 13.40 nm). The transmittance (%) and reflectance (%) spectra, and the band gap energy experienced noticeable changes with increasing applied energy and deposition pressures due to the increase of the surface tension and decrease of the grain sizes. Our investigation shows that the deposition pressure and applied energy affect the optical and the roughness of titania thin films, which partially contribute to the functionality of the surface that, in turn, makes titania useful for the fabrication of different optoelectronic devices.
ArticleNumber 270
Author Shakoury, Reza
Ţălu, Ştefan
Arman, Ali
Luna, Carlos
Dastan, Davoud
Rezaee, Sahar
Author_xml – sequence: 1
  givenname: Reza
  surname: Shakoury
  fullname: Shakoury, Reza
  organization: Department of Physics, Faculty of Science, Imam Khomeini International University
– sequence: 2
  givenname: Ali
  orcidid: 0000-0003-1246-0453
  surname: Arman
  fullname: Arman, Ali
  organization: Vacuum Technology Group, ACECR, Sharif University Branch
– sequence: 3
  givenname: Ştefan
  orcidid: 0000-0003-1311-7657
  surname: Ţălu
  fullname: Ţălu, Ştefan
  organization: Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, The Directorate of Research
– sequence: 4
  givenname: Davoud
  surname: Dastan
  fullname: Dastan, Davoud
  organization: School of Materials Science and Engineering, Georgia Institute of Technology
– sequence: 5
  givenname: Carlos
  orcidid: 0000-0002-0149-9814
  surname: Luna
  fullname: Luna, Carlos
  organization: Facultad de Ciencias Físico Matemáticas (FCFM), Universidad Autónoma de Nuevo León (UANL)
– sequence: 6
  givenname: Sahar
  orcidid: 0000-0001-5034-0810
  surname: Rezaee
  fullname: Rezaee, Sahar
  email: saharrezaee593@iauksh.ac.ir
  organization: Department of Physics, KermanshahBranch, IslamicAzadUniversity
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTZLObPUrxCwoVrOAtZLOJpuxuapIe-u-NVhA89DDMwMwzvDwzNBn9aBC6JHBNAOqbSAgIWgCFXEyIojxBU8JrWghSv03QFBhUhWhIc4ZmMW4AoCo5TNHzSzLB-MGk4DRWo-r30UXsLV67FcXpw43Yun6IuDNbH10yHW732PRGp-BH3Bo1YJcHFTOXt-fo1Ko-movfPkev93frxWOxXD08LW6XhWakSYXqCNdtW1NrCWhCWNmysibCMK6oqJqK0aoEy5Vg3FjTdUo0dVOJjragu7Zmc3R1-LsN_nNnYpIbvws5f5S0BMqBi2xijsThSgcfYzBWapdUyoFTUK6XBOS3P3nwJ7M_-eNPlhml_9BtcIMK--MQO0AxH4_vJvylOkJ9AZswhGo
CitedBy_id crossref_primary_10_1007_s10854_020_04643_6
crossref_primary_10_1016_j_physa_2023_128989
crossref_primary_10_1016_j_ijleo_2024_171818
crossref_primary_10_1016_j_ijhydene_2020_11_101
crossref_primary_10_1016_j_matchemphys_2021_124647
crossref_primary_10_1007_s11082_022_04295_2
crossref_primary_10_1002_jemt_23905
crossref_primary_10_1007_s10854_020_03987_3
crossref_primary_10_1016_j_ceramint_2020_10_131
crossref_primary_10_1016_j_micron_2020_102996
crossref_primary_10_1007_s10854_020_04518_w
crossref_primary_10_1007_s10854_021_05740_w
crossref_primary_10_1080_14328917_2021_1963577
crossref_primary_10_1016_j_matpr_2023_02_273
crossref_primary_10_1002_adts_202300238
crossref_primary_10_1016_j_jcis_2022_06_114
crossref_primary_10_1016_j_ijhydene_2020_06_146
crossref_primary_10_1007_s11082_021_03079_4
crossref_primary_10_1002_jemt_24138
crossref_primary_10_1016_j_matchemphys_2020_123756
crossref_primary_10_1007_s10854_020_04858_7
crossref_primary_10_1007_s10854_021_06366_8
crossref_primary_10_1007_s11243_020_00419_3
crossref_primary_10_1016_j_apt_2020_10_015
crossref_primary_10_1007_s10765_021_02830_z
crossref_primary_10_1016_j_physa_2024_130165
crossref_primary_10_1007_s10854_020_04189_7
crossref_primary_10_1016_j_surfin_2020_100905
crossref_primary_10_1016_j_surfin_2020_100706
crossref_primary_10_1016_j_matchemphys_2021_124302
crossref_primary_10_1016_j_ceramint_2021_04_271
crossref_primary_10_1002_jemt_23974
crossref_primary_10_1007_s10008_021_04932_y
crossref_primary_10_1080_02670836_2022_2131127
crossref_primary_10_1111_jmi_12990
crossref_primary_10_1007_s00339_022_05611_z
crossref_primary_10_1016_j_physb_2021_413534
crossref_primary_10_1016_j_ijhydene_2021_12_016
crossref_primary_10_1016_j_surfin_2021_101190
crossref_primary_10_1088_2051_672X_ac459c
crossref_primary_10_1007_s10008_021_04927_9
crossref_primary_10_1016_j_tsf_2021_138573
crossref_primary_10_1016_j_vacuum_2021_110533
crossref_primary_10_1007_s10854_021_06421_4
crossref_primary_10_1016_j_matdes_2021_109722
crossref_primary_10_1007_s00339_021_04392_1
crossref_primary_10_1016_j_apsusc_2021_149924
crossref_primary_10_1016_j_mssp_2020_105506
crossref_primary_10_1016_j_physb_2021_413360
crossref_primary_10_1002_vipr_202200772
crossref_primary_10_1007_s11082_021_02942_8
crossref_primary_10_1016_j_surfin_2020_100762
crossref_primary_10_31875_2410_4701_2023_10_09
crossref_primary_10_1007_s10854_021_06172_2
crossref_primary_10_1016_j_jallcom_2020_157465
crossref_primary_10_1016_j_matpr_2022_06_026
crossref_primary_10_3390_mi13081361
Cites_doi 10.1039/C6RA28795F
10.3390/nano10010181
10.1016/j.spmi.2015.08.007
10.1080/03067319.2019.1662414
10.1016/j.surfin.2020.100463
10.1016/j.compositesa.2020.105814
10.1002/jemt.22945
10.1016/j.apsusc.2017.10.131
10.1007/s11664-017-5552-3
10.1016/j.matchemphys.2008.04.048
10.1016/j.matpr.2020.02.316
10.1016/j.jallcom.2020.154105
10.1039/C5TA07515G
10.1007/s10854-019-01592-7
10.1039/D0TA00903B
10.1016/j.triboint.2019.04.011
10.1515/msp-2015-0010
10.1088/1361-6633/ab42fb
10.1007/s10854-016-4985-4
10.1016/j.apsusc.2019.04.170
10.1007/s10854-016-5774-9
10.1063/1.4928695
10.1007/s10854-015-3628-5
10.1021/acssuschemeng.6b01671
10.1038/s41598-018-29247-3
10.1016/j.ijleo.2018.10.050
10.1002/adma.200900525
10.1016/j.rinp.2017.08.018
10.1149/2.039401jes
10.26713/jamcnp.v2i2.331
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s11082-020-02388-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1572-817X
ExternalDocumentID 10_1007_s11082_020_02388_4
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8Z
Z92
ZMTXR
ZY4
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-ad15cbb72ff10c1134b34718e35a2869632640f5a835efedda897968d2b0cdb73
IEDL.DBID U2A
ISSN 0306-8919
IngestDate Fri Jul 25 11:05:44 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Tue Jul 01 00:53:31 EDT 2025
Fri Feb 21 02:25:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords AFM
TiO
3-D surface microtexture
Stereometric analysis
Optical properties
thin films
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ad15cbb72ff10c1134b34718e35a2869632640f5a835efedda897968d2b0cdb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1311-7657
0000-0001-5034-0810
0000-0002-0149-9814
0000-0003-1246-0453
PQID 2402505802
PQPubID 2043598
ParticipantIDs proquest_journals_2402505802
crossref_citationtrail_10_1007_s11082_020_02388_4
crossref_primary_10_1007_s11082_020_02388_4
springer_journals_10_1007_s11082_020_02388_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200500
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Optical and quantum electronics
PublicationTitleAbbrev Opt Quant Electron
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Dastan, Panahi, Chaure (CR8) 2016; 27
Yadav, Kumar, Mittal, Pandey (CR27) 2015; 25
Dastan, Chaure (CR7) 2014; 2
Ţălu, Morozov (CR33) 2019; 484
Ţălu, Stach, Valedbagi, Elahi, Bavadi (CR35) 2015; 33
Dastan (CR5) 2015; 2
Liu, Sheng, Liu, Dienwiebel, Zhang, Dastan (CR17) 2019; 140
Zhao, Ma, Jiang (CR31) 2018; 434
CR12
CR11
Ţălu, Stach, Mendez, Trejo, Talu (CR34) 2013; 161
Astinchap (CR3) 2019; 178
Qiu, Paetzold, Gehlhaar, Smirnov, Boyen, Tait, Conings, Zhang, Nielsen, McCulloch, Froyen, Heremans, Cheyns (CR22) 2015
Dastan (CR6) 2017; 123
Guo, Xiao, Fan, Yu (CR10) 2017; 5
Jafari, Alam, Dastan, Ziakhodadadian, Shi, Garmestani, Weidenbach, Ţălu (CR13) 2019; 30
Grayeli-Korpi, Luna, Arman, Ţălu (CR9) 2017; 7
Zare, Solaymani, Shafiekhani, Kulesza, Ţălu, Bramowicz (CR30) 2018; 8
Masood, Qudsia, Hadadian, Weinberger, Nyman, Ahläng, Dahlström, Liu, Vivo, Österbacka, Smått (CR18) 2020; 10
Ţălu (CR32) 2015
Abbasi, Hasanpour, Ahmadpoor, Sillanpä, Dastan, Achour (CR1) 2019
Naseri, Solaymani, Ghaderi, Bramowicz, Kulesza, Ţălu, Pourreza, Ghasemi (CR20) 2017; 7
Jafari, Tahani, Dastan, Asgary, Shi, Yin, Zhou, Garmestani, Ţălu (CR14) 2020; 18
Qian, Liu, Xiao, Jiang, Cao, Ai, Yang (CR21) 2009; 21
Yin, Lv, Li, Jafari, Wu, Wang, Dastan, Shi, Yu, Garmestani (CR29) 2020; 825
Jiang, Xie, Zhou, Sornette (CR15) 2019; 82
Shikhgasan, Ţălu, Dinara, Sebastian, Guseyn (CR23) 2015; 86
Sobola, Ţălu, Solaymani, Grmela (CR24) 2017; 80
Kruchinin, Perevalov, Atuchin, Gritsenko, Komonov, Korolkov, Pokrovsky, Shih, Chin (CR16) 2017; 46
Chawla, Jayaganthan, Chawla, Chandra (CR4) 2008; 111
Stach, Sapota, Ţălu, Ahmadpourian, Luna, Ghobadi, Arman (CR25) 2017; 28
Yang, Zhu, Wang, Wang, Hao, Fan, Dastan, Shi (CR28) 2020; 131
Sun, Shi, Wang, Zhang, Dastan, Sun, Fan (CR26) 2020
Arman, Ţălu, Luna, Ahmadpourian, Naseri, Molamohammadi (CR2) 2015; 26
Mwema, Akinlabi, Oladijo (CR19) 2020
Ş Ţălu (2388_CR32) 2015
S Abbasi (2388_CR1) 2019
AR Grayeli-Korpi (2388_CR9) 2017; 7
A Jafari (2388_CR13) 2019; 30
Z-Q Jiang (2388_CR15) 2019; 82
J Yang (2388_CR28) 2020; 131
D Dastan (2388_CR6) 2017; 123
Ş Ţălu (2388_CR33) 2019; 484
F Zhao (2388_CR31) 2018; 434
A Jafari (2388_CR14) 2020; 18
S Stach (2388_CR25) 2017; 28
2388_CR11
VN Kruchinin (2388_CR16) 2017; 46
2388_CR12
D Guo (2388_CR10) 2017; 5
N Naseri (2388_CR20) 2017; 7
L Liu (2388_CR17) 2019; 140
W Qiu (2388_CR22) 2015
M Zare (2388_CR30) 2018; 8
RP Yadav (2388_CR27) 2015; 25
R Shikhgasan (2388_CR23) 2015; 86
B Astinchap (2388_CR3) 2019; 178
Ş Ţălu (2388_CR34) 2013; 161
L Sun (2388_CR26) 2020
A Arman (2388_CR2) 2015; 26
FM Mwema (2388_CR19) 2020
X-T Yin (2388_CR29) 2020; 825
D Dastan (2388_CR5) 2015; 2
MT Masood (2388_CR18) 2020; 10
J Qian (2388_CR21) 2009; 21
D Sobola (2388_CR24) 2017; 80
D Dastan (2388_CR8) 2016; 27
Ş Ţălu (2388_CR35) 2015; 33
V Chawla (2388_CR4) 2008; 111
D Dastan (2388_CR7) 2014; 2
References_xml – volume: 7
  start-page: 12923
  issue: 21
  year: 2017
  end-page: 12930
  ident: CR20
  article-title: Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro- and nanoscale
  publication-title: RSC Adv
  doi: 10.1039/C6RA28795F
– volume: 10
  start-page: 181
  issue: 1
  year: 2020
  ident: CR18
  article-title: Investigation of well-defined pinholes in TiO electron selective layers used in planar heterojunction perovskite solar cells
  publication-title: Nanomaterials
  doi: 10.3390/nano10010181
– volume: 86
  start-page: 395
  year: 2015
  end-page: 402
  ident: CR23
  article-title: Epitaxy of silicon carbide on silicon: micromorphological analysis of growth surface evolution
  publication-title: Superlatt Microstruct
  doi: 10.1016/j.spmi.2015.08.007
– year: 2019
  ident: CR1
  article-title: Application of the statistical analysis methodology for photodegradation of methyl orange using a new nanocomposite contining modified TiO semiconductor with SnO
  publication-title: Int. J. Environ. An. Chem.
  doi: 10.1080/03067319.2019.1662414
– volume: 18
  start-page: 100463
  year: 2020
  ident: CR14
  article-title: Ion Implantation of copper oxide thin films; statistical and experimental results
  publication-title: Surf Interfaces
  doi: 10.1016/j.surfin.2020.100463
– volume: 131
  start-page: 105814
  year: 2020
  ident: CR28
  article-title: Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks
  publication-title: Compos. Part A Compos. A
  doi: 10.1016/j.compositesa.2020.105814
– ident: CR12
– volume: 80
  start-page: 1328
  issue: 12
  year: 2017
  end-page: 1336
  ident: CR24
  article-title: Influence of scanning rate on quality of AFM image: study of surface statistical metrics
  publication-title: Microsc Res Technol
  doi: 10.1002/jemt.22945
– volume: 434
  start-page: 11
  year: 2018
  end-page: 15
  ident: CR31
  article-title: Strong efficiency improvement in dye-sensitized solar cells by novel multi-dimensional TiO photoelectrode
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2017.10.131
– volume: 46
  start-page: 6089
  year: 2017
  end-page: 6095
  ident: CR16
  article-title: Optical properties of TiO films deposited by reactive electron beam sputtering
  publication-title: J. Elec. Mater.
  doi: 10.1007/s11664-017-5552-3
– volume: 111
  start-page: 414
  year: 2008
  end-page: 418
  ident: CR4
  article-title: Morphological study of magnetron sputtered Ti thin films on silicon substrate
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2008.04.048
– year: 2020
  ident: CR19
  article-title: Dependence of fractal characteristics on the scan size of atomic force microscopy (AFM) phase imaging of aluminum thin films
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.02.316
– year: 2015
  ident: CR32
  publication-title: Micro and nanoscale characterization of three dimensional surfaces
– volume: 825
  start-page: 154105
  year: 2020
  ident: CR29
  article-title: Nanostructured tungsten trioxide prepared at various growth temperatures for sensing applications
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154105
– year: 2015
  ident: CR22
  article-title: An electron beam evaporated TiO layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA07515G
– volume: 30
  start-page: 21185
  year: 2019
  end-page: 21198
  ident: CR13
  article-title: Statistical, morphological, and corrosion behavior of PECVD derived cobalt oxide thin flms
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-019-01592-7
– year: 2020
  ident: CR26
  article-title: Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO /P(VDF-HFP) composites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00903B
– volume: 140
  start-page: 105727
  year: 2019
  ident: CR17
  article-title: Formation of the third bodies of steel sliding against brass under lubricated conditions
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.04.011
– volume: 123
  start-page: 1
  issue: 699
  year: 2017
  end-page: 13
  ident: CR6
  article-title: Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel
  publication-title: Appl Phys A
– volume: 33
  start-page: 137
  issue: 1
  year: 2015
  end-page: 143
  ident: CR35
  article-title: Surface morphology of titanium nitride thin films synthesised by DC reactive magnetronsputtering
  publication-title: Mater Sci Poland
  doi: 10.1515/msp-2015-0010
– volume: 82
  start-page: 125901
  issue: 12
  year: 2019
  ident: CR15
  article-title: Multifractal analysis of financial markets: a review
  publication-title: Rep Prog Phys
  doi: 10.1088/1361-6633/ab42fb
– volume: 27
  start-page: 12291
  year: 2016
  end-page: 12296
  ident: CR8
  article-title: Characterization of titania thin films grown by dip-coating technique
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-016-4985-4
– volume: 484
  start-page: 892
  year: 2019
  end-page: 898
  ident: CR33
  article-title: Yadav RP (2019) Multifractal analysis of sputtered indium tin oxide thin film surfaces
  publication-title: Appl Surf Sci.
  doi: 10.1016/j.apsusc.2019.04.170
– volume: 28
  start-page: 2113
  issue: 2
  year: 2017
  end-page: 2122
  ident: CR25
  article-title: Ganji M (2017) 3D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-016-5774-9
– volume: 25
  start-page: 083115
  issue: 8
  year: 2015
  ident: CR27
  article-title: Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces
  publication-title: Chaos
  doi: 10.1063/1.4928695
– volume: 2
  start-page: 109
  issue: 2
  year: 2015
  end-page: 114
  ident: CR5
  article-title: Nanostructured Anatase Titania Thin Films Prepared by Sol-Gel Dip Coating Technique
  publication-title: J Atomic Molecul Condensate Nano Phys JAMCNP
– volume: 26
  start-page: 9630
  year: 2015
  end-page: 9639
  ident: CR2
  article-title: Micromorphology characterization of copper thin films by AFM and fractal analysis
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-015-3628-5
– ident: CR11
– volume: 2
  start-page: 21
  issue: 1
  year: 2014
  end-page: 24
  ident: CR7
  article-title: Influence of surfactants on TiO nanoparticles grown by Sol-Gel technique
  publication-title: J Mater Mech Manufact
– volume: 5
  start-page: 1315
  issue: 2
  year: 2017
  end-page: 1321
  ident: CR10
  article-title: Hierarchical TiO submicrorods improve the photovoltaic performance of dye-sensitized solar cells
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.6b01671
– volume: 8
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR30
  article-title: Evolution of rough-surface geometry and crystalline structures of aligned TiO nanotubes for photoelectrochemical water splitting
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29247-3
– volume: 178
  start-page: 231
  year: 2019
  end-page: 242
  ident: CR3
  article-title: Fractal and statistical characterization of Ti thin films deposited by RF-magnetron sputtering: the effects of deposition time
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.10.050
– volume: 21
  start-page: 3663
  issue: 36
  year: 2009
  end-page: 3667
  ident: CR21
  article-title: TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900525
– volume: 7
  start-page: 3349
  year: 2017
  end-page: 3352
  ident: CR9
  article-title: Influence of the oxygen partial pressure on the growth and optical properties of RF-sputtered anatase TiO thin films
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.08.018
– volume: 161
  start-page: D44
  year: 2013
  end-page: D47
  ident: CR34
  article-title: Multifractal characterization of nanostructure surfaces of electrodeposited ni-p coatings
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.039401jes
– volume: 46
  start-page: 6089
  year: 2017
  ident: 2388_CR16
  publication-title: J. Elec. Mater.
  doi: 10.1007/s11664-017-5552-3
– volume: 80
  start-page: 1328
  issue: 12
  year: 2017
  ident: 2388_CR24
  publication-title: Microsc Res Technol
  doi: 10.1002/jemt.22945
– volume: 28
  start-page: 2113
  issue: 2
  year: 2017
  ident: 2388_CR25
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-016-5774-9
– year: 2019
  ident: 2388_CR1
  publication-title: Int. J. Environ. An. Chem.
  doi: 10.1080/03067319.2019.1662414
– year: 2020
  ident: 2388_CR19
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.02.316
– volume: 7
  start-page: 12923
  issue: 21
  year: 2017
  ident: 2388_CR20
  publication-title: RSC Adv
  doi: 10.1039/C6RA28795F
– volume: 18
  start-page: 100463
  year: 2020
  ident: 2388_CR14
  publication-title: Surf Interfaces
  doi: 10.1016/j.surfin.2020.100463
– volume: 33
  start-page: 137
  issue: 1
  year: 2015
  ident: 2388_CR35
  publication-title: Mater Sci Poland
  doi: 10.1515/msp-2015-0010
– volume: 111
  start-page: 414
  year: 2008
  ident: 2388_CR4
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2008.04.048
– volume: 161
  start-page: D44
  year: 2013
  ident: 2388_CR34
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.039401jes
– volume: 7
  start-page: 3349
  year: 2017
  ident: 2388_CR9
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.08.018
– volume: 10
  start-page: 181
  issue: 1
  year: 2020
  ident: 2388_CR18
  publication-title: Nanomaterials
  doi: 10.3390/nano10010181
– year: 2020
  ident: 2388_CR26
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00903B
– volume: 434
  start-page: 11
  year: 2018
  ident: 2388_CR31
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2017.10.131
– volume: 27
  start-page: 12291
  year: 2016
  ident: 2388_CR8
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-016-4985-4
– volume: 484
  start-page: 892
  year: 2019
  ident: 2388_CR33
  publication-title: Appl Surf Sci.
  doi: 10.1016/j.apsusc.2019.04.170
– volume: 123
  start-page: 1
  issue: 699
  year: 2017
  ident: 2388_CR6
  publication-title: Appl Phys A
– ident: 2388_CR11
– volume: 86
  start-page: 395
  year: 2015
  ident: 2388_CR23
  publication-title: Superlatt Microstruct
  doi: 10.1016/j.spmi.2015.08.007
– volume: 26
  start-page: 9630
  year: 2015
  ident: 2388_CR2
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-015-3628-5
– volume: 140
  start-page: 105727
  year: 2019
  ident: 2388_CR17
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.04.011
– volume: 21
  start-page: 3663
  issue: 36
  year: 2009
  ident: 2388_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900525
– year: 2015
  ident: 2388_CR22
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA07515G
– volume: 825
  start-page: 154105
  year: 2020
  ident: 2388_CR29
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154105
– volume: 5
  start-page: 1315
  issue: 2
  year: 2017
  ident: 2388_CR10
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.6b01671
– volume: 25
  start-page: 083115
  issue: 8
  year: 2015
  ident: 2388_CR27
  publication-title: Chaos
  doi: 10.1063/1.4928695
– volume: 131
  start-page: 105814
  year: 2020
  ident: 2388_CR28
  publication-title: Compos. Part A Compos. A
  doi: 10.1016/j.compositesa.2020.105814
– volume: 2
  start-page: 21
  issue: 1
  year: 2014
  ident: 2388_CR7
  publication-title: J Mater Mech Manufact
– volume-title: Micro and nanoscale characterization of three dimensional surfaces
  year: 2015
  ident: 2388_CR32
– volume: 30
  start-page: 21185
  year: 2019
  ident: 2388_CR13
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-019-01592-7
– volume: 178
  start-page: 231
  year: 2019
  ident: 2388_CR3
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.10.050
– volume: 8
  start-page: 1
  year: 2018
  ident: 2388_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29247-3
– volume: 2
  start-page: 109
  issue: 2
  year: 2015
  ident: 2388_CR5
  publication-title: J Atomic Molecul Condensate Nano Phys JAMCNP
  doi: 10.26713/jamcnp.v2i2.331
– volume: 82
  start-page: 125901
  issue: 12
  year: 2019
  ident: 2388_CR15
  publication-title: Rep Prog Phys
  doi: 10.1088/1361-6633/ab42fb
– ident: 2388_CR12
SSID ssj0006450
Score 2.4644306
Snippet The micromorphology and semiconductor properties of TiO 2 thin films growth using different ion beam energies have been finely analyzed using atomic force...
The micromorphology and semiconductor properties of TiO2 thin films growth using different ion beam energies have been finely analyzed using atomic force...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atomic force microscopy
Characterization and Evaluation of Materials
Computer Communication Networks
Deposition
Electrical Engineering
Electron beams
Energy
Energy gap
Grain size
Ion beams
Lasers
Optical Devices
Optical properties
Optics
Optoelectronic devices
Photonics
Physics
Physics and Astronomy
Spectrum analysis
Surface layers
Surface tension
Thin films
Titanium dioxide
Title Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted
URI https://link.springer.com/article/10.1007/s11082-020-02388-4
https://www.proquest.com/docview/2402505802
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oi6AHl6pYrWUO3nQgmZkkk2OrraK4gC3UU8gswUIXMfXgv3cmnbQqKnjKITPv8JZ53-NtACciVSLkRGLjXilmyoQ7XEURFnZ6uqKMEM_2Dt_ehVd9dj0IBq4pLC-r3cuUZPFSL5vdfOOusA13rJ_hmK1CNTCxuy3k6pPW4v0NWbGX1YJhzGM_dq0yP9P46o6WGPNbWrTwNt1t2HQwEbXmct2BFT2pwZaDjMgZZF6DjU_zBGuwVtRzynwXHh4Nv_R0bPdlSZS6ySNomqHe8J6g2fNwgrLhaJwjpYu6LUNVvKNyKQ4SOh0jIzJksLVVBLUH_W6nd36F3fIELI1VzXCq_EAKEZEs8z3p-5QJah2RpkFKeGjszkAhLwtSA8F0ppVKeRzFIVdEeFKJiO5DZTKd6ANA2oQtNAxSSUPBaCRiLRmxqwA51URmYR38koeJdJPF7YKLUbKciWz5nhi-JwXfE1aH08Wdl_lcjT9PN0rRJM7G8sTmhQx-4x6pw1kpruXv36kd_u_4EayTQmNslWMDKrPXN31skMhMNKHaal-0u_Z7-XTTaRaK-AG_U9Qr
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEAIOBbZFbMvDBzi1lhLbSZxDD6gtWt6VuitxS-NH1JXYXUQWIf4PP5SxcVioAIkD5ziWNfN55ht5HgDbqjQqlUxTdK-cCoPhjjRZRpXrnm64YCxytcPHJ2mnJw7OkrMpuG1qYXy2e_Mk6S31pNgtRndFXbjj_IykIqRSHtqbawzU6u_7P1GrO4zt_er-6NAwS4BqBNmYliZOtFIZq6o40nHMheLOLluelEymCENkBlGVlMhIbGWNKWWe5ak0TEXaqIzjvtMwi-RDurvTY7sP9j4Vfg6sI99U5nEeSnOeP_NT9zfhtP89w3rvtrcMHwItJbv3OFqBKTtswVKgqCQYgLoFi4_6F7ZgzueP6voj_P6D-rGjgZvPpUkZOp2QUUW6_VNGxv_6Q1L1zwc1MdbnieGu6oY0Q3iIsuWAIEQIcnkHPPMJeu8i4FWYGY6Gdg2IxTCJp0mpeaoEz1RutWBu9KDklukqbUPcyLDQoZO5G6hxXkx6MDu5Fyj3wsu9EG34-vDPxX0fj1dXrzeqKcKdrgv3DoV8UUasDd8adU0-v7zb57ct34L5Tvf4qDjaPzn8AgvMo8dlWK7DzPjyym4gCxqrTQ9CAn_fG_V39JQOAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1tqVrBAdotFctH60N7ai0S20mcAwcErKC0W6SyErc0_oi60m52RYIQ_4qfyDjrsBS1lXrgnMSKZp49b-SZNwAfVG5ULJmmGF45FQbTHWmShCqnnm64YCxwvcPfBvHxUHy5iC46cNv2wjTV7u2V5Lynwak0lfXuzBS7i8a3EEMXdamPizmSCl9WeWpvrjFpq_ZODtHDHxnrH50fHFM_V4BqBFxNcxNGWqmEFUUY6DDkQnF3Rlse5UzGCElkCUER5chObGGNyWWapLE0TAXaqITjus_guXDdx7iDhmz__uyPRTMT1hFxKtMw9W06f_7n30Phgt8-upJtIl3_Fax6ikr255h6DR1bdmHN01XiD4OqCysPtAy78KKpJdXVGzj7gb6y04mb1aVJ7lVPyLQg56PvjNS_RiUpRuNJRYxtasZwVXVD2oE8RNl8QhAuBHm9A6FZh-GTGPgtLJXT0m4AsZgy8TjKNY-V4IlKrRbMjSGU3DJdxD0IWxtm2quau-Ea42yhx-zsnqHds8bumejBp_tvZnNNj3--vd26JvP7u8rcnRRyRxmwHnxu3bV4_PfVNv_v9ffw8uywn309GZxuwTJrwOOKLbdhqb68sjtIiGr1rsEggZ9PDfo7_roSNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stereometric+analysis+of+TiO2+thin+films+deposited+by+electron+beam+ion+assisted&rft.jtitle=Optical+and+quantum+electronics&rft.au=Shakoury%2C+Reza&rft.au=Arman%2C+Ali&rft.au=%C5%A2%C4%83lu%2C+%C5%9Etefan&rft.au=Dastan%2C+Davoud&rft.date=2020-05-01&rft.pub=Springer+US&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=52&rft.issue=5&rft_id=info:doi/10.1007%2Fs11082-020-02388-4&rft.externalDocID=10_1007_s11082_020_02388_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon