Complex event recognition and anomaly detection with event behavior model
The concept of complex event processing refers to the process of tracking and analyzing a set of related events and drawing conclusions from them. For such systems, complex event recognition is essential. The object of complex event recognition is to recognize meaningful events or patterns and const...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 27; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The concept of complex event processing refers to the process of tracking and analyzing a set of related events and drawing conclusions from them. For such systems, complex event recognition is essential. The object of complex event recognition is to recognize meaningful events or patterns and construct processing rules to respond to them. Researchers have conducted numerous studies on the recognition of complex event patterns by using recognition languages or models. However, the completeness of the process in complex event recognition has rarely been discussed. Although the reality of the event is uncertain, the structure for modeling and explaining complex event interactions of contingent information remains unclear. In this study, we focused on developing a general framework for addressing these problems and demonstrating the applicability of model-based approaches to represent spatio-temporal dimensions and causality in complex event recognition. In this paper, we propose an event behavior model for complex event recognition from a process perspective. The developed model could detect and explain anomalies associated with complex events. An experiment was conducted to evaluate the model performance. The results revealed that temporal operations within overlapping events were crucial to event pattern recognition. |
---|---|
AbstractList | The concept of complex event processing refers to the process of tracking and analyzing a set of related events and drawing conclusions from them. For such systems, complex event recognition is essential. The object of complex event recognition is to recognize meaningful events or patterns and construct processing rules to respond to them. Researchers have conducted numerous studies on the recognition of complex event patterns by using recognition languages or models. However, the completeness of the process in complex event recognition has rarely been discussed. Although the reality of the event is uncertain, the structure for modeling and explaining complex event interactions of contingent information remains unclear. In this study, we focused on developing a general framework for addressing these problems and demonstrating the applicability of model-based approaches to represent spatio-temporal dimensions and causality in complex event recognition. In this paper, we propose an event behavior model for complex event recognition from a process perspective. The developed model could detect and explain anomalies associated with complex events. An experiment was conducted to evaluate the model performance. The results revealed that temporal operations within overlapping events were crucial to event pattern recognition. |
ArticleNumber | 51 |
Author | Huang, Chua-Huang Hsu, Fang-Rong Liu, Min-Chang |
Author_xml | – sequence: 1 givenname: Min-Chang orcidid: 0000-0002-3447-9772 surname: Liu fullname: Liu, Min-Chang email: mchangl@rfidlab.iecs.fcu.edu.tw organization: Department of Information Engineering and Computer Science, Feng Chia University – sequence: 2 givenname: Fang-Rong surname: Hsu fullname: Hsu, Fang-Rong organization: Department of Information Engineering and Computer Science, Feng Chia University – sequence: 3 givenname: Chua-Huang surname: Huang fullname: Huang, Chua-Huang organization: Department of Information Engineering and Computer Science, Feng Chia University |
BookMark | eNp9kF9LwzAUxYNMcJt-AZ8KPleTJumfRxnqBgNfFHwLaXuzdbTJTLJpv73ZOhR8GOTkXsL5JTdngkbaaEDoluB7gnH24MLOWIyTIJJkPO4v0JgwSuOM84_Rb8_IFZo4t8GYUprkY7SYmW7bwncEe9A-slCZlW58Y3QkdR1kOtn2UQ0equPpV-PXJ3MJa7lvjI06U0N7jS6VbB3cnOoUvT8_vc3m8fL1ZTF7XMYVJYWPpVSlKkqV8jpjOecFrVWa5LkKK6M54LpUBLiSmHOKE8KrEjJcp0UoCS0onaK74d6tNZ87cF5szM7q8KSgmBVBKWbBlQ-uyhrnLChRNV4efuCtbFpBsDgEJ4bgRAhOHIMTfUCTf-jWNp20_XmIDpALZr0C-zfVGeoHFK2Dvw |
CitedBy_id | crossref_primary_10_1002_cpe_8232 |
Cites_doi | 10.1016/j.promfg.2019.02.060 10.1007/s10489-020-02041-3 10.1609/aimag.v21i2.1507 10.3390/a13110285 10.14778/3538598.3538615 10.1007/s10489-019-01575-5 10.1109/fskd.2012.6234083 10.1073/pnas.2019342118 10.1007/s10044-017-0634-7 10.1007/s10489-018-1139-9 10.1145/3170432 10.1145/2632220 10.1007/s10044-016-0544-0 10.1007/s10489-018-1171-9 10.1007/s00778-019-00557-w 10.1145/3485463 10.1007/s10489-017-1024-y 10.1016/0010-0277(91)90032-y 10.1145/3117809 10.1007/s00607-014-0404-y 10.1007/978-3-642-15918-3_5 10.1145/3093742.3095106 10.1007/3-540-55681-8_48 10.1145/1385989.1386022 10.1109/ficloud.2018.00034 10.1145/1376616.1376688 10.4230/lipics.icdt.2020.15 10.1007/11780991_16 10.1145/3474717.3484270 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-024-01275-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_024_01275_y |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-aafbf9bf65d7485593df6288f88f738e0dbf1e5fa05530215cbe70d69be723933 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 03:59:30 EDT 2025 Tue Jul 01 01:15:19 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Fri Feb 21 02:41:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Event uncertainty Complex event recognition Event pattern Anomaly detection Model-based diagnosis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-aafbf9bf65d7485593df6288f88f738e0dbf1e5fa05530215cbe70d69be723933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3447-9772 |
PQID | 3049304604 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3049304604 crossref_citationtrail_10_1007_s10044_024_01275_y crossref_primary_10_1007_s10044_024_01275_y springer_journals_10_1007_s10044_024_01275_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Giatrakos, Alevizos, Artikis, Deligiannakis, Garofalakis (CR13) 2019; 29 Pustejovsky (CR24) 1991; 41 CR17 CR15 Cugola, Margara, Matteucci, Tamburrelli (CR8) 2014; 97 Dayarathna, Perera (CR10) 2018; 51 Zahin, Ahmed, Alam (CR32) 2018; 48 CR31 CR30 Petrov, Gennadinik, Bryukhanov (CR22) 2021; 99 Bucchi, Grez, Quintana, Riveros, Vansummeren (CR6) 2022; 15 Cormen, Leiserson, Rivest, Stein (CR7) 2022 Milo, Roan (CR20) 2016; 20 Wang, Zhang (CR28) 2012; 66 CR2 Grabenhorst, Maloney, Poeppel, Michalareas (CR14) 2021 Koitz-Hristov, Wotawa (CR19) 2020; 50 Ekanayake, Dewasurendra, Abeyratne, Ma, Yarlagadda (CR11) 2019; 30 Koitz-Hristov, Wotawa (CR18) 2018; 48 Pegoraro, Uysal, Van Der Aalst (CR23) 2022; 13 CR3 CR5 Gholizadeh, Yazdizadeh, Mohammad-Bagherpour (CR12) 2017; 22 Alevizos, Skarlatidis, Artikis, Paliouras (CR1) 2017; 50 CR27 Artikis, Gal, Kalogeraki, Weidlich (CR4) 2014; 14 CR26 CR25 Zhou, Ren, Li, Wu, Al-Ahmari (CR33) 2021; 51 Wang, Song (CR29) 2017; 48 CR21 Grez, Riveros (CR16) 2021 Darwiche (CR9) 2000; 21 1275_CR17 Y Zhou (1275_CR33) 2021; 51 1275_CR15 MW Milo (1275_CR20) 2016; 20 X Wang (1275_CR29) 2017; 48 A Grez (1275_CR16) 2021 SA Zahin (1275_CR32) 2018; 48 A Darwiche (1275_CR9) 2000; 21 M Pegoraro (1275_CR23) 2022; 13 R Koitz-Hristov (1275_CR18) 2018; 48 M Dayarathna (1275_CR10) 2018; 51 A Petrov (1275_CR22) 2021; 99 1275_CR31 Y Wang (1275_CR28) 2012; 66 1275_CR30 M Gholizadeh (1275_CR12) 2017; 22 1275_CR2 1275_CR27 N Giatrakos (1275_CR13) 2019; 29 1275_CR5 1275_CR3 TMSSK Ekanayake (1275_CR11) 2019; 30 1275_CR26 1275_CR25 M Grabenhorst (1275_CR14) 2021 E Alevizos (1275_CR1) 2017; 50 G Cugola (1275_CR8) 2014; 97 J Pustejovsky (1275_CR24) 1991; 41 A Artikis (1275_CR4) 2014; 14 R Koitz-Hristov (1275_CR19) 2020; 50 M Bucchi (1275_CR6) 2022; 15 1275_CR21 TH Cormen (1275_CR7) 2022 |
References_xml | – year: 2022 ident: CR7 publication-title: Introduction to Algorithms – volume: 30 start-page: 435 year: 2019 end-page: 442 ident: CR11 article-title: Model-based fault diagnosis and prognosis of dynamic systems: a review publication-title: Proc Manuf doi: 10.1016/j.promfg.2019.02.060 – volume: 51 start-page: 4874 issue: 7 year: 2021 end-page: 4887 ident: CR33 article-title: Anomaly detection via a combination model in time series data publication-title: Appl Intell doi: 10.1007/s10489-020-02041-3 – volume: 21 start-page: 57 issue: 2 year: 2000 end-page: 73 ident: CR9 article-title: Model-based diagnosis under real-world constraints publication-title: AI Mag doi: 10.1609/aimag.v21i2.1507 – ident: CR2 – ident: CR30 – volume: 13 start-page: 285 issue: 11 year: 2022 ident: CR23 article-title: Efficient time and space representation of uncertain event data publication-title: Algorithms doi: 10.3390/a13110285 – volume: 15 start-page: 1951 issue: 9 year: 2022 end-page: 1964 ident: CR6 article-title: CORE: a complex event recognition engine publication-title: Proc VLDB Endow doi: 10.14778/3538598.3538615 – volume: 50 start-page: 1558 issue: 5 year: 2020 end-page: 1572 ident: CR19 article-title: Faster horn diagnosis-a performance comparison of abductive reasoning algorithms publication-title: Appl Intell doi: 10.1007/s10489-019-01575-5 – volume: 99 start-page: 1943 issue: 9 year: 2021 end-page: 1954 ident: CR22 article-title: Current issues and methods of event processing in systems with event-driven architecture publication-title: J Theor Appl Inf Technol – ident: CR25 – ident: CR27 – volume: 66 start-page: 1808 year: 2012 end-page: 1821 ident: CR28 article-title: Complex event processing over distributed probabilistic event streams publication-title: Comput Math Appl. doi: 10.1109/fskd.2012.6234083 – year: 2021 ident: CR14 article-title: Two sources of uncertainty independently modulate temporal expectancy publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2019342118 – ident: CR21 – volume: 22 start-page: 359 issue: 2 year: 2017 end-page: 373 ident: CR12 article-title: Fault detection and identification using combination of EKF and neuro-fuzzy network applied to a chemical process (CSTR) publication-title: Pattern Anal Appl doi: 10.1007/s10044-017-0634-7 – volume: 48 start-page: 3209 issue: 10 year: 2018 end-page: 3230 ident: CR32 article-title: An effective method for classification with missing values publication-title: Appl Intell doi: 10.1007/s10489-018-1139-9 – volume: 51 start-page: 1 issue: 2 year: 2018 end-page: 36 ident: CR10 article-title: Recent advancements in event processing publication-title: ACM Comput Surv doi: 10.1145/3170432 – volume: 14 start-page: 1 issue: 1 year: 2014 end-page: 9 ident: CR4 article-title: Event recognition challenges and techniques publication-title: ACM Trans Internet Technol doi: 10.1145/2632220 – volume: 20 start-page: 1029 issue: 4 year: 2016 end-page: 1043 ident: CR20 article-title: Detecting anomalous patterns in time-series data using sparse hierarchically parameterized transition matrices publication-title: Pattern Anal Appl doi: 10.1007/s10044-016-0544-0 – ident: CR3 – ident: CR15 – ident: CR17 – ident: CR31 – volume: 48 start-page: 3976 issue: 11 year: 2018 end-page: 3994 ident: CR18 article-title: Applying algorithm selection to abductive diagnostic reasoning publication-title: Appl Intell doi: 10.1007/s10489-018-1171-9 – volume: 29 start-page: 313 issue: 1 year: 2019 end-page: 352 ident: CR13 article-title: Complex event recognition in the Big Data era: a survey publication-title: VLDB J doi: 10.1007/s00778-019-00557-w – year: 2021 ident: CR16 article-title: A formal framework for complex event recognition publication-title: ACM Trans Database Syst doi: 10.1145/3485463 – volume: 48 start-page: 1672 issue: 7 year: 2017 end-page: 1688 ident: CR29 article-title: Uncertainty measure in evidence theory with its applications publication-title: Appl Intell doi: 10.1007/s10489-017-1024-y – volume: 41 start-page: 47 issue: 1–3 year: 1991 end-page: 81 ident: CR24 article-title: The syntax of event structure publication-title: Cognition doi: 10.1016/0010-0277(91)90032-y – ident: CR5 – volume: 50 start-page: 1 issue: 5 year: 2017 end-page: 31 ident: CR1 article-title: Probabilistic complex event recognition publication-title: ACM Comput Surv doi: 10.1145/3117809 – volume: 97 start-page: 103 issue: 2 year: 2014 end-page: 144 ident: CR8 article-title: Introducing uncertainty in complex event processing: model, implementation, and validation publication-title: Computing doi: 10.1007/s00607-014-0404-y – ident: CR26 – volume: 51 start-page: 4874 issue: 7 year: 2021 ident: 1275_CR33 publication-title: Appl Intell doi: 10.1007/s10489-020-02041-3 – volume: 30 start-page: 435 year: 2019 ident: 1275_CR11 publication-title: Proc Manuf doi: 10.1016/j.promfg.2019.02.060 – volume-title: Introduction to Algorithms year: 2022 ident: 1275_CR7 – year: 2021 ident: 1275_CR14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2019342118 – volume: 13 start-page: 285 issue: 11 year: 2022 ident: 1275_CR23 publication-title: Algorithms doi: 10.3390/a13110285 – volume: 66 start-page: 1808 year: 2012 ident: 1275_CR28 publication-title: Comput Math Appl. doi: 10.1109/fskd.2012.6234083 – ident: 1275_CR3 doi: 10.1007/978-3-642-15918-3_5 – volume: 21 start-page: 57 issue: 2 year: 2000 ident: 1275_CR9 publication-title: AI Mag doi: 10.1609/aimag.v21i2.1507 – volume: 51 start-page: 1 issue: 2 year: 2018 ident: 1275_CR10 publication-title: ACM Comput Surv doi: 10.1145/3170432 – volume: 14 start-page: 1 issue: 1 year: 2014 ident: 1275_CR4 publication-title: ACM Trans Internet Technol doi: 10.1145/2632220 – volume: 97 start-page: 103 issue: 2 year: 2014 ident: 1275_CR8 publication-title: Computing doi: 10.1007/s00607-014-0404-y – volume: 50 start-page: 1558 issue: 5 year: 2020 ident: 1275_CR19 publication-title: Appl Intell doi: 10.1007/s10489-019-01575-5 – volume: 48 start-page: 3209 issue: 10 year: 2018 ident: 1275_CR32 publication-title: Appl Intell doi: 10.1007/s10489-018-1139-9 – ident: 1275_CR5 doi: 10.1145/3093742.3095106 – volume: 50 start-page: 1 issue: 5 year: 2017 ident: 1275_CR1 publication-title: ACM Comput Surv doi: 10.1145/3117809 – ident: 1275_CR21 doi: 10.1007/3-540-55681-8_48 – ident: 1275_CR31 doi: 10.1145/1385989.1386022 – volume: 20 start-page: 1029 issue: 4 year: 2016 ident: 1275_CR20 publication-title: Pattern Anal Appl doi: 10.1007/s10044-016-0544-0 – ident: 1275_CR27 doi: 10.1109/ficloud.2018.00034 – year: 2021 ident: 1275_CR16 publication-title: ACM Trans Database Syst doi: 10.1145/3485463 – volume: 41 start-page: 47 issue: 1–3 year: 1991 ident: 1275_CR24 publication-title: Cognition doi: 10.1016/0010-0277(91)90032-y – ident: 1275_CR25 doi: 10.1145/1376616.1376688 – ident: 1275_CR15 doi: 10.4230/lipics.icdt.2020.15 – volume: 48 start-page: 1672 issue: 7 year: 2017 ident: 1275_CR29 publication-title: Appl Intell doi: 10.1007/s10489-017-1024-y – ident: 1275_CR17 – volume: 22 start-page: 359 issue: 2 year: 2017 ident: 1275_CR12 publication-title: Pattern Anal Appl doi: 10.1007/s10044-017-0634-7 – ident: 1275_CR2 – ident: 1275_CR30 doi: 10.1007/11780991_16 – volume: 99 start-page: 1943 issue: 9 year: 2021 ident: 1275_CR22 publication-title: J Theor Appl Inf Technol – ident: 1275_CR26 doi: 10.1145/3474717.3484270 – volume: 48 start-page: 3976 issue: 11 year: 2018 ident: 1275_CR18 publication-title: Appl Intell doi: 10.1007/s10489-018-1171-9 – volume: 15 start-page: 1951 issue: 9 year: 2022 ident: 1275_CR6 publication-title: Proc VLDB Endow doi: 10.14778/3538598.3538615 – volume: 29 start-page: 313 issue: 1 year: 2019 ident: 1275_CR13 publication-title: VLDB J doi: 10.1007/s00778-019-00557-w |
SSID | ssj0033328 |
Score | 2.3551996 |
Snippet | The concept of complex event processing refers to the process of tracking and analyzing a set of related events and drawing conclusions from them. For such... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anomalies Computer Science Pattern Recognition Theoretical Advances |
Title | Complex event recognition and anomaly detection with event behavior model |
URI | https://link.springer.com/article/10.1007/s10044-024-01275-y https://www.proquest.com/docview/3049304604 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6Xbz4LU7nyMGbBpqmaZvjkM2p6MnBPJV8nmYnroL7702yZFNRQWgpvL7m8F5e8pr38QPgnEmTKaMJ4hSXKBNYodJgiRiVec60KTl21cj3D_lonN1O6CQUhc1jtnsMSfqV-lOxW5JlyO4pyIVLKVpsgja1_-4ukWuc9uP6SwjxiKrWESCooBkOpTI_j_F1O1r7mN_Con63Ge6C7eAmwv5Sr3tgQ9f7YCe4jDAY5NySIipDpB2AG0ea6nfoezPBVYbQrIa8VvaePfPpAird-CysGrqj2MAci_ahB8g5BOPh4PFqhAJgApLWkhrEuRGGCZNTVbimL4wo4-CEjb0KUupECYM1NTzxYEGYSqGLROXMPlwrNHIEWvWs1scA6tKwtGBlIpjMtKZci1xiZUxKpBFF0QE4yq2SoZu4A7WYVus-yE7WlZV15WVdLTrgYvXNy7KXxp_c3aiOKtjVvHJBQR_LzTrgMqpo_fr30U7-x34KtlI_S9xxSxe0mtc3fWa9j0b0QLt__XQ36PlJ9wFSs9Od |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3rxLVar5uBNA5vNZndzLKK02vbUQm9h8zrVrdgK9t-bpEmrooKwy8JkNofJYz4ymfkAuGbSZMpogiqKS5QJrFBpsESMyjxn2pQVdtnI_UHeGWWPYzoOSWGzeNs9hiT9Tv0p2S3JMmR9CnLhUooWm2DLgoHSzeVR2o77LyHEM6paIEBQQTMcUmV-7uOrO1pjzG9hUe9tHvbBboCJsL0c1wOwoetDsBcgIwwLcmZFkZUhyo5A14km-h362kxwdUNoWsOqVvadPleTBVR67m9h1dAdxQblmLQPPUHOMRg93A_vOigQJiBpV9IcVZURhgmTU1W4oi-MKOPohI19ClLqRAmDNTVV4smCMJVCF4nKmf24UmjkBDTqaa1PAdSlYWnBykQwmWlNKy1yiZUxKZFGFEUT4Gg3LkM1cUdqMeHrOsjO1tzamntb80UT3Kz-eVnW0vhTuxWHg4d1NeMuKOhjuVkT3MYhWjf_3tvZ_9SvwHZn2O_xXnfwdA52Uj9j3NFLCzTmr2_6wiKRubj0E-8Dy9XU_A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86Qbz4LU6n5uBNw5olaZvjUMfmx_DgYLfSfJ1mN1wF99-bZOk2RQWhpZCmObz30jzy8vv9ALjk0lBlNEE5wymiAiuUGiwRZzKOuTZpjh0a-akfdwf0fsiGKyh-f9q9KknOMQ2OpakomxNlmivAt4hSZNcX5EqnDM3WwQZ1aGAb0YNWu_oXE0K8uqpNCghKGMUBNvPzGF-XpmW--a1E6leezi7YDikjbM99vAfWdLEPdkL6CMPknNqmSqGhajsAPdc00h_Q8zTBxWmhcQHzQtl7_JqPZlDp0p_IKqDblg2dKwA_9GI5h2DQuXu56aIgnoCknVUlynMjDBcmZipxBDCcKOOkhY29EpLqSAmDNTN55IWDMJNCJ5GKuX04WjRyBGrFuNDHAOrU8FbC00hwSbVmuRaxxMqYFpFGJEkd4MpumQzM4k7gYpQtOZGdrTNr68zbOpvVwdXim8mcV-PP3o3KHVmYY9PMFQh9XZfWwXXlouXr30c7-V_3C7D5fNvJHnv9h1Ow1fIB43ZhGqBWvr3rM5uUlOLcx90nIHDZLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+event+recognition+and+anomaly+detection+with+event+behavior+model&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Liu%2C+Min-Chang&rft.au=Hsu%2C+Fang-Rong&rft.au=Huang%2C+Chua-Huang&rft.date=2024-06-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-024-01275-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_024_01275_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |