Thermal Properties and Magnetic Susceptibility of Hellmann Potential in Aharonov–Bohm (AB) Flux and Magnetic Fields at Zero and Finite Temperatures
In this research work, the Hellmann potential is studied in the presence of external magnetic and AB flux fields within the framework of Schrodinger equation using the Nikiforov–Uvarov functional analysis method. The energy equation and wave function of the system are obtained in closed form. The ef...
Saved in:
Published in | Journal of low temperature physics Vol. 202; no. 1-2; pp. 83 - 105 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-2291 1573-7357 |
DOI | 10.1007/s10909-020-02533-z |
Cover
Loading…
Abstract | In this research work, the Hellmann potential is studied in the presence of external magnetic and AB flux fields within the framework of Schrodinger equation using the Nikiforov–Uvarov functional analysis method. The energy equation and wave function of the system are obtained in closed form. The effect of the fields on the energy spectra of the system is examined in detail. It is found that the AB field performs better than the magnetic field in its ability to remove degeneracy. Furthermore, the magnetization and magnetic susceptibility of the system were discussed at zero and finite temperatures. We evaluate the partition function and use it to evaluate other thermodynamic properties of the system such as magnetic susceptibility,
χ
m
B
→
,
Φ
AB
,
β
, Helmholtz free energy
F
B
→
,
Φ
AB
,
β
, entropy
S
B
→
,
Φ
AB
,
β
, internal energy
U
B
→
,
Φ
AB
,
β
and specific heat
C
v
B
→
,
Φ
AB
,
β
. A comparative analysis of the magnetic susceptibility of the system at zero and finite temperatures shows a similarity in the behavior of the system. A straightforward extension of our results to three dimensions shows that the present result is consistent with what is obtained in the literature. |
---|---|
AbstractList | In this research work, the Hellmann potential is studied in the presence of external magnetic and AB flux fields within the framework of Schrodinger equation using the Nikiforov–Uvarov functional analysis method. The energy equation and wave function of the system are obtained in closed form. The effect of the fields on the energy spectra of the system is examined in detail. It is found that the AB field performs better than the magnetic field in its ability to remove degeneracy. Furthermore, the magnetization and magnetic susceptibility of the system were discussed at zero and finite temperatures. We evaluate the partition function and use it to evaluate other thermodynamic properties of the system such as magnetic susceptibility,
χ
m
B
→
,
Φ
AB
,
β
, Helmholtz free energy
F
B
→
,
Φ
AB
,
β
, entropy
S
B
→
,
Φ
AB
,
β
, internal energy
U
B
→
,
Φ
AB
,
β
and specific heat
C
v
B
→
,
Φ
AB
,
β
. A comparative analysis of the magnetic susceptibility of the system at zero and finite temperatures shows a similarity in the behavior of the system. A straightforward extension of our results to three dimensions shows that the present result is consistent with what is obtained in the literature. In this research work, the Hellmann potential is studied in the presence of external magnetic and AB flux fields within the framework of Schrodinger equation using the Nikiforov–Uvarov functional analysis method. The energy equation and wave function of the system are obtained in closed form. The effect of the fields on the energy spectra of the system is examined in detail. It is found that the AB field performs better than the magnetic field in its ability to remove degeneracy. Furthermore, the magnetization and magnetic susceptibility of the system were discussed at zero and finite temperatures. We evaluate the partition function and use it to evaluate other thermodynamic properties of the system such as magnetic susceptibility, χmB→,ΦAB,β, Helmholtz free energy FB→,ΦAB,β, entropy SB→,ΦAB,β, internal energy UB→,ΦAB,β and specific heat CvB→,ΦAB,β. A comparative analysis of the magnetic susceptibility of the system at zero and finite temperatures shows a similarity in the behavior of the system. A straightforward extension of our results to three dimensions shows that the present result is consistent with what is obtained in the literature. |
Author | Rampho, G. J. Okorie, U. S. Salih, Idris H. Onyeaju, M. C. Sever, R. Amadi, P. O. Abdullah, Hewa Y. Ikot, A. N. Edet, C. O. |
Author_xml | – sequence: 1 givenname: C. O. surname: Edet fullname: Edet, C. O. organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt – sequence: 2 givenname: P. O. surname: Amadi fullname: Amadi, P. O. organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt – sequence: 3 givenname: M. C. surname: Onyeaju fullname: Onyeaju, M. C. organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt – sequence: 4 givenname: U. S. surname: Okorie fullname: Okorie, U. S. organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt, Department of Physics, Akwa Ibom State University – sequence: 5 givenname: R. surname: Sever fullname: Sever, R. organization: Department of Physics, Middle East Technical University – sequence: 6 givenname: G. J. surname: Rampho fullname: Rampho, G. J. organization: Department of Physics, University of South Africa – sequence: 7 givenname: Hewa Y. surname: Abdullah fullname: Abdullah, Hewa Y. organization: Physics Education Department, Faculty of Education, Tishk International University – sequence: 8 givenname: Idris H. surname: Salih fullname: Salih, Idris H. organization: Physics Education Department, Faculty of Education, Tishk International University – sequence: 9 givenname: A. N. surname: Ikot fullname: Ikot, A. N. email: ndemikotphysics@gmail.com organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt, Department of Physics, University of South Africa |
BookMark | eNp9kM1O3DAUhS1EJQbKC7CyxAYWof6LM14OiCmVqEBi2LCxHOeGMUrswXYQsOo7oL5gn6SBQULtgsXVXdzz3XN0ttGmDx4Q2qPkiBJSfUuUKKIKwsg4JefF8waa0LLiRcXLahNNCGGsYEzRLbSd0h0hRE0ln6DfiyXE3nT4MoYVxOwgYeMb_NPcesjO4qshWVhlV7vO5SccWnwGXdcb7_FlyOCzG2Hn8WxpYvDh4c-vl-Ow7PHB7PgQz7vh8d93cwddM1pkfAMxvN3mzrsMeAH9GMDkIUL6ir60pkuw-7530PX8dHFyVpxffP9xMjsvLKcqF8YI2jBaN41hjVXWSABp67JRtWgVUEllZUULihMuSsqlqIW0FBrJjVSl4Dtof_13FcP9ACnruzBEP1pqJqaCTSWrXlVsrbIxpBSh1avoehOfNCX6tX69rl-P9eu3-vXzCE3_g6zLJrvgczSu-xzlazSNPv4W4keqT6i_sk-fbA |
CitedBy_id | crossref_primary_10_1002_qua_26925 crossref_primary_10_1007_s10909_021_02623_6 crossref_primary_10_1088_1402_4896_acedd8 crossref_primary_10_1080_00268976_2024_2356182 crossref_primary_10_1142_S0219887824501299 crossref_primary_10_1007_s10773_023_05374_0 crossref_primary_10_1080_00268976_2023_2195952 crossref_primary_10_1038_s41598_022_19396_x crossref_primary_10_1007_s10765_021_02891_0 crossref_primary_10_1140_epjp_s13360_022_02833_1 crossref_primary_10_1016_j_rinp_2022_105749 crossref_primary_10_1140_epjp_s13360_021_01438_4 crossref_primary_10_3390_math12172623 crossref_primary_10_1007_s12648_023_02811_y crossref_primary_10_1016_j_physo_2022_100135 crossref_primary_10_3390_e23081060 crossref_primary_10_1134_S0040577924120092 crossref_primary_10_1007_s10825_022_01857_1 crossref_primary_10_1007_s10909_021_02604_9 crossref_primary_10_1016_j_physb_2023_415438 crossref_primary_10_1142_S0217732321502321 crossref_primary_10_1016_j_heliyon_2023_e20848 crossref_primary_10_4213_tmf10637 crossref_primary_10_1080_00268976_2021_1957170 crossref_primary_10_3390_quantum4030016 crossref_primary_10_1007_s12648_022_02345_9 crossref_primary_10_3390_math10152824 crossref_primary_10_1080_00268976_2022_2059025 crossref_primary_10_1140_epjd_s10053_023_00666_w crossref_primary_10_1080_00268976_2024_2411327 crossref_primary_10_1140_epjp_s13360_023_03730_x crossref_primary_10_1007_s10909_021_02577_9 crossref_primary_10_1140_epjp_s13360_021_01408_w crossref_primary_10_3390_quantum6040041 crossref_primary_10_26565_2312_4334_2022_2_05 crossref_primary_10_1016_j_cjph_2024_03_028 crossref_primary_10_1016_j_comptc_2025_115068 crossref_primary_10_26565_2312_4334_2022_2_02 |
Cites_doi | 10.1016/j.cjph.2017.10.007 10.1103/PhysRev.187.192 10.1103/PhysRevE.93.053201 10.1063/1.1749559 10.1088/1674-1056/27/2/020301 10.1016/j.ces.2018.06.027 10.1142/2012 10.1016/j.solidstatesciences.2010.03.001 10.1016/j.ces.2018.03.009 10.1002/qua.26246 10.1007/s40995-020-00913-4 10.1063/1.1676142 10.1007/s10765-020-2615-0 10.1088/1674-1056/26/6/060302 10.1007/s12648-019-01670-w 10.1103/PhysRev.136.A1390 10.1140/epjp/i2017-11379-x 10.1016/j.molliq.2020.113751 10.1063/1.1749851 10.12693/APhysPolA.127.684 10.1007/s10909-017-1831-x 10.1080/16583655.2019.1622242 10.1016/j.aop.2014.11.017 10.1016/j.physb.2017.08.030 10.1103/PhysRev.116.287 10.1016/j.cplett.2017.12.013 10.1140/epjp/i2019-12558-5 10.1016/j.cplett.2017.03.068 10.1155/2018/5214041 10.1088/0253-6102/59/6/04 10.1088/1674-1056/25/5/056502 10.1007/s10910-020-01107-4 10.1140/epjd/e2020-10084-9 10.1140/epjp/s13360-020-00525-2 10.1016/j.heliyon.2020.e03738 10.1021/acsomega.9b02488 10.1016/j.physe.2012.05.001 10.1016/j.chemphys.2018.08.015 10.1016/j.ces.2018.06.009 10.1063/1.1674543 10.1016/j.kijoms.2017.03.001 10.1016/j.jmmm.2019.04.005 10.1016/j.physe.2018.03.009 10.1103/PhysRevA.54.691 10.1140/epjd/e2011-20319-5 10.1088/0253-6102/59/5/22 10.1142/S0219633607003313 10.1007/s10909-020-02368-8 10.1088/0253-6102/60/1/01 10.1016/j.cplett.2018.11.044 10.1016/j.heliyon.2019.e02224 10.1016/j.ces.2019.03.033 10.1103/PhysRevA.14.2363 10.1140/epjp/i2017-11729-8 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10909-020-02533-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1573-7357 |
EndPage | 105 |
ExternalDocumentID | 10_1007_s10909_020_02533_z |
GroupedDBID | -54 -5F -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 186 199 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UQL UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 W4F WH7 WJK WK8 XJT XOL XSW YLTOR YQT Z45 Z7R Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-aa41d21bdda2dc9ca6ee6cb5d9b4f9e16167c4fe9303451364b46c1ed63a69543 |
IEDL.DBID | U2A |
ISSN | 0022-2291 |
IngestDate | Fri Jul 25 22:37:35 EDT 2025 Tue Jul 01 03:55:16 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Fri Feb 21 02:49:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Hellmann potential Aharonov–Bohm flux Nikiforov–Uvarov functional analysis (NUFA) method Magnetic field Magnetic susceptibility |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-aa41d21bdda2dc9ca6ee6cb5d9b4f9e16167c4fe9303451364b46c1ed63a69543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2484286274 |
PQPubID | 2043553 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2484286274 crossref_primary_10_1007_s10909_020_02533_z crossref_citationtrail_10_1007_s10909_020_02533_z springer_journals_10_1007_s10909_020_02533_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210100 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of low temperature physics |
PublicationTitleAbbrev | J Low Temp Phys |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | EshghiMSeverRIkhdairSMChin. Phys. B2018270203012018ChPhB..27b0301E E.E. Ibekwe, A.T. Ngiangia, U.S. Okorie, A.N. Ikot, H.Y. Abdullah, Iran J. Sci. Technol. Trans. Sci. https://doi.org/10.1007/s40995-020-00913-4 KhordadRSolid State Sci.20101212532010SSSci..12.1253K KhordadRRastegar SedehiHRJ. Low Temp. Phys.20181902002018JLTP..190..200K P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, H.Y. Abdullah. Int. J. Quant. Chem. e26246 (2020). https://doi.org/10.1002/qua.26246 OcakZYanarHSaltıMAydoğduOChem. Phys.2018513252 IkotANEdetCOAmadiPOOkorieUSRamphoGJAbdullahHYEur. Phys. J. D2020741592020EPJD...74..159I GryaznovVKZhernokletovMVZubarevVNLosilevskiiILTortovVEEkspEhTeor. Fiz.198078573 BoyaciogluBChatterjeeAPhysica E20124418262012PhyE...44.1826B OnateCAOnyeajuMCIkotANEbomwonyiOEur. Phys. J. Plus2017132462 FerkousNBounamesACommun. Theor. Phys.2013596792013CoTPh..59..679F SimonsGJ. Chem. Phys.1971557561971JChPh..55..756S YazarlooBHMehrabanHHassnabadiHActa Phys. Pol. A20151276842015AcPPA.127..684Y JiangRJiaCSWangYQPengXLZhangLHChem. Phys. Lett.20197151862019CPL...715..186J EshghiMMehrabanHEur. Phys. J. Plus2017132121 IkotANOkorieUSOsobonyeGAmadiPOEdetCOSitholeMJRamphoGJSeverRHeliyon20206e03738 JiaCSWangCWZhangLHPengXLZengRYouXTChem. Phys. Lett.20176761502017CPL...676..150J KhordadRRastegar SedehiHREur. Phys. J. Plus2019134133 KocakGBayrakOBoztosunIJ. Theor. Comput. Chem.20076893 ServatkhahMKhordadRInt. J. Thermophys.202041372020IJT....41...37S OkorieUSEdetCOIkotANRamphoGJSeverRIndianJ Phys.202010.1007/s12648-019-01670-w AygunMBayrakOBoztosunISahinYEur. Phys. J. D201266352012EPJD...66...35A EdetCOOkorieUSOsobonyeGIkotANRamphoGJSeverRJ. Math. Chem.2020589894087458 OluwadareOJOyewumiKJAdv. High Energy Phys.201820185214041 ÇetinAPhys. B2017523922017PhyB..523...92C CallawayJLaghosPSPhys. Rev.19691871921969PhRv..187..192C OyewumiKJTitiloyeEOAlabiABFalayeBJJ. Niger. Math. Soc.201635460 HughesAJCallawayJPhys. Rev. A196413613901964PhRv..136.1390H SukirtiGManojKKumarJPManMChin. Phys. B2016250565022016ChPhB..25e6502S OluwadareOJOyewumiKJChin. J. Phys2017552422 LandsbergPTThermodynamics and Statistical Mechanics1991New YorkDover EshghiMMehrabanHIkhdairSMChin. Phys. B2017260603022017ChPhB..26f0302E OnateCAOjonubahJOAdeotiAEwehEJUgbojaMAfr. Rev. Phys.201490062 HamzaviMThylweKERajabiAACommun. Theor. Phys.20136012013CoTPh..60....1H BeraAGhoshAGhoshMJ. Magn. Magn. Mater.20194843912019JMMM..484..391B AliaAAElsaidMKShaerAJ. Taibah Univ. Sci.201913687 KhordadRGhanbariAJ. Low Temp. Phys.202019911982020JLTP..199.1198K JiaCSWangCWZhangLHPengXLTangHMLiuJYXiongYZengRChem. Phys. Lett.2018692572018CPL...692...57J BaghdasaryanDAHayrapetyanDBKazaryanEMSarkisyanHAPhysica E Low Dimens. Syst. Nanostruct.201810112018PhyE..101....1B PathriaRKStatistical Mechanics1996WashingtonButterworth0862.00007 IkhdairSMFalayeBJAssJArab. Univ. Basic Appl. Sci.2014161 IbragimovGBFizika20033435 JiaCSZhangLHPengXLLuoJXZhaoYLLiuJYGuoJJTangLDChem. Eng. Sci.201920270 HellmannHKassatotschkinWJ. Chem. Phys193643241936JChPh...4..324H IkhdairSMFalayeBJHamzaviMAnn. Phys.20153532822015AnPhy.353..282I KhordadRSadeghzadehMAMohamadianJahan-abadACommun. Theor. Phys.2013596552013CoTPh..59..655K OrozcoFASOchoaJGARivasXCFigueroaJLCCarradaHMMHeliyon20195e02224 JiaCSZengRPengXLZhangLHZhaoYLChem. Eng. Sci.20181901 McGinnGJ. Chem. Phys.19705336351970JChPh..53.3635M EbelingWSokolovMIStatistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems2005SingaporeWorld Scientific3121142.82001 PhilipsJGKleinmannLPhys. Rev. A19591162871959PhRv..116..287P JiaCSLiJLiuYSPengXLJiaXZhangLHJiangRLiXPLiuJYZhaoYLJ. Mol. Liq.2020315113751 PengXLJiangRJiaCSZhangLHZhaoYLChem. Eng. Sci.2018190122 JiaCSWangCWZhangLHPengXLTangHMZengRChem. EngV Sci.201818326 EbomwonyiOOnateCAOnyeajuMCIkotANKarbala Int. J. Mod.2017359 WangJJiaCSLiCJPengXLZhangLHLiuJYACS Omega2019419193 H. Hellmann, Acta Physicochim. U.R.S.S. 1, 913 (1934/1935) FalayeBJSunGHOrtigozRSDongSHPhys. Rev. E2016930532012016PhRvE..93e3201F IkotANRamphoGJAmadiPOSitholeMJOkorieUSLekalaMIEur. Phys. J. Plus2020135503 HellmannHJ. Chem. Phys.19353611935JChPh...3...61H GreeneRLAldrichCPhys. Rev. A19761423631976PhRvA..14.2363G ZakrzewskiJGebarowskiRDelandeDPhys. Rev. A1996546911996PhRvA..54..691Z XL Peng (2533_CR60) 2018; 190 G Simons (2533_CR3) 1971; 55 G McGinn (2533_CR11) 1970; 53 BJ Falaye (2533_CR22) 2016; 93 B Boyacioglu (2533_CR43) 2012; 44 BH Yazarloo (2533_CR8) 2015; 127 M Eshghi (2533_CR17) 2018; 27 AA Alia (2533_CR35) 2019; 13 US Okorie (2533_CR46) 2020 CA Onate (2533_CR5) 2017; 132 DA Baghdasaryan (2533_CR36) 2018; 101 OJ Oluwadare (2533_CR7) 2018; 2018 J Wang (2533_CR50) 2019; 4 R Khordad (2533_CR52) 2020; 199 G Kocak (2533_CR42) 2007; 6 M Eshghi (2533_CR18) 2017; 132 CS Jia (2533_CR54) 2020; 315 G Sukirti (2533_CR31) 2016; 25 J Callaway (2533_CR10) 1969; 187 AJ Hughes (2533_CR14) 1964; 136 CO Edet (2533_CR44) 2020; 58 CS Jia (2533_CR58) 2019; 202 R Khordad (2533_CR33) 2018; 190 R Jiang (2533_CR59) 2019; 715 H Hellmann (2533_CR2) 1936; 4 CS Jia (2533_CR53) 2017; 676 AN Ikot (2533_CR49) 2020; 74 FAS Orozco (2533_CR27) 2019; 5 SM Ikhdair (2533_CR20) 2014; 16 KJ Oyewumi (2533_CR24) 2016; 35 N Ferkous (2533_CR25) 2013; 59 AN Ikot (2533_CR45) 2020; 6 M Hamzavi (2533_CR6) 2013; 60 J Zakrzewski (2533_CR15) 1996; 54 AN Ikot (2533_CR39) 2020; 135 H Hellmann (2533_CR1) 1935; 3 RL Greene (2533_CR38) 1976; 14 CS Jia (2533_CR56) 2018; 190 O Ebomwonyi (2533_CR41) 2017; 3 A Bera (2533_CR48) 2019; 484 R Khordad (2533_CR37) 2013; 59 M Eshghi (2533_CR16) 2017; 26 SM Ikhdair (2533_CR21) 2015; 353 W Ebeling (2533_CR28) 2005 R Khordad (2533_CR19) 2010; 12 Z Ocak (2533_CR47) 2018; 513 CA Onate (2533_CR40) 2014; 9 GB Ibragimov (2533_CR32) 2003; 34 RK Pathria (2533_CR29) 1996 2533_CR4 PT Landsberg (2533_CR30) 1991 CS Jia (2533_CR57) 2018; 692 CS Jia (2533_CR55) 2018; 183 OJ Oluwadare (2533_CR9) 2017; 55 VK Gryaznov (2533_CR12) 1980; 78 R Khordad (2533_CR34) 2019; 134 M Servatkhah (2533_CR51) 2020; 41 JG Philips (2533_CR13) 1959; 116 A Çetin (2533_CR26) 2017; 523 M Aygun (2533_CR23) 2012; 66 2533_CR62 2533_CR61 |
References_xml | – reference: EbomwonyiOOnateCAOnyeajuMCIkotANKarbala Int. J. Mod.2017359 – reference: OluwadareOJOyewumiKJChin. J. Phys2017552422 – reference: OcakZYanarHSaltıMAydoğduOChem. Phys.2018513252 – reference: OrozcoFASOchoaJGARivasXCFigueroaJLCCarradaHMMHeliyon20195e02224 – reference: IkotANOkorieUSOsobonyeGAmadiPOEdetCOSitholeMJRamphoGJSeverRHeliyon20206e03738 – reference: JiaCSLiJLiuYSPengXLJiaXZhangLHJiangRLiXPLiuJYZhaoYLJ. Mol. Liq.2020315113751 – reference: IkotANEdetCOAmadiPOOkorieUSRamphoGJAbdullahHYEur. Phys. J. D2020741592020EPJD...74..159I – reference: ServatkhahMKhordadRInt. J. Thermophys.202041372020IJT....41...37S – reference: JiangRJiaCSWangYQPengXLZhangLHChem. Phys. Lett.20197151862019CPL...715..186J – reference: JiaCSWangCWZhangLHPengXLTangHMZengRChem. EngV Sci.201818326 – reference: E.E. Ibekwe, A.T. Ngiangia, U.S. Okorie, A.N. Ikot, H.Y. Abdullah, Iran J. Sci. Technol. Trans. Sci. https://doi.org/10.1007/s40995-020-00913-4 – reference: OkorieUSEdetCOIkotANRamphoGJSeverRIndianJ Phys.202010.1007/s12648-019-01670-w – reference: CallawayJLaghosPSPhys. Rev.19691871921969PhRv..187..192C – reference: SukirtiGManojKKumarJPManMChin. Phys. B2016250565022016ChPhB..25e6502S – reference: IkhdairSMFalayeBJAssJArab. Univ. Basic Appl. Sci.2014161 – reference: KocakGBayrakOBoztosunIJ. Theor. Comput. Chem.20076893 – reference: OyewumiKJTitiloyeEOAlabiABFalayeBJJ. Niger. Math. Soc.201635460 – reference: H. Hellmann, Acta Physicochim. U.R.S.S. 1, 913 (1934/1935) – reference: OluwadareOJOyewumiKJAdv. High Energy Phys.201820185214041 – reference: IkhdairSMFalayeBJHamzaviMAnn. Phys.20153532822015AnPhy.353..282I – reference: PhilipsJGKleinmannLPhys. Rev. A19591162871959PhRv..116..287P – reference: ÇetinAPhys. B2017523922017PhyB..523...92C – reference: BaghdasaryanDAHayrapetyanDBKazaryanEMSarkisyanHAPhysica E Low Dimens. Syst. Nanostruct.201810112018PhyE..101....1B – reference: GryaznovVKZhernokletovMVZubarevVNLosilevskiiILTortovVEEkspEhTeor. Fiz.198078573 – reference: EshghiMMehrabanHIkhdairSMChin. Phys. B2017260603022017ChPhB..26f0302E – reference: FalayeBJSunGHOrtigozRSDongSHPhys. Rev. E2016930532012016PhRvE..93e3201F – reference: JiaCSZhangLHPengXLLuoJXZhaoYLLiuJYGuoJJTangLDChem. Eng. Sci.201920270 – reference: HamzaviMThylweKERajabiAACommun. Theor. Phys.20136012013CoTPh..60....1H – reference: IbragimovGBFizika20033435 – reference: EdetCOOkorieUSOsobonyeGIkotANRamphoGJSeverRJ. Math. Chem.2020589894087458 – reference: KhordadRSadeghzadehMAMohamadianJahan-abadACommun. Theor. Phys.2013596552013CoTPh..59..655K – reference: PathriaRKStatistical Mechanics1996WashingtonButterworth0862.00007 – reference: HughesAJCallawayJPhys. Rev. A196413613901964PhRv..136.1390H – reference: EshghiMMehrabanHEur. Phys. J. Plus2017132121 – reference: KhordadRRastegar SedehiHRJ. Low Temp. Phys.20181902002018JLTP..190..200K – reference: BeraAGhoshAGhoshMJ. Magn. Magn. Mater.20194843912019JMMM..484..391B – reference: FerkousNBounamesACommun. Theor. Phys.2013596792013CoTPh..59..679F – reference: OnateCAOjonubahJOAdeotiAEwehEJUgbojaMAfr. Rev. Phys.201490062 – reference: HellmannHJ. Chem. Phys.19353611935JChPh...3...61H – reference: EbelingWSokolovMIStatistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems2005SingaporeWorld Scientific3121142.82001 – reference: KhordadRRastegar SedehiHREur. Phys. J. Plus2019134133 – reference: AliaAAElsaidMKShaerAJ. Taibah Univ. Sci.201913687 – reference: EshghiMSeverRIkhdairSMChin. Phys. B2018270203012018ChPhB..27b0301E – reference: AygunMBayrakOBoztosunISahinYEur. Phys. J. D201266352012EPJD...66...35A – reference: McGinnGJ. Chem. Phys.19705336351970JChPh..53.3635M – reference: LandsbergPTThermodynamics and Statistical Mechanics1991New YorkDover – reference: GreeneRLAldrichCPhys. Rev. A19761423631976PhRvA..14.2363G – reference: JiaCSZengRPengXLZhangLHZhaoYLChem. Eng. Sci.20181901 – reference: SimonsGJ. Chem. Phys.1971557561971JChPh..55..756S – reference: PengXLJiangRJiaCSZhangLHZhaoYLChem. Eng. Sci.2018190122 – reference: IkotANRamphoGJAmadiPOSitholeMJOkorieUSLekalaMIEur. Phys. J. Plus2020135503 – reference: WangJJiaCSLiCJPengXLZhangLHLiuJYACS Omega2019419193 – reference: JiaCSWangCWZhangLHPengXLZengRYouXTChem. Phys. Lett.20176761502017CPL...676..150J – reference: P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, H.Y. Abdullah. Int. J. Quant. Chem. e26246 (2020). https://doi.org/10.1002/qua.26246 – reference: OnateCAOnyeajuMCIkotANEbomwonyiOEur. Phys. J. Plus2017132462 – reference: ZakrzewskiJGebarowskiRDelandeDPhys. Rev. A1996546911996PhRvA..54..691Z – reference: YazarlooBHMehrabanHHassnabadiHActa Phys. Pol. A20151276842015AcPPA.127..684Y – reference: KhordadRGhanbariAJ. Low Temp. Phys.202019911982020JLTP..199.1198K – reference: JiaCSWangCWZhangLHPengXLTangHMLiuJYXiongYZengRChem. Phys. Lett.2018692572018CPL...692...57J – reference: KhordadRSolid State Sci.20101212532010SSSci..12.1253K – reference: HellmannHKassatotschkinWJ. Chem. Phys193643241936JChPh...4..324H – reference: BoyaciogluBChatterjeeAPhysica E20124418262012PhyE...44.1826B – volume: 55 start-page: 2422 year: 2017 ident: 2533_CR9 publication-title: Chin. J. Phys doi: 10.1016/j.cjph.2017.10.007 – volume: 187 start-page: 192 year: 1969 ident: 2533_CR10 publication-title: Phys. Rev. doi: 10.1103/PhysRev.187.192 – volume: 93 start-page: 053201 year: 2016 ident: 2533_CR22 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.053201 – volume: 9 start-page: 0062 year: 2014 ident: 2533_CR40 publication-title: Afr. Rev. Phys. – volume: 3 start-page: 61 year: 1935 ident: 2533_CR1 publication-title: J. Chem. Phys. doi: 10.1063/1.1749559 – volume: 27 start-page: 020301 year: 2018 ident: 2533_CR17 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/2/020301 – volume: 190 start-page: 122 year: 2018 ident: 2533_CR60 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.06.027 – start-page: 312 volume-title: Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems year: 2005 ident: 2533_CR28 doi: 10.1142/2012 – volume: 12 start-page: 1253 year: 2010 ident: 2533_CR19 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.03.001 – volume: 183 start-page: 26 year: 2018 ident: 2533_CR55 publication-title: Chem. EngV Sci. doi: 10.1016/j.ces.2018.03.009 – ident: 2533_CR61 doi: 10.1002/qua.26246 – ident: 2533_CR62 doi: 10.1007/s40995-020-00913-4 – volume: 55 start-page: 756 year: 1971 ident: 2533_CR3 publication-title: J. Chem. Phys. doi: 10.1063/1.1676142 – volume: 41 start-page: 37 year: 2020 ident: 2533_CR51 publication-title: Int. J. Thermophys. doi: 10.1007/s10765-020-2615-0 – volume: 26 start-page: 060302 year: 2017 ident: 2533_CR16 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/26/6/060302 – volume: 34 start-page: 35 year: 2003 ident: 2533_CR32 publication-title: Fizika – volume-title: Statistical Mechanics year: 1996 ident: 2533_CR29 – year: 2020 ident: 2533_CR46 publication-title: J Phys. doi: 10.1007/s12648-019-01670-w – volume: 136 start-page: 1390 year: 1964 ident: 2533_CR14 publication-title: Phys. Rev. A doi: 10.1103/PhysRev.136.A1390 – volume: 132 start-page: 121 year: 2017 ident: 2533_CR18 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11379-x – volume: 16 start-page: 1 year: 2014 ident: 2533_CR20 publication-title: Arab. Univ. Basic Appl. Sci. – volume: 315 start-page: 113751 year: 2020 ident: 2533_CR54 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113751 – volume: 4 start-page: 324 year: 1936 ident: 2533_CR2 publication-title: J. Chem. Phys doi: 10.1063/1.1749851 – volume: 127 start-page: 684 year: 2015 ident: 2533_CR8 publication-title: Acta Phys. Pol. A doi: 10.12693/APhysPolA.127.684 – volume: 190 start-page: 200 year: 2018 ident: 2533_CR33 publication-title: J. Low Temp. Phys. doi: 10.1007/s10909-017-1831-x – volume: 13 start-page: 687 year: 2019 ident: 2533_CR35 publication-title: J. Taibah Univ. Sci. doi: 10.1080/16583655.2019.1622242 – volume: 353 start-page: 282 year: 2015 ident: 2533_CR21 publication-title: Ann. Phys. doi: 10.1016/j.aop.2014.11.017 – volume-title: Thermodynamics and Statistical Mechanics year: 1991 ident: 2533_CR30 – volume: 35 start-page: 460 year: 2016 ident: 2533_CR24 publication-title: J. Niger. Math. Soc. – volume: 523 start-page: 92 year: 2017 ident: 2533_CR26 publication-title: Phys. B doi: 10.1016/j.physb.2017.08.030 – volume: 116 start-page: 287 year: 1959 ident: 2533_CR13 publication-title: Phys. Rev. A doi: 10.1103/PhysRev.116.287 – volume: 692 start-page: 57 year: 2018 ident: 2533_CR57 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.12.013 – volume: 134 start-page: 133 year: 2019 ident: 2533_CR34 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12558-5 – volume: 676 start-page: 150 year: 2017 ident: 2533_CR53 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.03.068 – volume: 2018 start-page: 5214041 year: 2018 ident: 2533_CR7 publication-title: Adv. High Energy Phys. doi: 10.1155/2018/5214041 – volume: 59 start-page: 679 year: 2013 ident: 2533_CR25 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/59/6/04 – volume: 25 start-page: 056502 year: 2016 ident: 2533_CR31 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/25/5/056502 – volume: 58 start-page: 989 year: 2020 ident: 2533_CR44 publication-title: J. Math. Chem. doi: 10.1007/s10910-020-01107-4 – volume: 74 start-page: 159 year: 2020 ident: 2533_CR49 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2020-10084-9 – ident: 2533_CR4 – volume: 135 start-page: 503 year: 2020 ident: 2533_CR39 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00525-2 – volume: 6 start-page: e03738 year: 2020 ident: 2533_CR45 publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e03738 – volume: 4 start-page: 19193 year: 2019 ident: 2533_CR50 publication-title: ACS Omega doi: 10.1021/acsomega.9b02488 – volume: 44 start-page: 1826 year: 2012 ident: 2533_CR43 publication-title: Physica E doi: 10.1016/j.physe.2012.05.001 – volume: 513 start-page: 252 year: 2018 ident: 2533_CR47 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.08.015 – volume: 190 start-page: 1 year: 2018 ident: 2533_CR56 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.06.009 – volume: 53 start-page: 3635 year: 1970 ident: 2533_CR11 publication-title: J. Chem. Phys. doi: 10.1063/1.1674543 – volume: 3 start-page: 59 year: 2017 ident: 2533_CR41 publication-title: Karbala Int. J. Mod. doi: 10.1016/j.kijoms.2017.03.001 – volume: 484 start-page: 391 year: 2019 ident: 2533_CR48 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.04.005 – volume: 101 start-page: 1 year: 2018 ident: 2533_CR36 publication-title: Physica E Low Dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2018.03.009 – volume: 54 start-page: 691 year: 1996 ident: 2533_CR15 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.54.691 – volume: 66 start-page: 35 year: 2012 ident: 2533_CR23 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2011-20319-5 – volume: 59 start-page: 655 year: 2013 ident: 2533_CR37 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/59/5/22 – volume: 6 start-page: 893 year: 2007 ident: 2533_CR42 publication-title: J. Theor. Comput. Chem. doi: 10.1142/S0219633607003313 – volume: 199 start-page: 1198 year: 2020 ident: 2533_CR52 publication-title: J. Low Temp. Phys. doi: 10.1007/s10909-020-02368-8 – volume: 60 start-page: 1 year: 2013 ident: 2533_CR6 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/60/1/01 – volume: 715 start-page: 186 year: 2019 ident: 2533_CR59 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.11.044 – volume: 5 start-page: e02224 year: 2019 ident: 2533_CR27 publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02224 – volume: 202 start-page: 70 year: 2019 ident: 2533_CR58 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.03.033 – volume: 78 start-page: 573 year: 1980 ident: 2533_CR12 publication-title: Teor. Fiz. – volume: 14 start-page: 2363 year: 1976 ident: 2533_CR38 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.14.2363 – volume: 132 start-page: 462 year: 2017 ident: 2533_CR5 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11729-8 |
SSID | ssj0009863 |
Score | 2.4539692 |
Snippet | In this research work, the Hellmann potential is studied in the presence of external magnetic and AB flux fields within the framework of Schrodinger equation... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 83 |
SubjectTerms | Characterization and Evaluation of Materials Condensed Matter Physics Energy spectra Evaluation Free energy Functional analysis Internal energy Low temperature physics Magnetic fields Magnetic flux Magnetic Materials Magnetic permeability Magnetic properties Magnetism Partitions (mathematics) Physics Physics and Astronomy Schrodinger equation Thermodynamic properties Wave functions |
Title | Thermal Properties and Magnetic Susceptibility of Hellmann Potential in Aharonov–Bohm (AB) Flux and Magnetic Fields at Zero and Finite Temperatures |
URI | https://link.springer.com/article/10.1007/s10909-020-02533-z https://www.proquest.com/docview/2484286274 |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoqFIviEerLlDkA4eiNtLGcdL4GB4BQRchwUrQS-TYDiAtTrXJIuDEf0D9g_wSZrwJC6itxCkHv6R8tmfG880MIWtdVoBVoo2HPjCPBwX38jhGh6spclfdoovxzr2DaLfP907CkyYorGrZ7q1L0t3Uz4LdBD7kg7kDcjoIvNt3ZCZE2x12cZ8lk1S7cVM_DcwsxoTfhMr8fY6X4miiY75yizppk86R2UZNpMkY13kyZewCee_omqpaJH8AXbhRB_QQ39KHmBSVSqtpT55ZjEqkR6PK8VUc9fWGlgUF-TK4lNbSw7JGhhAMvrA0OZfD0pZXD3f3G-X5Jf2abKzTdDC6fjldijw3WKKmv8ywdG3pBWqr9NiA3j3Oy1x9JP10-3hz12sKLHgKTl7tScl9zfxca8m0EkpGxkQqD7XIeSEMKIPRD8ULI0DO8dAPIg7wKd_oKJCRCHnwiUzb0prPhEZaxGEehN0co-tDXxoO1yxW_zRKyIB1iN_-50w12cexCMYgm-RNRmwywCZz2GS3HfLtaczvce6N__ZeaeHLmnNYZYzHYF9hfaEO-d5COmn-92xLb-u-TD4wJLu4t5kVMl0PR-YLaCt1vkpmkq3ezyP87pzub6-6zfoIAaPkxw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUoCLUXVEqrbkvBhx6oaKSN44T4uCCi5WMRErsS4hI5tgNIi1Ntsqhw4j8g_iC_hBlvwhYElTjHdqS82PPG82aGkJ9tloNXoo2HMTCPBzn3sjjGgKvJM9fdoo35zr2DqDvgu8fhcZ0UVjZq9yYk6U7qf5LdBF7kg7sDdjoIvOt3ZA7IQIxCrgHrTEvtxnX_NHCzGBN-nSrz8hpPzdGUYz4Lizprk3wkCzVNpJ0JrotkxthPZN7JNVW5RO4AXThRh_QQ79JHWBSVSqtpT55azEqkR-PS6VWc9PWKFjkF-zK8kNbSw6JChRBMPre0cyZHhS0u729uN4uzC7rW2fxFk-H479PlEtS5wSsqemJGhXuWnCNbpX0DvHtSl7n8TAbJdn-r69UNFjwFO6_ypOS-Zn6mtWRaCSUjYyKVhVpkPBcGyGC0oXhuBNg5HvpBxAE-5RsdBTISIQ--kFlbWPOV0EiLOMyCsJ1hdn3oS8PhmMXun0YJGbAW8ZvvnKq6-jg2wRim07rJiE0K2KQOm_S6RdYf5_yZ1N747-jlBr603odlyngM_hX2F2qR3w2k08evr_btbcNXyftuv7ef7u8c7H0nHxgKX9w9zTKZrUZj8wOYS5WtuB_1AZnH5JI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9swELdYEdNe0BhDFBj4YQ8gFtE4Togfy0bE_hRVgkpoL5FjOwOpOFWTIsbTvsO0L7hPsjsnpQWNSXu24yj-XXx3vrvfEfK2w3LwSrTxMAbm8SDnXhbHGHA1eea6W3Sw3rl3Gp0M-KeL8GKuit9lu09DknVNA7I02epgpPODucI3gZf64PqAzg4C7-4ZWYTj2Ee5HrDujHY3bnqpgcvFmPCbspm_r_FQNc3szUchUqd5kpdkuTEZabfGeIUsGPuKLLnUTVWukl-ANJyuQ9rHe_UxEqRSaTXtyW8WKxTp2aR0uSsuDfY7LXIKumZ4La2l_QI_GkSQXlnavZTjwhY3v3_8PCour-lu92iPJsPJ7cPlEsx5g1dU9KsZF24suULLlZ4bsMFrjubyNRkkx-fvT7ym2YKnYNsqT0rua-ZnWkumlVAyMiZSWahFxnNhwDCMDhXPjQCdx0M_iDhAqXyjo0BGIuTBGmnZwpp1QiMt4jALwk6GlfahLw2HIxc7gRolZMDaxJ_uc6oaJnJsiDFMZxzKiE0K2KQOm_SuTfbvnxnVPBz_nL01hS9t_skyZTwGXwt7DbXJuymks-GnV9v4v-k75Hn_Q5J--Xj6eZO8YJgD465stkirGk_MGzBiqmzbyekfw7bozg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+Properties+and+Magnetic+Susceptibility+of+Hellmann+Potential+in+Aharonov%E2%80%93Bohm+%28AB%29+Flux+and+Magnetic+Fields+at+Zero+and+Finite+Temperatures&rft.jtitle=Journal+of+low+temperature+physics&rft.au=Edet%2C+C.+O.&rft.au=Amadi%2C+P.+O.&rft.au=Onyeaju%2C+M.+C.&rft.au=Okorie%2C+U.+S.&rft.date=2021-01-01&rft.pub=Springer+US&rft.issn=0022-2291&rft.eissn=1573-7357&rft.volume=202&rft.issue=1-2&rft.spage=83&rft.epage=105&rft_id=info:doi/10.1007%2Fs10909-020-02533-z&rft.externalDocID=10_1007_s10909_020_02533_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2291&client=summon |