RSFace: subject agnostic face swapping with expression high fidelity
Face swapping has shown remarkable progress with the flourishing development of deep learning. In particular, the emergence of subject agnostic methods has broadened the range of applications of face swapping. Furthermore, high fidelity implementation has improved the naturalness of generated faces....
Saved in:
Published in | The Visual computer Vol. 39; no. 11; pp. 5497 - 5511 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0178-2789 1432-2315 |
DOI | 10.1007/s00371-022-02675-z |
Cover
Loading…
Abstract | Face swapping has shown remarkable progress with the flourishing development of deep learning. In particular, the emergence of subject agnostic methods has broadened the range of applications of face swapping. Furthermore, high fidelity implementation has improved the naturalness of generated faces. However, some high fidelity face swapping methods still suffer from expression distortion at this stage. In this work, we propose an extended Adaptive Embedding Integration Network (AEI-Net) to improve the performance of this network in synthesizing swapped faces on faces in the wild. First, we add a face reenactment module to synchronize the expressions of the input faces and reduce the influence of irrelevant attributes on the synthesis results. Second, we train AEI-Net using a new attribute matching loss to improve the consistency of the generated results and the target face expressions. Finally, extensive experiments on wild faces demonstrate that our method can better restore expression and posture while maintaining identity than previous methods. |
---|---|
AbstractList | Face swapping has shown remarkable progress with the flourishing development of deep learning. In particular, the emergence of subject agnostic methods has broadened the range of applications of face swapping. Furthermore, high fidelity implementation has improved the naturalness of generated faces. However, some high fidelity face swapping methods still suffer from expression distortion at this stage. In this work, we propose an extended Adaptive Embedding Integration Network (AEI-Net) to improve the performance of this network in synthesizing swapped faces on faces in the wild. First, we add a face reenactment module to synchronize the expressions of the input faces and reduce the influence of irrelevant attributes on the synthesis results. Second, we train AEI-Net using a new attribute matching loss to improve the consistency of the generated results and the target face expressions. Finally, extensive experiments on wild faces demonstrate that our method can better restore expression and posture while maintaining identity than previous methods. |
Author | Fang, Xianjin Yang, Gaoming Wang, Tao Zhang, ji |
Author_xml | – sequence: 1 givenname: Gaoming surname: Yang fullname: Yang, Gaoming organization: School of Computer Science and Engineering, Anhui University of Science and Technology – sequence: 2 givenname: Tao surname: Wang fullname: Wang, Tao email: taowang@aust.edu.cn organization: School of Computer Science and Engineering, Anhui University of Science and Technology – sequence: 3 givenname: Xianjin surname: Fang fullname: Fang, Xianjin organization: School of Computer Science and Engineering, Anhui University of Science and Technology – sequence: 4 givenname: ji surname: Zhang fullname: Zhang, ji organization: School of Mathematics, Physics, and Computing, University of Southern Queensland |
BookMark | eNp9kFtLAzEQhYNUsK3-AZ8CPq_mstskvkm1KhQEL88hm022KXV3TVJ6-fWmriD40IdhmOF8M4czAoOmbQwAlxhdY4TYTUCIMpwhQlJNWJHtT8AQ55RkhOJiAIYIM54RxsUZGIWwRGlmuRiC-9e3mdLmFoZ1uTQ6QlU3bYhOQ5vWMGxU17mmhhsXF9BsO29CcG0DF65eQOsqs3Jxdw5OrVoFc_Hbx-Bj9vA-fcrmL4_P07t5pikWMVPlRBnOqopVQnGWa5VzTjBFWhXYYGYLYjTXWmlbWKvKXFfGEqQsL1GBCKNjcNXf7Xz7tTYhymW79k16KYnATHBBxUHFe5X2bQjeWKldVDG5jl65lcRIHjKTfWYyZSZ_MpP7hJJ_aOfdp_K74xDtoZDETW38n6sj1DdV8YK3 |
CitedBy_id | crossref_primary_10_1007_s11042_024_18706_x |
Cites_doi | 10.1109/CVPR46437.2021.00480 10.1109/CVPRW.2018.00281 10.1109/TIP.2021.3089909 10.1109/ICCV.2019.00009 10.1109/FG.2018.00024 10.1007/s11263-019-01151-x 10.1109/TPAMI.2020.2983686 10.1109/ICCV.2017.167 10.1007/s00371-021-02347-4 10.1145/3394171.3413630 10.1109/CVPR42600.2020.00582 10.1109/CVPR.2018.00702 10.1109/TPAMI.2021.3087709 10.1109/CVPR.2017.632 10.1109/CVPR42600.2020.00512 10.1109/CVPR42600.2020.00537 10.1609/aaai.v34i07.6970 10.1109/LSP.2016.2603342 10.1109/CVPR.2018.00552 10.1109/CVPR46437.2021.01605 10.1080/02699930903485076 10.24963/ijcai.2021/157 10.1109/CVPR42600.2020.01380 10.1109/TPAMI.2020.2970919 10.1109/CVPRW.2019.00038 10.1145/3230744.3230818 10.1609/aaai.v34i07.6721 10.1109/CVPR.2016.262 10.1109/CVPR46437.2021.01468 10.1007/978-3-030-01261-8_41 10.5244/C.29.41 10.1109/CVPR42600.2020.00813 10.1109/CVPR.2019.00244 10.1145/3072959.3073640 10.1109/ICCV.2019.00728 10.1145/1399504.1360638 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-022-02675-z |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (subscription) Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 5511 |
ExternalDocumentID | 10_1007_s00371_022_02675_z |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-ab6ae87dd7d9a874ca4882130ca51e17f52ec8ccacf5ffab4cdef20af8b050273 |
IEDL.DBID | 8FG |
ISSN | 0178-2789 |
IngestDate | Fri Jul 25 23:38:08 EDT 2025 Thu Apr 24 22:54:26 EDT 2025 Tue Jul 01 01:05:52 EDT 2025 Fri Feb 21 02:42:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Attribute matching loss Face reenactment Face swapping High fidelity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ab6ae87dd7d9a874ca4882130ca51e17f52ec8ccacf5ffab4cdef20af8b050273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2917989397 |
PQPubID | 2043737 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2917989397 crossref_citationtrail_10_1007_s00371_022_02675_z crossref_primary_10_1007_s00371_022_02675_z springer_journals_10_1007_s00371_022_02675_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231100 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Natsume, R., Yatagawa, T., Morishima, S.: Rsgan: Face swapping and editing using face and hair representation in latent spaces. In: ACM SIGGRAPH 2018 Posters, pp. 1–2 (2018). https://doi.org/10.1145/3230744.3230818 Ha, S., Kersner, M., Kim, B., Seo, S., Kim, D.: Marionette: Few-shot face reenactment preserving identity of unseen targets. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 10893–10900 (2020). https://doi.org/10.1609/aaai.v34i07.6721 Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3d face reconstruction with weakly-supervised learning: From single image to image set. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), pp. 285–295 (2019). https://doi.org/10.1109/CVPRW.2019.00038 DeepFakes. https://github.com/ondyari/FaceForensics/tree/master/dataset/DeepFakes. Accessed:2020-12-08 Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1501–1510 (2017). https://doi.org/10.1109/ICCV.2017.167 Dang, H., Liu, F., Stehouwer, J., Liu, X., Jain, A.K.: On the detection of digital face manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition(CVPR), pp. 5781–5790. https://doi.org/10.1109/CVPR42600.2020.00582 Zhang, J., Zeng, X., Wang, M., Pan, Y., Liu, L., Liu, Y., Ding, Y., Fan, C.: Freenet: Multi-identity face reenactment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020). https://doi.org/10.1109/CVPR42600.2020.00537 Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 41–14112 (2015). https://doi.org/10.5244/C.29.41 Wang, Y., Chen, X., Zhu, J., Chu, W., Tai, Y., Wang, C., Li, J., Wu, Y., Huang, F., Ji, R.: Hififace: 3d shape and semantic prior guided high fidelity face swapping. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence(IJCAI), pp. 1136–1142 (2021). https://doi.org/10.24963/ijcai.2021/157 ChangF-JTranATHassnerTMasiINevatiaRMedioniGDeep, landmark-free fame: Face alignment, modeling, and expression estimationInt. J. Comput. Vis.2019127693095610.1007/s11263-019-01151-x FaceSwap. https://github.com/ondyari/FaceForensics/tree/master/dataset/FaceSwapKowalski. Accessed:2020-10-17 Burkov, E., Pasechnik, I., Grigorev, A., Lempitsky, V.: Neural head reenactment with latent pose descriptors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition(CVPR), pp. 13786–13795 (2020). https://doi.org/10.1109/CVPR42600.2020.01380 Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4690–4699 (2019). https://doi.org/10.1109/TPAMI.2021.3087709 LangnerODotschRBijlstraGWigboldusDHHawkSTVan KnippenbergAPresentation and validation of the radboud faces databaseCogn. Emot.20102481377138810.1080/02699930903485076 Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: Towards open-set identity preserving face synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern recognition (CVPR), pp. 6713–6722 (2018). https://doi.org/10.1109/CVPR.2018.00702 ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Process. Lett.201623101499150310.1109/LSP.2016.2603342 GoodfellowIPouget-AbadieJMirzaMXuBWarde-FarleyDOzairSCourvilleABengioYGenerative adversarial netsAdv. Neural. Inf. Process. Syst.20142726722680 Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4401–4410 (2019). https://doi.org/10.1109/TPAMI.2020.2970919 Nirkin, Y., Keller, Y., Hassner, T.: Fsgan: Subject agnostic face swapping and reenactment. In: Proceedings of the IEEE/CVF International Conference on Computer vision(ICCV), pp. 7184–7193 (2019). https://doi.org/10.1109/ICCV.2019.00728 Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. In: International Conference on Learning Representations (LCLR) (2018) CaoMHuangSWangHWangXShenLWangSBaoLLiZLuoJUnifacegan: A unified framework for temporally consistent facial video editingIEEE Trans. Image Process.2021306107611610.1109/TIP.2021.3089909 Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face: Real-time face capture and reenactment of rgb videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2387–2395 (2016). https://doi.org/10.1109/CVPR.2016.262 Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Niessner, M.: Faceforensics++: Learning to detect manipulated facial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1–11 (2019). https://doi.org/10.1109/ICCV.2019.00009 Zhu, Y., Li, Q., Wang, J., Xu, C.-Z., Sun, Z.: One shot face swapping on megapixels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp. 4834–4844 (2021). https://doi.org/10.1109/CVPR46437.2021.00480 Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR), pp. 8110–8119 (2020). https://doi.org/10.1109/CVPR42600.2020.00813 TyagiSYadavDA detailed analysis of image and video forgery detection techniquesVis. Comput.20223812110.1007/s00371-021-02347-4 Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P., Nayar, S.K.: Face swapping: automatically replacing faces in photographs. In: ACM SIGGRAPH 2008 Papers, pp. 1–8 (2008). https://doi.org/10.1145/1399504.1360638 Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Advancing high fidelity identity swapping for forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp. 5074–5083 (2020). https://doi.org/10.1109/CVPR42600.2020.00512 Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134 (2017). https://doi.org/10.1109/CVPR.2017.632 Luo, Y., Zhang, Y., Yan, J., Liu, W.: Generalizing face forgery detection with high-frequency features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp. 16317–16326. https://doi.org/10.1109/CVPR46437.2021.01605 Wang, C., Deng, W.: Representative forgery mining for fake face detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp. 14923–14932 (2021). https://doi.org/10.1109/CVPR46437.2021.01468 WangJSunKChengTJiangBDengCZhaoYLiuDMuYTanMWangXDeep high-resolution representation learning for visual recognitionIEEE Trans. Pattern Anal. Mach. Intell.202043103349336410.1109/TPAMI.2020.2983686 Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.: Cosface: Large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern recognition(CVPR), pp. 5265–5274 (2018). https://doi.org/10.1109/CVPR.2018.00552 Chen, R., Chen, X., Ni, B., Ge, Y.: Simswap: An efficient framework for high fidelity face swapping. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2003–2011 (2020). https://doi.org/10.1145/3394171.3413630 SuwajanakornSSeitzSMKemelmacher-ShlizermanISynthesizing Obama: learning lip sync from audioACM Trans. Graph. (ToG)201736411310.1145/3072959.3073640 Ruiz, N., Chong, E., Rehg, J.M.: Fine-grained head pose estimation without keypoints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition workshops(CVPRW), pp. 2074–2083 (2018). https://doi.org/10.1109/CVPRW.2018.00281 Nirkin, Y., Masi, I., Tuan, A.T., Hassner, T., Medioni, G.: On face segmentation, face swapping, and face perception. In: 2018 13th IEEE International Conference on Automatic Face Gesture Recognition(FG), pp. 98–105 (2018). https://doi.org/10.1109/FG.2018.00024 Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2337–2346 (2019). https://doi.org/10.1109/CVPR.2019.00244 Zeng, X., Pan, Y., Wang, M., Zhang, J., Liu, Y.: Realistic face reenactment via self-supervised disentangling of identity and pose. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 12757–12764 (2020). https://doi.org/10.1609/aaai.v34i07.6970 Wiles, O., Koepke, A.S., Zisserman, A.: X2face: A network for controlling face generation using images, audio, and pose codes. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 670–686 (2018). https://doi.org/10.1007/978-3-030-01261-8_41 S Suwajanakorn (2675_CR5) 2017; 36 2675_CR18 2675_CR17 2675_CR39 2675_CR16 2675_CR15 2675_CR37 2675_CR14 2675_CR36 2675_CR13 2675_CR35 2675_CR12 2675_CR11 2675_CR33 F-J Chang (2675_CR6) 2019; 127 2675_CR10 2675_CR32 2675_CR31 I Goodfellow (2675_CR19) 2014; 27 J Wang (2675_CR30) 2020; 43 S Tyagi (2675_CR4) 2022; 38 M Cao (2675_CR8) 2021; 30 2675_CR29 O Langner (2675_CR34) 2010; 24 2675_CR28 2675_CR27 2675_CR26 2675_CR25 2675_CR9 2675_CR24 2675_CR23 2675_CR22 2675_CR21 2675_CR20 2675_CR7 K Zhang (2675_CR38) 2016; 23 2675_CR40 2675_CR1 2675_CR2 2675_CR3 |
References_xml | – reference: ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Process. Lett.201623101499150310.1109/LSP.2016.2603342 – reference: Luo, Y., Zhang, Y., Yan, J., Liu, W.: Generalizing face forgery detection with high-frequency features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp. 16317–16326. https://doi.org/10.1109/CVPR46437.2021.01605 – reference: Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: Towards open-set identity preserving face synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern recognition (CVPR), pp. 6713–6722 (2018). https://doi.org/10.1109/CVPR.2018.00702 – reference: Wiles, O., Koepke, A.S., Zisserman, A.: X2face: A network for controlling face generation using images, audio, and pose codes. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 670–686 (2018). https://doi.org/10.1007/978-3-030-01261-8_41 – reference: Wang, C., Deng, W.: Representative forgery mining for fake face detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp. 14923–14932 (2021). https://doi.org/10.1109/CVPR46437.2021.01468 – reference: Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.: Cosface: Large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern recognition(CVPR), pp. 5265–5274 (2018). https://doi.org/10.1109/CVPR.2018.00552 – reference: Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1501–1510 (2017). https://doi.org/10.1109/ICCV.2017.167 – reference: TyagiSYadavDA detailed analysis of image and video forgery detection techniquesVis. Comput.20223812110.1007/s00371-021-02347-4 – reference: Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4690–4699 (2019). https://doi.org/10.1109/TPAMI.2021.3087709 – reference: Wang, Y., Chen, X., Zhu, J., Chu, W., Tai, Y., Wang, C., Li, J., Wu, Y., Huang, F., Ji, R.: Hififace: 3d shape and semantic prior guided high fidelity face swapping. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence(IJCAI), pp. 1136–1142 (2021). https://doi.org/10.24963/ijcai.2021/157 – reference: Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face: Real-time face capture and reenactment of rgb videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2387–2395 (2016). https://doi.org/10.1109/CVPR.2016.262 – reference: Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Advancing high fidelity identity swapping for forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp. 5074–5083 (2020). https://doi.org/10.1109/CVPR42600.2020.00512 – reference: Nirkin, Y., Masi, I., Tuan, A.T., Hassner, T., Medioni, G.: On face segmentation, face swapping, and face perception. In: 2018 13th IEEE International Conference on Automatic Face Gesture Recognition(FG), pp. 98–105 (2018). https://doi.org/10.1109/FG.2018.00024 – reference: Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P., Nayar, S.K.: Face swapping: automatically replacing faces in photographs. In: ACM SIGGRAPH 2008 Papers, pp. 1–8 (2008). https://doi.org/10.1145/1399504.1360638 – reference: Dang, H., Liu, F., Stehouwer, J., Liu, X., Jain, A.K.: On the detection of digital face manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition(CVPR), pp. 5781–5790. https://doi.org/10.1109/CVPR42600.2020.00582 – reference: Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2337–2346 (2019). https://doi.org/10.1109/CVPR.2019.00244 – reference: DeepFakes. https://github.com/ondyari/FaceForensics/tree/master/dataset/DeepFakes. Accessed:2020-12-08 – reference: Burkov, E., Pasechnik, I., Grigorev, A., Lempitsky, V.: Neural head reenactment with latent pose descriptors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition(CVPR), pp. 13786–13795 (2020). https://doi.org/10.1109/CVPR42600.2020.01380 – reference: CaoMHuangSWangHWangXShenLWangSBaoLLiZLuoJUnifacegan: A unified framework for temporally consistent facial video editingIEEE Trans. Image Process.2021306107611610.1109/TIP.2021.3089909 – reference: LangnerODotschRBijlstraGWigboldusDHHawkSTVan KnippenbergAPresentation and validation of the radboud faces databaseCogn. Emot.20102481377138810.1080/02699930903485076 – reference: FaceSwap. https://github.com/ondyari/FaceForensics/tree/master/dataset/FaceSwapKowalski. Accessed:2020-10-17 – reference: Nirkin, Y., Keller, Y., Hassner, T.: Fsgan: Subject agnostic face swapping and reenactment. In: Proceedings of the IEEE/CVF International Conference on Computer vision(ICCV), pp. 7184–7193 (2019). https://doi.org/10.1109/ICCV.2019.00728 – reference: Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134 (2017). https://doi.org/10.1109/CVPR.2017.632 – reference: Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4401–4410 (2019). https://doi.org/10.1109/TPAMI.2020.2970919 – reference: ChangF-JTranATHassnerTMasiINevatiaRMedioniGDeep, landmark-free fame: Face alignment, modeling, and expression estimationInt. J. Comput. Vis.2019127693095610.1007/s11263-019-01151-x – reference: Ha, S., Kersner, M., Kim, B., Seo, S., Kim, D.: Marionette: Few-shot face reenactment preserving identity of unseen targets. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 10893–10900 (2020). https://doi.org/10.1609/aaai.v34i07.6721 – reference: SuwajanakornSSeitzSMKemelmacher-ShlizermanISynthesizing Obama: learning lip sync from audioACM Trans. Graph. (ToG)201736411310.1145/3072959.3073640 – reference: Chen, R., Chen, X., Ni, B., Ge, Y.: Simswap: An efficient framework for high fidelity face swapping. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2003–2011 (2020). https://doi.org/10.1145/3394171.3413630 – reference: Natsume, R., Yatagawa, T., Morishima, S.: Rsgan: Face swapping and editing using face and hair representation in latent spaces. In: ACM SIGGRAPH 2018 Posters, pp. 1–2 (2018). https://doi.org/10.1145/3230744.3230818 – reference: Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 41–14112 (2015). https://doi.org/10.5244/C.29.41 – reference: Zeng, X., Pan, Y., Wang, M., Zhang, J., Liu, Y.: Realistic face reenactment via self-supervised disentangling of identity and pose. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 12757–12764 (2020). https://doi.org/10.1609/aaai.v34i07.6970 – reference: Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Niessner, M.: Faceforensics++: Learning to detect manipulated facial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1–11 (2019). https://doi.org/10.1109/ICCV.2019.00009 – reference: GoodfellowIPouget-AbadieJMirzaMXuBWarde-FarleyDOzairSCourvilleABengioYGenerative adversarial netsAdv. Neural. Inf. Process. Syst.20142726722680 – reference: Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. In: International Conference on Learning Representations (LCLR) (2018) – reference: Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition (CVPR), pp. 8110–8119 (2020). https://doi.org/10.1109/CVPR42600.2020.00813 – reference: Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3d face reconstruction with weakly-supervised learning: From single image to image set. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), pp. 285–295 (2019). https://doi.org/10.1109/CVPRW.2019.00038 – reference: Zhu, Y., Li, Q., Wang, J., Xu, C.-Z., Sun, Z.: One shot face swapping on megapixels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp. 4834–4844 (2021). https://doi.org/10.1109/CVPR46437.2021.00480 – reference: Zhang, J., Zeng, X., Wang, M., Pan, Y., Liu, L., Liu, Y., Ding, Y., Fan, C.: Freenet: Multi-identity face reenactment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020). https://doi.org/10.1109/CVPR42600.2020.00537 – reference: WangJSunKChengTJiangBDengCZhaoYLiuDMuYTanMWangXDeep high-resolution representation learning for visual recognitionIEEE Trans. Pattern Anal. Mach. Intell.202043103349336410.1109/TPAMI.2020.2983686 – reference: Ruiz, N., Chong, E., Rehg, J.M.: Fine-grained head pose estimation without keypoints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition workshops(CVPRW), pp. 2074–2083 (2018). https://doi.org/10.1109/CVPRW.2018.00281 – ident: 2675_CR13 doi: 10.1109/CVPR46437.2021.00480 – ident: 2675_CR40 doi: 10.1109/CVPRW.2018.00281 – volume: 30 start-page: 6107 year: 2021 ident: 2675_CR8 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3089909 – ident: 2675_CR33 doi: 10.1109/ICCV.2019.00009 – ident: 2675_CR18 doi: 10.1109/FG.2018.00024 – volume: 127 start-page: 930 issue: 6 year: 2019 ident: 2675_CR6 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01151-x – volume: 43 start-page: 3349 issue: 10 year: 2020 ident: 2675_CR30 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2983686 – ident: 2675_CR31 doi: 10.1109/ICCV.2017.167 – volume: 38 start-page: 1 year: 2022 ident: 2675_CR4 publication-title: Vis. Comput. doi: 10.1007/s00371-021-02347-4 – ident: 2675_CR15 doi: 10.1145/3394171.3413630 – ident: 2675_CR3 doi: 10.1109/CVPR42600.2020.00582 – ident: 2675_CR22 doi: 10.1109/CVPR.2018.00702 – ident: 2675_CR29 doi: 10.1109/TPAMI.2021.3087709 – ident: 2675_CR20 doi: 10.1109/CVPR.2017.632 – ident: 2675_CR12 doi: 10.1109/CVPR42600.2020.00512 – ident: 2675_CR26 doi: 10.1109/CVPR42600.2020.00537 – ident: 2675_CR28 doi: 10.1609/aaai.v34i07.6970 – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 2675_CR38 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2603342 – ident: 2675_CR39 doi: 10.1109/CVPR.2018.00552 – ident: 2675_CR2 doi: 10.1109/CVPR46437.2021.01605 – ident: 2675_CR10 – volume: 24 start-page: 1377 issue: 8 year: 2010 ident: 2675_CR34 publication-title: Cogn. Emot. doi: 10.1080/02699930903485076 – volume: 27 start-page: 2672 year: 2014 ident: 2675_CR19 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 2675_CR9 – ident: 2675_CR14 doi: 10.24963/ijcai.2021/157 – ident: 2675_CR16 doi: 10.1109/CVPR42600.2020.01380 – ident: 2675_CR35 – ident: 2675_CR36 doi: 10.1109/TPAMI.2020.2970919 – ident: 2675_CR7 doi: 10.1109/CVPRW.2019.00038 – ident: 2675_CR21 doi: 10.1145/3230744.3230818 – ident: 2675_CR25 doi: 10.1609/aaai.v34i07.6721 – ident: 2675_CR24 doi: 10.1109/CVPR.2016.262 – ident: 2675_CR1 doi: 10.1109/CVPR46437.2021.01468 – ident: 2675_CR27 doi: 10.1007/978-3-030-01261-8_41 – ident: 2675_CR37 doi: 10.5244/C.29.41 – ident: 2675_CR23 doi: 10.1109/CVPR42600.2020.00813 – ident: 2675_CR32 doi: 10.1109/CVPR.2019.00244 – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 2675_CR5 publication-title: ACM Trans. Graph. (ToG) doi: 10.1145/3072959.3073640 – ident: 2675_CR11 doi: 10.1109/ICCV.2019.00728 – ident: 2675_CR17 doi: 10.1145/1399504.1360638 |
SSID | ssj0017749 |
Score | 2.3461826 |
Snippet | Face swapping has shown remarkable progress with the flourishing development of deep learning. In particular, the emergence of subject agnostic methods has... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5497 |
SubjectTerms | Accuracy Artificial Intelligence Computer Graphics Computer Science Image Processing and Computer Vision Methods Original Article |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAY4AYDJQDN4i0Rkkf3CZgmpDgAEzarUrShAsqaN0E2q8nztIOECBxbVMf7Lj-EtufAU5dFNOZzRhVjFnKE85pqrBsJ0ljqxwENp5t__YuHo74zViMQ1NYVVe71ylJ_6dumt08uxzF6nOcmiTofBXWhDu7474esX6TO3CAxoPeyJ2PsM8ztMr8LONrOFpizG9pUR9tBtuwGWAi6S_sugMrpmzDVj2CgQSPbMPGJz7BXbi6fxhIbS5INVN4v0J8GZ0TQax7TKo3iWwMTwQvX4l5DzWwJUHOYmKR8Mph8j0YDa4fL4c0jEmg2vnPlEoVS5MmRZEUmUwTjjzlKXOxSUsRmSixghmdOktpK6yViuvCWNaT1hlFIJ3NPrTKl9IcABEWGcl6OjVc8oxzZU0mWBHJXmwLoVUHolpbuQ4c4jjK4jlv2I-9hnOn4dxrOJ934Kz55nXBoPHn6m5thDx4U5WzDGnVMgedOnBeG2b5-ndph_9bfgTrOE1-0WrYhdZ0MjPHDnNM1YnfYh9JUs2U priority: 102 providerName: Springer Nature |
Title | RSFace: subject agnostic face swapping with expression high fidelity |
URI | https://link.springer.com/article/10.1007/s00371-022-02675-z https://www.proquest.com/docview/2917989397 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnoQn1itJQdvGuyGpLvrRVrtKopF1IKeliSbeJH62IrSX-9Mmm1VsKfA5nGYSTLfTma-IWQfrJhJXcqZ5twxEQvBEo1hO3HSchogsPVs-9e91kVfXD7Ih-BwK0NYZXUn-ou6eDHoIz_iKVJrpWA-T17fGFaNwtfVUEJjnixGYGlwhyfZ-eQVAaCNh78R_ClhxmdImvGpc56rjmEsO9Zgkmz02zBN0eafB1Jvd7JVshIAI22PNbxG5uxgnSz_oBHcIGe3d5ky9piWHxrdKtRHz8F46uAzLT8VkjA8UfS5UvsVQl8HFKmKqUOeK4Dim6Sfde9PL1iojsAMHJshU7qlbBIXRVykKokF0pMnHEySUTKyUewktyYBBRknnVNamMI63lQOdCGRxWaLLAxeBnabUOmQiKxpEiuUSIXQzqaSF5Fqtlwhja6RqBJNbgJ1OFaweM4npMdenDmIM_fizEc1cjCZ8zomzpg5ul5JPA-HqMynKq-Rw0oL0-7_V9uZvdouWcKi8eOMwjpZGL5_2D2AFkPd8PunQRbbWafTw_b88aoLbafbu7mF3j5vfwOetM-c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVl9QFOYNEYu0mQEEJAKeuBReIWbMfmgsrSIpaP4huZcZMWkODGNXEseTyZeR7PvAFYRi9mU58KboTwXMZS8sRQ2k6c1LxBCOwC2_7pWa1xJY-u1XUffJS1MJRWWdrEYKjze0sx8nWRErVWiu5z--GRU9coul0tW2h01OLYvb3gka21dbiH-7siRH3_crfBi64C3KK6tbk2Ne2SOM_jPNVJLInWOxFoyq1WkYtir4SzCS7MeuW9NtLmzouq9rgGRewvOG8_DMqNjZRSCJP6QffWAqFUgNsRnsyowrQo0gmleoEbj1PuPPV8Uvz9uyPsodsfF7LBz9XHYLQAqGyno1Hj0OeaEzDyhbZwEvbOL-rauk3WejYUxmEhWw_HM4-PWetFE-nDLaMYL3OvRaptkxE1MvPEq4XQfwqu_kVu0zDQvG-6GWDKE_FZ1SZOaplKabxLlcgjXa35XFlTgagUTWYLqnLqmHGXdUmWgzgzFGcWxJm9V2C1-81Dh6jjz9HzpcSz4qdtZT0Vq8BauQu917_PNvv3bEsw1Lg8PclODs-O52CYGtZ3qhnnYaD99OwWENa0zWLQJQY3_628n_0jCbI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT8MwDMctGBKCA48BYjAgB25QsUbJ2nKbGNN4TQiYtFuVpAkXVCa2CbRPT5w-NhAgcW3THOym_jexfwY4tlFMRSainqTUeCxgzAslpu0EYdNIK4G1o-3f9ZrdPrse8MFcFb_Ldi-OJLOaBqQ0peOzYWLOysI3R5rzMBMdOyhxb7oIS_Zz7GNSV5-2ynMEK26cAPbtvxLWfOZlMz_P8TU0zfTmtyNSF3k6G7CWS0bSyny8CQs6rcJ60Y6B5KuzCqtzbMEtaD88doTS52Q0kbjXQlxKnZ2CGHuZjN4FkhmeCW7EEv2R58OmBPnFxCD8yurzbeh3Lp8uul7eMsFTdi2NPSGbQodBkgRJJMKAIbM8pDZOKcF97QeGU61C6zVluDFCMpVoQxvCWAdxRNvsQCV9TfUuEG6QTtZQoWaCRYxJoyNOE180mibhStbAL6wVq5wnjm0tXuKShOwsHFsLx87C8bQGJ-Uzw4ym8efoeuGEOF9Zo5hGiFiLrIyqwWnhmNnt32fb-9_wI1i-b3fi26vezT6sYJP5rAKxDpXx20QfWCkylofubfsEVnLUww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RSFace%3A+subject+agnostic+face+swapping+with+expression+high+fidelity&rft.jtitle=The+Visual+computer&rft.au=Yang%2C+Gaoming&rft.au=Wang%2C+Tao&rft.au=Fang%2C+Xianjin&rft.au=Zhang%2C+ji&rft.date=2023-11-01&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=39&rft.issue=11&rft.spage=5497&rft.epage=5511&rft_id=info:doi/10.1007%2Fs00371-022-02675-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00371_022_02675_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |