Mathematical Modeling and Theoretical Analysis of Bioconvective Magnetized Sutterby Nanofluid Flow Over Rotating Disk with Activation Energy

In this article, flow behavior of magnetized Sutterby nanoliquid due to rotating permeable disk is investigated. Suspended solid nanoparticles are stabilized with the help of bioconvection and buoyancy forces. Energy and concentration relations are respectively modeled taking thermal radiation and A...

Full description

Saved in:
Bibliographic Details
Published inBioNanoScience Vol. 13; no. 4; pp. 1849 - 1862
Main Authors Haq, Fazal, Rahman, Mujeeb Ur, Khan, M. Ijaz, Abdullaeva, Barno Sayfutdinovna, Altuijri, Reem
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, flow behavior of magnetized Sutterby nanoliquid due to rotating permeable disk is investigated. Suspended solid nanoparticles are stabilized with the help of bioconvection and buoyancy forces. Energy and concentration relations are respectively modeled taking thermal radiation and Arrhenius energy. Additionally, binary chemical reaction in nanomaterial flow is accounted. Flow governing radiated Sutterby nanomaterial is expressed by dimensional equations using boundary layer suppositions. Using appropriate transformations, the dimensional system is altered to a nondimensional one. The nondimensional governing equations are solved via Runge–Kutta-Fehlberg method (RKF-45). The effective consequences of diverse flow regulating variables on fluid velocity, thermal field, mass concentration, and motile microorganisms density are studied via various curves. Surface drag force, heat transfer, density number, and Sherwood number are computed numerically and analyzed. It is observed that velocity components diminished versus rising Hartman number, Reynolds number, fluid material variable, and porosity parameter. Further, it is observed that chemical reaction and activation energy have opposite impacts on mass concentration. Major observations of current exploration are itemized at the end.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2191-1630
2191-1649
DOI:10.1007/s12668-023-01166-2