Fusion of kinematic and physiological sensors for hand gesture recognition
The uncertainty of hand gestures, the variability of gestures across subjects, and the high cost of collecting a large amount of annotated data lead to a great challenge to the robust recognition of gestures, and thus it remains quite crucial to capture the informative features of hand movements and...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 26; pp. 68013 - 68040 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The uncertainty of hand gestures, the variability of gestures across subjects, and the high cost of collecting a large amount of annotated data lead to a great challenge to the robust recognition of gestures, and thus it remains quite crucial to capture the informative features of hand movements and to mitigate inter-subject variations. To this end, we propose a gesture recognition model that uses two different types of sensors and optimizes the feature space towards enhanced accuracy and better generalization. Specifically, we use an accelerometer and a surface electromyography sensor to capture kinematic and physiological signals of hand movements. We use a sliding window to divide the streaming sensor data and then extract time-domain and frequency-domain features from each segment to return feature vectors. Afterwards, the feature space is optimized with a feature selector and a gesture recognizer is optimized. To handle the case where no labeled training data are available for a new user, we apply the transfer learning technique to reuse the cross-subject knowledge. Finally, extensive comparative experiments concerning different classification models, different sensors, and different types of features are conducted. Results show that the joint use of kinematic and physiological sensors generally outperforms the use of single sensor, indicating the synthetic effect of different sensors, and that the use of transfer learning helps improve the cross-subject recognition accuracy. In addition, we quantitatively investigate the impact of null gesture on a gesture recognizer and results indicate that null gesture would lower its accuracy, enlightening related studies to consider it. |
---|---|
AbstractList | The uncertainty of hand gestures, the variability of gestures across subjects, and the high cost of collecting a large amount of annotated data lead to a great challenge to the robust recognition of gestures, and thus it remains quite crucial to capture the informative features of hand movements and to mitigate inter-subject variations. To this end, we propose a gesture recognition model that uses two different types of sensors and optimizes the feature space towards enhanced accuracy and better generalization. Specifically, we use an accelerometer and a surface electromyography sensor to capture kinematic and physiological signals of hand movements. We use a sliding window to divide the streaming sensor data and then extract time-domain and frequency-domain features from each segment to return feature vectors. Afterwards, the feature space is optimized with a feature selector and a gesture recognizer is optimized. To handle the case where no labeled training data are available for a new user, we apply the transfer learning technique to reuse the cross-subject knowledge. Finally, extensive comparative experiments concerning different classification models, different sensors, and different types of features are conducted. Results show that the joint use of kinematic and physiological sensors generally outperforms the use of single sensor, indicating the synthetic effect of different sensors, and that the use of transfer learning helps improve the cross-subject recognition accuracy. In addition, we quantitatively investigate the impact of null gesture on a gesture recognizer and results indicate that null gesture would lower its accuracy, enlightening related studies to consider it. |
Author | Chen, Huihui Liu, Huancheng Zheng, Chundi Wang, Aiguo Chang, Chih-Yung |
Author_xml | – sequence: 1 givenname: Aiguo orcidid: 0000-0001-6150-8068 surname: Wang fullname: Wang, Aiguo organization: School of Electronic Information Engineering, Foshan University – sequence: 2 givenname: Huancheng surname: Liu fullname: Liu, Huancheng organization: School of Electronic Information Engineering, Foshan University – sequence: 3 givenname: Chundi surname: Zheng fullname: Zheng, Chundi organization: School of Electronic Information Engineering, Foshan University – sequence: 4 givenname: Huihui surname: Chen fullname: Chen, Huihui organization: School of Electronic Information Engineering, Foshan University – sequence: 5 givenname: Chih-Yung surname: Chang fullname: Chang, Chih-Yung email: cychang@mail.tku.edu.tw organization: Department of Computer Science and Information Engineering, Tamkang University |
BookMark | eNp9kMtOwzAQRS1UJNrCD7CKxDowY-fhLFFFeQiJDawt4zipS2oXO1m0X49LkEAsupqRZs69M3dGJtZZTcglwjUClDcBETKaAs1S5JSzdH9CppiXLC1LipM__RmZhbAGwCKn2ZQ8LYdgnE1ck3wYqzeyNyqRtk62q10cdK41SnZJ0DY4H5LG-WR1GLc69IPXidfKtdb0UeOcnDayC_rip87J2_LudfGQPr_cPy5un1PFsOpTKXXJiiLPVFkXsiwBctTA8pqBQt7witKqkXXWQFbVyDio5r2WBRa04lJzZHNyNepuvfsc4h1i7QZvo6VgwBlghjyLW3TcUt6F4HUjtt5spN8JBHHITIyZiZiZ-M5M7CPE_0HK9PLwXO-l6Y6jbERD9LGt9r9XHaG-AMgtg4Y |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3456436 |
Cites_doi | 10.3390/s140406474 10.1007/s11042-017-5100-4 10.1109/JSEN.2016.2545708 10.1109/TNN.2010.2091281 10.1109/TII.2017.2779814 10.1016/j.simpat.2015.12.003 10.1109/ACCESS.2019.2914728 10.1109/TIM.2011.2161140 10.1109/34.799904 10.1109/THMS.2014.2302794 10.1016/j.future.2020.09.013 10.3390/jimaging8060153 10.1109/TMC.2018.2843373 10.1007/s10489-020-01725-0 10.1016/j.ifacol.2019.09.129 10.3934/mbe.2021007 10.1109/TSMCC.2012.2198883 10.1109/JSEN.2018.2808688 10.1007/s11042-022-12355-8 10.3389/fnins.2020.00637 10.1109/THMS.2021.3086003 10.3390/s18113629 10.1016/j.eswa.2023.119614 10.1007/s11042-022-13215-1 10.1109/TMM.2013.2246148 10.1016/j.eswa.2020.114093 10.1007/s11042-021-11623-3 10.3390/s21072540 10.3390/s20092467 10.1002/aisy.202100046 10.1016/S0262-8856(03)00070-2 10.1016/j.compeleceng.2022.107836 10.3390/electronics11060968 10.1016/j.medengphy.2011.08.012 10.1109/JSEN.2019.2903645 10.1109/EMBC.2018.8512533 10.1109/NaNA53684.2021.00051 10.23919/SPA.2018.8563394 10.1109/ISAPE.2018.8634348 10.1109/ICCV.2013.274 10.1109/ICCE-Berlin.2016.7684748 10.1109/SMC.2017.8122854 10.1007/s10489-021-02575-0 10.1109/PERCOM.2018.8444572 10.1109/ICMCCE48743.2019.00095 10.1145/3328931 10.1109/ISCAS.2018.8351065 10.1145/3448114 10.1109/CVPR.2012.6247911 10.1145/3397323 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-024-18283-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Collection Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 68040 |
ExternalDocumentID | 10_1007_s11042_024_18283_z |
GrantInformation_xml | – fundername: Department of Education of Guangdong Province grantid: 2021KTSCX117 funderid: http://dx.doi.org/10.13039/501100010226 – fundername: National Natural Science Foundation of China grantid: 62176082 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-aae736654c7d6a770051e035d30c18f89229fad4f049d1380cfbda616298ae813 |
IEDL.DBID | U2A |
ISSN | 1573-7721 1380-7501 |
IngestDate | Sat Aug 23 12:43:58 EDT 2025 Tue Jul 01 04:13:31 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Fri Feb 21 02:40:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | Accelerometer Feature extraction Electromyography Cross-subject Gesture recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-aae736654c7d6a770051e035d30c18f89229fad4f049d1380cfbda616298ae813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6150-8068 |
PQID | 3083014184 |
PQPubID | 54626 |
PageCount | 28 |
ParticipantIDs | proquest_journals_3083014184 crossref_primary_10_1007_s11042_024_18283_z crossref_citationtrail_10_1007_s11042_024_18283_z springer_journals_10_1007_s11042_024_18283_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240800 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Jiang, Lv, Guo, Zhang, Wang, Sheng, Shull (CR38) 2018; 14 CR39 Banos, Galvez, Damas, Pomares, Rojas (CR48) 2014; 14 Chen, Wang, Zhao, Liu, Chang (CR53) 2018; 77 CR34 CR33 CR32 Si, Chen, Li, Li, Pei, Guo (CR13) 2022; 4 Bhushan, Alshehri, Keshta, Chakraverti, Rajpurohit, Abugabah (CR3) 2022; 11 Ren, Yuan, Meng, Zhang (CR25) 2013; 15 Guarino, Malandrino, Zaccagnino, Capo, Lettieri (CR6) 2023; 219 Pagan, Fallahzadeh, Pedram, Jl, Moya, Ayala, Ghasemzadeh (CR18) 2019; 18 Chen, Hoey, Nugent, Cook, Yu (CR19) 2012; 42 Chen, Fu, Huang (CR27) 2003; 21 Kim, Helal, Nugent, Beattie (CR7) 2015; 6 Bhaumik, Verma, Govil, Vipparthi (CR15) 2023; 82 Nyo, Mebarek-Oudina, Hlaing, Khan (CR17) 2022; 81 Wang, Chen, Yang, Zhao, Chang (CR31) 2016; 16 CR9 CR49 Lu, Chen, Li, Zhang, Zhou (CR37) 2014; 44 CR46 CR45 CR43 Colacino, Emiliano, Mace (CR47) 2012; 34 CR40 Bargellesi, Carletti, Cenedese, Susto, Terzi (CR42) 2019; 52 Chen, Wang, Wang (CR21) 2020; 50 Al Farid, Hashim, Abdullah, Bhuiyan, Shahida Mohd Isa, Uddin, Haque, Husen (CR14) 2022; 8 Zhao, Xu, Shu, Hu (CR20) 2016; 65 Wang, Wu, Zhao, Chen, Zhao (CR28) 2021; 24 Jiang, Ye, Chen, Su, Lin, Ma, Huang (CR30) 2021; 18 Lee, Kim (CR41) 1999; 21 Yu, Zhao, Wang, He, Wang (CR44) 2021; 21 CR52 CR51 Qi, Jiang, Li, Sun, Tao (CR5) 2019; 7 Song, Zhao, Liu, Liu, Sun (CR26) 2021; 115 Dhiman, Vishwakarma (CR16) 2019; 19 Zhang, Tian, Zhou (CR4) 2018; 18 Dardas, Georganas (CR35) 2011; 60 Wang, Chen, Wu, Liu, An, Chang (CR8) 2018; 18 CR29 Jia, Zhou, Xue (CR1) 2022; 81 Gadekallu, Srivastava, Liyanage, Iyapparaja, Chowdhary, Koppu, Maddikunta (CR2) 2022; 100 CR24 CR23 CR22 Pan, Tsang, Kwok, Qiang (CR50) 2010; 22 Guo, Lu, Yao (CR12) 2021; 51 Lima, Braganca, Souto (CR10) 2021; 166 Ceolini, Frenkel, Shrestha, Taverni, Khacef, Payvand, Donati (CR36) 2020; 14 Jaramillo-Yánez, Benalcázar, Mena-Maldonado (CR11) 2020; 20 Z Yu (18283_CR44) 2021; 21 18283_CR51 18283_CR52 A Wang (18283_CR31) 2016; 16 WS Lima (18283_CR10) 2021; 166 S Bhushan (18283_CR3) 2022; 11 A Wang (18283_CR28) 2021; 24 18283_CR22 Z Lu (18283_CR37) 2014; 44 18283_CR23 A Wang (18283_CR8) 2018; 18 18283_CR24 Z Zhang (18283_CR4) 2018; 18 Y Si (18283_CR13) 2022; 4 L Jia (18283_CR1) 2022; 81 TR Gadekallu (18283_CR2) 2022; 100 18283_CR29 G Chen (18283_CR53) 2018; 77 N Bargellesi (18283_CR42) 2019; 52 G Bhaumik (18283_CR15) 2023; 82 W Jiang (18283_CR30) 2021; 18 SP Pan (18283_CR50) 2010; 22 FS Chen (18283_CR27) 2003; 21 S Jiang (18283_CR38) 2018; 14 O Banos (18283_CR48) 2014; 14 G Chen (18283_CR21) 2020; 50 18283_CR32 18283_CR33 18283_CR34 H Zhao (18283_CR20) 2016; 65 18283_CR9 L Guo (18283_CR12) 2021; 51 18283_CR39 A Guarino (18283_CR6) 2023; 219 E Ceolini (18283_CR36) 2020; 14 Z Ren (18283_CR25) 2013; 15 HK Lee (18283_CR41) 1999; 21 J Pagan (18283_CR18) 2019; 18 C Dhiman (18283_CR16) 2019; 19 F Al Farid (18283_CR14) 2022; 8 18283_CR40 E Kim (18283_CR7) 2015; 6 18283_CR43 18283_CR45 18283_CR46 18283_CR49 L Chen (18283_CR19) 2012; 42 A Jaramillo-Yánez (18283_CR11) 2020; 20 NH Dardas (18283_CR35) 2011; 60 J Qi (18283_CR5) 2019; 7 MT Nyo (18283_CR17) 2022; 81 FM Colacino (18283_CR47) 2012; 34 T Song (18283_CR26) 2021; 115 |
References_xml | – ident: CR45 – ident: CR22 – ident: CR49 – ident: CR39 – volume: 14 start-page: 6474 issue: 4 year: 2014 end-page: 6499 ident: CR48 article-title: Window size impact in human activity recognition publication-title: Sensors doi: 10.3390/s140406474 – volume: 77 start-page: 15201 year: 2018 end-page: 15219 ident: CR53 article-title: Latent feature learning for activity recognition using simple sensors in smart homes publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5100-4 – volume: 16 start-page: 4566 issue: 11 year: 2016 end-page: 4578 ident: CR31 article-title: A comparative study on human activity recognition using inertial sensors in a smartphone publication-title: IEEE Sensors J doi: 10.1109/JSEN.2016.2545708 – ident: CR51 – volume: 22 start-page: 199 issue: 2 year: 2010 end-page: 210 ident: CR50 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans Neural Networks doi: 10.1109/TNN.2010.2091281 – ident: CR29 – volume: 6 start-page: 1 issue: 4 year: 2015 end-page: 28 ident: CR7 article-title: Analyzing activity recognition uncertainties in smart home environments publication-title: ACM Trans Intelli Syst Tech – volume: 14 start-page: 3376 issue: 8 year: 2018 end-page: 3385 ident: CR38 article-title: Feasibility of wrist-worn, real-time hand, and surface gesture recognition via sEMG and IMU sensing publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2779814 – ident: CR46 – volume: 65 start-page: 32 year: 2016 end-page: 44 ident: CR20 article-title: Physiological-signal-based key negotiation protocols for body sensor networks: A survey publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2015.12.003 – volume: 7 start-page: 61378 year: 2019 end-page: 61387 ident: CR5 article-title: Intelligent human-computer interaction based on surface EMG gesture recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914728 – ident: CR9 – volume: 60 start-page: 3592 issue: 11 year: 2011 end-page: 3607 ident: CR35 article-title: Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques publication-title: IEEE Trans Instrumen Meas doi: 10.1109/TIM.2011.2161140 – volume: 21 start-page: 961 issue: 10 year: 1999 end-page: 973 ident: CR41 article-title: An HMM-based threshold model approach for gesture recognition publication-title: IEEE Trans Pattern Analy Mache Intelli doi: 10.1109/34.799904 – volume: 44 start-page: 293 issue: 2 year: 2014 end-page: 299 ident: CR37 article-title: A hand gesture recognition framework and wearable gesture-based interaction prototype for mobile devices publication-title: IEEE Trans Human-Mach Syst doi: 10.1109/THMS.2014.2302794 – ident: CR32 – volume: 115 start-page: 298 issue: 7043 year: 2021 end-page: 303 ident: CR26 article-title: Intelligent human hand gesture recognition by local–global fusing quality-aware features publication-title: Future Gener Comp Syst doi: 10.1016/j.future.2020.09.013 – volume: 8 start-page: 153 issue: 6 year: 2022 ident: CR14 article-title: A structured and methodological review on vision-based hand gesture recognition system publication-title: J Imaging doi: 10.3390/jimaging8060153 – volume: 18 start-page: 658 issue: 3 year: 2019 end-page: 673 ident: CR18 article-title: Toward ultra-low-power remote health monitoring: An optimal and adaptive compressed sensing framework for activity recognition publication-title: IEEE Trans Mobile Comput doi: 10.1109/TMC.2018.2843373 – volume: 50 start-page: 3503 year: 2020 end-page: 3520 ident: CR21 article-title: Two-dimensional discrete feature based spatial attention capsnet for sEMG signal recognition publication-title: Appl Intell doi: 10.1007/s10489-020-01725-0 – volume: 52 start-page: 128 issue: 11 year: 2019 end-page: 133 ident: CR42 article-title: A random forest-based approach for hand gesture recognition with wireless wearable motion capture sensors publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.09.129 – volume: 18 start-page: 132 issue: 1 year: 2021 end-page: 153 ident: CR30 article-title: Wearable on-device deep learning system for hand gesture recognition based on FPGA accelerator publication-title: Math Biosci Eng doi: 10.3934/mbe.2021007 – volume: 42 start-page: 790 issue: 6 year: 2012 end-page: 808 ident: CR19 article-title: Sensor-based activity recognition publication-title: IEEE Trans Syst Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2012.2198883 – ident: CR43 – volume: 18 start-page: 3278 issue: 8 year: 2018 end-page: 3289 ident: CR4 article-title: Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor publication-title: IEEE Sensors J doi: 10.1109/JSEN.2018.2808688 – volume: 81 start-page: 20509 issue: 15 year: 2022 end-page: 20539 ident: CR1 article-title: Non-trajectory-based gesture recognition in human-computer interaction based on hand skeleton data publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12355-8 – volume: 14 start-page: 637 year: 2020 ident: CR36 article-title: Hand-gesture recognition based on EMG and eventbased camera sensor fusion: A benchmark in neuromorphic computing publication-title: Front Neurosci doi: 10.3389/fnins.2020.00637 – volume: 51 start-page: 300 issue: 4 year: 2021 end-page: 309 ident: CR12 article-title: Human-machine interaction sensing technology based on hand gesture recognition: A review publication-title: IEEE Trans Human-Mach Syst doi: 10.1109/THMS.2021.3086003 – volume: 24 start-page: 611 issue: 4 year: 2021 end-page: 620 ident: CR28 article-title: Physical activity recognition from accelerometer data using multi-view aggregation publication-title: J Appl Sci Engineer – volume: 18 start-page: 3629 issue: 11 year: 2018 ident: CR8 article-title: Towards human activity recognition: A hierarchical feature selection framework publication-title: Sensors doi: 10.3390/s18113629 – volume: 219 start-page: 119614 year: 2023 ident: CR6 article-title: Touchscreen gestures as images. A transfer learning approach for soft biometric traits recognition publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119614 – volume: 81 start-page: 43837 issue: 30 year: 2022 end-page: 43849 ident: CR17 article-title: Otsu’s thresholding technique for MRI image brain tumor segmentation publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13215-1 – volume: 15 start-page: 1110 issue: 5 year: 2013 end-page: 1120 ident: CR25 article-title: Robust part-based hand gesture recognition using Kinect sensor publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2013.2246148 – ident: CR33 – volume: 166 start-page: 114093 year: 2021 ident: CR10 article-title: NOHAR: Novelty discrete data stream for human activity recognition based on smartphones with inertial sensors publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114093 – ident: CR40 – ident: CR23 – volume: 82 start-page: 4863 issue: 4 year: 2023 end-page: 4882 ident: CR15 article-title: Hyfinet: Hybrid feature attention network for hand gesture recognition publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11623-3 – volume: 21 start-page: 2540 issue: 7 year: 2021 ident: CR44 article-title: Surface EMG-based instantaneous hand gesture recognition using convolutional neural network with the transfer learning method publication-title: Sensors doi: 10.3390/s21072540 – ident: CR52 – volume: 20 start-page: 2467 issue: 9 year: 2020 ident: CR11 article-title: Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review publication-title: Sensors doi: 10.3390/s20092467 – volume: 4 start-page: 2100046 issue: 2 year: 2022 ident: CR13 article-title: Flexible strain sensors for wearable hand gesture recognition: From devices to systems publication-title: Adv Intell Syst doi: 10.1002/aisy.202100046 – volume: 21 start-page: 745 issue: 8 year: 2003 end-page: 758 ident: CR27 article-title: Hand gesture recognition using a real-time tracking method and hidden Markov models publication-title: Image Vision Comput doi: 10.1016/S0262-8856(03)00070-2 – volume: 100 start-page: 107836 year: 2022 ident: CR2 article-title: Hand gesture recognition based on a Harris hawks optimized convolution neural network publication-title: Computers Electrical Engin doi: 10.1016/j.compeleceng.2022.107836 – ident: CR34 – volume: 11 start-page: 968 issue: 6 year: 2022 ident: CR3 article-title: An experimental analysis of various machine learning algorithms for hand gesture recognition publication-title: Electronics doi: 10.3390/electronics11060968 – volume: 34 start-page: 531 issue: 5 year: 2012 end-page: 540 ident: CR47 article-title: Subject-specific musculoskeletal parameters of wrist flexors and extensors estimated by an emg-driven musculoskeletal model publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2011.08.012 – ident: CR24 – volume: 19 start-page: 5195 issue: 3 year: 2019 end-page: 5203 ident: CR16 article-title: A robust framework for abnormal human action recognition using R-transform and Zernike moments in depth videos publication-title: IEEE Sensors J doi: 10.1109/JSEN.2019.2903645 – volume: 18 start-page: 132 issue: 1 year: 2021 ident: 18283_CR30 publication-title: Math Biosci Eng doi: 10.3934/mbe.2021007 – ident: 18283_CR24 doi: 10.1109/EMBC.2018.8512533 – ident: 18283_CR49 doi: 10.1109/NaNA53684.2021.00051 – ident: 18283_CR22 doi: 10.23919/SPA.2018.8563394 – volume: 14 start-page: 6474 issue: 4 year: 2014 ident: 18283_CR48 publication-title: Sensors doi: 10.3390/s140406474 – volume: 7 start-page: 61378 year: 2019 ident: 18283_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914728 – ident: 18283_CR40 doi: 10.1109/ISAPE.2018.8634348 – volume: 82 start-page: 4863 issue: 4 year: 2023 ident: 18283_CR15 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11623-3 – ident: 18283_CR51 doi: 10.1109/ICCV.2013.274 – volume: 52 start-page: 128 issue: 11 year: 2019 ident: 18283_CR42 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.09.129 – ident: 18283_CR43 doi: 10.1109/ICCE-Berlin.2016.7684748 – volume: 11 start-page: 968 issue: 6 year: 2022 ident: 18283_CR3 publication-title: Electronics doi: 10.3390/electronics11060968 – volume: 77 start-page: 15201 year: 2018 ident: 18283_CR53 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5100-4 – ident: 18283_CR46 doi: 10.1109/SMC.2017.8122854 – volume: 18 start-page: 3629 issue: 11 year: 2018 ident: 18283_CR8 publication-title: Sensors doi: 10.3390/s18113629 – volume: 18 start-page: 658 issue: 3 year: 2019 ident: 18283_CR18 publication-title: IEEE Trans Mobile Comput doi: 10.1109/TMC.2018.2843373 – volume: 14 start-page: 637 year: 2020 ident: 18283_CR36 publication-title: Front Neurosci doi: 10.3389/fnins.2020.00637 – volume: 65 start-page: 32 year: 2016 ident: 18283_CR20 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2015.12.003 – ident: 18283_CR23 doi: 10.1007/s10489-021-02575-0 – volume: 50 start-page: 3503 year: 2020 ident: 18283_CR21 publication-title: Appl Intell doi: 10.1007/s10489-020-01725-0 – volume: 42 start-page: 790 issue: 6 year: 2012 ident: 18283_CR19 publication-title: IEEE Trans Syst Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2012.2198883 – volume: 16 start-page: 4566 issue: 11 year: 2016 ident: 18283_CR31 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2016.2545708 – volume: 34 start-page: 531 issue: 5 year: 2012 ident: 18283_CR47 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2011.08.012 – ident: 18283_CR33 – ident: 18283_CR45 doi: 10.1109/PERCOM.2018.8444572 – volume: 24 start-page: 611 issue: 4 year: 2021 ident: 18283_CR28 publication-title: J Appl Sci Engineer – volume: 60 start-page: 3592 issue: 11 year: 2011 ident: 18283_CR35 publication-title: IEEE Trans Instrumen Meas doi: 10.1109/TIM.2011.2161140 – volume: 19 start-page: 5195 issue: 3 year: 2019 ident: 18283_CR16 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2019.2903645 – volume: 21 start-page: 2540 issue: 7 year: 2021 ident: 18283_CR44 publication-title: Sensors doi: 10.3390/s21072540 – volume: 20 start-page: 2467 issue: 9 year: 2020 ident: 18283_CR11 publication-title: Sensors doi: 10.3390/s20092467 – ident: 18283_CR39 doi: 10.1109/ICMCCE48743.2019.00095 – volume: 44 start-page: 293 issue: 2 year: 2014 ident: 18283_CR37 publication-title: IEEE Trans Human-Mach Syst doi: 10.1109/THMS.2014.2302794 – volume: 81 start-page: 43837 issue: 30 year: 2022 ident: 18283_CR17 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13215-1 – volume: 51 start-page: 300 issue: 4 year: 2021 ident: 18283_CR12 publication-title: IEEE Trans Human-Mach Syst doi: 10.1109/THMS.2021.3086003 – volume: 115 start-page: 298 issue: 7043 year: 2021 ident: 18283_CR26 publication-title: Future Gener Comp Syst doi: 10.1016/j.future.2020.09.013 – ident: 18283_CR29 doi: 10.1145/3328931 – ident: 18283_CR32 doi: 10.1109/ISCAS.2018.8351065 – volume: 18 start-page: 3278 issue: 8 year: 2018 ident: 18283_CR4 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2018.2808688 – volume: 219 start-page: 119614 year: 2023 ident: 18283_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119614 – volume: 81 start-page: 20509 issue: 15 year: 2022 ident: 18283_CR1 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12355-8 – volume: 8 start-page: 153 issue: 6 year: 2022 ident: 18283_CR14 publication-title: J Imaging doi: 10.3390/jimaging8060153 – volume: 21 start-page: 961 issue: 10 year: 1999 ident: 18283_CR41 publication-title: IEEE Trans Pattern Analy Mache Intelli doi: 10.1109/34.799904 – volume: 21 start-page: 745 issue: 8 year: 2003 ident: 18283_CR27 publication-title: Image Vision Comput doi: 10.1016/S0262-8856(03)00070-2 – volume: 14 start-page: 3376 issue: 8 year: 2018 ident: 18283_CR38 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2779814 – volume: 100 start-page: 107836 year: 2022 ident: 18283_CR2 publication-title: Computers Electrical Engin doi: 10.1016/j.compeleceng.2022.107836 – volume: 4 start-page: 2100046 issue: 2 year: 2022 ident: 18283_CR13 publication-title: Adv Intell Syst doi: 10.1002/aisy.202100046 – volume: 166 start-page: 114093 year: 2021 ident: 18283_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114093 – volume: 22 start-page: 199 issue: 2 year: 2010 ident: 18283_CR50 publication-title: IEEE Trans Neural Networks doi: 10.1109/TNN.2010.2091281 – ident: 18283_CR34 doi: 10.1145/3448114 – volume: 6 start-page: 1 issue: 4 year: 2015 ident: 18283_CR7 publication-title: ACM Trans Intelli Syst Tech – volume: 15 start-page: 1110 issue: 5 year: 2013 ident: 18283_CR25 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2013.2246148 – ident: 18283_CR52 doi: 10.1109/CVPR.2012.6247911 – ident: 18283_CR9 doi: 10.1145/3397323 |
SSID | ssj0016524 |
Score | 2.3686357 |
Snippet | The uncertainty of hand gestures, the variability of gestures across subjects, and the high cost of collecting a large amount of annotated data lead to a great... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 68013 |
SubjectTerms | Accelerometers Accuracy Computer Communication Networks Computer Science Data Structures and Information Theory Feature recognition Gesture recognition Kinematics Knowledge management Machine learning Multimedia Information Systems Physiological effects Physiology Sensors Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFH6CdoGBo4AoFOSBDSzsnM6EALWqKlEhRKVukeNjASWlaZf-euzUaQCJrjk8vNvv-gBuIk6lzMIYKz_TOKCcYB4TgQk3po_LRPpVQv9lHA0nwWgaTl3CrXRtlbVNrAy1LITNkd_7JlawTYkseJh9YYsaZaurDkJjF9rGBDPWgvZTf_z6tqkjRKGDtWUEG99I3djMeniO2tEU46OwibGZj1e_XVMTb_4pkVaeZ3AEBy5kRI9rHh_Djso7cFjDMSCnnR3Y_7Fb8ARGg6VNhKFCow_ztNrMinguUZXLqE0eKs01tpiXyMSuyCbRka03LecKbTqLivwUJoP--_MQO-AELIxGLTDnKvYtrLCIZcTj2GqeIn5oCC8o0yzxvERzGWhzPZCWNkJnkkc08hLGFaP-GbTyIlfngKiWnBLGPS50ECqPZZRHRsspyURGBekCrWmWCrdV3IJbfKbNPmRL59TQOa3onK66cLv5Z7beqbH1617NitTpV5k20tCFu5o9zev_T7vYftol7HlWIqoOvx60FvOlujJRxyK7dqL1DfGI008 priority: 102 providerName: ProQuest |
Title | Fusion of kinematic and physiological sensors for hand gesture recognition |
URI | https://link.springer.com/article/10.1007/s11042-024-18283-z https://www.proquest.com/docview/3083014184 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1LS8Mw-MNtFz34mIrTOXLwpoEm6SM9brI6Jg4RB_NU0iS9KK3scdmvN-naVUUFT4E06eH78r1fAFe-IEolXoA1S1LsEuFgETgSO8KwPqFCxQqH_sPEH03d8cyblUVhiyrbvQpJFpy6LnYjtpTEyBRsdGLO8LoBLc_Y7jaRa0r729iB71G3LI_5-d5XEVTrld9CoYWEiQ5hv1QNUX-DyyPY0VkbDqqxC6ikwjbsfeoheAzjaGUdXihP0avZLTqwIpEpVPgsKtaGFsZczecLZHRUZJ3lyMaVVnONthlEeXYC02j4fDvC5YAELA3lLLEQOmB2fLAMlC-CwFKYdphnACwJT3lIaZgK5abGDFCEcUemiRI-8WnIheaEnUIzyzN9BoikShCHCypk6nqa8oQI31AzcRKZEOl0gFQwi2XZPdwOsXiL677HFs6xgXNcwDled-B6e-d90zvjz9PdChVxSUeLmBkN0aaicrcDNxV66s-__-38f8cvYJfaF1Jk9nWhuZyv9KXRNpZJDxo8uutBqx8NBhO73r3cD806GE4en3rF0_sAtC7TJQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO6JQwAc4gYUdZ3EPCCGglPUEErfg2M4FlJQuQvBRfCPjNGkBCW69ZrGi8cvM86wAu6HixiRBRK1IUupzxaiKmKZMoepTpmFE4dC_vQtbD_7VY_A4AZ9VLYxLq6x0YqGoTa6dj_xQIFdwSYnSP26_Ujc1ykVXqxEaA1hc2_c3PLJ1jy7PcH_3PK95fn_aouVUAaoRbj2qlI2Em7mrIxOqKHKwtEwE-FWay1Q2PK-RKuOnyJ0NF5LpNDEq5KHXkMpKLnDdSZj2BVpyV5nevBhGLcKgHKIrGUVLzMsinUGpHneFMGgRKTJ6KejHT0M4Yre_ArKFnWsuwnxJUMnJAFFLMGGzZViohj-QUhcsw9y3ToYrcNXsO7cbyVPyjFeLPrBEZYYUnpNKwZIuHprzTpcgUybOZU9cdKvfsWSYx5Rnq_AwFoGuwVSWZ3YdCE-N4kwqT-nUD6wnE65C1CmcJTrhmtWAVzKLddnD3I3SeIlH3ZednGOUc1zIOf6owf7wnfagg8e_T9errYjLv7kbj7BXg4Nqe0a3_15t4__VdmCmdX97E99c3l1vwqzn0FHkFtZhqtfp2y3kO71kuwAZgadxo_oLBoMN5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qiYToAUoBEbr5ACewYs_qHCrUNo2atI0iRKTcBo-XC2imzSJEf1p_XZ8nnoRWam-9zmKNnr957_NbAT4nkmudxyk1YW5pxCWjMmWKMomqT-qODiuH_uUwORtHg0k82YDbuhbGpVXWOrFS1LpUzkfeDpEruKREEbWtT4sYdXvfr66pmyDlIq31OI0lRM7Nv794fJsd9ru411-CoHf68-SM-gkDVCH05lRKk4Zu_q5KdSLT1EHUsDDGL1RcWNEJgo6VOrLIozUPBVM21zLhSdAR0gge4rovoJm6U1EDmsenw9GPVQwjif1IXcEo2mXuS3aWhXvclcWgfaTI70VIb-6bxTXXfRCeraxebwtee7pKjpb4egsbptiGN_UoCOI1wzZs_tfX8B0MegvnhCOlJb_xatUVlshCk8qPUqtbMsMjdDmdEeTNxDnwiYt1LaaGrLKayuI9jJ9FpB-gUZSF-QiEWy05EzKQykaxCUTOZYIahrNc5VyxFvBaZpnyHc3dYI0_2boXs5NzhnLOKjlnNy34unrnatnP48mnd-utyPy_PcvWSGzBt3p71rcfX-3T06sdwEtEdHbRH57vwKvAgaNKNNyFxny6MHtIfub5vkcZgV_PDew7P7cTdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+kinematic+and+physiological+sensors+for+hand+gesture+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Wang%2C+Aiguo&rft.au=Liu%2C+Huancheng&rft.au=Zheng%2C+Chundi&rft.au=Chen%2C+Huihui&rft.date=2024-08-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=26&rft.spage=68013&rft.epage=68040&rft_id=info:doi/10.1007%2Fs11042-024-18283-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_18283_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |