A space-time collocation scheme for modified anomalous subdiffusion and nonlinear superdiffusion equations
. This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to Dirichlet and Neumann boundary conditions. This model equation governs the evolution for the probability density function that describes a...
Saved in:
Published in | European physical journal plus Vol. 131; no. 1; p. 12 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2190-5444 2190-5444 |
DOI | 10.1140/epjp/i2016-16012-0 |
Cover
Loading…
Abstract | .
This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to Dirichlet and Neumann boundary conditions. This model equation governs the evolution for the probability density function that describes anomalously diffusing particles. Anomalous diffusion is ubiquitous in physical and biological systems where trapping and binding of particles can occur. A space-time Jacobi collocation scheme is investigated for solving such problem. The main advantage of the proposed scheme is that, the shifted Jacobi Gauss-Lobatto collocation and shifted Jacobi Gauss-Radau collocation approximations are employed for spatial and temporal discretizations, respectively. Thereby, the problem is successfully reduced to a system of algebraic equations. The numerical results obtained by this algorithm have been compared with various numerical methods in order to demonstrate the high accuracy and efficiency of the proposed method. Indeed, for relatively limited number of Gauss-Lobatto and Gauss-Radau collocation nodes imposed, the absolute error in our numerical solutions is sufficiently small. The results have been compared with other techniques in order to demonstrate the high accuracy and efficiency of the proposed method. |
---|---|
AbstractList | This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to Dirichlet and Neumann boundary conditions. This model equation governs the evolution for the probability density function that describes anomalously diffusing particles. Anomalous diffusion is ubiquitous in physical and biological systems where trapping and binding of particles can occur. A space-time Jacobi collocation scheme is investigated for solving such problem. The main advantage of the proposed scheme is that, the shifted Jacobi Gauss-Lobatto collocation and shifted Jacobi Gauss-Radau collocation approximations are employed for spatial and temporal discretizations, respectively. Thereby, the problem is successfully reduced to a system of algebraic equations. The numerical results obtained by this algorithm have been compared with various numerical methods in order to demonstrate the high accuracy and efficiency of the proposed method. Indeed, for relatively limited number of Gauss-Lobatto and Gauss-Radau collocation nodes imposed, the absolute error in our numerical solutions is sufficiently small. The results have been compared with other techniques in order to demonstrate the high accuracy and efficiency of the proposed method. . This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to Dirichlet and Neumann boundary conditions. This model equation governs the evolution for the probability density function that describes anomalously diffusing particles. Anomalous diffusion is ubiquitous in physical and biological systems where trapping and binding of particles can occur. A space-time Jacobi collocation scheme is investigated for solving such problem. The main advantage of the proposed scheme is that, the shifted Jacobi Gauss-Lobatto collocation and shifted Jacobi Gauss-Radau collocation approximations are employed for spatial and temporal discretizations, respectively. Thereby, the problem is successfully reduced to a system of algebraic equations. The numerical results obtained by this algorithm have been compared with various numerical methods in order to demonstrate the high accuracy and efficiency of the proposed method. Indeed, for relatively limited number of Gauss-Lobatto and Gauss-Radau collocation nodes imposed, the absolute error in our numerical solutions is sufficiently small. The results have been compared with other techniques in order to demonstrate the high accuracy and efficiency of the proposed method. |
ArticleNumber | 12 |
Author | Bhrawy, A. H. |
Author_xml | – sequence: 1 givenname: A. H. surname: Bhrawy fullname: Bhrawy, A. H. email: alibhrawy@yahoo.co.uk organization: Department of Mathematics, Faculty of Science, Beni-Suef University |
BookMark | eNp9kMtOwzAQRS1UJErpD7CKxDrUdpzXsqp4SZXYwNpyxjY4SuzUThb8PW6KBGJRb8aauWfm6l6jhXVWIXRL8D0hDG_U0A4bQzEpUlJgQlN8gZaU1DjNGWOLP_8rtA6hxfGxmrCaLVG7TcIgQKWj6VUCrusciNE4mwT4VLGlnU96J402SibCul50bgpJmJrY01M4SoWVSfTUGauEj6NB-d-hOkzzwnCDLrXoglr_1BV6f3x42z2n-9enl912n0JG6jEVIJqqqZtGMyBQESV0njcAJSgNJdMVxhpA5kWmi0LLPJdl1ciioHkhMdU6W6G7097Bu8OkwshbN3kbT3Jak7rMKKtYVFUnFXgXgleagxlno6MXpuME82O4_Bgun8Plc7gcR5T-QwdveuG_zkPZCQpRbD-U_3V1hvoGAgGVKg |
CitedBy_id | crossref_primary_10_1140_epjp_i2017_11488_6 crossref_primary_10_1155_2022_4846747 crossref_primary_10_1140_epjp_i2016_16251_y crossref_primary_10_1140_epjp_i2018_12049_3 crossref_primary_10_1007_s40840_018_0644_7 crossref_primary_10_1140_epjb_s10051_022_00376_z crossref_primary_10_1007_s40096_016_0200_2 crossref_primary_10_1016_j_enganabound_2018_10_004 crossref_primary_10_1140_epjp_i2018_11835_1 crossref_primary_10_1186_s13661_016_0619_2 crossref_primary_10_1007_s40314_018_0633_3 |
Cites_doi | 10.1140/epjp/i2014-14260-6 10.1016/0021-9991(76)90046-2 10.1016/j.cam.2009.02.013 10.1140/epjp/i2015-15146-9 10.1016/j.ijheatmasstransfer.2013.12.009 10.1007/s11071-007-9322-2 10.1016/S0378-4371(00)00386-1 10.1140/epjp/i2015-15033-5 10.1016/j.jcp.2004.11.025 10.1103/PhysRevE.67.021112 10.1137/080718942 10.1016/j.jcp.2014.10.016 10.2989/16073606.2013.779945 10.1016/S0370-1573(00)00070-3 10.1016/j.apm.2011.02.036 10.1016/j.amc.2014.08.062 10.1007/978-3-540-30726-6 10.1007/s11071-014-1854-7 10.1016/j.jcp.2008.10.016 10.1063/1.1860472 10.1002/mma.2698 10.1016/j.camwa.2011.02.045 10.1090/coll/023 10.1142/S0218348X04002410 10.1016/j.camwa.2012.11.017 10.1016/j.jcp.2012.07.006 10.1177/1077546315597815 10.1016/j.jcp.2013.09.039 10.1016/j.apnum.2013.11.003 10.1007/s10543-014-0484-2 10.1016/j.jcp.2012.11.052 10.1016/j.jcp.2014.10.060 10.1016/j.jcp.2012.08.026 10.1098/rsif.2014.0352 10.1137/130933216 |
ContentType | Journal Article |
Copyright | Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016 Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016. |
Copyright_xml | – notice: Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016 – notice: Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016. |
DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1140/epjp/i2016-16012-0 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_i2016_16012_0 |
GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADQRH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY BENPR BGLVJ BGNMA BHPHI BKSAR CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PCBAR PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 2VQ AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AGJBK AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION O9- PHGZM PHGZT S1Z 8FE 8FG ABRTQ DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-acab8b9bbf4c1c81eaf55bcc7cefc74f800fccd563f66fd55d78bd66256d02ff3 |
IEDL.DBID | U2A |
ISSN | 2190-5444 |
IngestDate | Sun Jul 13 04:19:16 EDT 2025 Tue Jul 01 02:42:10 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Collocation Method Collocation Point Absolute Error Fractional Derivative Jacobi Polynomial |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-acab8b9bbf4c1c81eaf55bcc7cefc74f800fccd563f66fd55d78bd66256d02ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2919732484 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_2919732484 crossref_citationtrail_10_1140_epjp_i2016_16012_0 crossref_primary_10_1140_epjp_i2016_16012_0 springer_journals_10_1140_epjp_i2016_16012_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | LagutinA.A.UchaikinV.V.Proc. ICRC200120011900 LauS.R.PriceH.J. Comput. Phys.201223176952012JCoPh.231.7695L1284.65176297285410.1016/j.jcp.2012.07.006 Abdel-SalamE.A.Al-MuhiameedZeid I.A.Math. Prob. Eng.201420148716353319288 BiswasA.BhrawyA.H.AbdelkawyM.A.AlshaeryA.A.HilalE.M.Rom. J. Phys.201459433 RenJ.SunZ.-z.ZhaoX.J. Comput. Phys.20132324562013JCoPh.232..456R1291.35428299430910.1016/j.jcp.2012.08.026 MainardiF.RabertoM.GorenfloR.ScalasE.Physica A20002874682000PhyA..287..468M10.1016/S0378-4371(00)00386-1 DohaE.H.BhrawyA.H.BaleanuD.HafezR.M.Appl. Numer. Math.201477431302.65175314536410.1016/j.apnum.2013.11.003 B. Baeumer, M. Kovacs, M.M. Meerschaert, Fractional reaction-diffusion equation for species growth and dispersal, preprint available at http://www.maths.otago.ac.nz/~mkovacs/seed.pdf GunerO.BekirA.CevikelA.C.Eur. Phys. J. Plus201513014610.1140/epjp/i2015-15146-9 ChenF.XuQ.HesthavenJ.S.J. Comput. Phys.20152931572015JCoPh.293..157C334246410.1016/j.jcp.2014.10.016 Abd-ElhameedW.M.Comp. Model. Eng. Sci.20141011593309371 G. Szegö, Orthogonal Polynomials, Colloquium Publications, XXIII (American Mathematical Society, 1939) LiX.XuC.SIAM J. Num. Anal.20094721081193.3524310.1137/080718942 Fakhar-IzadiF.DehghanM.Math. Methods Appl. Sci.20133614852013MMAS...36.1485F1279.65143308325510.1002/mma.2698 BhrawyA.H.ZakyM.A.J. Comput. Phys.20152818762015JCoPh.281..876B328200010.1016/j.jcp.2014.10.060 LanglandsT.HenryB.J. Comput. Phys.20052057192005JCoPh.205..719L1072.65123213500010.1016/j.jcp.2004.11.025 BhrawyA.H.ZakyM.A.Nonlinear Dyn.201580101332424710.1007/s11071-014-1854-7 BhrawyA.H.ZakyM.A.BaleanuD.Rom. Rep. Phys.201567340 MohebbiA.AbbaszadehM.DehghanM.J. Comput. Phys.2013240362013JCoPh.240...36M1287.65064303924310.1016/j.jcp.2012.11.052 SchamelH.ElsässerK.J. Comput. Phys.1976225011976JCoPh..22..501S0344.6505510.1016/0021-9991(76)90046-2 BhrawyA.H.Appl. Math. Comput.201424730327081910.1016/j.amc.2014.08.062 NaberM.Fractals200412231083.60066205273410.1142/S0218348X04002410 Y. Luke, The Special Functions and Their Approximations, Vol. 2 (Academic Press, New York, 1969) A.H. Bhrawy, J. Vibr. Control (2015) DOI:10.1177/1077546315597815 Bueno-OrovioA.KayD.BurrageK.BIT Numer. Math.2014549371306.65265329253310.1007/s10543-014-0484-2 Bueno-OrovioA.KayD.GrauV.RodriguezB.BurrageK.J. R. Soc. Interface.2014112014035210.1098/rsif.2014.0352 ZayernouriM.KarniadakisG.E.SIAM J. Sci. Comp.201436A401294.65097315017710.1137/130933216 LiuQ.LiuF.TurnerI.AnhV.Appl. Math. Model.20113541031221.65257279369310.1016/j.apm.2011.02.036 Abdel-SalamE.A.YousifE.A.Math. Prob. Eng.20132013846283314839210.1155/2013/846283 R. Hempelmann, Hydrogen Diffusion in Proton Conducting Oxides and in Nanocrystalline Metals, in Anomalous Diffusion From Basics to Applications: Proceedings of the XIth Max Born Symposium, edited by A. Pekalski, K. Sznajd-Weron, Lect. Notes Phys., Vol. 519 (Springer-Verlag, 1999) Abd-ElhameedW.M.DohaE.H.YoussriY.H.Quaest. Math.201336151274.65222304366810.2989/16073606.2013.779945 R. Gorenflo, F. Mainardi, Signalling Problem and Dirichlet-Neumann Map for Time Fractional Diffusion Wave Equations, Freie Universität Berlin, Fachbereich Mathematik und Informatik: Ser. A, Mathematik. (Freie Universität, Fachbereich Mathematik und Informatik, Berlin, 1998) GiannakisD.FischerP.F.RosnerR.J. Comput. Phys.200922811882009JCoPh.228.1188G05526724248994810.1016/j.jcp.2008.10.016 E. Scalas, Five years of continuous-time random walks in econophysics, in Proceedings of WEHIA 2004, edited by A. Namatame (Kyoto, 2004) SokolovI.KlafterJ.Chaos2005150261032005Chaos..15b6103S215023210.1063/1.1860472 ZayernouriM.KarniadakisG.E.J. Comp. Phys.20142574602014JCoPh.257..460Z312954410.1016/j.jcp.2013.09.039 HosseiniV.R.ShivanianE.ChenW.Eur. Phys. J. Plus20151303310.1140/epjp/i2015-15033-5 MasoliverJ.MonteroM.Phys. Rev. E2003670211122003PhRvE..67b1112M10.1103/PhysRevE.67.021112 LiC.ZhaoZ.ChenY.Q.Comput. Math. Appl.2011628551228.65190282467610.1016/j.camwa.2011.02.045 MaJ.LiB.-W.HowellJ.R.Int. J. Heat Mass Transf.2014713510.1016/j.ijheatmasstransfer.2013.12.009 MainardiF.LuchkoY.PagniniG.Fract. Calc. Appl. Anal.200141531054.351561829592 MetzlerR.KlafterJ.Phys. Rep.200033912000PhR...339....1M0984.82032180926810.1016/S0370-1573(00)00070-3 C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer-Verlag, New York, 2006) K. Miller, B. Ross, An Introduction to the Fractional Calaulus and Fractional Differential Equations (John Wiley & Sons Inc., New York, 1993) LiuF.YangC.BurrageK.J. Comput. Appl. Math.20092311602009JCoAm.231..160L1170.65107253265910.1016/j.cam.2009.02.013 JesusI.S.MachadoJ.A.T.Nonlinear Dyn.2008542631210.8000810.1007/s11071-007-9322-2 PintoC.Tenreiro MachadoJ.A.Comp. Math. Appl.201366908308939710.1016/j.camwa.2012.11.017 BhrawyA.H.DohaE.H.Ezz-EldienS.S.Van GorderR.A.Eur. Phys. J. Plus201412926010.1140/epjp/i2014-14260-6 I. Podlubny, Fractional Differential Equations, in Mathematics in Science and Engineering (Academic Press Inc., San Diego, CA, 1999) F. Chen (997_CR26) 2015; 293 997_CR29 A.H. Bhrawy (997_CR21) 2014; 247 D. Giannakis (997_CR25) 2009; 228 H. Schamel (997_CR14) 1976; 22 X. Li (997_CR18) 2009; 47 E.A. Abdel-Salam (997_CR8) 2014; 2014 C. Li (997_CR33) 2011; 62 A.A. Lagutin (997_CR10) 2001; 2001 F. Mainardi (997_CR47) 2000; 287 997_CR39 997_CR38 I.S. Jesus (997_CR9) 2008; 54 T. Langlands (997_CR44) 2005; 205 F. Fakhar-Izadi (997_CR28) 2013; 36 R. Metzler (997_CR31) 2000; 339 C. Pinto (997_CR2) 2013; 66 A. Bueno-Orovio (997_CR3) 2014; 11 E.A. Abdel-Salam (997_CR7) 2013; 2013 A. Biswas (997_CR6) 2014; 59 A.H. Bhrawy (997_CR36) 2014; 129 M. Zayernouri (997_CR19) 2014; 257 997_CR1 997_CR48 997_CR45 J. Ren (997_CR34) 2013; 232 997_CR40 A.H. Bhrawy (997_CR37) 2015; 80 J. Ma (997_CR20) 2014; 71 M. Naber (997_CR12) 2004; 12 J. Masoliver (997_CR49) 2003; 67 997_CR43 V.R. Hosseini (997_CR4) 2015; 130 E.H. Doha (997_CR15) 2014; 77 I. Sokolov (997_CR46) 2005; 15 S.R. Lau (997_CR23) 2012; 231 Q. Liu (997_CR42) 2011; 35 997_CR13 M. Zayernouri (997_CR17) 2014; 36 F. Mainardi (997_CR30) 2001; 4 A.H. Bhrawy (997_CR27) 2015; 67 A.H. Bhrawy (997_CR35) 2015; 281 F. Liu (997_CR41) 2009; 231 997_CR11 W.M. Abd-Elhameed (997_CR22) 2014; 101 A. Mohebbi (997_CR32) 2013; 240 O. Guner (997_CR5) 2015; 130 W.M. Abd-Elhameed (997_CR24) 2013; 36 A. Bueno-Orovio (997_CR16) 2014; 54 |
References_xml | – reference: MetzlerR.KlafterJ.Phys. Rep.200033912000PhR...339....1M0984.82032180926810.1016/S0370-1573(00)00070-3 – reference: MasoliverJ.MonteroM.Phys. Rev. E2003670211122003PhRvE..67b1112M10.1103/PhysRevE.67.021112 – reference: LauS.R.PriceH.J. Comput. Phys.201223176952012JCoPh.231.7695L1284.65176297285410.1016/j.jcp.2012.07.006 – reference: SokolovI.KlafterJ.Chaos2005150261032005Chaos..15b6103S215023210.1063/1.1860472 – reference: Abd-ElhameedW.M.Comp. Model. Eng. Sci.20141011593309371 – reference: BhrawyA.H.DohaE.H.Ezz-EldienS.S.Van GorderR.A.Eur. Phys. J. Plus201412926010.1140/epjp/i2014-14260-6 – reference: RenJ.SunZ.-z.ZhaoX.J. Comput. Phys.20132324562013JCoPh.232..456R1291.35428299430910.1016/j.jcp.2012.08.026 – reference: G. Szegö, Orthogonal Polynomials, Colloquium Publications, XXIII (American Mathematical Society, 1939) – reference: JesusI.S.MachadoJ.A.T.Nonlinear Dyn.2008542631210.8000810.1007/s11071-007-9322-2 – reference: BhrawyA.H.ZakyM.A.Nonlinear Dyn.201580101332424710.1007/s11071-014-1854-7 – reference: HosseiniV.R.ShivanianE.ChenW.Eur. Phys. J. Plus20151303310.1140/epjp/i2015-15033-5 – reference: MohebbiA.AbbaszadehM.DehghanM.J. Comput. Phys.2013240362013JCoPh.240...36M1287.65064303924310.1016/j.jcp.2012.11.052 – reference: Fakhar-IzadiF.DehghanM.Math. Methods Appl. Sci.20133614852013MMAS...36.1485F1279.65143308325510.1002/mma.2698 – reference: Abd-ElhameedW.M.DohaE.H.YoussriY.H.Quaest. Math.201336151274.65222304366810.2989/16073606.2013.779945 – reference: NaberM.Fractals200412231083.60066205273410.1142/S0218348X04002410 – reference: LanglandsT.HenryB.J. Comput. Phys.20052057192005JCoPh.205..719L1072.65123213500010.1016/j.jcp.2004.11.025 – reference: GunerO.BekirA.CevikelA.C.Eur. Phys. J. Plus201513014610.1140/epjp/i2015-15146-9 – reference: DohaE.H.BhrawyA.H.BaleanuD.HafezR.M.Appl. Numer. Math.201477431302.65175314536410.1016/j.apnum.2013.11.003 – reference: LiuQ.LiuF.TurnerI.AnhV.Appl. Math. Model.20113541031221.65257279369310.1016/j.apm.2011.02.036 – reference: B. Baeumer, M. Kovacs, M.M. Meerschaert, Fractional reaction-diffusion equation for species growth and dispersal, preprint available at http://www.maths.otago.ac.nz/~mkovacs/seed.pdf – reference: I. Podlubny, Fractional Differential Equations, in Mathematics in Science and Engineering (Academic Press Inc., San Diego, CA, 1999) – reference: K. Miller, B. Ross, An Introduction to the Fractional Calaulus and Fractional Differential Equations (John Wiley & Sons Inc., New York, 1993) – reference: E. Scalas, Five years of continuous-time random walks in econophysics, in Proceedings of WEHIA 2004, edited by A. Namatame (Kyoto, 2004) – reference: C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer-Verlag, New York, 2006) – reference: PintoC.Tenreiro MachadoJ.A.Comp. Math. Appl.201366908308939710.1016/j.camwa.2012.11.017 – reference: GiannakisD.FischerP.F.RosnerR.J. Comput. Phys.200922811882009JCoPh.228.1188G05526724248994810.1016/j.jcp.2008.10.016 – reference: LiuF.YangC.BurrageK.J. Comput. Appl. Math.20092311602009JCoAm.231..160L1170.65107253265910.1016/j.cam.2009.02.013 – reference: A.H. Bhrawy, J. Vibr. Control (2015) DOI:10.1177/1077546315597815 – reference: LagutinA.A.UchaikinV.V.Proc. ICRC200120011900 – reference: MainardiF.RabertoM.GorenfloR.ScalasE.Physica A20002874682000PhyA..287..468M10.1016/S0378-4371(00)00386-1 – reference: MainardiF.LuchkoY.PagniniG.Fract. Calc. Appl. Anal.200141531054.351561829592 – reference: Y. Luke, The Special Functions and Their Approximations, Vol. 2 (Academic Press, New York, 1969) – reference: SchamelH.ElsässerK.J. Comput. Phys.1976225011976JCoPh..22..501S0344.6505510.1016/0021-9991(76)90046-2 – reference: MaJ.LiB.-W.HowellJ.R.Int. J. Heat Mass Transf.2014713510.1016/j.ijheatmasstransfer.2013.12.009 – reference: Bueno-OrovioA.KayD.GrauV.RodriguezB.BurrageK.J. R. Soc. Interface.2014112014035210.1098/rsif.2014.0352 – reference: LiC.ZhaoZ.ChenY.Q.Comput. Math. Appl.2011628551228.65190282467610.1016/j.camwa.2011.02.045 – reference: BhrawyA.H.Appl. Math. Comput.201424730327081910.1016/j.amc.2014.08.062 – reference: Bueno-OrovioA.KayD.BurrageK.BIT Numer. Math.2014549371306.65265329253310.1007/s10543-014-0484-2 – reference: ZayernouriM.KarniadakisG.E.SIAM J. Sci. Comp.201436A401294.65097315017710.1137/130933216 – reference: Abdel-SalamE.A.Al-MuhiameedZeid I.A.Math. Prob. Eng.201420148716353319288 – reference: LiX.XuC.SIAM J. Num. Anal.20094721081193.3524310.1137/080718942 – reference: BhrawyA.H.ZakyM.A.J. Comput. Phys.20152818762015JCoPh.281..876B328200010.1016/j.jcp.2014.10.060 – reference: ChenF.XuQ.HesthavenJ.S.J. Comput. Phys.20152931572015JCoPh.293..157C334246410.1016/j.jcp.2014.10.016 – reference: R. Hempelmann, Hydrogen Diffusion in Proton Conducting Oxides and in Nanocrystalline Metals, in Anomalous Diffusion From Basics to Applications: Proceedings of the XIth Max Born Symposium, edited by A. Pekalski, K. Sznajd-Weron, Lect. Notes Phys., Vol. 519 (Springer-Verlag, 1999) – reference: R. Gorenflo, F. Mainardi, Signalling Problem and Dirichlet-Neumann Map for Time Fractional Diffusion Wave Equations, Freie Universität Berlin, Fachbereich Mathematik und Informatik: Ser. A, Mathematik. (Freie Universität, Fachbereich Mathematik und Informatik, Berlin, 1998) – reference: Abdel-SalamE.A.YousifE.A.Math. Prob. Eng.20132013846283314839210.1155/2013/846283 – reference: ZayernouriM.KarniadakisG.E.J. Comp. Phys.20142574602014JCoPh.257..460Z312954410.1016/j.jcp.2013.09.039 – reference: BhrawyA.H.ZakyM.A.BaleanuD.Rom. Rep. Phys.201567340 – reference: BiswasA.BhrawyA.H.AbdelkawyM.A.AlshaeryA.A.HilalE.M.Rom. J. Phys.201459433 – volume: 129 start-page: 260 year: 2014 ident: 997_CR36 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2014-14260-6 – volume: 22 start-page: 501 year: 1976 ident: 997_CR14 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(76)90046-2 – ident: 997_CR1 – volume: 231 start-page: 160 year: 2009 ident: 997_CR41 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.02.013 – ident: 997_CR48 – ident: 997_CR40 – volume: 130 start-page: 146 year: 2015 ident: 997_CR5 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2015-15146-9 – volume: 4 start-page: 153 year: 2001 ident: 997_CR30 publication-title: Fract. Calc. Appl. Anal. – volume: 71 start-page: 35 year: 2014 ident: 997_CR20 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.12.009 – ident: 997_CR11 – ident: 997_CR38 – volume: 2013 start-page: 846283 year: 2013 ident: 997_CR7 publication-title: Math. Prob. Eng. – volume: 54 start-page: 263 year: 2008 ident: 997_CR9 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-007-9322-2 – volume: 287 start-page: 468 year: 2000 ident: 997_CR47 publication-title: Physica A doi: 10.1016/S0378-4371(00)00386-1 – volume: 130 start-page: 33 year: 2015 ident: 997_CR4 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2015-15033-5 – volume: 205 start-page: 719 year: 2005 ident: 997_CR44 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.11.025 – ident: 997_CR45 – volume: 67 start-page: 021112 year: 2003 ident: 997_CR49 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.021112 – volume: 47 start-page: 2108 year: 2009 ident: 997_CR18 publication-title: SIAM J. Num. Anal. doi: 10.1137/080718942 – volume: 293 start-page: 157 year: 2015 ident: 997_CR26 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.10.016 – volume: 59 start-page: 433 year: 2014 ident: 997_CR6 publication-title: Rom. J. Phys. – volume: 36 start-page: 15 year: 2013 ident: 997_CR24 publication-title: Quaest. Math. doi: 10.2989/16073606.2013.779945 – volume: 339 start-page: 1 year: 2000 ident: 997_CR31 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(00)00070-3 – volume: 35 start-page: 4103 year: 2011 ident: 997_CR42 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.02.036 – volume: 247 start-page: 30 year: 2014 ident: 997_CR21 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.08.062 – ident: 997_CR13 doi: 10.1007/978-3-540-30726-6 – volume: 80 start-page: 101 year: 2015 ident: 997_CR37 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1854-7 – volume: 228 start-page: 1188 year: 2009 ident: 997_CR25 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.10.016 – volume: 15 start-page: 026103 year: 2005 ident: 997_CR46 publication-title: Chaos doi: 10.1063/1.1860472 – volume: 2014 start-page: 871635 year: 2014 ident: 997_CR8 publication-title: Math. Prob. Eng. – volume: 2001 start-page: 1900 year: 2001 ident: 997_CR10 publication-title: Proc. ICRC – volume: 67 start-page: 340 year: 2015 ident: 997_CR27 publication-title: Rom. Rep. Phys. – volume: 36 start-page: 1485 year: 2013 ident: 997_CR28 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.2698 – volume: 62 start-page: 855 year: 2011 ident: 997_CR33 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.02.045 – ident: 997_CR39 doi: 10.1090/coll/023 – ident: 997_CR43 – volume: 12 start-page: 23 year: 2004 ident: 997_CR12 publication-title: Fractals doi: 10.1142/S0218348X04002410 – volume: 66 start-page: 908 year: 2013 ident: 997_CR2 publication-title: Comp. Math. Appl. doi: 10.1016/j.camwa.2012.11.017 – volume: 231 start-page: 7695 year: 2012 ident: 997_CR23 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.07.006 – ident: 997_CR29 doi: 10.1177/1077546315597815 – volume: 257 start-page: 460 year: 2014 ident: 997_CR19 publication-title: J. Comp. Phys. doi: 10.1016/j.jcp.2013.09.039 – volume: 77 start-page: 43 year: 2014 ident: 997_CR15 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2013.11.003 – volume: 54 start-page: 937 year: 2014 ident: 997_CR16 publication-title: BIT Numer. Math. doi: 10.1007/s10543-014-0484-2 – volume: 101 start-page: 159 year: 2014 ident: 997_CR22 publication-title: Comp. Model. Eng. Sci. – volume: 240 start-page: 36 year: 2013 ident: 997_CR32 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.11.052 – volume: 281 start-page: 876 year: 2015 ident: 997_CR35 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.10.060 – volume: 232 start-page: 456 year: 2013 ident: 997_CR34 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.08.026 – volume: 11 start-page: 20140352 year: 2014 ident: 997_CR3 publication-title: J. R. Soc. Interface. doi: 10.1098/rsif.2014.0352 – volume: 36 start-page: A40 year: 2014 ident: 997_CR17 publication-title: SIAM J. Sci. Comp. doi: 10.1137/130933216 |
SSID | ssj0000491494 |
Score | 2.070385 |
Snippet | .
This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject... This paper reports a new spectral collocation technique for solving time-space modified anomalous subdiffusion equation with a nonlinear source term subject to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12 |
SubjectTerms | Algorithms Applied and Technical Physics Atomic Boundary conditions Collocation Complex Systems Condensed Matter Physics Dirichlet problem Mathematical and Computational Physics Molecular Numerical methods Optical and Plasma Physics Physics Physics and Astronomy Probability density functions Regular Article Spacetime Theoretical |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSwMxDC_qEHwRP3E6pQ--adl9tNe7J1FRhuAQcbC3o01bUHS77bb_3_Q-NhT0tbn2IEmTX9I2IeTSxBK4iB0LY2MZl0axjMuMuUCFgZaRk1UppedhMhjxp7EYNwm3srlW2drEylCbKfgceT_KQl9Yhqf8ppgx3zXKn642LTQ2SQdNcIrBV-fuYfjyusqyIP7FEIC3r2V40LfFR9F_R7eXsBCDkYgFPz3SGmb-OhmtHM7jHtltkCK9rUW7Tzbs5IBsVzc2oTwkH7cUjQFY5rvDUy_OaZ19oxivWhxCNEq_pubdIcikajL9Up8Y5dNyqX1TlKXPkuGwoZO6WIaaI6mw8zXRzuoy4OURGT0-vN0PWNM4gQHuqAVToHSqM60dhxDS0ConhAaQYB1I7hAkOgAjktgliTNCGJlqk2AolJggci4-Jlv4c3tCqJFGcJ25WArFJcQqCrgSseUah1NQXRK2zMuhqSrum1t85vWL5yD3DM8rhucVw_OgS65Wc4q6psa_X_dameTN_irztTZ0yXUrpzX579VO_1_tjOxUqlHlWHpkazFf2nNEHQt90ajWN4s32tw priority: 102 providerName: ProQuest |
Title | A space-time collocation scheme for modified anomalous subdiffusion and nonlinear superdiffusion equations |
URI | https://link.springer.com/article/10.1140/epjp/i2016-16012-0 https://www.proquest.com/docview/2919732484 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEA7aIvginlitJQ--aXCPZLP7WKW1KBYRC_VpyQmVXnbb_-9sdrdFUcGnhVwLMzm-mWS-QehSh1xRFlrih9oQyrUgCeUJsZ7wPckDyx2V0lM_6g3ow5ANy6CwrHrtXl1Jup264LP1bsz8fX4zgvMqIj5YEQEBQ73OctsdZvEgaK89K4B5AfbTKkLmx65fT6ENtPx2G-oOme4-2ivRIW4X6jxAW2Z6iHbcK02VHaH3NoYNQBmSZ4THuQpnhccNg41qoAgQKJ7M9MgCsMRiOpuIMVj2OFvJPBHKKveMQbHG04IgQyygam4Wm0rzUVB_Z8do0O283vVImSyBKFhFSyKUkLFMpLRU-Sr2jbCMSaW4MlZxagEYWqU0i0IbRVYzpnksdQTmT6S9wNrwBNXg5-YUYc01ozKxIWeCchWKwKOChYZKKI6VaCC_El6qSibxPKHFOC2inL00F3jqBJ46gadeA12t-8wLHo0_WzcrnaTlmsrSIPFzaiEa0wa6rvS0qf59tLP_NT9Hu26qOD9LE9WWi5W5AOSxlC20HXfvW6jevn977MD3ttN_fmm56fcJLUTb-w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNdWsAHOIG1SWzHyQGhCli29HFqpd6Mn1KrdpNudlXxp_iNjJ1NVyDRW692PJHGn8ffjO0ZgHeOScsFCzRnzlMunaY1lzUNmc4zI4sgUyqlw6NyesJ_nIrTDfg9vIWJ1yoHm5gMtWtsjJGPizqPiWV4xT-3VzRWjYqnq0MJjR4W-_7XNbps3ae9rzi_74ti8u34y5SuqgpQi3BbUG21qUxtTOA2t1XudRDCWCutD1bygAwqWOtEyUJZBieEk5VxJfoJpcuKEBjKvQf3OWN1XFHV5PtNTAfZNjocfHibw7Oxb8_b8RlusiXN0fUpaPb3_rcmtf-cw6btbfIEHq94KdntgfQUNvzsGTxI90Nt9xzOdwmaHutprEVPIniaPtZH0Dv22ITcl1w27iwgpSV61lzqi2bZkW5pYgmWZYzJYbMjsz41h55jV-vn605_1Scd717AyZ0o9CVs4s_9FhAnneCmDkwKzaVlusi4Fsxzg82V1SPIB-Upu8phHktpXKj-fXWmosJVUrhKClfZCD7cjGn7DB63fr0zzIlareZOrbE3go_DPK27_y_t1e3S3sLD6fHhgTrYO9rfhkcJJim6swObi_nSv0a-szBvEsgI_LxrVP8BDPMaBw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iKF7EJ1ar5uBNQ_eRbHaPRS0-iwcL3kKeoGi79vH_nWR3rYoKXvPYhZlJ8s0k8w1CxyblmrLUkTg1llBuJCkoL4iLZBwpnjgeqJTu-tnlgF4_ssdPWfzhtXtzJVnlNHiWpuG0UxpXc9tGHVs-l50nOLsyEoNHkRBw2pdgO469XQ-S7keUBfAvuAC0yZb5cerXE2kOM7_djIYDp7eO1mqkiLuVajfQgh1uouXwYlNPttBzF8NmoC3x1eGxV-eoir5h8FctNAEaxa8j8-QAZGI5HL3KF_Dy8WSmfFGUmY-SQbPBw4osQ46hq7Tjead9q2jAJ9to0Lt4OLskdeEEokEEUyK1VLkqlHJUxzqPrXSMKa25tk5z6gAkOq0Ny1KXZc4wZniuTAauUGaixLl0By3Cz-0uwoYbRlXhUs4k5TqVSUQlSy1V0Jxr2UJxIzyha1ZxX9ziRVQZz5HwAhdB4CIIXEQtdPIxp6w4Nf4c3W50Iur1NRFJEXuaIZrTFjpt9DTv_v1re_8bfoRW7s974vaqf7OPVoPVhPBLGy1OxzN7AIBkqg6Dzb0DEwLfFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+space-time+collocation+scheme+for+modified+anomalous+subdiffusion+and+nonlinear+superdiffusion+equations&rft.jtitle=European+physical+journal+plus&rft.au=Bhrawy%2C+A.+H.&rft.date=2016-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=131&rft.issue=1&rft_id=info:doi/10.1140%2Fepjp%2Fi2016-16012-0&rft.externalDocID=10_1140_epjp_i2016_16012_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |