A space-time collocation scheme for modified anomalous subdiffusion and nonlinear superdiffusion equations

. This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to Dirichlet and Neumann boundary conditions. This model equation governs the evolution for the probability density function that describes a...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 131; no. 1; p. 12
Main Author Bhrawy, A. H.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2190-5444
2190-5444
DOI10.1140/epjp/i2016-16012-0

Cover

Loading…
Abstract . This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to Dirichlet and Neumann boundary conditions. This model equation governs the evolution for the probability density function that describes anomalously diffusing particles. Anomalous diffusion is ubiquitous in physical and biological systems where trapping and binding of particles can occur. A space-time Jacobi collocation scheme is investigated for solving such problem. The main advantage of the proposed scheme is that, the shifted Jacobi Gauss-Lobatto collocation and shifted Jacobi Gauss-Radau collocation approximations are employed for spatial and temporal discretizations, respectively. Thereby, the problem is successfully reduced to a system of algebraic equations. The numerical results obtained by this algorithm have been compared with various numerical methods in order to demonstrate the high accuracy and efficiency of the proposed method. Indeed, for relatively limited number of Gauss-Lobatto and Gauss-Radau collocation nodes imposed, the absolute error in our numerical solutions is sufficiently small. The results have been compared with other techniques in order to demonstrate the high accuracy and efficiency of the proposed method.
AbstractList This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to Dirichlet and Neumann boundary conditions. This model equation governs the evolution for the probability density function that describes anomalously diffusing particles. Anomalous diffusion is ubiquitous in physical and biological systems where trapping and binding of particles can occur. A space-time Jacobi collocation scheme is investigated for solving such problem. The main advantage of the proposed scheme is that, the shifted Jacobi Gauss-Lobatto collocation and shifted Jacobi Gauss-Radau collocation approximations are employed for spatial and temporal discretizations, respectively. Thereby, the problem is successfully reduced to a system of algebraic equations. The numerical results obtained by this algorithm have been compared with various numerical methods in order to demonstrate the high accuracy and efficiency of the proposed method. Indeed, for relatively limited number of Gauss-Lobatto and Gauss-Radau collocation nodes imposed, the absolute error in our numerical solutions is sufficiently small. The results have been compared with other techniques in order to demonstrate the high accuracy and efficiency of the proposed method.
. This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to Dirichlet and Neumann boundary conditions. This model equation governs the evolution for the probability density function that describes anomalously diffusing particles. Anomalous diffusion is ubiquitous in physical and biological systems where trapping and binding of particles can occur. A space-time Jacobi collocation scheme is investigated for solving such problem. The main advantage of the proposed scheme is that, the shifted Jacobi Gauss-Lobatto collocation and shifted Jacobi Gauss-Radau collocation approximations are employed for spatial and temporal discretizations, respectively. Thereby, the problem is successfully reduced to a system of algebraic equations. The numerical results obtained by this algorithm have been compared with various numerical methods in order to demonstrate the high accuracy and efficiency of the proposed method. Indeed, for relatively limited number of Gauss-Lobatto and Gauss-Radau collocation nodes imposed, the absolute error in our numerical solutions is sufficiently small. The results have been compared with other techniques in order to demonstrate the high accuracy and efficiency of the proposed method.
ArticleNumber 12
Author Bhrawy, A. H.
Author_xml – sequence: 1
  givenname: A. H.
  surname: Bhrawy
  fullname: Bhrawy, A. H.
  email: alibhrawy@yahoo.co.uk
  organization: Department of Mathematics, Faculty of Science, Beni-Suef University
BookMark eNp9kMtOwzAQRS1UJErpD7CKxDrUdpzXsqp4SZXYwNpyxjY4SuzUThb8PW6KBGJRb8aauWfm6l6jhXVWIXRL8D0hDG_U0A4bQzEpUlJgQlN8gZaU1DjNGWOLP_8rtA6hxfGxmrCaLVG7TcIgQKWj6VUCrusciNE4mwT4VLGlnU96J402SibCul50bgpJmJrY01M4SoWVSfTUGauEj6NB-d-hOkzzwnCDLrXoglr_1BV6f3x42z2n-9enl912n0JG6jEVIJqqqZtGMyBQESV0njcAJSgNJdMVxhpA5kWmi0LLPJdl1ciioHkhMdU6W6G7097Bu8OkwshbN3kbT3Jak7rMKKtYVFUnFXgXgleagxlno6MXpuME82O4_Bgun8Plc7gcR5T-QwdveuG_zkPZCQpRbD-U_3V1hvoGAgGVKg
CitedBy_id crossref_primary_10_1140_epjp_i2017_11488_6
crossref_primary_10_1155_2022_4846747
crossref_primary_10_1140_epjp_i2016_16251_y
crossref_primary_10_1140_epjp_i2018_12049_3
crossref_primary_10_1007_s40840_018_0644_7
crossref_primary_10_1140_epjb_s10051_022_00376_z
crossref_primary_10_1007_s40096_016_0200_2
crossref_primary_10_1016_j_enganabound_2018_10_004
crossref_primary_10_1140_epjp_i2018_11835_1
crossref_primary_10_1186_s13661_016_0619_2
crossref_primary_10_1007_s40314_018_0633_3
Cites_doi 10.1140/epjp/i2014-14260-6
10.1016/0021-9991(76)90046-2
10.1016/j.cam.2009.02.013
10.1140/epjp/i2015-15146-9
10.1016/j.ijheatmasstransfer.2013.12.009
10.1007/s11071-007-9322-2
10.1016/S0378-4371(00)00386-1
10.1140/epjp/i2015-15033-5
10.1016/j.jcp.2004.11.025
10.1103/PhysRevE.67.021112
10.1137/080718942
10.1016/j.jcp.2014.10.016
10.2989/16073606.2013.779945
10.1016/S0370-1573(00)00070-3
10.1016/j.apm.2011.02.036
10.1016/j.amc.2014.08.062
10.1007/978-3-540-30726-6
10.1007/s11071-014-1854-7
10.1016/j.jcp.2008.10.016
10.1063/1.1860472
10.1002/mma.2698
10.1016/j.camwa.2011.02.045
10.1090/coll/023
10.1142/S0218348X04002410
10.1016/j.camwa.2012.11.017
10.1016/j.jcp.2012.07.006
10.1177/1077546315597815
10.1016/j.jcp.2013.09.039
10.1016/j.apnum.2013.11.003
10.1007/s10543-014-0484-2
10.1016/j.jcp.2012.11.052
10.1016/j.jcp.2014.10.060
10.1016/j.jcp.2012.08.026
10.1098/rsif.2014.0352
10.1137/130933216
ContentType Journal Article
Copyright Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016
Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016.
Copyright_xml – notice: Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016
– notice: Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/i2016-16012-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_i2016_16012_0
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADQRH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PCBAR
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
2VQ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGJBK
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
O9-
PHGZM
PHGZT
S1Z
8FE
8FG
ABRTQ
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-acab8b9bbf4c1c81eaf55bcc7cefc74f800fccd563f66fd55d78bd66256d02ff3
IEDL.DBID U2A
ISSN 2190-5444
IngestDate Sun Jul 13 04:19:16 EDT 2025
Tue Jul 01 02:42:10 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Collocation Method
Collocation Point
Absolute Error
Fractional Derivative
Jacobi Polynomial
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-acab8b9bbf4c1c81eaf55bcc7cefc74f800fccd563f66fd55d78bd66256d02ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919732484
PQPubID 2044220
ParticipantIDs proquest_journals_2919732484
crossref_citationtrail_10_1140_epjp_i2016_16012_0
crossref_primary_10_1140_epjp_i2016_16012_0
springer_journals_10_1140_epjp_i2016_16012_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LagutinA.A.UchaikinV.V.Proc. ICRC200120011900
LauS.R.PriceH.J. Comput. Phys.201223176952012JCoPh.231.7695L1284.65176297285410.1016/j.jcp.2012.07.006
Abdel-SalamE.A.Al-MuhiameedZeid I.A.Math. Prob. Eng.201420148716353319288
BiswasA.BhrawyA.H.AbdelkawyM.A.AlshaeryA.A.HilalE.M.Rom. J. Phys.201459433
RenJ.SunZ.-z.ZhaoX.J. Comput. Phys.20132324562013JCoPh.232..456R1291.35428299430910.1016/j.jcp.2012.08.026
MainardiF.RabertoM.GorenfloR.ScalasE.Physica A20002874682000PhyA..287..468M10.1016/S0378-4371(00)00386-1
DohaE.H.BhrawyA.H.BaleanuD.HafezR.M.Appl. Numer. Math.201477431302.65175314536410.1016/j.apnum.2013.11.003
B. Baeumer, M. Kovacs, M.M. Meerschaert, Fractional reaction-diffusion equation for species growth and dispersal, preprint available at http://www.maths.otago.ac.nz/~mkovacs/seed.pdf
GunerO.BekirA.CevikelA.C.Eur. Phys. J. Plus201513014610.1140/epjp/i2015-15146-9
ChenF.XuQ.HesthavenJ.S.J. Comput. Phys.20152931572015JCoPh.293..157C334246410.1016/j.jcp.2014.10.016
Abd-ElhameedW.M.Comp. Model. Eng. Sci.20141011593309371
G. Szegö, Orthogonal Polynomials, Colloquium Publications, XXIII (American Mathematical Society, 1939)
LiX.XuC.SIAM J. Num. Anal.20094721081193.3524310.1137/080718942
Fakhar-IzadiF.DehghanM.Math. Methods Appl. Sci.20133614852013MMAS...36.1485F1279.65143308325510.1002/mma.2698
BhrawyA.H.ZakyM.A.J. Comput. Phys.20152818762015JCoPh.281..876B328200010.1016/j.jcp.2014.10.060
LanglandsT.HenryB.J. Comput. Phys.20052057192005JCoPh.205..719L1072.65123213500010.1016/j.jcp.2004.11.025
BhrawyA.H.ZakyM.A.Nonlinear Dyn.201580101332424710.1007/s11071-014-1854-7
BhrawyA.H.ZakyM.A.BaleanuD.Rom. Rep. Phys.201567340
MohebbiA.AbbaszadehM.DehghanM.J. Comput. Phys.2013240362013JCoPh.240...36M1287.65064303924310.1016/j.jcp.2012.11.052
SchamelH.ElsässerK.J. Comput. Phys.1976225011976JCoPh..22..501S0344.6505510.1016/0021-9991(76)90046-2
BhrawyA.H.Appl. Math. Comput.201424730327081910.1016/j.amc.2014.08.062
NaberM.Fractals200412231083.60066205273410.1142/S0218348X04002410
Y. Luke, The Special Functions and Their Approximations, Vol. 2 (Academic Press, New York, 1969)
A.H. Bhrawy, J. Vibr. Control (2015) DOI:10.1177/1077546315597815
Bueno-OrovioA.KayD.BurrageK.BIT Numer. Math.2014549371306.65265329253310.1007/s10543-014-0484-2
Bueno-OrovioA.KayD.GrauV.RodriguezB.BurrageK.J. R. Soc. Interface.2014112014035210.1098/rsif.2014.0352
ZayernouriM.KarniadakisG.E.SIAM J. Sci. Comp.201436A401294.65097315017710.1137/130933216
LiuQ.LiuF.TurnerI.AnhV.Appl. Math. Model.20113541031221.65257279369310.1016/j.apm.2011.02.036
Abdel-SalamE.A.YousifE.A.Math. Prob. Eng.20132013846283314839210.1155/2013/846283
R. Hempelmann, Hydrogen Diffusion in Proton Conducting Oxides and in Nanocrystalline Metals, in Anomalous Diffusion From Basics to Applications: Proceedings of the XIth Max Born Symposium, edited by A. Pekalski, K. Sznajd-Weron, Lect. Notes Phys., Vol. 519 (Springer-Verlag, 1999)
Abd-ElhameedW.M.DohaE.H.YoussriY.H.Quaest. Math.201336151274.65222304366810.2989/16073606.2013.779945
R. Gorenflo, F. Mainardi, Signalling Problem and Dirichlet-Neumann Map for Time Fractional Diffusion Wave Equations, Freie Universität Berlin, Fachbereich Mathematik und Informatik: Ser. A, Mathematik. (Freie Universität, Fachbereich Mathematik und Informatik, Berlin, 1998)
GiannakisD.FischerP.F.RosnerR.J. Comput. Phys.200922811882009JCoPh.228.1188G05526724248994810.1016/j.jcp.2008.10.016
E. Scalas, Five years of continuous-time random walks in econophysics, in Proceedings of WEHIA 2004, edited by A. Namatame (Kyoto, 2004)
SokolovI.KlafterJ.Chaos2005150261032005Chaos..15b6103S215023210.1063/1.1860472
ZayernouriM.KarniadakisG.E.J. Comp. Phys.20142574602014JCoPh.257..460Z312954410.1016/j.jcp.2013.09.039
HosseiniV.R.ShivanianE.ChenW.Eur. Phys. J. Plus20151303310.1140/epjp/i2015-15033-5
MasoliverJ.MonteroM.Phys. Rev. E2003670211122003PhRvE..67b1112M10.1103/PhysRevE.67.021112
LiC.ZhaoZ.ChenY.Q.Comput. Math. Appl.2011628551228.65190282467610.1016/j.camwa.2011.02.045
MaJ.LiB.-W.HowellJ.R.Int. J. Heat Mass Transf.2014713510.1016/j.ijheatmasstransfer.2013.12.009
MainardiF.LuchkoY.PagniniG.Fract. Calc. Appl. Anal.200141531054.351561829592
MetzlerR.KlafterJ.Phys. Rep.200033912000PhR...339....1M0984.82032180926810.1016/S0370-1573(00)00070-3
C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer-Verlag, New York, 2006)
K. Miller, B. Ross, An Introduction to the Fractional Calaulus and Fractional Differential Equations (John Wiley & Sons Inc., New York, 1993)
LiuF.YangC.BurrageK.J. Comput. Appl. Math.20092311602009JCoAm.231..160L1170.65107253265910.1016/j.cam.2009.02.013
JesusI.S.MachadoJ.A.T.Nonlinear Dyn.2008542631210.8000810.1007/s11071-007-9322-2
PintoC.Tenreiro MachadoJ.A.Comp. Math. Appl.201366908308939710.1016/j.camwa.2012.11.017
BhrawyA.H.DohaE.H.Ezz-EldienS.S.Van GorderR.A.Eur. Phys. J. Plus201412926010.1140/epjp/i2014-14260-6
I. Podlubny, Fractional Differential Equations, in Mathematics in Science and Engineering (Academic Press Inc., San Diego, CA, 1999)
F. Chen (997_CR26) 2015; 293
997_CR29
A.H. Bhrawy (997_CR21) 2014; 247
D. Giannakis (997_CR25) 2009; 228
H. Schamel (997_CR14) 1976; 22
X. Li (997_CR18) 2009; 47
E.A. Abdel-Salam (997_CR8) 2014; 2014
C. Li (997_CR33) 2011; 62
A.A. Lagutin (997_CR10) 2001; 2001
F. Mainardi (997_CR47) 2000; 287
997_CR39
997_CR38
I.S. Jesus (997_CR9) 2008; 54
T. Langlands (997_CR44) 2005; 205
F. Fakhar-Izadi (997_CR28) 2013; 36
R. Metzler (997_CR31) 2000; 339
C. Pinto (997_CR2) 2013; 66
A. Bueno-Orovio (997_CR3) 2014; 11
E.A. Abdel-Salam (997_CR7) 2013; 2013
A. Biswas (997_CR6) 2014; 59
A.H. Bhrawy (997_CR36) 2014; 129
M. Zayernouri (997_CR19) 2014; 257
997_CR1
997_CR48
997_CR45
J. Ren (997_CR34) 2013; 232
997_CR40
A.H. Bhrawy (997_CR37) 2015; 80
J. Ma (997_CR20) 2014; 71
M. Naber (997_CR12) 2004; 12
J. Masoliver (997_CR49) 2003; 67
997_CR43
V.R. Hosseini (997_CR4) 2015; 130
E.H. Doha (997_CR15) 2014; 77
I. Sokolov (997_CR46) 2005; 15
S.R. Lau (997_CR23) 2012; 231
Q. Liu (997_CR42) 2011; 35
997_CR13
M. Zayernouri (997_CR17) 2014; 36
F. Mainardi (997_CR30) 2001; 4
A.H. Bhrawy (997_CR27) 2015; 67
A.H. Bhrawy (997_CR35) 2015; 281
F. Liu (997_CR41) 2009; 231
997_CR11
W.M. Abd-Elhameed (997_CR22) 2014; 101
A. Mohebbi (997_CR32) 2013; 240
O. Guner (997_CR5) 2015; 130
W.M. Abd-Elhameed (997_CR24) 2013; 36
A. Bueno-Orovio (997_CR16) 2014; 54
References_xml – reference: MetzlerR.KlafterJ.Phys. Rep.200033912000PhR...339....1M0984.82032180926810.1016/S0370-1573(00)00070-3
– reference: MasoliverJ.MonteroM.Phys. Rev. E2003670211122003PhRvE..67b1112M10.1103/PhysRevE.67.021112
– reference: LauS.R.PriceH.J. Comput. Phys.201223176952012JCoPh.231.7695L1284.65176297285410.1016/j.jcp.2012.07.006
– reference: SokolovI.KlafterJ.Chaos2005150261032005Chaos..15b6103S215023210.1063/1.1860472
– reference: Abd-ElhameedW.M.Comp. Model. Eng. Sci.20141011593309371
– reference: BhrawyA.H.DohaE.H.Ezz-EldienS.S.Van GorderR.A.Eur. Phys. J. Plus201412926010.1140/epjp/i2014-14260-6
– reference: RenJ.SunZ.-z.ZhaoX.J. Comput. Phys.20132324562013JCoPh.232..456R1291.35428299430910.1016/j.jcp.2012.08.026
– reference: G. Szegö, Orthogonal Polynomials, Colloquium Publications, XXIII (American Mathematical Society, 1939)
– reference: JesusI.S.MachadoJ.A.T.Nonlinear Dyn.2008542631210.8000810.1007/s11071-007-9322-2
– reference: BhrawyA.H.ZakyM.A.Nonlinear Dyn.201580101332424710.1007/s11071-014-1854-7
– reference: HosseiniV.R.ShivanianE.ChenW.Eur. Phys. J. Plus20151303310.1140/epjp/i2015-15033-5
– reference: MohebbiA.AbbaszadehM.DehghanM.J. Comput. Phys.2013240362013JCoPh.240...36M1287.65064303924310.1016/j.jcp.2012.11.052
– reference: Fakhar-IzadiF.DehghanM.Math. Methods Appl. Sci.20133614852013MMAS...36.1485F1279.65143308325510.1002/mma.2698
– reference: Abd-ElhameedW.M.DohaE.H.YoussriY.H.Quaest. Math.201336151274.65222304366810.2989/16073606.2013.779945
– reference: NaberM.Fractals200412231083.60066205273410.1142/S0218348X04002410
– reference: LanglandsT.HenryB.J. Comput. Phys.20052057192005JCoPh.205..719L1072.65123213500010.1016/j.jcp.2004.11.025
– reference: GunerO.BekirA.CevikelA.C.Eur. Phys. J. Plus201513014610.1140/epjp/i2015-15146-9
– reference: DohaE.H.BhrawyA.H.BaleanuD.HafezR.M.Appl. Numer. Math.201477431302.65175314536410.1016/j.apnum.2013.11.003
– reference: LiuQ.LiuF.TurnerI.AnhV.Appl. Math. Model.20113541031221.65257279369310.1016/j.apm.2011.02.036
– reference: B. Baeumer, M. Kovacs, M.M. Meerschaert, Fractional reaction-diffusion equation for species growth and dispersal, preprint available at http://www.maths.otago.ac.nz/~mkovacs/seed.pdf
– reference: I. Podlubny, Fractional Differential Equations, in Mathematics in Science and Engineering (Academic Press Inc., San Diego, CA, 1999)
– reference: K. Miller, B. Ross, An Introduction to the Fractional Calaulus and Fractional Differential Equations (John Wiley & Sons Inc., New York, 1993)
– reference: E. Scalas, Five years of continuous-time random walks in econophysics, in Proceedings of WEHIA 2004, edited by A. Namatame (Kyoto, 2004)
– reference: C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer-Verlag, New York, 2006)
– reference: PintoC.Tenreiro MachadoJ.A.Comp. Math. Appl.201366908308939710.1016/j.camwa.2012.11.017
– reference: GiannakisD.FischerP.F.RosnerR.J. Comput. Phys.200922811882009JCoPh.228.1188G05526724248994810.1016/j.jcp.2008.10.016
– reference: LiuF.YangC.BurrageK.J. Comput. Appl. Math.20092311602009JCoAm.231..160L1170.65107253265910.1016/j.cam.2009.02.013
– reference: A.H. Bhrawy, J. Vibr. Control (2015) DOI:10.1177/1077546315597815
– reference: LagutinA.A.UchaikinV.V.Proc. ICRC200120011900
– reference: MainardiF.RabertoM.GorenfloR.ScalasE.Physica A20002874682000PhyA..287..468M10.1016/S0378-4371(00)00386-1
– reference: MainardiF.LuchkoY.PagniniG.Fract. Calc. Appl. Anal.200141531054.351561829592
– reference: Y. Luke, The Special Functions and Their Approximations, Vol. 2 (Academic Press, New York, 1969)
– reference: SchamelH.ElsässerK.J. Comput. Phys.1976225011976JCoPh..22..501S0344.6505510.1016/0021-9991(76)90046-2
– reference: MaJ.LiB.-W.HowellJ.R.Int. J. Heat Mass Transf.2014713510.1016/j.ijheatmasstransfer.2013.12.009
– reference: Bueno-OrovioA.KayD.GrauV.RodriguezB.BurrageK.J. R. Soc. Interface.2014112014035210.1098/rsif.2014.0352
– reference: LiC.ZhaoZ.ChenY.Q.Comput. Math. Appl.2011628551228.65190282467610.1016/j.camwa.2011.02.045
– reference: BhrawyA.H.Appl. Math. Comput.201424730327081910.1016/j.amc.2014.08.062
– reference: Bueno-OrovioA.KayD.BurrageK.BIT Numer. Math.2014549371306.65265329253310.1007/s10543-014-0484-2
– reference: ZayernouriM.KarniadakisG.E.SIAM J. Sci. Comp.201436A401294.65097315017710.1137/130933216
– reference: Abdel-SalamE.A.Al-MuhiameedZeid I.A.Math. Prob. Eng.201420148716353319288
– reference: LiX.XuC.SIAM J. Num. Anal.20094721081193.3524310.1137/080718942
– reference: BhrawyA.H.ZakyM.A.J. Comput. Phys.20152818762015JCoPh.281..876B328200010.1016/j.jcp.2014.10.060
– reference: ChenF.XuQ.HesthavenJ.S.J. Comput. Phys.20152931572015JCoPh.293..157C334246410.1016/j.jcp.2014.10.016
– reference: R. Hempelmann, Hydrogen Diffusion in Proton Conducting Oxides and in Nanocrystalline Metals, in Anomalous Diffusion From Basics to Applications: Proceedings of the XIth Max Born Symposium, edited by A. Pekalski, K. Sznajd-Weron, Lect. Notes Phys., Vol. 519 (Springer-Verlag, 1999)
– reference: R. Gorenflo, F. Mainardi, Signalling Problem and Dirichlet-Neumann Map for Time Fractional Diffusion Wave Equations, Freie Universität Berlin, Fachbereich Mathematik und Informatik: Ser. A, Mathematik. (Freie Universität, Fachbereich Mathematik und Informatik, Berlin, 1998)
– reference: Abdel-SalamE.A.YousifE.A.Math. Prob. Eng.20132013846283314839210.1155/2013/846283
– reference: ZayernouriM.KarniadakisG.E.J. Comp. Phys.20142574602014JCoPh.257..460Z312954410.1016/j.jcp.2013.09.039
– reference: BhrawyA.H.ZakyM.A.BaleanuD.Rom. Rep. Phys.201567340
– reference: BiswasA.BhrawyA.H.AbdelkawyM.A.AlshaeryA.A.HilalE.M.Rom. J. Phys.201459433
– volume: 129
  start-page: 260
  year: 2014
  ident: 997_CR36
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2014-14260-6
– volume: 22
  start-page: 501
  year: 1976
  ident: 997_CR14
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(76)90046-2
– ident: 997_CR1
– volume: 231
  start-page: 160
  year: 2009
  ident: 997_CR41
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.02.013
– ident: 997_CR48
– ident: 997_CR40
– volume: 130
  start-page: 146
  year: 2015
  ident: 997_CR5
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2015-15146-9
– volume: 4
  start-page: 153
  year: 2001
  ident: 997_CR30
  publication-title: Fract. Calc. Appl. Anal.
– volume: 71
  start-page: 35
  year: 2014
  ident: 997_CR20
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.12.009
– ident: 997_CR11
– ident: 997_CR38
– volume: 2013
  start-page: 846283
  year: 2013
  ident: 997_CR7
  publication-title: Math. Prob. Eng.
– volume: 54
  start-page: 263
  year: 2008
  ident: 997_CR9
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-007-9322-2
– volume: 287
  start-page: 468
  year: 2000
  ident: 997_CR47
  publication-title: Physica A
  doi: 10.1016/S0378-4371(00)00386-1
– volume: 130
  start-page: 33
  year: 2015
  ident: 997_CR4
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2015-15033-5
– volume: 205
  start-page: 719
  year: 2005
  ident: 997_CR44
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.11.025
– ident: 997_CR45
– volume: 67
  start-page: 021112
  year: 2003
  ident: 997_CR49
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.021112
– volume: 47
  start-page: 2108
  year: 2009
  ident: 997_CR18
  publication-title: SIAM J. Num. Anal.
  doi: 10.1137/080718942
– volume: 293
  start-page: 157
  year: 2015
  ident: 997_CR26
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.10.016
– volume: 59
  start-page: 433
  year: 2014
  ident: 997_CR6
  publication-title: Rom. J. Phys.
– volume: 36
  start-page: 15
  year: 2013
  ident: 997_CR24
  publication-title: Quaest. Math.
  doi: 10.2989/16073606.2013.779945
– volume: 339
  start-page: 1
  year: 2000
  ident: 997_CR31
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00070-3
– volume: 35
  start-page: 4103
  year: 2011
  ident: 997_CR42
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.02.036
– volume: 247
  start-page: 30
  year: 2014
  ident: 997_CR21
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.08.062
– ident: 997_CR13
  doi: 10.1007/978-3-540-30726-6
– volume: 80
  start-page: 101
  year: 2015
  ident: 997_CR37
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1854-7
– volume: 228
  start-page: 1188
  year: 2009
  ident: 997_CR25
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.10.016
– volume: 15
  start-page: 026103
  year: 2005
  ident: 997_CR46
  publication-title: Chaos
  doi: 10.1063/1.1860472
– volume: 2014
  start-page: 871635
  year: 2014
  ident: 997_CR8
  publication-title: Math. Prob. Eng.
– volume: 2001
  start-page: 1900
  year: 2001
  ident: 997_CR10
  publication-title: Proc. ICRC
– volume: 67
  start-page: 340
  year: 2015
  ident: 997_CR27
  publication-title: Rom. Rep. Phys.
– volume: 36
  start-page: 1485
  year: 2013
  ident: 997_CR28
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.2698
– volume: 62
  start-page: 855
  year: 2011
  ident: 997_CR33
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.02.045
– ident: 997_CR39
  doi: 10.1090/coll/023
– ident: 997_CR43
– volume: 12
  start-page: 23
  year: 2004
  ident: 997_CR12
  publication-title: Fractals
  doi: 10.1142/S0218348X04002410
– volume: 66
  start-page: 908
  year: 2013
  ident: 997_CR2
  publication-title: Comp. Math. Appl.
  doi: 10.1016/j.camwa.2012.11.017
– volume: 231
  start-page: 7695
  year: 2012
  ident: 997_CR23
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.07.006
– ident: 997_CR29
  doi: 10.1177/1077546315597815
– volume: 257
  start-page: 460
  year: 2014
  ident: 997_CR19
  publication-title: J. Comp. Phys.
  doi: 10.1016/j.jcp.2013.09.039
– volume: 77
  start-page: 43
  year: 2014
  ident: 997_CR15
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2013.11.003
– volume: 54
  start-page: 937
  year: 2014
  ident: 997_CR16
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-014-0484-2
– volume: 101
  start-page: 159
  year: 2014
  ident: 997_CR22
  publication-title: Comp. Model. Eng. Sci.
– volume: 240
  start-page: 36
  year: 2013
  ident: 997_CR32
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.11.052
– volume: 281
  start-page: 876
  year: 2015
  ident: 997_CR35
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.10.060
– volume: 232
  start-page: 456
  year: 2013
  ident: 997_CR34
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.08.026
– volume: 11
  start-page: 20140352
  year: 2014
  ident: 997_CR3
  publication-title: J. R. Soc. Interface.
  doi: 10.1098/rsif.2014.0352
– volume: 36
  start-page: A40
  year: 2014
  ident: 997_CR17
  publication-title: SIAM J. Sci. Comp.
  doi: 10.1137/130933216
SSID ssj0000491494
Score 2.070385
Snippet . This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject...
This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12
SubjectTerms Algorithms
Applied and Technical Physics
Atomic
Boundary conditions
Collocation
Complex Systems
Condensed Matter Physics
Dirichlet problem
Mathematical and Computational Physics
Molecular
Numerical methods
Optical and Plasma Physics
Physics
Physics and Astronomy
Probability density functions
Regular Article
Spacetime
Theoretical
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSwMxDC_qEHwRP3E6pQ--adl9tNe7J1FRhuAQcbC3o01bUHS77bb_3_Q-NhT0tbn2IEmTX9I2IeTSxBK4iB0LY2MZl0axjMuMuUCFgZaRk1UppedhMhjxp7EYNwm3srlW2drEylCbKfgceT_KQl9Yhqf8ppgx3zXKn642LTQ2SQdNcIrBV-fuYfjyusqyIP7FEIC3r2V40LfFR9F_R7eXsBCDkYgFPz3SGmb-OhmtHM7jHtltkCK9rUW7Tzbs5IBsVzc2oTwkH7cUjQFY5rvDUy_OaZ19oxivWhxCNEq_pubdIcikajL9Up8Y5dNyqX1TlKXPkuGwoZO6WIaaI6mw8zXRzuoy4OURGT0-vN0PWNM4gQHuqAVToHSqM60dhxDS0ConhAaQYB1I7hAkOgAjktgliTNCGJlqk2AolJggci4-Jlv4c3tCqJFGcJ25WArFJcQqCrgSseUah1NQXRK2zMuhqSrum1t85vWL5yD3DM8rhucVw_OgS65Wc4q6psa_X_dameTN_irztTZ0yXUrpzX579VO_1_tjOxUqlHlWHpkazFf2nNEHQt90ajWN4s32tw
  priority: 102
  providerName: ProQuest
Title A space-time collocation scheme for modified anomalous subdiffusion and nonlinear superdiffusion equations
URI https://link.springer.com/article/10.1140/epjp/i2016-16012-0
https://www.proquest.com/docview/2919732484
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEA7aIvginlitJQ--aXCPZLP7WKW1KBYRC_VpyQmVXnbb_-9sdrdFUcGnhVwLMzm-mWS-QehSh1xRFlrih9oQyrUgCeUJsZ7wPckDyx2V0lM_6g3ow5ANy6CwrHrtXl1Jup264LP1bsz8fX4zgvMqIj5YEQEBQ73OctsdZvEgaK89K4B5AfbTKkLmx65fT6ENtPx2G-oOme4-2ivRIW4X6jxAW2Z6iHbcK02VHaH3NoYNQBmSZ4THuQpnhccNg41qoAgQKJ7M9MgCsMRiOpuIMVj2OFvJPBHKKveMQbHG04IgQyygam4Wm0rzUVB_Z8do0O283vVImSyBKFhFSyKUkLFMpLRU-Sr2jbCMSaW4MlZxagEYWqU0i0IbRVYzpnksdQTmT6S9wNrwBNXg5-YUYc01ozKxIWeCchWKwKOChYZKKI6VaCC_El6qSibxPKHFOC2inL00F3jqBJ46gadeA12t-8wLHo0_WzcrnaTlmsrSIPFzaiEa0wa6rvS0qf59tLP_NT9Hu26qOD9LE9WWi5W5AOSxlC20HXfvW6jevn977MD3ttN_fmm56fcJLUTb-w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNdWsAHOIG1SWzHyQGhCli29HFqpd6Mn1KrdpNudlXxp_iNjJ1NVyDRW692PJHGn8ffjO0ZgHeOScsFCzRnzlMunaY1lzUNmc4zI4sgUyqlw6NyesJ_nIrTDfg9vIWJ1yoHm5gMtWtsjJGPizqPiWV4xT-3VzRWjYqnq0MJjR4W-_7XNbps3ae9rzi_74ti8u34y5SuqgpQi3BbUG21qUxtTOA2t1XudRDCWCutD1bygAwqWOtEyUJZBieEk5VxJfoJpcuKEBjKvQf3OWN1XFHV5PtNTAfZNjocfHibw7Oxb8_b8RlusiXN0fUpaPb3_rcmtf-cw6btbfIEHq94KdntgfQUNvzsGTxI90Nt9xzOdwmaHutprEVPIniaPtZH0Dv22ITcl1w27iwgpSV61lzqi2bZkW5pYgmWZYzJYbMjsz41h55jV-vn605_1Scd717AyZ0o9CVs4s_9FhAnneCmDkwKzaVlusi4Fsxzg82V1SPIB-Upu8phHktpXKj-fXWmosJVUrhKClfZCD7cjGn7DB63fr0zzIlareZOrbE3go_DPK27_y_t1e3S3sLD6fHhgTrYO9rfhkcJJim6swObi_nSv0a-szBvEsgI_LxrVP8BDPMaBw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iKF7EJ1ar5uBNQ_eRbHaPRS0-iwcL3kKeoGi79vH_nWR3rYoKXvPYhZlJ8s0k8w1CxyblmrLUkTg1llBuJCkoL4iLZBwpnjgeqJTu-tnlgF4_ssdPWfzhtXtzJVnlNHiWpuG0UxpXc9tGHVs-l50nOLsyEoNHkRBw2pdgO469XQ-S7keUBfAvuAC0yZb5cerXE2kOM7_djIYDp7eO1mqkiLuVajfQgh1uouXwYlNPttBzF8NmoC3x1eGxV-eoir5h8FctNAEaxa8j8-QAZGI5HL3KF_Dy8WSmfFGUmY-SQbPBw4osQ46hq7Tjead9q2jAJ9to0Lt4OLskdeEEokEEUyK1VLkqlHJUxzqPrXSMKa25tk5z6gAkOq0Ny1KXZc4wZniuTAauUGaixLl0By3Cz-0uwoYbRlXhUs4k5TqVSUQlSy1V0Jxr2UJxIzyha1ZxX9ziRVQZz5HwAhdB4CIIXEQtdPIxp6w4Nf4c3W50Iur1NRFJEXuaIZrTFjpt9DTv_v1re_8bfoRW7s974vaqf7OPVoPVhPBLGy1OxzN7AIBkqg6Dzb0DEwLfFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+space-time+collocation+scheme+for+modified+anomalous+subdiffusion+and+nonlinear+superdiffusion+equations&rft.jtitle=European+physical+journal+plus&rft.au=Bhrawy%2C+A.+H.&rft.date=2016-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=131&rft.issue=1&rft_id=info:doi/10.1140%2Fepjp%2Fi2016-16012-0&rft.externalDocID=10_1140_epjp_i2016_16012_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon