Fusion of kinematic and physiological sensors for hand gesture recognition

The uncertainty of hand gestures, the variability of gestures across subjects, and the high cost of collecting a large amount of annotated data lead to a great challenge to the robust recognition of gestures, and thus it remains quite crucial to capture the informative features of hand movements and...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 26; pp. 68013 - 68040
Main Authors Wang, Aiguo, Liu, Huancheng, Zheng, Chundi, Chen, Huihui, Chang, Chih-Yung
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The uncertainty of hand gestures, the variability of gestures across subjects, and the high cost of collecting a large amount of annotated data lead to a great challenge to the robust recognition of gestures, and thus it remains quite crucial to capture the informative features of hand movements and to mitigate inter-subject variations. To this end, we propose a gesture recognition model that uses two different types of sensors and optimizes the feature space towards enhanced accuracy and better generalization. Specifically, we use an accelerometer and a surface electromyography sensor to capture kinematic and physiological signals of hand movements. We use a sliding window to divide the streaming sensor data and then extract time-domain and frequency-domain features from each segment to return feature vectors. Afterwards, the feature space is optimized with a feature selector and a gesture recognizer is optimized. To handle the case where no labeled training data are available for a new user, we apply the transfer learning technique to reuse the cross-subject knowledge. Finally, extensive comparative experiments concerning different classification models, different sensors, and different types of features are conducted. Results show that the joint use of kinematic and physiological sensors generally outperforms the use of single sensor, indicating the synthetic effect of different sensors, and that the use of transfer learning helps improve the cross-subject recognition accuracy. In addition, we quantitatively investigate the impact of null gesture on a gesture recognizer and results indicate that null gesture would lower its accuracy, enlightening related studies to consider it.
AbstractList The uncertainty of hand gestures, the variability of gestures across subjects, and the high cost of collecting a large amount of annotated data lead to a great challenge to the robust recognition of gestures, and thus it remains quite crucial to capture the informative features of hand movements and to mitigate inter-subject variations. To this end, we propose a gesture recognition model that uses two different types of sensors and optimizes the feature space towards enhanced accuracy and better generalization. Specifically, we use an accelerometer and a surface electromyography sensor to capture kinematic and physiological signals of hand movements. We use a sliding window to divide the streaming sensor data and then extract time-domain and frequency-domain features from each segment to return feature vectors. Afterwards, the feature space is optimized with a feature selector and a gesture recognizer is optimized. To handle the case where no labeled training data are available for a new user, we apply the transfer learning technique to reuse the cross-subject knowledge. Finally, extensive comparative experiments concerning different classification models, different sensors, and different types of features are conducted. Results show that the joint use of kinematic and physiological sensors generally outperforms the use of single sensor, indicating the synthetic effect of different sensors, and that the use of transfer learning helps improve the cross-subject recognition accuracy. In addition, we quantitatively investigate the impact of null gesture on a gesture recognizer and results indicate that null gesture would lower its accuracy, enlightening related studies to consider it.
Author Chen, Huihui
Liu, Huancheng
Zheng, Chundi
Wang, Aiguo
Chang, Chih-Yung
Author_xml – sequence: 1
  givenname: Aiguo
  orcidid: 0000-0001-6150-8068
  surname: Wang
  fullname: Wang, Aiguo
  organization: School of Electronic Information Engineering, Foshan University
– sequence: 2
  givenname: Huancheng
  surname: Liu
  fullname: Liu, Huancheng
  organization: School of Electronic Information Engineering, Foshan University
– sequence: 3
  givenname: Chundi
  surname: Zheng
  fullname: Zheng, Chundi
  organization: School of Electronic Information Engineering, Foshan University
– sequence: 4
  givenname: Huihui
  surname: Chen
  fullname: Chen, Huihui
  organization: School of Electronic Information Engineering, Foshan University
– sequence: 5
  givenname: Chih-Yung
  surname: Chang
  fullname: Chang, Chih-Yung
  email: cychang@mail.tku.edu.tw
  organization: Department of Computer Science and Information Engineering, Tamkang University
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxDowY-fhLFFFeQiJDawt4zipS2oXO1m0X49LkEAsupqRZs69M3dGJtZZTcglwjUClDcBETKaAs1S5JSzdH9CppiXLC1LipM__RmZhbAGwCKn2ZQ8LYdgnE1ck3wYqzeyNyqRtk62q10cdK41SnZJ0DY4H5LG-WR1GLc69IPXidfKtdb0UeOcnDayC_rip87J2_LudfGQPr_cPy5un1PFsOpTKXXJiiLPVFkXsiwBctTA8pqBQt7witKqkXXWQFbVyDio5r2WBRa04lJzZHNyNepuvfsc4h1i7QZvo6VgwBlghjyLW3TcUt6F4HUjtt5spN8JBHHITIyZiZiZ-M5M7CPE_0HK9PLwXO-l6Y6jbERD9LGt9r9XHaG-AMgtg4Y
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3456436
Cites_doi 10.3390/s140406474
10.1007/s11042-017-5100-4
10.1109/JSEN.2016.2545708
10.1109/TNN.2010.2091281
10.1109/TII.2017.2779814
10.1016/j.simpat.2015.12.003
10.1109/ACCESS.2019.2914728
10.1109/TIM.2011.2161140
10.1109/34.799904
10.1109/THMS.2014.2302794
10.1016/j.future.2020.09.013
10.3390/jimaging8060153
10.1109/TMC.2018.2843373
10.1007/s10489-020-01725-0
10.1016/j.ifacol.2019.09.129
10.3934/mbe.2021007
10.1109/TSMCC.2012.2198883
10.1109/JSEN.2018.2808688
10.1007/s11042-022-12355-8
10.3389/fnins.2020.00637
10.1109/THMS.2021.3086003
10.3390/s18113629
10.1016/j.eswa.2023.119614
10.1007/s11042-022-13215-1
10.1109/TMM.2013.2246148
10.1016/j.eswa.2020.114093
10.1007/s11042-021-11623-3
10.3390/s21072540
10.3390/s20092467
10.1002/aisy.202100046
10.1016/S0262-8856(03)00070-2
10.1016/j.compeleceng.2022.107836
10.3390/electronics11060968
10.1016/j.medengphy.2011.08.012
10.1109/JSEN.2019.2903645
10.1109/EMBC.2018.8512533
10.1109/NaNA53684.2021.00051
10.23919/SPA.2018.8563394
10.1109/ISAPE.2018.8634348
10.1109/ICCV.2013.274
10.1109/ICCE-Berlin.2016.7684748
10.1109/SMC.2017.8122854
10.1007/s10489-021-02575-0
10.1109/PERCOM.2018.8444572
10.1109/ICMCCE48743.2019.00095
10.1145/3328931
10.1109/ISCAS.2018.8351065
10.1145/3448114
10.1109/CVPR.2012.6247911
10.1145/3397323
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-024-18283-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Collection
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 68040
ExternalDocumentID 10_1007_s11042_024_18283_z
GrantInformation_xml – fundername: Department of Education of Guangdong Province
  grantid: 2021KTSCX117
  funderid: http://dx.doi.org/10.13039/501100010226
– fundername: National Natural Science Foundation of China
  grantid: 62176082
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-aae736654c7d6a770051e035d30c18f89229fad4f049d1380cfbda616298ae813
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Sat Aug 23 12:43:58 EDT 2025
Tue Jul 01 04:13:31 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Fri Feb 21 02:40:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Accelerometer
Feature extraction
Electromyography
Cross-subject
Gesture recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-aae736654c7d6a770051e035d30c18f89229fad4f049d1380cfbda616298ae813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6150-8068
PQID 3083014184
PQPubID 54626
PageCount 28
ParticipantIDs proquest_journals_3083014184
crossref_primary_10_1007_s11042_024_18283_z
crossref_citationtrail_10_1007_s11042_024_18283_z
springer_journals_10_1007_s11042_024_18283_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240800
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Jiang, Lv, Guo, Zhang, Wang, Sheng, Shull (CR38) 2018; 14
CR39
Banos, Galvez, Damas, Pomares, Rojas (CR48) 2014; 14
Chen, Wang, Zhao, Liu, Chang (CR53) 2018; 77
CR34
CR33
CR32
Si, Chen, Li, Li, Pei, Guo (CR13) 2022; 4
Bhushan, Alshehri, Keshta, Chakraverti, Rajpurohit, Abugabah (CR3) 2022; 11
Ren, Yuan, Meng, Zhang (CR25) 2013; 15
Guarino, Malandrino, Zaccagnino, Capo, Lettieri (CR6) 2023; 219
Pagan, Fallahzadeh, Pedram, Jl, Moya, Ayala, Ghasemzadeh (CR18) 2019; 18
Chen, Hoey, Nugent, Cook, Yu (CR19) 2012; 42
Chen, Fu, Huang (CR27) 2003; 21
Kim, Helal, Nugent, Beattie (CR7) 2015; 6
Bhaumik, Verma, Govil, Vipparthi (CR15) 2023; 82
Nyo, Mebarek-Oudina, Hlaing, Khan (CR17) 2022; 81
Wang, Chen, Yang, Zhao, Chang (CR31) 2016; 16
CR9
CR49
Lu, Chen, Li, Zhang, Zhou (CR37) 2014; 44
CR46
CR45
CR43
Colacino, Emiliano, Mace (CR47) 2012; 34
CR40
Bargellesi, Carletti, Cenedese, Susto, Terzi (CR42) 2019; 52
Chen, Wang, Wang (CR21) 2020; 50
Al Farid, Hashim, Abdullah, Bhuiyan, Shahida Mohd Isa, Uddin, Haque, Husen (CR14) 2022; 8
Zhao, Xu, Shu, Hu (CR20) 2016; 65
Wang, Wu, Zhao, Chen, Zhao (CR28) 2021; 24
Jiang, Ye, Chen, Su, Lin, Ma, Huang (CR30) 2021; 18
Lee, Kim (CR41) 1999; 21
Yu, Zhao, Wang, He, Wang (CR44) 2021; 21
CR52
CR51
Qi, Jiang, Li, Sun, Tao (CR5) 2019; 7
Song, Zhao, Liu, Liu, Sun (CR26) 2021; 115
Dhiman, Vishwakarma (CR16) 2019; 19
Zhang, Tian, Zhou (CR4) 2018; 18
Dardas, Georganas (CR35) 2011; 60
Wang, Chen, Wu, Liu, An, Chang (CR8) 2018; 18
CR29
Jia, Zhou, Xue (CR1) 2022; 81
Gadekallu, Srivastava, Liyanage, Iyapparaja, Chowdhary, Koppu, Maddikunta (CR2) 2022; 100
CR24
CR23
CR22
Pan, Tsang, Kwok, Qiang (CR50) 2010; 22
Guo, Lu, Yao (CR12) 2021; 51
Lima, Braganca, Souto (CR10) 2021; 166
Ceolini, Frenkel, Shrestha, Taverni, Khacef, Payvand, Donati (CR36) 2020; 14
Jaramillo-Yánez, Benalcázar, Mena-Maldonado (CR11) 2020; 20
Z Yu (18283_CR44) 2021; 21
18283_CR51
18283_CR52
A Wang (18283_CR31) 2016; 16
WS Lima (18283_CR10) 2021; 166
S Bhushan (18283_CR3) 2022; 11
A Wang (18283_CR28) 2021; 24
18283_CR22
Z Lu (18283_CR37) 2014; 44
18283_CR23
A Wang (18283_CR8) 2018; 18
18283_CR24
Z Zhang (18283_CR4) 2018; 18
Y Si (18283_CR13) 2022; 4
L Jia (18283_CR1) 2022; 81
TR Gadekallu (18283_CR2) 2022; 100
18283_CR29
G Chen (18283_CR53) 2018; 77
N Bargellesi (18283_CR42) 2019; 52
G Bhaumik (18283_CR15) 2023; 82
W Jiang (18283_CR30) 2021; 18
SP Pan (18283_CR50) 2010; 22
FS Chen (18283_CR27) 2003; 21
S Jiang (18283_CR38) 2018; 14
O Banos (18283_CR48) 2014; 14
G Chen (18283_CR21) 2020; 50
18283_CR32
18283_CR33
18283_CR34
H Zhao (18283_CR20) 2016; 65
18283_CR9
L Guo (18283_CR12) 2021; 51
18283_CR39
A Guarino (18283_CR6) 2023; 219
E Ceolini (18283_CR36) 2020; 14
Z Ren (18283_CR25) 2013; 15
HK Lee (18283_CR41) 1999; 21
J Pagan (18283_CR18) 2019; 18
C Dhiman (18283_CR16) 2019; 19
F Al Farid (18283_CR14) 2022; 8
18283_CR40
E Kim (18283_CR7) 2015; 6
18283_CR43
18283_CR45
18283_CR46
18283_CR49
L Chen (18283_CR19) 2012; 42
A Jaramillo-Yánez (18283_CR11) 2020; 20
NH Dardas (18283_CR35) 2011; 60
J Qi (18283_CR5) 2019; 7
MT Nyo (18283_CR17) 2022; 81
FM Colacino (18283_CR47) 2012; 34
T Song (18283_CR26) 2021; 115
References_xml – ident: CR45
– ident: CR22
– ident: CR49
– ident: CR39
– volume: 14
  start-page: 6474
  issue: 4
  year: 2014
  end-page: 6499
  ident: CR48
  article-title: Window size impact in human activity recognition
  publication-title: Sensors
  doi: 10.3390/s140406474
– volume: 77
  start-page: 15201
  year: 2018
  end-page: 15219
  ident: CR53
  article-title: Latent feature learning for activity recognition using simple sensors in smart homes
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5100-4
– volume: 16
  start-page: 4566
  issue: 11
  year: 2016
  end-page: 4578
  ident: CR31
  article-title: A comparative study on human activity recognition using inertial sensors in a smartphone
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2016.2545708
– ident: CR51
– volume: 22
  start-page: 199
  issue: 2
  year: 2010
  end-page: 210
  ident: CR50
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2010.2091281
– ident: CR29
– volume: 6
  start-page: 1
  issue: 4
  year: 2015
  end-page: 28
  ident: CR7
  article-title: Analyzing activity recognition uncertainties in smart home environments
  publication-title: ACM Trans Intelli Syst Tech
– volume: 14
  start-page: 3376
  issue: 8
  year: 2018
  end-page: 3385
  ident: CR38
  article-title: Feasibility of wrist-worn, real-time hand, and surface gesture recognition via sEMG and IMU sensing
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2779814
– ident: CR46
– volume: 65
  start-page: 32
  year: 2016
  end-page: 44
  ident: CR20
  article-title: Physiological-signal-based key negotiation protocols for body sensor networks: A survey
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2015.12.003
– volume: 7
  start-page: 61378
  year: 2019
  end-page: 61387
  ident: CR5
  article-title: Intelligent human-computer interaction based on surface EMG gesture recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914728
– ident: CR9
– volume: 60
  start-page: 3592
  issue: 11
  year: 2011
  end-page: 3607
  ident: CR35
  article-title: Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques
  publication-title: IEEE Trans Instrumen Meas
  doi: 10.1109/TIM.2011.2161140
– volume: 21
  start-page: 961
  issue: 10
  year: 1999
  end-page: 973
  ident: CR41
  article-title: An HMM-based threshold model approach for gesture recognition
  publication-title: IEEE Trans Pattern Analy Mache Intelli
  doi: 10.1109/34.799904
– volume: 44
  start-page: 293
  issue: 2
  year: 2014
  end-page: 299
  ident: CR37
  article-title: A hand gesture recognition framework and wearable gesture-based interaction prototype for mobile devices
  publication-title: IEEE Trans Human-Mach Syst
  doi: 10.1109/THMS.2014.2302794
– ident: CR32
– volume: 115
  start-page: 298
  issue: 7043
  year: 2021
  end-page: 303
  ident: CR26
  article-title: Intelligent human hand gesture recognition by local–global fusing quality-aware features
  publication-title: Future Gener Comp Syst
  doi: 10.1016/j.future.2020.09.013
– volume: 8
  start-page: 153
  issue: 6
  year: 2022
  ident: CR14
  article-title: A structured and methodological review on vision-based hand gesture recognition system
  publication-title: J Imaging
  doi: 10.3390/jimaging8060153
– volume: 18
  start-page: 658
  issue: 3
  year: 2019
  end-page: 673
  ident: CR18
  article-title: Toward ultra-low-power remote health monitoring: An optimal and adaptive compressed sensing framework for activity recognition
  publication-title: IEEE Trans Mobile Comput
  doi: 10.1109/TMC.2018.2843373
– volume: 50
  start-page: 3503
  year: 2020
  end-page: 3520
  ident: CR21
  article-title: Two-dimensional discrete feature based spatial attention capsnet for sEMG signal recognition
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01725-0
– volume: 52
  start-page: 128
  issue: 11
  year: 2019
  end-page: 133
  ident: CR42
  article-title: A random forest-based approach for hand gesture recognition with wireless wearable motion capture sensors
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.09.129
– volume: 18
  start-page: 132
  issue: 1
  year: 2021
  end-page: 153
  ident: CR30
  article-title: Wearable on-device deep learning system for hand gesture recognition based on FPGA accelerator
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2021007
– volume: 42
  start-page: 790
  issue: 6
  year: 2012
  end-page: 808
  ident: CR19
  article-title: Sensor-based activity recognition
  publication-title: IEEE Trans Syst Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2012.2198883
– ident: CR43
– volume: 18
  start-page: 3278
  issue: 8
  year: 2018
  end-page: 3289
  ident: CR4
  article-title: Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2018.2808688
– volume: 81
  start-page: 20509
  issue: 15
  year: 2022
  end-page: 20539
  ident: CR1
  article-title: Non-trajectory-based gesture recognition in human-computer interaction based on hand skeleton data
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12355-8
– volume: 14
  start-page: 637
  year: 2020
  ident: CR36
  article-title: Hand-gesture recognition based on EMG and eventbased camera sensor fusion: A benchmark in neuromorphic computing
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00637
– volume: 51
  start-page: 300
  issue: 4
  year: 2021
  end-page: 309
  ident: CR12
  article-title: Human-machine interaction sensing technology based on hand gesture recognition: A review
  publication-title: IEEE Trans Human-Mach Syst
  doi: 10.1109/THMS.2021.3086003
– volume: 24
  start-page: 611
  issue: 4
  year: 2021
  end-page: 620
  ident: CR28
  article-title: Physical activity recognition from accelerometer data using multi-view aggregation
  publication-title: J Appl Sci Engineer
– volume: 18
  start-page: 3629
  issue: 11
  year: 2018
  ident: CR8
  article-title: Towards human activity recognition: A hierarchical feature selection framework
  publication-title: Sensors
  doi: 10.3390/s18113629
– volume: 219
  start-page: 119614
  year: 2023
  ident: CR6
  article-title: Touchscreen gestures as images. A transfer learning approach for soft biometric traits recognition
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119614
– volume: 81
  start-page: 43837
  issue: 30
  year: 2022
  end-page: 43849
  ident: CR17
  article-title: Otsu’s thresholding technique for MRI image brain tumor segmentation
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13215-1
– volume: 15
  start-page: 1110
  issue: 5
  year: 2013
  end-page: 1120
  ident: CR25
  article-title: Robust part-based hand gesture recognition using Kinect sensor
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2013.2246148
– ident: CR33
– volume: 166
  start-page: 114093
  year: 2021
  ident: CR10
  article-title: NOHAR: Novelty discrete data stream for human activity recognition based on smartphones with inertial sensors
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114093
– ident: CR40
– ident: CR23
– volume: 82
  start-page: 4863
  issue: 4
  year: 2023
  end-page: 4882
  ident: CR15
  article-title: Hyfinet: Hybrid feature attention network for hand gesture recognition
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11623-3
– volume: 21
  start-page: 2540
  issue: 7
  year: 2021
  ident: CR44
  article-title: Surface EMG-based instantaneous hand gesture recognition using convolutional neural network with the transfer learning method
  publication-title: Sensors
  doi: 10.3390/s21072540
– ident: CR52
– volume: 20
  start-page: 2467
  issue: 9
  year: 2020
  ident: CR11
  article-title: Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review
  publication-title: Sensors
  doi: 10.3390/s20092467
– volume: 4
  start-page: 2100046
  issue: 2
  year: 2022
  ident: CR13
  article-title: Flexible strain sensors for wearable hand gesture recognition: From devices to systems
  publication-title: Adv Intell Syst
  doi: 10.1002/aisy.202100046
– volume: 21
  start-page: 745
  issue: 8
  year: 2003
  end-page: 758
  ident: CR27
  article-title: Hand gesture recognition using a real-time tracking method and hidden Markov models
  publication-title: Image Vision Comput
  doi: 10.1016/S0262-8856(03)00070-2
– volume: 100
  start-page: 107836
  year: 2022
  ident: CR2
  article-title: Hand gesture recognition based on a Harris hawks optimized convolution neural network
  publication-title: Computers Electrical Engin
  doi: 10.1016/j.compeleceng.2022.107836
– ident: CR34
– volume: 11
  start-page: 968
  issue: 6
  year: 2022
  ident: CR3
  article-title: An experimental analysis of various machine learning algorithms for hand gesture recognition
  publication-title: Electronics
  doi: 10.3390/electronics11060968
– volume: 34
  start-page: 531
  issue: 5
  year: 2012
  end-page: 540
  ident: CR47
  article-title: Subject-specific musculoskeletal parameters of wrist flexors and extensors estimated by an emg-driven musculoskeletal model
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2011.08.012
– ident: CR24
– volume: 19
  start-page: 5195
  issue: 3
  year: 2019
  end-page: 5203
  ident: CR16
  article-title: A robust framework for abnormal human action recognition using R-transform and Zernike moments in depth videos
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2019.2903645
– volume: 18
  start-page: 132
  issue: 1
  year: 2021
  ident: 18283_CR30
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2021007
– ident: 18283_CR24
  doi: 10.1109/EMBC.2018.8512533
– ident: 18283_CR49
  doi: 10.1109/NaNA53684.2021.00051
– ident: 18283_CR22
  doi: 10.23919/SPA.2018.8563394
– volume: 14
  start-page: 6474
  issue: 4
  year: 2014
  ident: 18283_CR48
  publication-title: Sensors
  doi: 10.3390/s140406474
– volume: 7
  start-page: 61378
  year: 2019
  ident: 18283_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914728
– ident: 18283_CR40
  doi: 10.1109/ISAPE.2018.8634348
– volume: 82
  start-page: 4863
  issue: 4
  year: 2023
  ident: 18283_CR15
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11623-3
– ident: 18283_CR51
  doi: 10.1109/ICCV.2013.274
– volume: 52
  start-page: 128
  issue: 11
  year: 2019
  ident: 18283_CR42
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.09.129
– ident: 18283_CR43
  doi: 10.1109/ICCE-Berlin.2016.7684748
– volume: 11
  start-page: 968
  issue: 6
  year: 2022
  ident: 18283_CR3
  publication-title: Electronics
  doi: 10.3390/electronics11060968
– volume: 77
  start-page: 15201
  year: 2018
  ident: 18283_CR53
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5100-4
– ident: 18283_CR46
  doi: 10.1109/SMC.2017.8122854
– volume: 18
  start-page: 3629
  issue: 11
  year: 2018
  ident: 18283_CR8
  publication-title: Sensors
  doi: 10.3390/s18113629
– volume: 18
  start-page: 658
  issue: 3
  year: 2019
  ident: 18283_CR18
  publication-title: IEEE Trans Mobile Comput
  doi: 10.1109/TMC.2018.2843373
– volume: 14
  start-page: 637
  year: 2020
  ident: 18283_CR36
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00637
– volume: 65
  start-page: 32
  year: 2016
  ident: 18283_CR20
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2015.12.003
– ident: 18283_CR23
  doi: 10.1007/s10489-021-02575-0
– volume: 50
  start-page: 3503
  year: 2020
  ident: 18283_CR21
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01725-0
– volume: 42
  start-page: 790
  issue: 6
  year: 2012
  ident: 18283_CR19
  publication-title: IEEE Trans Syst Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2012.2198883
– volume: 16
  start-page: 4566
  issue: 11
  year: 2016
  ident: 18283_CR31
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2016.2545708
– volume: 34
  start-page: 531
  issue: 5
  year: 2012
  ident: 18283_CR47
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2011.08.012
– ident: 18283_CR33
– ident: 18283_CR45
  doi: 10.1109/PERCOM.2018.8444572
– volume: 24
  start-page: 611
  issue: 4
  year: 2021
  ident: 18283_CR28
  publication-title: J Appl Sci Engineer
– volume: 60
  start-page: 3592
  issue: 11
  year: 2011
  ident: 18283_CR35
  publication-title: IEEE Trans Instrumen Meas
  doi: 10.1109/TIM.2011.2161140
– volume: 19
  start-page: 5195
  issue: 3
  year: 2019
  ident: 18283_CR16
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2019.2903645
– volume: 21
  start-page: 2540
  issue: 7
  year: 2021
  ident: 18283_CR44
  publication-title: Sensors
  doi: 10.3390/s21072540
– volume: 20
  start-page: 2467
  issue: 9
  year: 2020
  ident: 18283_CR11
  publication-title: Sensors
  doi: 10.3390/s20092467
– ident: 18283_CR39
  doi: 10.1109/ICMCCE48743.2019.00095
– volume: 44
  start-page: 293
  issue: 2
  year: 2014
  ident: 18283_CR37
  publication-title: IEEE Trans Human-Mach Syst
  doi: 10.1109/THMS.2014.2302794
– volume: 81
  start-page: 43837
  issue: 30
  year: 2022
  ident: 18283_CR17
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13215-1
– volume: 51
  start-page: 300
  issue: 4
  year: 2021
  ident: 18283_CR12
  publication-title: IEEE Trans Human-Mach Syst
  doi: 10.1109/THMS.2021.3086003
– volume: 115
  start-page: 298
  issue: 7043
  year: 2021
  ident: 18283_CR26
  publication-title: Future Gener Comp Syst
  doi: 10.1016/j.future.2020.09.013
– ident: 18283_CR29
  doi: 10.1145/3328931
– ident: 18283_CR32
  doi: 10.1109/ISCAS.2018.8351065
– volume: 18
  start-page: 3278
  issue: 8
  year: 2018
  ident: 18283_CR4
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2018.2808688
– volume: 219
  start-page: 119614
  year: 2023
  ident: 18283_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119614
– volume: 81
  start-page: 20509
  issue: 15
  year: 2022
  ident: 18283_CR1
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12355-8
– volume: 8
  start-page: 153
  issue: 6
  year: 2022
  ident: 18283_CR14
  publication-title: J Imaging
  doi: 10.3390/jimaging8060153
– volume: 21
  start-page: 961
  issue: 10
  year: 1999
  ident: 18283_CR41
  publication-title: IEEE Trans Pattern Analy Mache Intelli
  doi: 10.1109/34.799904
– volume: 21
  start-page: 745
  issue: 8
  year: 2003
  ident: 18283_CR27
  publication-title: Image Vision Comput
  doi: 10.1016/S0262-8856(03)00070-2
– volume: 14
  start-page: 3376
  issue: 8
  year: 2018
  ident: 18283_CR38
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2779814
– volume: 100
  start-page: 107836
  year: 2022
  ident: 18283_CR2
  publication-title: Computers Electrical Engin
  doi: 10.1016/j.compeleceng.2022.107836
– volume: 4
  start-page: 2100046
  issue: 2
  year: 2022
  ident: 18283_CR13
  publication-title: Adv Intell Syst
  doi: 10.1002/aisy.202100046
– volume: 166
  start-page: 114093
  year: 2021
  ident: 18283_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114093
– volume: 22
  start-page: 199
  issue: 2
  year: 2010
  ident: 18283_CR50
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2010.2091281
– ident: 18283_CR34
  doi: 10.1145/3448114
– volume: 6
  start-page: 1
  issue: 4
  year: 2015
  ident: 18283_CR7
  publication-title: ACM Trans Intelli Syst Tech
– volume: 15
  start-page: 1110
  issue: 5
  year: 2013
  ident: 18283_CR25
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2013.2246148
– ident: 18283_CR52
  doi: 10.1109/CVPR.2012.6247911
– ident: 18283_CR9
  doi: 10.1145/3397323
SSID ssj0016524
Score 2.3686357
Snippet The uncertainty of hand gestures, the variability of gestures across subjects, and the high cost of collecting a large amount of annotated data lead to a great...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 68013
SubjectTerms Accelerometers
Accuracy
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Feature recognition
Gesture recognition
Kinematics
Knowledge management
Machine learning
Multimedia Information Systems
Physiological effects
Physiology
Sensors
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFH6CdoGBo4AoFOSBDSzsnM6EALWqKlEhRKVukeNjASWlaZf-euzUaQCJrjk8vNvv-gBuIk6lzMIYKz_TOKCcYB4TgQk3po_LRPpVQv9lHA0nwWgaTl3CrXRtlbVNrAy1LITNkd_7JlawTYkseJh9YYsaZaurDkJjF9rGBDPWgvZTf_z6tqkjRKGDtWUEG99I3djMeniO2tEU46OwibGZj1e_XVMTb_4pkVaeZ3AEBy5kRI9rHh_Djso7cFjDMSCnnR3Y_7Fb8ARGg6VNhKFCow_ztNrMinguUZXLqE0eKs01tpiXyMSuyCbRka03LecKbTqLivwUJoP--_MQO-AELIxGLTDnKvYtrLCIZcTj2GqeIn5oCC8o0yzxvERzGWhzPZCWNkJnkkc08hLGFaP-GbTyIlfngKiWnBLGPS50ECqPZZRHRsspyURGBekCrWmWCrdV3IJbfKbNPmRL59TQOa3onK66cLv5Z7beqbH1617NitTpV5k20tCFu5o9zev_T7vYftol7HlWIqoOvx60FvOlujJRxyK7dqL1DfGI008
  priority: 102
  providerName: ProQuest
Title Fusion of kinematic and physiological sensors for hand gesture recognition
URI https://link.springer.com/article/10.1007/s11042-024-18283-z
https://www.proquest.com/docview/3083014184
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1LS8Mw-MNtFz34mIrTOXLwpoEm6SM9brI6Jg4RB_NU0iS9KK3scdmvN-naVUUFT4E06eH78r1fAFe-IEolXoA1S1LsEuFgETgSO8KwPqFCxQqH_sPEH03d8cyblUVhiyrbvQpJFpy6LnYjtpTEyBRsdGLO8LoBLc_Y7jaRa0r729iB71G3LI_5-d5XEVTrld9CoYWEiQ5hv1QNUX-DyyPY0VkbDqqxC6ikwjbsfeoheAzjaGUdXihP0avZLTqwIpEpVPgsKtaGFsZczecLZHRUZJ3lyMaVVnONthlEeXYC02j4fDvC5YAELA3lLLEQOmB2fLAMlC-CwFKYdphnACwJT3lIaZgK5abGDFCEcUemiRI-8WnIheaEnUIzyzN9BoikShCHCypk6nqa8oQI31AzcRKZEOl0gFQwi2XZPdwOsXiL677HFs6xgXNcwDled-B6e-d90zvjz9PdChVxSUeLmBkN0aaicrcDNxV66s-__-38f8cvYJfaF1Jk9nWhuZyv9KXRNpZJDxo8uutBqx8NBhO73r3cD806GE4en3rF0_sAtC7TJQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO6JQwAc4gYUdZ3EPCCGglPUEErfg2M4FlJQuQvBRfCPjNGkBCW69ZrGi8cvM86wAu6HixiRBRK1IUupzxaiKmKZMoepTpmFE4dC_vQtbD_7VY_A4AZ9VLYxLq6x0YqGoTa6dj_xQIFdwSYnSP26_Ujc1ykVXqxEaA1hc2_c3PLJ1jy7PcH_3PK95fn_aouVUAaoRbj2qlI2Em7mrIxOqKHKwtEwE-FWay1Q2PK-RKuOnyJ0NF5LpNDEq5KHXkMpKLnDdSZj2BVpyV5nevBhGLcKgHKIrGUVLzMsinUGpHneFMGgRKTJ6KejHT0M4Yre_ArKFnWsuwnxJUMnJAFFLMGGzZViohj-QUhcsw9y3ToYrcNXsO7cbyVPyjFeLPrBEZYYUnpNKwZIuHprzTpcgUybOZU9cdKvfsWSYx5Rnq_AwFoGuwVSWZ3YdCE-N4kwqT-nUD6wnE65C1CmcJTrhmtWAVzKLddnD3I3SeIlH3ZednGOUc1zIOf6owf7wnfagg8e_T9errYjLv7kbj7BXg4Nqe0a3_15t4__VdmCmdX97E99c3l1vwqzn0FHkFtZhqtfp2y3kO71kuwAZgadxo_oLBoMN5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qiYToAUoBEbr5ACewYs_qHCrUNo2atI0iRKTcBo-XC2imzSJEf1p_XZ8nnoRWam-9zmKNnr957_NbAT4nkmudxyk1YW5pxCWjMmWKMomqT-qODiuH_uUwORtHg0k82YDbuhbGpVXWOrFS1LpUzkfeDpEruKREEbWtT4sYdXvfr66pmyDlIq31OI0lRM7Nv794fJsd9ru411-CoHf68-SM-gkDVCH05lRKk4Zu_q5KdSLT1EHUsDDGL1RcWNEJgo6VOrLIozUPBVM21zLhSdAR0gge4rovoJm6U1EDmsenw9GPVQwjif1IXcEo2mXuS3aWhXvclcWgfaTI70VIb-6bxTXXfRCeraxebwtee7pKjpb4egsbptiGN_UoCOI1wzZs_tfX8B0MegvnhCOlJb_xatUVlshCk8qPUqtbMsMjdDmdEeTNxDnwiYt1LaaGrLKayuI9jJ9FpB-gUZSF-QiEWy05EzKQykaxCUTOZYIahrNc5VyxFvBaZpnyHc3dYI0_2boXs5NzhnLOKjlnNy34unrnatnP48mnd-utyPy_PcvWSGzBt3p71rcfX-3T06sdwEtEdHbRH57vwKvAgaNKNNyFxny6MHtIfub5vkcZgV_PDew7P7cTdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+kinematic+and+physiological+sensors+for+hand+gesture+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Wang%2C+Aiguo&rft.au=Liu%2C+Huancheng&rft.au=Zheng%2C+Chundi&rft.au=Chen%2C+Huihui&rft.date=2024-08-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=26&rft.spage=68013&rft.epage=68040&rft_id=info:doi/10.1007%2Fs11042-024-18283-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_18283_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon