A prey-predator fractional order model with fear effect and group defense

In this work, a fractional-order prey-predator system with fear effect of predator on prey population and group defense has been proposed. The existence and uniqueness of the system have been studied. Non-negativity and boundedness are also theoretically demonstrated. Analysis of local stability wit...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of dynamics and control Vol. 9; no. 1; pp. 334 - 349
Main Authors Das, Meghadri, Samanta, G. P.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, a fractional-order prey-predator system with fear effect of predator on prey population and group defense has been proposed. The existence and uniqueness of the system have been studied. Non-negativity and boundedness are also theoretically demonstrated. Analysis of local stability with examination of saddle-node and Hopf bifurcation at equilibrium points are performed by the help of numerical simulations along with analytical study. All the numerical simulations are performed using MATLAB and MAPLE.
AbstractList In this work, a fractional-order prey-predator system with fear effect of predator on prey population and group defense has been proposed. The existence and uniqueness of the system have been studied. Non-negativity and boundedness are also theoretically demonstrated. Analysis of local stability with examination of saddle-node and Hopf bifurcation at equilibrium points are performed by the help of numerical simulations along with analytical study. All the numerical simulations are performed using MATLAB and MAPLE.
Author Das, Meghadri
Samanta, G. P.
Author_xml – sequence: 1
  givenname: Meghadri
  surname: Das
  fullname: Das, Meghadri
  organization: Department of Mathematics, Indian Institute of Engineering Science and Technology
– sequence: 2
  givenname: G. P.
  surname: Samanta
  fullname: Samanta, G. P.
  email: g_p_samanta@yahoo.co.uk, gpsamanta@math.iiests.ac.in
  organization: Department of Mathematics, Indian Institute of Engineering Science and Technology
BookMark eNp9kE1PwzAMhiM0JMbYH-AUiXPBTdI2OU4TH5MmcQGJW-Q2yejUNSPpxPbv6SgCicMutg_vY9nPJRm1vrWEXKdwmwIUd1GA4FkCDBKAnOXJ_oyMWaqyhOVKjn5n-XZBpjGuAYClAphQY7KY0W2wh6QvBjsfqAtYdbVvsaE-GBvoxhvb0M-6e6fOYqDWOVt1FFtDV8HvttRYZ9tor8i5wyba6U-fkNeH-5f5U7J8flzMZ8uk4qnqEixzlSk0kEsjSpU6zpVTjoEorJIZSgaAeYGWIS9FnmWSSYVCgCmR84rzCbkZ9m6D_9jZ2Om134X-3qiZkIUQBZNZn5JDqgo-xmCdruoOj491AetGp6CP7vTgTvfu9Lc7ve9R9g_dhnqD4XAa4gMU-3C7suHvqhPUF3Sbgug
CitedBy_id crossref_primary_10_1016_j_chaos_2023_114449
crossref_primary_10_1515_cmb_2020_0116
crossref_primary_10_1142_S0218127422500821
crossref_primary_10_3390_fractalfract5030084
crossref_primary_10_3390_axioms11100577
crossref_primary_10_3934_math_20221000
crossref_primary_10_1007_s11071_021_06435_x
crossref_primary_10_1007_s40435_020_00646_7
crossref_primary_10_1016_j_matcom_2020_06_015
crossref_primary_10_1016_j_matcom_2021_08_005
crossref_primary_10_12677_AAM_2021_1011380
crossref_primary_10_1007_s12346_024_00981_6
crossref_primary_10_1142_S179300572450011X
crossref_primary_10_3934_mbe_2022610
crossref_primary_10_1007_s40995_023_01540_5
crossref_primary_10_1155_2021_9963031
crossref_primary_10_3934_mbe_2023322
crossref_primary_10_1007_s00366_021_01383_x
crossref_primary_10_1007_s11071_021_06719_2
crossref_primary_10_1016_j_nonrwa_2023_103888
crossref_primary_10_3390_fractalfract7100722
crossref_primary_10_3390_math11204367
crossref_primary_10_1007_s12190_022_01728_9
crossref_primary_10_1063_5_0130809
crossref_primary_10_1515_cmb_2020_0121
crossref_primary_10_3934_mbe_2024319
crossref_primary_10_3390_axioms14010053
crossref_primary_10_3934_math_2023091
crossref_primary_10_1016_j_csfx_2022_100073
crossref_primary_10_1155_2023_5030729
crossref_primary_10_3390_math10163020
crossref_primary_10_1007_s40435_021_00822_3
crossref_primary_10_1142_S021812742250002X
crossref_primary_10_1155_2021_9358881
crossref_primary_10_1155_2021_6402459
crossref_primary_10_1007_s40808_023_01843_x
crossref_primary_10_1007_s40324_021_00251_4
crossref_primary_10_1007_s12215_020_00570_x
crossref_primary_10_1007_s40819_021_01224_x
crossref_primary_10_1016_j_cnsns_2022_107043
crossref_primary_10_1007_s12591_021_00575_7
crossref_primary_10_1142_S0218127423500086
crossref_primary_10_1063_5_0241236
crossref_primary_10_1007_s12190_025_02382_7
crossref_primary_10_3390_math9070703
crossref_primary_10_11121_ijocta_2021_1123
crossref_primary_10_3390_math8081244
crossref_primary_10_2139_ssrn_4185431
Cites_doi 10.1007/s10336-010-0638-1
10.1155/2013/279681
10.1114/1.1574026
10.1016/j.amc.2019.03.034
10.1007/s11071-011-0157-5
10.1016/j.automatica.2009.04.003
10.1016/j.chaos.2017.03.034
10.1016/j.aml.2011.05.035
10.3934/dcdsb.2014.19.2267
10.1155/2014/631419
10.2193/0022-541X(2004)068[0519:VPRATA]2.0.CO;2
10.1080/10652469.2014.965704
10.1007/s10928-010-9153-5
10.1002/bit.260230909
10.1142/3779
10.1007/s00285-016-0989-1
10.1007/s00607-003-0033-3
10.1155/2011/298628
10.1002/bit.260100602
10.1126/science.1135918
10.1007/s11071-014-1439-5
10.1007/978-3-642-18101-6
10.1023/A:1016592219341
10.1111/j.1365-2656.2009.01552.x
10.1073/pnas.0902235106
10.1007/s12190-016-1017-8
10.1201/9781315367453
10.1142/S0218127407017732
10.1080/00207160802624331
10.1007/978-1-4020-6042-7
10.1016/j.jmaa.2006.01.087
10.1371/journal.pone.0002465
10.1016/j.tree.2007.12.004
10.1890/0012-9658(1997)078[1388:BMTCEO]2.0.CO;2
10.1086/661250
10.1890/090226
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s40435-020-00626-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2195-2698
EndPage 349
ExternalDocumentID 10_1007_s40435_020_00626_x
GroupedDBID -EM
0R~
30V
4.4
406
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BGNMA
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
H13
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
PT4
RLLFE
ROL
RSV
SCL
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-ab6959ad068d4b91f339f9f2047e985a8200a67ae2a3b46558289a440dba33c33
IEDL.DBID AGYKE
ISSN 2195-268X
IngestDate Wed Aug 13 06:10:18 EDT 2025
Tue Jul 01 02:44:15 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Fri Feb 21 02:48:40 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Bifurcation
Caputo fractional differential equation
Fear effect
Predator-prey model
Group defense
Lyapunov exponent
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ab6959ad068d4b91f339f9f2047e985a8200a67ae2a3b46558289a440dba33c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2487447285
PQPubID 2043900
PageCount 16
ParticipantIDs proquest_journals_2487447285
crossref_citationtrail_10_1007_s40435_020_00626_x
crossref_primary_10_1007_s40435_020_00626_x
springer_journals_10_1007_s40435_020_00626_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of dynamics and control
PublicationTitleAbbrev Int. J. Dynam. Control
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AhmedEEl-SayedAEl-SakaHEquilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies modelsJ Math Anal Appl2007325542-1-7553227354410.1016/j.jmaa.2006.01.087
Hilfer R (ed) (2000) Applications of fractional calculus in physics. World Scientific Publishing Co., Inc, River Edge
MainardiFOn some properties of the Mittag-Leffler function Eα,1(-ηtε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E_{\alpha ,1}(-\eta t^{\varepsilon })$$\end{document}, completely monotone for t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t > 0$$\end{document} with 0<ε<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 < \varepsilon < 1$$\end{document}Discrete Contin Dyn Syst Ser B201419722672278325325710.3934/dcdsb.2014.19.22671303.26007
LiXWuRHopf bifurcation analysis of a new commensurate fractional-order hyper chaotic systemNonlinear Dyn201478127928810.1007/s11071-014-1439-5
LyapunovAMThe general problem of the stability of motion1892KharkovKharkov Mathematical Society
CresswellWPredation in bird populationsJ Ornithol2011152125126310.1007/s10336-010-0638-1
PodlubnyIFractional differential equations1999San DiegoAcademic Press0924.34008
LeonovGAKuznetsovNVTime-Varying Linearization and the Perron effectsInt J Bifurc Chaos200717410791107232951610.1142/S0218127407017732
SchmitzOJBeckermanAPO’BrienKMBehaviorally mediated trophic cascades: effects of predation risk on food web interactionsEcology1997781388139910.1890/0012-9658(1997)078[1388:BMTCEO]2.0.CO;2
ElliottKHBetiniGSNorrisDRExperimental evidence for within- and cross-seasona effects of fear on survival and reproductionJ Anim Ecol2010201685507515
GarrappaROn linear stability of predictor-corrector algorithms for fractional differential equationsInt J Comput Math2010871022812290268014710.1080/00207160802624331
DeshpandeASDaftardar-GejjiVSukaleYVOn Hopf bifurcational dynamical systemsChaos Solut Fractals20179818919810.1016/j.chaos.2017.03.034
MooringMSFitzpatrickTANishihiraTTReisigDDVigilance, predation risk, and the Allee effect in desert bighorn sheepJ Wildl Manag20046851953210.2193/0022-541X(2004)068[0519:VPRATA]2.0.CO;2
DasMMaityASamantaGPStability analysis of a prey-predator fractional order model incorporating prey refugeEcol Genet Genom201873346
SimonTMittag-Leffler functions and complete monotonicityIntegral Transforms Spec Funct20152613650327544710.1080/10652469.2014.965704
AtanganaASecerAA note on fractional order derivatives and table of fractional derivatives of some special functionsAbstr Appl Anal201320138303916910.1155/2013/2796811276.26010
SvennugsenTOHolenOHLeimarOInducible defenses:continuous reaction norms or threshold traitsAM Nat2011178339741010.1086/661250
MillerKSRossBAn introduction to the fractional calculus and fractional differential equations1993New YorkWiley0789.26002
WangXZanetteLZouXMthe fear effect in predator-prey interactionsJ Math Biol20167311791204355536610.1007/s00285-016-0989-1
KexueLJigenPLaplace transform and fractional differential equationsAppl Math Lett2011241220192023282611810.1016/j.aml.2011.05.035
PetrasIFractional-order nonlinear systems: modeling aanlysis and simulation2011BeijingHigher Education Press10.1007/978-3-642-18101-6
DiethelmKFordNJFreedADA predictor-corrector approach for the numerical solution of fractional differential equationsNonlinear Dyn200229322192646610.1023/A:1016592219341
LiYChenYQPodlubnyIMittag-Leffler stability of fractional order non linear dynamic systemsAutomatica20094519651969287952510.1016/j.automatica.2009.04.003
CreelSChristiansonDRelationships between direct predation and risk effectsTrends Ecol Evol200823419420110.1016/j.tree.2007.12.004
IvlevVSExperimental ecology of the feeding of fishes1961New HavenYale University Press
PreisserELBolnicDIThe many faces of fear:comparing the pathways and impacts on non consumptive predator effects on prey populationsPLoS ONE200836e246510.1371/journal.pone.0002465
AndrewsJFA mathematical model for the continuous culture of microorganisms utilizing inhibitory substratesBiotechnol Bioeng19681070772310.1002/bit.260100602
DiethelmKEfficient solution of multi-term fractional differential equations using P(EC)mE methodsComputing2003714305319202721510.1007/s00607-003-0033-3
Stamova I, Stamov G (2017) Functional and impulsive differential equations of fractional order: qualitative analysis and applications
SokolWHowellJAKinetics of phenol oxidation by washed cellsBiotechnol Bioeng1981232039204910.1002/bit.260230909
KilbasASrivastavaHTrujilloJTheory and application of fractional differential equations2006New YorkElsevier1092.45003
MalthusTRAn essay on the principle of population, and a summary view of the principle of populations1798PenguinHarmondsworth
DasSFunctional fractional calculus for system identification and controls2007BerlinSpringer
WirsingAJRippleWA comparison of shark and wolf research reveals similar behavioral responses by preyFront Ecol Environ2010933534110.1890/090226
KlimekMBłasikMExistence and uniqueness of solution for a class of nonlinear sequential differential equations of fractional orderCentr Eur J Math2012101981199429831401260.26009
SabatierJAgrawalOPTenreiro MachadoJAAdvances in fractional calculus: theoretical developments and applications in physics and engineering2007BerlinSpringer10.1007/978-1-4020-6042-7
ZhangHFuSWangWImpact of the fear effect in a prey-predator model incorporating a prey refugeAppl Math Comput2019356328337393453710.1016/j.amc.2019.03.0341428.92099
LiHLZhangLHuCJiangYLTengZDynamical analysis of a fractional-order predator-prey model incorporating a prey refugeJ Appl Math Comput2016541–2435449364718510.1007/s12190-016-1017-81377.34062
CreelSWinnieJAChristiansonDGlucocorticoid stress hormones and the effect of predation risk on elk reproductionProc Natl Acad Sci USA2009106123881239310.1073/pnas.0902235106
ChoiSKKangBKooNStability for caputo fractional differential systemsAbstr Appl Anal2014316663510.1155/2014/63141907022779
SheriffMJKrebsCJBoonstraRThe sensitive hare: sublethal effects of predator stress on reproduction in snowshoe haresJ Anim Ecol2009781249125810.1111/j.1365-2656.2009.01552.x
DjordjevicVDJaricJFabryBAnn Biomed Eng20033169210.1114/1.1574026
CreelSChristiansonDLilleySWinnieJAPredation risk effects reproductive physiology and demography of elkScience2007315581496096010.1126/science.1135918
LiangSWuRChenLLaplace transform of fractional order differential equationsElectron J Differ Equ2015139133585111346.34009
OdibatZShawagfehNGeneralized Taylors formulaAppl Math Comput2007186286-1-729323165141122.26006
Haubold HJ, Mathai AM, Saxena RK (2011) Mittag-Leffler functions and their applications. J Appl Math 298628. arXiv:0909.0230 [math.CA]
DokoumetzidisAMaginRMacherasPA commentary on fractionalization of multi-compartmental modelsJ Pharmacokinet Pharmacodyn20103720320710.1007/s10928-010-9153-5discussion 217
TenerJSMuskoxen1965OttawaQueen’s Printer
DelavariHBaleanuDSadatiJStability analysis of Caputo fractional-order non linear system revisitedNon linear Dyn2012672433243910.1007/s11071-011-0157-5
OJ Schmitz (626_CR8) 1997; 78
X Wang (626_CR24) 2016; 73
S Creel (626_CR5) 2007; 315
H Zhang (626_CR25) 2019; 356
X Li (626_CR20) 2014; 78
VS Ivlev (626_CR14) 1961
MS Mooring (626_CR12) 2004; 68
JS Tener (626_CR13) 1965
S Liang (626_CR29) 2015; 139
K Diethelm (626_CR37) 2002; 29
VD Djordjevic (626_CR17) 2003; 31
Y Li (626_CR31) 2009; 45
SK Choi (626_CR36) 2014
626_CR44
HL Li (626_CR23) 2016; 54
EL Preisser (626_CR4) 2008; 3
AJ Wirsing (626_CR7) 2010; 9
626_CR49
T Simon (626_CR48) 2015; 26
M Klimek (626_CR33) 2012; 10
W Sokol (626_CR15) 1981; 23
A Dokoumetzidis (626_CR26) 2010; 37
J Sabatier (626_CR47) 2007
TR Malthus (626_CR1) 1798
626_CR34
S Creel (626_CR11) 2009; 106
A Atangana (626_CR22) 2013; 2013
H Delavari (626_CR43) 2012; 67
W Cresswell (626_CR2) 2011; 152
KH Elliott (626_CR10) 2010; 2016
R Garrappa (626_CR39) 2010; 87
L Kexue (626_CR30) 2011; 24
S Das (626_CR42) 2007
K Diethelm (626_CR38) 2003; 71
M Das (626_CR21) 2018; 7
AM Lyapunov (626_CR32) 1892
JF Andrews (626_CR41) 1968; 10
I Podlubny (626_CR16) 1999
GA Leonov (626_CR40) 2007; 17
E Ahmed (626_CR18) 2007; 325
I Petras (626_CR27) 2011
TO Svennugsen (626_CR3) 2011; 178
AS Deshpande (626_CR19) 2017; 98
F Mainardi (626_CR35) 2014; 19
A Kilbas (626_CR45) 2006
KS Miller (626_CR46) 1993
S Creel (626_CR6) 2008; 23
Z Odibat (626_CR28) 2007; 186
MJ Sheriff (626_CR9) 2009; 78
References_xml – reference: DjordjevicVDJaricJFabryBAnn Biomed Eng20033169210.1114/1.1574026
– reference: AndrewsJFA mathematical model for the continuous culture of microorganisms utilizing inhibitory substratesBiotechnol Bioeng19681070772310.1002/bit.260100602
– reference: DiethelmKFordNJFreedADA predictor-corrector approach for the numerical solution of fractional differential equationsNonlinear Dyn200229322192646610.1023/A:1016592219341
– reference: PreisserELBolnicDIThe many faces of fear:comparing the pathways and impacts on non consumptive predator effects on prey populationsPLoS ONE200836e246510.1371/journal.pone.0002465
– reference: AhmedEEl-SayedAEl-SakaHEquilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies modelsJ Math Anal Appl2007325542-1-7553227354410.1016/j.jmaa.2006.01.087
– reference: DasMMaityASamantaGPStability analysis of a prey-predator fractional order model incorporating prey refugeEcol Genet Genom201873346
– reference: KexueLJigenPLaplace transform and fractional differential equationsAppl Math Lett2011241220192023282611810.1016/j.aml.2011.05.035
– reference: DelavariHBaleanuDSadatiJStability analysis of Caputo fractional-order non linear system revisitedNon linear Dyn2012672433243910.1007/s11071-011-0157-5
– reference: DokoumetzidisAMaginRMacherasPA commentary on fractionalization of multi-compartmental modelsJ Pharmacokinet Pharmacodyn20103720320710.1007/s10928-010-9153-5discussion 217
– reference: MainardiFOn some properties of the Mittag-Leffler function Eα,1(-ηtε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E_{\alpha ,1}(-\eta t^{\varepsilon })$$\end{document}, completely monotone for t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t > 0$$\end{document} with 0<ε<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 < \varepsilon < 1$$\end{document}Discrete Contin Dyn Syst Ser B201419722672278325325710.3934/dcdsb.2014.19.22671303.26007
– reference: CreelSWinnieJAChristiansonDGlucocorticoid stress hormones and the effect of predation risk on elk reproductionProc Natl Acad Sci USA2009106123881239310.1073/pnas.0902235106
– reference: LiXWuRHopf bifurcation analysis of a new commensurate fractional-order hyper chaotic systemNonlinear Dyn201478127928810.1007/s11071-014-1439-5
– reference: CreelSChristiansonDRelationships between direct predation and risk effectsTrends Ecol Evol200823419420110.1016/j.tree.2007.12.004
– reference: SheriffMJKrebsCJBoonstraRThe sensitive hare: sublethal effects of predator stress on reproduction in snowshoe haresJ Anim Ecol2009781249125810.1111/j.1365-2656.2009.01552.x
– reference: AtanganaASecerAA note on fractional order derivatives and table of fractional derivatives of some special functionsAbstr Appl Anal201320138303916910.1155/2013/2796811276.26010
– reference: KilbasASrivastavaHTrujilloJTheory and application of fractional differential equations2006New YorkElsevier1092.45003
– reference: LiYChenYQPodlubnyIMittag-Leffler stability of fractional order non linear dynamic systemsAutomatica20094519651969287952510.1016/j.automatica.2009.04.003
– reference: LiangSWuRChenLLaplace transform of fractional order differential equationsElectron J Differ Equ2015139133585111346.34009
– reference: KlimekMBłasikMExistence and uniqueness of solution for a class of nonlinear sequential differential equations of fractional orderCentr Eur J Math2012101981199429831401260.26009
– reference: WangXZanetteLZouXMthe fear effect in predator-prey interactionsJ Math Biol20167311791204355536610.1007/s00285-016-0989-1
– reference: CreelSChristiansonDLilleySWinnieJAPredation risk effects reproductive physiology and demography of elkScience2007315581496096010.1126/science.1135918
– reference: MalthusTRAn essay on the principle of population, and a summary view of the principle of populations1798PenguinHarmondsworth
– reference: WirsingAJRippleWA comparison of shark and wolf research reveals similar behavioral responses by preyFront Ecol Environ2010933534110.1890/090226
– reference: PodlubnyIFractional differential equations1999San DiegoAcademic Press0924.34008
– reference: MooringMSFitzpatrickTANishihiraTTReisigDDVigilance, predation risk, and the Allee effect in desert bighorn sheepJ Wildl Manag20046851953210.2193/0022-541X(2004)068[0519:VPRATA]2.0.CO;2
– reference: ZhangHFuSWangWImpact of the fear effect in a prey-predator model incorporating a prey refugeAppl Math Comput2019356328337393453710.1016/j.amc.2019.03.0341428.92099
– reference: PetrasIFractional-order nonlinear systems: modeling aanlysis and simulation2011BeijingHigher Education Press10.1007/978-3-642-18101-6
– reference: ElliottKHBetiniGSNorrisDRExperimental evidence for within- and cross-seasona effects of fear on survival and reproductionJ Anim Ecol2010201685507515
– reference: LyapunovAMThe general problem of the stability of motion1892KharkovKharkov Mathematical Society
– reference: SvennugsenTOHolenOHLeimarOInducible defenses:continuous reaction norms or threshold traitsAM Nat2011178339741010.1086/661250
– reference: DasSFunctional fractional calculus for system identification and controls2007BerlinSpringer
– reference: SimonTMittag-Leffler functions and complete monotonicityIntegral Transforms Spec Funct20152613650327544710.1080/10652469.2014.965704
– reference: Stamova I, Stamov G (2017) Functional and impulsive differential equations of fractional order: qualitative analysis and applications
– reference: DiethelmKEfficient solution of multi-term fractional differential equations using P(EC)mE methodsComputing2003714305319202721510.1007/s00607-003-0033-3
– reference: GarrappaROn linear stability of predictor-corrector algorithms for fractional differential equationsInt J Comput Math2010871022812290268014710.1080/00207160802624331
– reference: TenerJSMuskoxen1965OttawaQueen’s Printer
– reference: IvlevVSExperimental ecology of the feeding of fishes1961New HavenYale University Press
– reference: ChoiSKKangBKooNStability for caputo fractional differential systemsAbstr Appl Anal2014316663510.1155/2014/63141907022779
– reference: LiHLZhangLHuCJiangYLTengZDynamical analysis of a fractional-order predator-prey model incorporating a prey refugeJ Appl Math Comput2016541–2435449364718510.1007/s12190-016-1017-81377.34062
– reference: CresswellWPredation in bird populationsJ Ornithol2011152125126310.1007/s10336-010-0638-1
– reference: SokolWHowellJAKinetics of phenol oxidation by washed cellsBiotechnol Bioeng1981232039204910.1002/bit.260230909
– reference: LeonovGAKuznetsovNVTime-Varying Linearization and the Perron effectsInt J Bifurc Chaos200717410791107232951610.1142/S0218127407017732
– reference: Hilfer R (ed) (2000) Applications of fractional calculus in physics. World Scientific Publishing Co., Inc, River Edge
– reference: DeshpandeASDaftardar-GejjiVSukaleYVOn Hopf bifurcational dynamical systemsChaos Solut Fractals20179818919810.1016/j.chaos.2017.03.034
– reference: SchmitzOJBeckermanAPO’BrienKMBehaviorally mediated trophic cascades: effects of predation risk on food web interactionsEcology1997781388139910.1890/0012-9658(1997)078[1388:BMTCEO]2.0.CO;2
– reference: OdibatZShawagfehNGeneralized Taylors formulaAppl Math Comput2007186286-1-729323165141122.26006
– reference: SabatierJAgrawalOPTenreiro MachadoJAAdvances in fractional calculus: theoretical developments and applications in physics and engineering2007BerlinSpringer10.1007/978-1-4020-6042-7
– reference: Haubold HJ, Mathai AM, Saxena RK (2011) Mittag-Leffler functions and their applications. J Appl Math 298628. arXiv:0909.0230 [math.CA]
– reference: MillerKSRossBAn introduction to the fractional calculus and fractional differential equations1993New YorkWiley0789.26002
– volume-title: Experimental ecology of the feeding of fishes
  year: 1961
  ident: 626_CR14
– volume: 139
  start-page: 1
  year: 2015
  ident: 626_CR29
  publication-title: Electron J Differ Equ
– volume: 7
  start-page: 33
  year: 2018
  ident: 626_CR21
  publication-title: Ecol Genet Genom
– volume-title: Muskoxen
  year: 1965
  ident: 626_CR13
– volume: 152
  start-page: 251
  issue: 1
  year: 2011
  ident: 626_CR2
  publication-title: J Ornithol
  doi: 10.1007/s10336-010-0638-1
– volume: 2016
  start-page: 507
  issue: 85
  year: 2010
  ident: 626_CR10
  publication-title: J Anim Ecol
– volume: 2013
  start-page: 8
  year: 2013
  ident: 626_CR22
  publication-title: Abstr Appl Anal
  doi: 10.1155/2013/279681
– volume: 31
  start-page: 692
  year: 2003
  ident: 626_CR17
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.1574026
– volume: 356
  start-page: 328
  year: 2019
  ident: 626_CR25
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2019.03.034
– volume: 67
  start-page: 2433
  year: 2012
  ident: 626_CR43
  publication-title: Non linear Dyn
  doi: 10.1007/s11071-011-0157-5
– volume: 45
  start-page: 1965
  year: 2009
  ident: 626_CR31
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.04.003
– volume: 98
  start-page: 189
  year: 2017
  ident: 626_CR19
  publication-title: Chaos Solut Fractals
  doi: 10.1016/j.chaos.2017.03.034
– volume: 24
  start-page: 2019
  issue: 12
  year: 2011
  ident: 626_CR30
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2011.05.035
– volume-title: Fractional differential equations
  year: 1999
  ident: 626_CR16
– volume: 19
  start-page: 2267
  issue: 7
  year: 2014
  ident: 626_CR35
  publication-title: Discrete Contin Dyn Syst Ser B
  doi: 10.3934/dcdsb.2014.19.2267
– year: 2014
  ident: 626_CR36
  publication-title: Abstr Appl Anal
  doi: 10.1155/2014/631419
– volume: 68
  start-page: 519
  year: 2004
  ident: 626_CR12
  publication-title: J Wildl Manag
  doi: 10.2193/0022-541X(2004)068[0519:VPRATA]2.0.CO;2
– volume: 26
  start-page: 36
  issue: 1
  year: 2015
  ident: 626_CR48
  publication-title: Integral Transforms Spec Funct
  doi: 10.1080/10652469.2014.965704
– volume: 186
  start-page: 286-1-7293
  year: 2007
  ident: 626_CR28
  publication-title: Appl Math Comput
– volume: 37
  start-page: 203
  year: 2010
  ident: 626_CR26
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-010-9153-5
– volume: 23
  start-page: 2039
  year: 1981
  ident: 626_CR15
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.260230909
– ident: 626_CR44
  doi: 10.1142/3779
– volume: 73
  start-page: 1179
  year: 2016
  ident: 626_CR24
  publication-title: J Math Biol
  doi: 10.1007/s00285-016-0989-1
– volume-title: The general problem of the stability of motion
  year: 1892
  ident: 626_CR32
– volume: 71
  start-page: 305
  issue: 4
  year: 2003
  ident: 626_CR38
  publication-title: Computing
  doi: 10.1007/s00607-003-0033-3
– volume-title: An essay on the principle of population, and a summary view of the principle of populations
  year: 1798
  ident: 626_CR1
– ident: 626_CR34
  doi: 10.1155/2011/298628
– volume: 10
  start-page: 707
  year: 1968
  ident: 626_CR41
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.260100602
– volume: 315
  start-page: 960
  issue: 5814
  year: 2007
  ident: 626_CR5
  publication-title: Science
  doi: 10.1126/science.1135918
– volume: 78
  start-page: 279
  issue: 1
  year: 2014
  ident: 626_CR20
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1439-5
– volume-title: Fractional-order nonlinear systems: modeling aanlysis and simulation
  year: 2011
  ident: 626_CR27
  doi: 10.1007/978-3-642-18101-6
– volume: 10
  start-page: 1981
  year: 2012
  ident: 626_CR33
  publication-title: Centr Eur J Math
– volume-title: Theory and application of fractional differential equations
  year: 2006
  ident: 626_CR45
– volume-title: An introduction to the fractional calculus and fractional differential equations
  year: 1993
  ident: 626_CR46
– volume: 29
  start-page: 3
  year: 2002
  ident: 626_CR37
  publication-title: Nonlinear Dyn
  doi: 10.1023/A:1016592219341
– volume: 78
  start-page: 1249
  year: 2009
  ident: 626_CR9
  publication-title: J Anim Ecol
  doi: 10.1111/j.1365-2656.2009.01552.x
– volume: 106
  start-page: 12388
  year: 2009
  ident: 626_CR11
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0902235106
– volume: 54
  start-page: 435
  issue: 1–2
  year: 2016
  ident: 626_CR23
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-016-1017-8
– ident: 626_CR49
  doi: 10.1201/9781315367453
– volume: 17
  start-page: 1079
  issue: 4
  year: 2007
  ident: 626_CR40
  publication-title: Int J Bifurc Chaos
  doi: 10.1142/S0218127407017732
– volume: 87
  start-page: 2281
  issue: 10
  year: 2010
  ident: 626_CR39
  publication-title: Int J Comput Math
  doi: 10.1080/00207160802624331
– volume-title: Advances in fractional calculus: theoretical developments and applications in physics and engineering
  year: 2007
  ident: 626_CR47
  doi: 10.1007/978-1-4020-6042-7
– volume: 325
  start-page: 542-1-7553
  year: 2007
  ident: 626_CR18
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2006.01.087
– volume-title: Functional fractional calculus for system identification and controls
  year: 2007
  ident: 626_CR42
– volume: 3
  start-page: e2465
  issue: 6
  year: 2008
  ident: 626_CR4
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002465
– volume: 23
  start-page: 194
  issue: 4
  year: 2008
  ident: 626_CR6
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2007.12.004
– volume: 78
  start-page: 1388
  year: 1997
  ident: 626_CR8
  publication-title: Ecology
  doi: 10.1890/0012-9658(1997)078[1388:BMTCEO]2.0.CO;2
– volume: 178
  start-page: 397
  issue: 3
  year: 2011
  ident: 626_CR3
  publication-title: AM Nat
  doi: 10.1086/661250
– volume: 9
  start-page: 335
  year: 2010
  ident: 626_CR7
  publication-title: Front Ecol Environ
  doi: 10.1890/090226
SSID ssj0002140249
ssib031263557
Score 2.4047394
Snippet In this work, a fractional-order prey-predator system with fear effect of predator on prey population and group defense has been proposed. The existence and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 334
SubjectTerms Complexity
Control
Control and Systems Theory
Dynamical Systems
Engineering
Fear
Hopf bifurcation
Mathematical models
Predator-prey simulation
Predators
Stability analysis
Vibration
Title A prey-predator fractional order model with fear effect and group defense
URI https://link.springer.com/article/10.1007/s40435-020-00626-x
https://www.proquest.com/docview/2487447285
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8DAG1EoyAMbuErsPMcKtRQQTFQqU2TH9gIKVZtKiF_PnZO0UAESS5bYjnM-29_Zd98RcqFjrT2hciZUFIKBElqmjI2ZzRXg0RCDwvFA_-ExGo2Du0k4qYPC5o23e3Ml6VbqZbAb8sBgNDFGQgMMZ4Ac24A_vKBF2v2b5_tBo0fCR4aV-jYPV2QOVgR3SJhjakIeJZM6fubnhr_vUSvguXZX6rag4Q4ZN52vPE9eeotS9fKPNV7H__7dLtmuMSntV0q0RzZMsU-2vjAVHpDbPp3CoDN4aDTTqZ1VERFQz7F3UpdSh-KxLrUwe2jlKEJloamLHKHaWDCZzSEZDwdP1yNWZ2FgOUzPkkkVpWEqtRclOlCpb4VIbWq5F8QmTUIJEMKTUSwNl0IhGxvacDIIPK2kELkQR6RVvBXmmNA0h09ZZLg3JpCKp0ieZkEhZOhjboUO8Ru5Z3lNUY6ZMl6zJbmyE1MGYsqcmLL3Drlc1plWBB1_lu42w5nVk3We8QBzAMQ8gQ5cNaOzev17ayf_K35KNjl6xDgPti5plbOFOQNIU6rzWoM_AZaW6KU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQOwADb0ShgAc2SJXaeTRjhVpa-phaqUyRHdsLKFR9SIhfz52TtFABUpcssR3nfLa_s---I-ROhUq5XCYOl4EPBopvHKlN6JhEAh71MSgcD_QHw6Az9p4n_iQPCpsX3u7FlaRdqVfBbsgDg9HEGAkNMNwB5Fj2wAYHvS43n156rUKPeB0ZVvLbPFyRGVgRzCJhhqkJWdCY5PEzvzf8c49aA8-Nu1K7BbUPybjofOZ58lpbLmQt-dzgddz2747IQY5JaTNTomOyo9MTsv-NqfCUdJt0CoPuwEOhmU7NLIuIgHqWvZPalDoUj3WpgdlDM0cRKlJFbeQIVdqAyazPyLjdGj12nDwLg5PA9Fw4QgaRHwnlBg3lyahuOI9MZJjrhTpq-AIghCuCUGgmuEQ2NrThhOe5SgrOE87PSSl9T_UFoVECnzLIcK-1JySLkDzNgEIIv465FSqkXsg9TnKKcsyU8RavyJWtmGIQU2zFFH9UyP2qzjQj6Pi3dLUYzjifrPOYeZgDIGQN6MBDMTrr13-3drld8Vuy2xkN-nG_O-xdkT2G3jHWm61KSovZUl8DvFnIm1ybvwCtEOuU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkRAMvBHl6YENUlI7j3qsoOVdMVCpTJEd2wsoVCWVEL-eOydpoQIkxJIlsRPb5_g7-77vCDnSsdY-V6nHVRSCgxJaTxkbezZVgEdDJIXjhv5dL7rsB9eDcPCJxe-i3asjyYLTgCpNWX461PZ0QnxDTRhkFiMrGiC5ByhyPkBtuxqZb1883nQqm-JNVFspT_bw78zAo2AOFTNMU8ii1qDk0nxf8df1agpCZ85N3XLUXSGyakgRhfLUGOeqkb7PaDz-p6WrZLnEqrRdGNcamTPZOln6pGC4Qa7adAjG4MFFo_tO7ahgSkA5p-pJXaoditu91MKsokUACZWZpo5RQrWx4EqbTdLvdh7OLr0yO4OXwrTNPakiEQqp_ailAyWalnNhhWV-EBvRCiVAC19GsTRMcoUqbejbySDwtZKcp5xvkVr2kpltQkUKr7KofG9MIBUTKKpmwVBk2MScC3XSrMYgSUvpcsyg8ZxMRJddNyXQTYnrpuStTo4nZYaFcMevT-9VQ5uUk_g1YQHmBohZCz7gpBqp6e2fa9v52-OHZOH-vJvcXvVudskiw6AZF-S2R2r5aGz2AfXk6qA07A9kLfR4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+prey-predator+fractional+order+model+with+fear+effect+and+group+defense&rft.jtitle=International+journal+of+dynamics+and+control&rft.au=Das%2C+Meghadri&rft.au=Samanta%2C+G.+P.&rft.date=2021-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2195-268X&rft.eissn=2195-2698&rft.volume=9&rft.issue=1&rft.spage=334&rft.epage=349&rft_id=info:doi/10.1007%2Fs40435-020-00626-x&rft.externalDocID=10_1007_s40435_020_00626_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-268X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-268X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-268X&client=summon